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1 Introduction

We have introduced the notion of stabile ODEs (odrinary differential equations)
for obtaining numerical solutions valid when the independent variable z goes
to the infinity. In our applications of holonomic gradient method (HGM, see,
e.g., [2], [8], [A]), it is a key step to find a stabile ODE [0]. In this short note,
we will propose an algorithmic method, which utilizes Gauge transformations,
to derive a stabile system. If we can apply this algorithmic method by an
algebraic calculation, we can obtain a stabile system with no numerical error.
We demonstrate that this approach gives a useful stabile ODE used in [].

2 Obtaining Stabile Subsystems

We review our definition of a stabile ODE given in [f].
Definition 1. Consider the ODE
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where a;(x) are polynomials in . We assume that f is a solution of this differ-
ential equation. and denote with fi(x),..., fi,(x) its linearly independent solu-
tions. Then, let f;(x) be the dominant solution for x — oo, i.e., |fi(z)| > | f;(z)],

V4. We refer to the LODE (liear ODE) as stabile for f(x) if limy_, o % < 00.
Note that a LODE is stabile or not regardless of the selected set of linearly in-
dependent solutions. The notion of stabile LODE is defined analogously in the

case of a vector-valued function, by replacing | - | with a vector norm || - ||.

Theorem 1. Stabile LODEs can be derived algorithmically and numerically as
a lower-dimensional subsystem of given LODEFEs.

Proof. We give our algorithm. It is enough to give an algorithm in case of
a vector valued ODE (a system of ODEs) of the first order.

Let g = (g1,...,9-)" be the dominant solution of the LODE f' = P(x)f
where P is an r X r square matrix valued function. For this LODE, let us



consider the following gauge transformation matrix and its inverse:
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Then, the matrix of the transformed LODE by the Gauge transformation G
can be written as

0|gi'p2 gi'ms -+ gi'pir
0

G'pG-Gglg' = | - P2 , (3)
0

where p;; = [P]; j, and Py is an (r — 1) x (r — 1) matrix with column (i — 1)
given by

(—g2gy 'pri + P20 —9397 'PritP3i oo —9rgy 'PriFpri) (4)

In other words, the original P is block upper-triangularized by the gauge trans-
formation G.

It follows from the local theory of LODEs that the second dominant solution
of the LODE for F is obtained from the dominant solution of the smaller system
£, = Pof;. We can apply this procedure recursively. //

We apply this procedure for the following ODE discussed in [

0
%f(x, A) =P(x,\)f(z,\) where f is the 4-dimensional vector  (5)

and
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a;’s are polynomials in x and A shown in Table 0.
In this case, we can derive a stabile subsystem

9 0 26—w2+2w/1(p2(k+1) 0
a—g(@) =—10 0 1 g(y). (6)
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by an algebraic calculation.

Theorem 2. A gauge transformation yields the 3 dimensional subsystem (B),
which is stabile, from the 4 dimensional system (@), which is not stabile, by block
upper-triangularization where x = \/x and 1 = VA



Table 1: Elements of matrices P(z, A) from [l

Expression
ar | (E+1)A
az | A—n+1

as (k‘—l—l))\—i—n— 1

as | (k+1)x\2

ag | A2 —(n—1) [z + (k+ DX +n—1]

a; | —(x4+n—-DA+(n-1)(n—2)

ag | —(n —2)(k+1)x\?

ag | (k—n+3)2X2+(n—-122X+ (k+ DA +n—1]
ap | A2+ (n—12\N—n+2)

aj; | —zA—(n—1)>2

Proof. Our proof relies on [l, Appendix I-b] and we use symbols I; defined
in this appendix. Let Z be the left ideal in ring R generated by operators /; and
Iy respectively, and G be the Grobner basis of Z for the lexicographic ordering
Ox > 0, which comprises differential operators I3, l4, and [5. Based on the
ordering we can identify the leading terms of I3, Iy, and I5 as 03, 0,0, and 9?\,
respectively, which, in the (6,, 6))-plane, correspond to points (3,0), (1,1), and
(0,2), respectively. Then, the remaining points in the top-right quadrant under
the line connecting these points are: (0,0), (1,0), (2,0), and (0,1). These points
yield the so-called standard monomials with respect to G as 1, 6, 02, and 60},
respectively. Please see [B], [, p. 46] for their definition. Finally, notice again
that operator 3 is free of 6.

Then, using the definition of 6, = J;a% and expressing 02 from [3, we can
write the following in the ring of differential operators I; and I,

0 1
a_ = *97"5
0x x @
0 14
%Gi _ %eiz_lv—ik—?)ag_(ac—k—l)(x—xk+n—2)—m)\ez.(g)

Because the right-hand side contains 6, #2, but not @, we can recast the ODEs
in block-diagonalized form as

0 EN I S 0
0 1 0 1
— = duloZ (10)
oz | 0. 0 P 0, mo :
62 0 2 62

where symbols * stand for unimportant elements, and Ps is a 3 x 3 matrix whose
elements can be readily identified from (@), (8), (9).

Now, let J be the left ideal generated by Z in the ring of differential operators
K (D, 0y), where K is the quotient field of holomorphic functions of (z, A) on a

1A = B or A= B moduloZ means that A — B € Z. Note that if /1 and Iy annihilate f
then Ae f = Be f when A = B.



neighborhood of (1,1). Using the following gauge transformation®

si(z,\) = exp(—2vaN)zF e, (11)
520 ) = Slelesp(-2VeX)a T eh,), (12)

we can transform (M) into

0 * ok 0

0 1 _ 1
| s | = :F)3 5 modulo 7, (13)

So 52

where P3 is a 3 X 3 matrix.

Further, let G’ be a Grobner basis of Z with the ordering 9, > d,. Recall
that this basis is characterized by the differential operators lg and I7 shown in
[M]. Computing the normal forms[8][3, p. 283] of s1 and s2 by G’ yields ¢;(x, A)
and d;(z,\), i=0,...,3, for

ci(z,\)05  modulo 7, (14)
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Now, using ¢;(x, ) and d;(x,\), i = 0: 3 to construct the matrix

0O 1 0 0

G- 1 0 0 0 7 (16)
Ch C1 C2 C3
do di do ds

and applying the gauge transformation with G to () yields the matrix Pj
in (03). Finally, upon making the variable transformation ¢ = /z, differential
equation %f = P3f yields (B). //

Numerical evidences that the stabile ODE (B) is useful in a performance
evaluation of multiple-input multiple-output (MIMO) wireless communications
systems under Rician fading channel is given in [0].
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