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1 Introduction

We have introduced the notion of stabile ODEs (odrinary differential equations)
for obtaining numerical solutions valid when the independent variable x goes
to the infinity. In our applications of holonomic gradient method (HGM, see,
e.g., [2], [3], [4]), it is a key step to find a stabile ODE [1]. In this short note,
we will propose an algorithmic method, which utilizes Gauge transformations,
to derive a stabile system. If we can apply this algorithmic method by an
algebraic calculation, we can obtain a stabile system with no numerical error.
We demonstrate that this approach gives a useful stabile ODE used in [1].

2 Obtaining Stabile Subsystems

We review our definition of a stabile ODE given in [1].

Definition 1. Consider the ODE[
am(x)

dm

dxm
+ · · ·+ a1(x)

d

dx
+ a0(x)

]
• u = 0 (1)

where ai(x) are polynomials in x. We assume that f is a solution of this differ-
ential equation. and denote with f1(x), . . . , fm(x) its linearly independent solu-
tions. Then, let fi(x) be the dominant solution for x→ ∞, i.e., |fi(x)| ≥ |fj(x)|,
∀j. We refer to the LODE (liear ODE) as stabile for f(x) if limx→∞

|fi(x)|
|f(x)| <∞.

Note that a LODE is stabile or not regardless of the selected set of linearly in-
dependent solutions. The notion of stabile LODE is defined analogously in the
case of a vector-valued function, by replacing | · | with a vector norm || · ||.

Theorem 1. Stabile LODEs can be derived algorithmically and numerically as
a lower-dimensional subsystem of given LODEs.

Proof . We give our algorithm. It is enough to give an algorithm in case of
a vector valued ODE (a system of ODEs) of the first order.

Let g = (g1, . . . , gr)
T be the dominant solution of the LODE f ′ = P(x)f

where P is an r × r square matrix valued function. For this LODE, let us
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consider the following gauge transformation matrix and its inverse:

G =


g1 0 0 · · · 0
g2
· Ir−1·
gr

 , G−1 =


g−1
1 0 0 · · · 0

−g2g−1
1

· Ir−1·
−grg−1

1

 . (2)

Then, the matrix of the transformed LODE by the Gauge transformation G
can be written as

G−1PG−G−1G′ =


0 g−1

1 p12 g−1
1 p13 · · · g−1

1 p1r
0
· P2·
0

 , (3)

where pij = [P]i,j , and P2 is an (r − 1) × (r − 1) matrix with column (i − 1)
given by

(−g2g−1
1 p1i + p2i −g3g−1

1 p1i + p3i . . . −grg−1
1 p1i + pri)

T. (4)

In other words, the original P is block upper-triangularized by the gauge trans-
formation G.

It follows from the local theory of LODEs that the second dominant solution
of the LODE for F is obtained from the dominant solution of the smaller system
f ′2 = P2f2. We can apply this procedure recursively. //

We apply this procedure for the following ODE discussed in [1]

∂

∂x
f(x, λ) = P(x, λ) f(x, λ) where f is the 4-dimensional vector (5)

and

P(x, λ) =
1

xλ


a1 a2 −1 0
0 a3 a2 + 1 −1
a5 a6 a7 n− 1
a8 a9 a10 a11

 .

ai’s are polynomials in x and λ shown in Table 1.
In this case, we can derive a stabile subsystem

∂

∂φ
g(φ) =

1

φ

 0 2e−φ
2+2φψφ2(k+1) 0

0 0 1
0 −2(2n− 1)φψ − [4φψ + 2(n− 1)]

g(φ). (6)

by an algebraic calculation.

Theorem 2. A gauge transformation yields the 3 dimensional subsystem (2),
which is stabile, from the 4 dimensional system (5), which is not stabile, by block
upper-triangularization where x =

√
x and ψ =

√
λ.
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Table 1: Elements of matrices P(x, λ) from [1]
Expression

a1 (k + 1)λ
a2 λ− n+ 1
a3 (k + 1)λ+ n− 1
a5 (k + 1)xλ2

a6 xλ2 − (n− 1) [xλ+ (k + 1)λ+ n− 1]
a7 −(x+ n− 1)λ+ (n− 1)(n− 2)
a8 −(n− 2)(k + 1)xλ2

a9 (k − n+ 3)xλ2 + (n− 1)2 [xλ+ (k + 1)λ+ n− 1]
a10 xλ2 + (n− 1)2(λ− n+ 2)
a11 −xλ− (n− 1)2

Proof . Our proof relies on [1, Appendix I-b] and we use symbols li defined
in this appendix. Let I be the left ideal in ring R generated by operators l1 and
l2 respectively, and G be the Gröbner basis of I for the lexicographic ordering
∂λ > ∂x, which comprises differential operators l3, l4, and l5. Based on the
ordering we can identify the leading terms of l3, l4, and l5 as θ3x, θλθx, and θ

2
λ,

respectively, which, in the (θx, θλ)-plane, correspond to points (3, 0), (1, 1), and
(0, 2), respectively. Then, the remaining points in the top-right quadrant under
the line connecting these points are: (0, 0), (1, 0), (2, 0), and (0, 1). These points
yield the so-called standard monomials with respect to G as 1, θx, θ

2
x, and θλ},

respectively. Please see [5], [3, p. 46] for their definition. Finally, notice again
that operator l3 is free of θλ.

Then, using the definition of θx = x ∂
∂x and expressing θ3x from l3, we can

write the following in the ring of differential operators l1 and l2
1:

∂

∂x
1 =

1

x
θx, (7)

∂

∂x
θx =

1

x
θ2x, (8)

∂

∂x
θ2x =

1

x
θ3x ≡ −2x− 2k − 3

x
θ2x −

(x− k − 1)(x− k + n− 2)− xλ

x
θx.(9)

Because the right-hand side contains θx, θ
2
x, but not θλ, we can recast the ODEs

in block-diagonalized form as

∂

∂x


θλ
1
θx
θ2x

 ≡


∗ ∗ ∗ ∗
0
0 P20




θλ
1
θx
θ2x

 modulo I, (10)

where symbols ∗ stand for unimportant elements, and P2 is a 3×3 matrix whose
elements can be readily identified from (7), (8), (9).

Now, let J be the left ideal generated by I in the ring of differential operators
K⟨∂x, ∂λ⟩, where K is the quotient field of holomorphic functions of (x, λ) on a

1A ≡ B or A ≡ B modulo I means that A − B ∈ I. Note that if l1 and l2 annihilate f
then A • f = B • f when A ≡ B.
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neighborhood of (1, 1). Using the following gauge transformation2

s1(x, λ) = exp(−2
√
xλ)x−k−1exθx, (11)

s2(x, λ) =
1

2
θx(exp(−2

√
xλ)x−k−1exθx), (12)

we can transform (10) into

∂

∂x


θλ
1
s1
s2

 ≡


∗ ∗ ∗ ∗
0
0 P30




θλ
1
s1
s2

 moduloJ , (13)

where P3 is a 3× 3 matrix.
Further, let G′ be a Gröbner basis of I with the ordering ∂x > ∂λ. Recall

that this basis is characterized by the differential operators l6 and l7 shown in
[1]. Computing the normal forms[5][3, p. 283] of s1 and s2 by G′ yields ci(x, λ)
and di(x, λ), i = 0, . . . , 3, for

s1 ≡
3∑
i=0

ci(x, λ)θ
i
λ moduloJ , (14)

s2 ≡
3∑
i=0

di(x, λ)θ
i
λ moduloJ . (15)

Now, using ci(x, λ) and di(x, λ), i = 0 : 3 to construct the matrix

G =


0 1 0 0
1 0 0 0
c0 c1 c2 c3
d0 d1 d2 d3

 , (16)

and applying the gauge transformation with G to (5) yields the matrix P3

in (13). Finally, upon making the variable transformation φ =
√
x, differential

equation ∂
∂x f = P3f yields (6). //

Numerical evidences that the stabile ODE (2) is useful in a performance
evaluation of multiple-input multiple-output (MIMO) wireless communications
systems under Rician fading channel is given in [1].
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