Contingency tables and hypergeometric polynomials associated to hyperplane arrangements

Nobuki Takayama, joint work with Y.Tachibana, Y.Goto, T.Koyama

$$
2018 / 06 / 11
$$

1. Yoshihito Tachibana, Yoshiaki Goto, Tamio Koyama, Nobuki Takayama, Holonomic Gradient Method for Two Way Contingency Tables, arxiv:1803.04170
2. Y.Goto, K.Matsumoto, Pfaffian equations and contiguity relations of the hypergeometric function of type $(k+1, k+n+2)$ and their applications, arxiv:1602.01637
$I=\left(I_{1}, \ldots, I_{k+1}\right) \in \mathbf{Z}_{\geq 0}^{k+1}, J=\left(J_{1}, \ldots, J_{n+1}\right) \in \mathbf{Z}_{\geq 0}^{n+1}$,
$\sum I_{i}=\sum J_{j}$.
$p=\left(p_{i j}\right)$

$$
\begin{equation*}
Z(I, J ; p)=\mathrm{C} . \mathrm{T} \cdot \prod_{j=1}^{n+1}\left(\sum_{i=1}^{k+1} p_{i j} t_{i}\right)^{J_{j}} t^{-I} \tag{1}
\end{equation*}
$$

$t_{1}=1, t^{-l}=\prod_{i=1}^{k+1} t_{i}^{-l_{i}}$. Note* that

$$
Z(I, J ; p)=J!\sum \frac{p^{u}}{u!}
$$

where $\sum_{i} u_{i j}=J_{j}$ (column sum is J), $\sum_{j} u_{i j}=I_{i}(\text { raw sum is } I)^{\dagger}$. Z is the normalizing constant (partition function) of a distribution.

[^0]Goal 1: Evaluate numerically Z and its derivatives efficiently and accurately \ddagger.
Motivation from statistics: 2 way contingency table:
$(k+1) \times(n+1)$ matrix with $\mathbf{Z}_{\geq 0}$ entries.

	acetaminophen	diclofenac sodium	mefenamic acid
death	4	7	2
survival	32	5	6

$$
P\left(U_{i j}=u_{i j}\right)=\frac{\exp \left(-p_{i j}\right) p_{i j}^{u_{i j}}}{u_{i j}!}
$$

The conditional probability ${ }^{\S}$ when the row and column sums are fixed to I, J is

$$
P\left(U=u \mid \sum_{j} U_{i j}=l_{i}, \sum_{i} U_{i j}=J_{j}\right)=\frac{p^{u} / u!}{Z(I, J ; p)}
$$

${ }^{\ddagger}$ When $I=(4,14,5,2,1), J=(10,6,5,2,3)$, there are 229,174 terms.
${ }^{\S} U_{i j}$ is a random variable of the Poisson distribution.

References on contingency tables (MSC2010: 62H17).

Gröbner Bases

Statistics and Software Systems

空 Springer

$$
\begin{equation*}
E\left[U_{i j} \mid \odot\right]=\sum_{\odot} \frac{u_{i j} p^{u} / u!}{Z(I, J ; p)}=p_{i j} \frac{\partial}{\partial p_{i j}} \log Z \tag{2}
\end{equation*}
$$

Proposition

$E\left[U_{i j} \mid \odot_{U}\right]$ is invariant by the torus action $p_{i j} \mapsto p_{i j} p_{i} p_{j}^{\prime}$, $p_{i}, p_{j}^{\prime} \in \mathbf{R}_{>0}$.

Theorem

$$
\begin{equation*}
\mathbf{R}_{>0}^{(k+1)(n+1)} / \sim \ni\left(p_{i j}\right) \mapsto E\left[U_{i j} \mid \odot\right] \in \operatorname{relint} \operatorname{New}(Z) \tag{3}
\end{equation*}
$$

is an isomorphism ${ }^{\|}$.
Goal 2: Find the inverse image numerically ${ }^{\|}$.

[^1]Let us explain the idea of our method ${ }^{* *}$ for 2×2 case.

$$
\begin{align*}
& \bar{u}=\left(\begin{array}{rr}
J_{1} & 0 \\
J_{2}-I_{1} & I_{2}
\end{array}\right) . \\
& Z=\frac{p^{\bar{u}}}{\bar{u}!} 2 F_{1}\left(-J_{1},-I_{2}, J_{2}-I_{2}+1 ; \frac{p_{12} p_{21}}{p_{11} p_{22}}\right) \tag{4}
\end{align*}
$$

$$
\begin{aligned}
& f(a)={ }_{2} F_{1}(a, b, c ; x)=\sum_{k=0}^{\infty} \frac{(a)_{k}(b)_{k}}{(c)_{k}(1)_{k}} x^{k}, \\
& (a)_{k}=a(a+1) \cdots(a+k-1) \cdot F(a)=(f(a), x d f / d x(a))^{T} .
\end{aligned}
$$

$$
\begin{equation*}
F(a)=(E+A(a) / a)^{-1} F(a+1), \tag{5}
\end{equation*}
$$

where $A(a)=\left(\begin{array}{cc}0 & 1 \\ a b x /(1-x) & (a x+b x-c+1) /(1-x)\end{array}\right)$.
$F(a)=M(a) M(a+1) \cdots M(-2) F(-1), \quad M(a)=(E+A(a) / a)^{-1}$.
"factorial" of contiguity relation (5).

[^2]\[

\tilde{p}=$$
\begin{gathered}
1 \\
2 \\
k+1
\end{gathered}
$$\left($$
\begin{array}{cccccccc}
1 & & & k+1 & k+2 & k+3 & & k+n+2 \\
1 & 0 & \cdots & 0 & p_{11} & p_{12} & \cdots & p_{1, n+1} \\
0 & 1 & \cdots & 0 & p_{21} & p_{22} & \cdots & p_{2, n+1} \\
& & \cdots & & & & \cdots & \\
0 & 0 & \cdots & 1 & p_{k+1,1} & & \cdots & p_{k+1, n+1}
\end{array}
$$\right)
\]

$L_{j}=\tilde{p}_{j} \cdot t$ where \tilde{p}_{j} is the j-th column vector ${ }^{\dagger \dagger}$ of $\tilde{p} . \alpha_{j} \in \mathbf{C} \backslash \mathbf{Z}$, $\sum_{j=1}^{k+n+2} \alpha_{j}=0$.

$$
\begin{equation*}
\nabla=d_{t}+\sum_{j} \alpha_{j} d_{t} \log L_{j} \tag{6}
\end{equation*}
$$

$$
\begin{gathered}
\tilde{P}=\{\tilde{p} \mid \text { any }(k+1) \times(n+1) \text { minor of } \tilde{p} \neq 0\} \\
T_{p}=\left\{t^{\prime} \in \mathbf{C}^{k} \mid L_{j}(p ; t) \neq 0 \text { for all } j .\right\}, \quad p \in \tilde{P}
\end{gathered}
$$

$$
\overline{{ }^{\dagger \dagger} L_{1}=t_{1}=1, L_{2}=t_{2}, \ldots, L_{k+n+2}}=\sum_{i} p_{i, n+1} t_{i}
$$

$$
\begin{gather*}
\mathcal{J}=\left\{\left(j_{1}, \ldots, j_{k+1}\right) \mid 1 \leq j_{1}<j_{2}<\cdots<j_{k+1} \leq k+n+2\right\} \\
q \mathcal{J}_{p}=\{J \in \mathcal{J} \mid q \notin J, p \in J\} \\
\varphi\langle J\rangle=d_{t} \log \left(L_{j_{2}} / L_{j_{1}}\right) \wedge d_{t} \log \left(L_{j_{3}} / L_{j_{1}}\right) \wedge \cdots \wedge d_{t} \log \left(L_{j_{k+1}} / L_{j_{1}}\right) \tag{7}
\end{gather*}
$$

Theorem (Goto, Matsumoto(2016) *, contiguity relation) Put $F=\left(\varphi\langle J\rangle \mid \quad J \in{ }_{k+n+2} \mathcal{J}_{1}\right)$ and assume $\tilde{p} \in \tilde{P}$ Then,

$$
\begin{equation*}
L_{i} F \equiv\left(C P_{i}^{-1} D_{i} Q_{i} C^{-1}\right) F \quad \text { in } \quad H^{k}\left(\Omega^{\bullet}\left(T_{p}\right), \nabla\right) \tag{8}
\end{equation*}
$$

where C, P_{i}, Q_{i} are intersection matrices ${ }^{\dagger}$ among $\varphi\langle J\rangle$ and D_{i} is a diagonal matrix with rational function entries of p.
> *Y.Goto, K.Matsumoto, Pfaffian equations and contiguity relations of the hypergeometric function of type ($k+1, k+n+2$) and their applications, arxiv:1602.01637, to appear in Funkcialaj Ekvacioj.
> ${ }^{\dagger} H^{k}\left(\mathcal{E}_{0}^{\bullet}\left(T_{p}\right), \nabla^{\vee}\right) \times H^{k}\left(\Omega^{\bullet}\left(T_{p}\right), \nabla\right) \rightarrow \mathbf{C}$ is called the intersection form. Note that $H^{k}\left(\mathcal{E}_{0}^{\bullet}\left(T_{p}\right), \nabla^{\vee}\right) \simeq H^{k}\left(\Omega^{\bullet}\left(T_{p}\right), \nabla^{\vee}\right)$

Integrating the both sides of (8) with $\int_{\Delta} \Pi L_{j}^{\alpha_{j}}$, we have a contiguity relation for Z.

Theorem

Fix k. Then the complexity of constructing the contiguity relation is $O\left(n^{3(k+1)}\right)$.
How do we evaluate efficiently $M(a) M(a-1) \cdots M(-1)$?
\Rightarrow the modular method in computer algebra; evaluate in $\mathbf{Z} / s \mathbf{Z}$ for several prime numbers s and reconstruct the answer in \mathbf{Q} by the Chinese remainder theorem.

Theorem
Let n be the number of linear transformations and put
$r=\binom{k+n}{k} \ddagger$. The complexity of the modular method is $\max (O(|J|), O(r)),|J|=\sum J_{j}$.
(Numerical evidences.)

Have we solved two goals? \Rightarrow Not completely. We have assumed that $\tilde{p} \in \tilde{P}{ }^{\S}$.

Proposition

Let β_{1} be the total degree of Z and L a generic line in p-space. If we evaluate $E\left[U_{i j}\right]^{\top}$ at $2 \beta_{1}$ points $p \in \mathbf{R}_{>0}^{(k+1) \times(n+1)}$ on a line L, then the exact value of $E\left[U_{i j}\right]$ can be obtained at any point on L. However, this method is not efficient \Rightarrow open questions $\|$ for hyperplane arrangements of the case that some of $p_{i j}=0$.

Figure: $V\left(t_{2} t_{3}\left(p_{21} t_{2}+p_{31} t_{3}\right) \prod_{j=2}^{3}\left(p_{1 j}+p_{2 j} t_{2}+p_{3 j} t_{3}\right)\right)$

[^3]This book will help to solve the open question of constructing contiguity relations efficiently for any hyperplane arrangement.

MSJ Memoirs

Mathematical Society of Japan

Arrangements and
Hypergeometric Integrals

What is the space

$$
\mathbf{R}_{\geq 0}^{(k+1)(n+1)} / \sim
$$

It is not a manifold!

1. Algraic geometry: Related to the Chow quotient by M.Kapranov (1992).
2. Measure theoretic (statistic).
$U_{i j}: \Omega_{i j} \rightarrow \mathbf{Z}, P\left(U_{i j}=u_{i j}\right)=\exp \left(-\theta_{i j}\right) \theta_{i j}^{u_{i j}} / u_{i j}!$.
$\Omega=\prod \Omega_{i j} \times \Theta, \Theta=\left\{\left(\theta_{i j}\right) \mid \theta_{i j} \in \mathbf{R}_{\geq 0}\right\}$.

$$
\begin{equation*}
\mathcal{O}=\sigma\left(\odot u, \frac{\theta_{i j} \theta_{k \ell}}{\theta_{i \ell} \theta_{k j}}, Z_{i j}(\theta)\right) \cdot \cdot^{* *} \tag{9}
\end{equation*}
$$

where $Z_{i j}(c)=1$ when $c_{i j}>0$ and $=0$ when $c_{i j}=0$.
Theorem

$$
E\left[X \mid \sigma\left(\odot_{U}, \theta\right)\right]=E\left[X \mid \sigma\left(\odot_{\theta}, \mathcal{O}\right)\right]=E[X \mid \mathcal{O}]
$$

for any $X \in \mathcal{L}^{1}(\sigma(U))^{\dagger \dagger}$.
${ }^{* *} \sigma(Y)$ is the σ algebra generated by $Y^{-1}(B) . \mathcal{O}$ is "of interest".
${ }^{\dagger \dagger} \mathrm{cf} . E\left[U_{i j} \mid \odot_{U}\right]$ is invariant by the torus action. \odot_{θ} is nuissance:

Categorial data for all:

Bed time \backslash Hours slept	less than 6 hour	$6-7$	more than 7 hours
Before 24	1	6	123
$24-25$	3	22	145
After 25	86	91	176

Categorical data for males $\left(\begin{array}{ccc}1 & 2 & 28 \\ 0 & 4 & 47 \\ 35 & 32 & 71\end{array}\right)$.
Categorical data for females $\left(\begin{array}{ccc}0 & 4 & 95 \\ 3 & 18 & 98 \\ 51 & 59 & 105\end{array}\right)$.
CMLE for males: $\left(\begin{array}{ccc}0.458167657900967 & 1 & \frac{6.25676090279981}{} \\ 0 & 1 & \frac{5.25200491199345}{} \\ 1 & 1 & 1\end{array}\right)$.

CMLE for females:
$\left(\begin{array}{ccc}0 & 1 & \frac{13.2714773737657}{} \\ 0.193351042187373 & 1 & \frac{3.04872586155291}{} \\ 1 & 1 & 1\end{array}\right)$.

	acetaminophen	diclofenac sodium	mefenamic acid
death	4	7	2
survival	32	5	6
$\ddagger \ddagger$			

CMLE: $\left(\begin{array}{ccc}1 & \frac{10.5557279737263}{} & 2.62096714359908 \\ 1 & 1 & 1\end{array}\right)$.
Generalized odds ratios: $\left(\begin{array}{ccc}1 & \frac{11.2}{} & 2.66666666666667 \\ 1 & 1 & 1\end{array}\right)$. $11.2=\frac{32 \times 7}{4 \times 5}$.

[^4]Summary:

1. Exact numerical evaluation of the hypergeometric polynomial Z can be done efficiently with contiguity relations and the modular method.
2. It has applications to conditional maximal likelihood estimation (CMLE) for two way contingency tables.
Future challenge: Each column is death month, each row is birth month *.

1	0	0	0	1	2	0	0	1	0	1	0
1	0	0	1	0	0	0	0	0	1	0	2
1	0	0	0	2	1	0	0	0	0	0	1
3	0	2	0	0	0	1	0	1	3	1	1
2	1	1	1	1	1	1	1	1	1	1	0
2	0	0	0	1	0	0	0	0	0	0	0
2	0	2	1	0	0	0	0	1	1	1	2
0	0	0	3	0	0	1	0	0	1	0	2
0	0	0	1	1	0	0	0	0	0	1	0
1	1	0	2	0	0	1	0	0	1	1	0
0	1	1	1	2	0	0	2	0	1	1	0
0	1	1	0	0	0	1	0	0	0	0	0

[^5]
[^0]: ${ }^{*}$ C.T. is the constant term w.r.t. $t . J!=\prod_{j} J_{j}$!
 ${ }^{\dagger}$ We denote these conditions or the left hand sides of them by © $)$ or $)_{u}$.

[^1]: ब \sim is the equivalence relation w.r.t. the torus action. This theorem is a special case of Th. 1 of N.Takayama, S.Kuriki, A.Takemura, A-Hypergeometric Distributions and Newton Polytopes, Advances in Applied Mathematics 99 (2018) 109-133.
 "conditional maximal likelihood estimation (CMLE).

[^2]: ** holonomic gradient method, HGM

[^3]: §This is the condition that hyperplane arranement is in a generic position.
 ${ }^{\text {T}}$ We denote $E\left[U_{i j} \mid \odot u\right]$ by $E\left[U_{i j}\right]$.
 "Y.Goto, 1805.01714

[^4]: ${ }^{\ddagger \ddagger}$ Data of the previous page https://cran.r-project.org/web/packages/LearnBayes/index.html. Data of this papge https://www.pmda.go.jp/files/000148557.pdf

[^5]: *Diaconis, Sturmfels (1998), Algebraic algorithms for sampling from conditional distributions. Andrews, Herzberg (1985), Data, Springer, page 429.

