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I = (I1, . . . , Ik+1) ∈ Zk+1
≥0 , J = (J1, . . . , Jn+1) ∈ Zn+1

≥0 ,∑
Ii =

∑
Jj .

p = (pij)

Z (I , J; p) = C.T.

n+1∏
j=1

(
k+1∑
i=1

pij ti

)Jj

t−I (1)

t1 = 1, t−I =
∏k+1

i=1 t−Ii
i . Note∗ that

Z (I , J; p) = J!
∑ pu

u!

where
∑

i uij = Jj (column sum is J),
∑

j uij = Ii (raw sum is I ) †.
Z is the normalizing constant (partition function) of a distribution.

∗C.T. is the constant term w.r.t. t. J! =
∏

j Jj !
†We denote these conditions or the left hand sides of them by ,or ,u.
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Goal 1: Evaluate numerically Z and its derivatives efficiently and
accurately ‡.
Motivation from statistics: 2 way contingency table:
(k + 1)× (n + 1) matrix with Z≥0 entries.

acetaminophen diclofenac sodium mefenamic acid

death 4 7 2
survival 32 5 6

P(Uij = uij) =
exp(−pij)p

uij
ij

uij !

The conditional probability § when the row and column sums are
fixed to I , J is

P

U = u

∣∣∣∣∣∣
∑
j

Uij = Ii ,
∑
i

Uij = Jj

 =
pu/u!

Z (I , J; p)

‡When I = (4, 14, 5, 2, 1), J = (10, 6, 5, 2, 3), there are 229, 174 terms.
§Uij is a random variable of the Poisson distribution.
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References on contingency tables (MSC2010: 62H17).
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E [Uij |,] =
∑
,

uijp
u/u!

Z (I , J; p)
= pij

∂

∂pij
logZ (2)

Proposition

E [Uij |,U ] is invariant by the torus action pij 7→ pijpip
′
j ,

pi , p
′
j ∈ R>0.

Theorem

R
(k+1)(n+1)
>0 / ∼ ∋ (pij) 7→ E [Uij |,] ∈ relintNew(Z ) (3)

is an isomorphism ¶.

Goal 2: Find the inverse image numerically ∥.

¶∼ is the equivalence relation w.r.t. the torus action. This theorem is a
special case of Th. 1 of N.Takayama, S.Kuriki, A.Takemura, A-Hypergeometric
Distributions and Newton Polytopes, Advances in Applied Mathematics 99
(2018) 109–133.

∥conditional maximal likelihood estimation (CMLE).
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Let us explain the idea of our method ∗∗ for 2× 2 case.

ū =

(
J1 0

J2 − I1 I2

)
.

Z =
pū

ū!
2F1

(
−J1,−I2, J2 − I2 + 1;

p12p21
p11p22

)
(4)

f (a) = 2F1(a, b, c ; x) =
∑∞

k=0
(a)k (b)k
(c)k (1)k

xk ,

(a)k = a(a+ 1) · · · (a+ k − 1). F (a) = (f (a), xdf /dx(a))T .

F (a) = (E + A(a)/a)−1F (a+ 1), (5)

where A(a) =

(
0 1

abx/(1− x) (ax + bx − c + 1)/(1− x)

)
.

F (a) = M(a)M(a+1) · · ·M(−2)F (−1), M(a) = (E+A(a)/a)−1.

“factorial” of contiguity relation (5).

∗∗holonomic gradient method, HGM
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p̃ =


1 k + 1 k + 2 k + 3 k + n + 2

1 1 0 · · · 0 p11 p12 · · · p1,n+1

2 0 1 · · · 0 p21 p22 · · · p2,n+1

· · · · · ·
k + 1 0 0 · · · 1 pk+1,1 · · · pk+1,n+1


Lj = p̃j · t where p̃j is the j-th column vector †† of p̃. αj ∈ C \ Z,∑k+n+2

j=1 αj = 0.

∇ = dt +
∑
j

αjdt log Lj (6)

P̃ = {p̃ | any (k + 1)× (n + 1) minor of p̃ ̸= 0}

Tp = {t ′ ∈ Ck | Lj(p; t) ̸= 0 for all j .}, p ∈ P̃

††L1 = t1 = 1, L2 = t2, . . . , Lk+n+2 =
∑

i pi,n+1ti
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J = {(j1, . . . , jk+1) | 1 ≤ j1 < j2 < · · · < jk+1 ≤ k + n + 2}

qJp = {J ∈ J | q ̸∈ J, p ∈ J}

φ⟨J⟩ = dt log(Lj2/Lj1)∧ dt log(Lj3/Lj1)∧ · · · ∧ dt log(Ljk+1
/Lj1) (7)

Theorem (Goto, Matsumoto(2016) ∗, contiguity relation)

Put F = (φ⟨J⟩ | J ∈ k+n+2J1) and assume p̃ ∈ P̃ Then,

LiF ≡
(
CP−1

i DiQiC
−1
)
F in Hk(Ω•(Tp),∇) (8)

where C ,Pi ,Qi are intersection matrices † among φ⟨J⟩ and Di is a
diagonal matrix with rational function entries of p.

∗Y.Goto, K.Matsumoto, Pfaffian equations and contiguity relations of the
hypergeometric function of type (k+1,k+n+2) and their applications,
arxiv:1602.01637, to appear in Funkcialaj Ekvacioj.

†Hk(E•
0 (Tp),∇∨)× Hk(Ω•(Tp),∇) → C is called the intersection form.

Note that Hk(E•
0 (Tp),∇∨) ≃ Hk(Ω•(Tp),∇∨)
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Integrating the both sides of (8) with
∫
∆

∏
L
αj

j ·, we have a
contiguity relation for Z .

Theorem
Fix k. Then the complexity of constructing the contiguity relation
is O(n3(k+1)).

How do we evaluate efficiently M(a)M(a− 1) · · ·M(−1)?
⇒ the modular method in computer algebra; evaluate in Z/sZ for
several prime numbers s and reconstruct the answer in Q by the
Chinese remainder theorem.

Theorem
Let n be the number of linear transformations and put

r =

(
k + n

k

)
‡. The complexity of the modular method is

max(O(|J|),O(r)), |J| =
∑

Jj .

(Numerical evidences.)

‡the rank of the twisted cohomology group.
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Have we solved two goals? ⇒ Not completely. We have assumed
that p̃ ∈ P̃ §.

Proposition

Let β1 be the total degree of Z and L a generic line in p-space. If

we evaluate E [Uij ]
¶ at 2β1 points p ∈ R

(k+1)×(n+1)
>0 on a line L,

then the exact value of E [Uij ] can be obtained at any point on L.

However, this method is not efficient ⇒ open questions ∥ for
hyperplane arrangements of the case that some of pij = 0.
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Figure: V (t2t3(p21t2 + p31t3)
∏3

j=2(p1j + p2j t2 + p3j t3))

§This is the condition that hyperplane arranement is in a generic position.
¶We denote E [Uij |,U ] by E [Uij ].
∥Y.Goto, 1805.01714
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This book will help to solve the open question of constructing
contiguity relations efficiently for any hyperplane arrangement.
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What is the space

R
(k+1)(n+1)
≥0 / ∼

It is not a manifold!
1. Algraic geometry: Related to the Chow quotient by M.Kapranov
(1992).
2. Measure theoretic (statistic).
Uij : Ωij → Z, P(Uij = uij) = exp(−θij)θ

uij
ij /uij !.

Ω =
∏

Ωij ×Θ, Θ = {(θij) | θij ∈ R≥0}.

O = σ

(
,U ,

θijθkℓ
θiℓθkj

,Zij(θ)

)
.∗∗ (9)

where Zij(c) = 1 when cij > 0 and = 0 when cij = 0.

Theorem

E [X |σ(,U , θ)] = E [X |σ(,θ,O)] = E [X |O]

for any X ∈ L1(σ(U)) ††.
∗∗σ(Y ) is the σ algebra generated by Y−1(B). O is “of interest”.
††cf. E [Uij |,U ] is invariant by the torus action. ,θ is nuissance.

12 / 15



Categorial data for all:

Bed time \ Hours slept less than 6 hour 6–7 more than 7 hours

Before 24 1 6 123
24–25 3 22 145

After 25 86 91 176

Categorical data for males

 1 2 28
0 4 47
35 32 71

.

Categorical data for females

 0 4 95
3 18 98
51 59 105

.

CMLE for males:

0.458167657900967 1 6.25676090279981
0 1 5.25200491199345
1 1 1

.

CMLE for females: 0 1 13.2714773737657
0.193351042187373 1 3.04872586155291

1 1 1

.
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acetaminophen diclofenac sodium mefenamic acid

death 4 7 2
survival 32 5 6

‡‡

CMLE:

(
1 10.5557279737263 2.62096714359908
1 1 1

)
.

Generalized odds ratios:

(
1 11.2 2.66666666666667
1 1 1

)
.

11.2 = 32×7
4×5 .

‡‡Data of the previous page
https://cran.r-project.org/web/packages/LearnBayes/index.html.
Data of this papge https://www.pmda.go.jp/files/000148557.pdf
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Summary:

1. Exact numerical evaluation of the hypergeometric polynomial
Z can be done efficiently with contiguity relations and the
modular method.

2. It has applications to conditional maximal likelihood
estimation (CMLE) for two way contingency tables.

Future challenge: Each column is death month, each row is birth month ∗.

1 0 0 0 1 2 0 0 1 0 1 0
1 0 0 1 0 0 0 0 0 1 0 2
1 0 0 0 2 1 0 0 0 0 0 1
3 0 2 0 0 0 1 0 1 3 1 1
2 1 1 1 1 1 1 1 1 1 1 0
2 0 0 0 1 0 0 0 0 0 0 0
2 0 2 1 0 0 0 0 1 1 1 2
0 0 0 3 0 0 1 0 0 1 0 2
0 0 0 1 1 0 0 0 0 0 1 0
1 1 0 2 0 0 1 0 0 1 1 0
0 1 1 1 2 0 0 2 0 1 1 0
0 1 1 0 0 0 1 0 0 0 0 0

∗Diaconis, Sturmfels (1998), Algebraic algorithms for sampling from
conditional distributions. Andrews, Herzberg (1985), Data, Springer, page 429.
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