Algorithms to Reduce the Instability of the HGM* and Tricks useful for the HGM†

Nobuki Takayama

November 8, 2019

The holonomic gradient method (HGM) consists of 3 steps. In the first step we derive a system of linear partial differential equations for a definite integral with parameters by algebraic methods. We need to find an initial condition for the differential equation in the second step. In the last step, the HGM suggests to solve the differential equation numerically and numerically evaluate the integral.

In some applications of the HGM for Fisher-Bingham distribution, Wishart matrices, Bingham distribution, orthant probabilities, the last step is not difficult because the integral to evaluate is a dominant solution of the system of differential equations. The last step requires special care of numerical analysis for some other applications. These things are not well explained in literatures as long as I know. The purpose of this expository paper is to figure out some difficulty of the last step and suppose some methods to make the last step to work well 1.

We provide an appendix of Risa/Asir programs. These are under defusing_demo/ of OpenXM/Math2

1 The Runge-Kutta Method

This is an expository section to explain on the Runge-Kutta method and related topics such as the adaptive Runge-Kutta method, solving an ordinary differential equation numerically in the complex domain, the binary splitting method and other techniques for the matrix factorial.

We consider the linear ordinary differential equation (ODE)

\[
\frac{dF}{dt} = P(t)F
\]

(1)
where $P(t)$ is an $r \times r$ matrix and $F(t)$ is a column vector valued unknown function.

The 4th order Runge-Kutta method is given as
\begin{align*}
k_{i+1} &= P(t_0 + c_{i+1}h)(F_0 + a_{i+1}k_i), \\
k_0 &= 0 \quad (2) \\
F_i &= F_0 + h(b_1k_1 + b_2k_2 + b_3k_3 + b_4k_4) \quad (3)
\end{align*}

Determine the constants so that $F_1 - F(t_0 + h) = O(h^5)$\footnote{vector $= O(h^m)$ means that $|\text{vector}| = O(h^m)$.} where $F(t)$ is the solution with the initial condition $F(t_0) = F_0$ and $a_1 = c_1 = 0$,

$b_1 = 1/6, b_2 = 1/3, b_3 = 1/3, b_4 = 1/6, c_2 = c_3 = c_4 = 1/2, a_2 = a_3 = 1/2, a_4 = 1$.

Define
\[F_1 = F_0 + h k_1, \quad k_1 = P(t_0) F_0. \]

Then, we have
\[F(t) - F_1 = F(t_0) + F'(t_0)h + O(h^2) - F_1 = F_0 + P(t_0) F_0 h + O(h^2) - F_1 = O(h^2) \]

This simple recursion may be called first order Runge-Kutta method.

Refer to standard text books, e.g., [6] on more details on the Runge-Kutta method.

1.1 Matrix Factorial

The Runge-Kutta method for linear equation is reduced to a matrix factorial evaluation. Let us explain what it is. We want to solve
\[\frac{dF}{dt} = \tilde{P}(t)F \]

Let $P(t)$ be the numerator matrix and $d(t)$ the denominator polynomial of \tilde{P}. Let h be a small number. We put
\[d_0 = \frac{1}{d(t)}, d_1 = \frac{1}{d(t+h)}, d_2 = \frac{1}{d(t+2h)} \]

To reduce the computational cost of the matrix for Runge-Kutta method, we firstly express the denominator polynomials by the symbols d_i and utilize computer algebra systems.

We denote by $Q(t, h)$ the matrix for the 4th order Runge-Kutta method. It is expressed as

\begin{verbatim}
--> load("ak2.rr");
--> QQ=rk_mat2(newmat(2,2,[[0,1],[t,0]]))$
--> base_replace(QQ[0],QQ[1]);
[1/24*h^4*t^2+(1/48*h^5+1/2*h^2)*t+1/6*h^3+1 1/6*h^3*t+1/12*h^4+h]
[1/24*h^4*t^2+(1/16*h^5+1/2*h^2)*t+1/48*h^6+1/3*h^3+1]
\end{verbatim}
Figure 1: \(5 \times 5\) contingency table, a benchmark test of evaluating the normalizing constant (\(A\)-hypergeometric polynomial) with 32 processes from [8]. \(N\) is a parameter in the marginal sum.

The last output is the matrix \(Q(t, h)\).

The function value \(F(t_0 + kh)\) is approximated as

\[
Q(t_0 + (k - 1)h, h) \cdots Q(t_0 + 2h, h)Q(t_0 + h, h)Q(t_0, h)F_0
\]

We call the product \(\prod_{i=0}^{k-1} Q(t_0 + ih, h)\) the matrix factorial of \(Q(t, h)\).

Let \(A\) be a \(d \times n\) matrix with non-negative integral entries. For \(\beta \in \mathbb{N}_0^n\), we put

\[
Z(\beta; p) = \sum_{Au=\beta, u \in \mathbb{N}_0^n} \frac{p^u}{u!}
\]

Fix \(\beta\). For \(u \in \mathbb{N}_0^n\) satisfying \(Au = \beta\), the probability \(\frac{p^u}{Z(\beta; p)}\) is the conditional probability of the multinomial distribution. The polynomial is called \(A\)-hypergeometric polynomial and satisfies the \(A\)-hypergeometric system and contiguity relations (matrices of recurrence relations with respect to \(\beta\)). A fast and exact numerical evaluation of matrix factorials is used in [8] to solve the MLE problem of the distribution above theoretically studied in [9] by evaluating matrix factorial of contiguity relation. We suggest the binary splitting method and the modular methods and discuss on advantages of these methods.

The following is a description of the binary splitting of [8].

It is well-known that the binary splitting method for the evaluation of the factorial \(m!\) of a natural number \(m\) is faster method than a naive evaluation of the factorial by \(m! = m \times (m - 1)!\). The binary splitting method evaluates \(m(m - 1) \cdots ([m/2] + 1)\) and \([m/2]/[m/2] - 1) \cdots 1\) and obtains \(m!\). This procedure can be recursively executed. This binary splitting can be easily generalized to our generalized matrix factorial; we may evaluate, for example,
$M(a)M(a+1) \cdots M(\lfloor a/2 \rfloor - 1)$ and $M(\lfloor a/2 \rfloor) \cdots M(-2)$ to obtain $M(a)M(a+1) \cdots M(-2), a < -2$. This procedure can be recursively applied. However, what we want to evaluate is the application of the matrix to the vector $F(-1)$. The matrix multiplication is slower than the linear transformation. Then, we cannot expect that this method is efficient for our problem when the size of the matrix is not small and the length of multiplication is not very long. However, there are cases that the binary splitting method is faster. Here is an output by our package `gtt_ekn3.rr`.

```
[1828] import("gtt_ekn3.rr")
[4014] cputime(1)
0sec(1.001e-05sec)
[4015] gtt_ekn3.expectation(Marginal=[[1950,2550,5295],[1350,1785,6660]],
P=[[17/100,1,10],[7/50,1,33/10],[1,1,1]])//binary splitting
3.192sec(3.19sec)
[4016] gtt_ekn3.expectation(Marginal,P)
4.156sec(4.157sec)
```


1.2 Adaptive Runge-Kutta method

Let F_1 be the vector determined by the Runge-Kutta method (of the 4th order) of the step size $2h$ (not h). Let F_2 be the vector determined by the Runge-Kutta method two times with the step size h.

We have

$$|F(t_0 + 2h) - F_1| = \phi(2h)^5 + O(h^6) \quad \text{(6)}$$

where ϕ depends only on the solution F and t_0, because F_1 is chosen so that the Taylor expansion of $F(t)$ at $t = t_0$ is eliminated by F_1 up to h^4. We assume the ODE is of rank 1 in the sequel and then we will omit $|\cdot|$ of order estimate. The case of a higher rank ODE can be studied analogously. We also have

$$|F(t_0 + 2h) - F_2| = \phi h^5 + \phi' h^5 + O(h^6) \quad \text{(7)}$$

where ϕ depends only on the solution F and t_0, and ϕ' depends only on the solution F and $t_0 + h$.

Proof. Let $Q(t,h)$ be the Runge-Kutta matrix. $F_2 = Q(t_0 + h,h)Q(t_0,h)F_0$. Then, we have

$$F(t_0 + 2h) - Q(t_0 + h,h)Q(t_0,h)F_0$$

$$= F(t_0 + 2h) - Q(t_0 + h,h)\left(Q(t_0 + h,h) + Q(t_0 + h,h)F(t_0 + h) - Q(t_0 + h,h)Q(t_0,h)F_0\right)$$

$$\sim (\phi h^5 + O(h^6)) + (Q(t_0,h)(\phi h^5 + O(h^6)))$$

Since $Q(t_0,h) = E + O(h)$, we have the conclusion.
Assume $\phi = \phi'$. Taking the difference of (h2) and (h0), we have

$$F_2 - F_1 = 30\phi h^5 + O(h^6)$$ \hspace{1cm} (8)

The good point of this identity is that we can estimate ϕ without knowing the true solution $F(t)$ and estimate the coefficient of the error. We put $\Delta(h) = 30\phi h^5$. Let us assume

$$\Delta = \varepsilon h^5 |F_0|$$ \hspace{1cm} (9)

Then, $\phi = |F_0|\varepsilon/30$. Then the relative error $|(F(t + h_0) - F_1)/F_0|$ is bounded by

$$\frac{|\phi|h^5}{|F_0|^5} + O(h^6) = \frac{\varepsilon}{30} + O(h^6)$$ \hspace{1cm} (10)

When we want to make the relative error smaller than $\varepsilon/30$, we need to make $\Delta(h)$ (difference of 2h step and two times of h step) smaller than $\varepsilon h^5 |F_0|$.

In order to choose the next h, use the following relation

$$\frac{h_0}{h_1} = \left(\frac{\Delta_0}{\Delta_1}\right)^{1/5}$$

The adaptive Runge-Kutta method is implemented in most of the libraries of numerical solvers. A sample program for GSL is a26-y.c for $H^k(x, y)$ (see Example 5 on this function and its applications).

1.3 Solving ODE numerically in the complex domain

Let

$$\frac{d}{dz} F = P(z) F$$

be a differential equation in the complex domain where $P(z)$ is an $r \times r$ matrix and F is a column vector valued function of length r. We want to solve the differential equation along the path

$$z = z_0 + (z_1 - z_0)t, \quad 0 \leq t \leq 1, z_0, z_1 \in \mathbb{C}$$

with the initial value $F(z_0) = F_0$. Since $d/dz = (z_1 - z_0)^{-1}d/dt$, the differential equation is transformed into

$$\frac{dF}{dt} = (z_1 - z_0)P(z_0 + (z_1 - z_0)t)F$$ \hspace{1cm} (11) \hspace{1cm} \text{\textcolor{red}{eq:ODEin_t}}

We decompose $(z_1 - z_0)P(z_0 + (z_1 - z_0)t)$ into the real part and the imaginary part as $P_1(t) + \sqrt{-1}P_2(t)$ where we assume t is a real number. Put $F = u + \sqrt{-1}v$ where u, v are column vector valued functions of length r. Since

$$\frac{du}{dt} + \sqrt{-1}\frac{dv}{dt} = P_1 u - P_2 v + \sqrt{-1}(P_1 v + P_2 u),$$

\[4\text{https://www.gnu.org/software/gsl/}\]
we obtain the rank 2r ODE of real valued unknown functions on \mathbb{R}

$$
\frac{d}{dt} \begin{pmatrix} u \\ v \end{pmatrix} = \begin{pmatrix} P_1 & -P_2 \\ P_2 & P_1 \end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix}
$$

(12) \[eq:ODEonR\]

We can now use numerical solvers of ODE. \[c2rsys((eq:ODEin_t))\] (complex to real system) in \[ak2.rr\] generates the coefficient matrix of (12). It utilizes the functions \[\text{rat}_\text{real}_\text{part}\] and \[\text{rat}_\text{imaginary}_\text{part}\]. Example:

```
--> load("ak2.rr")$
--> c2rsys(base_replace((1-%i)*newmat(2,2,[[0,1],[1/z,0]]),[[z,(%i+(1-%i)*t)]]));
[ 0 1 0 1 ]
[ (2*t-1)/(2*t^2-2*t+1) 0 (1)/(2*t^2-2*t+1) 0 ]
[ 0 -1 0 1 ]
[ (-1)/(2*t^2-2*t+1) 0 (2*t-1)/(2*t^2-2*t+1) 0 ]
```

2 A heuristic method: correction of Initial Value Vector by Eigen Vectors

We have explained some well-known things of the Runge-Kutta method. We will propose a heuristic method to avoid a blow-up of a solution under some situations. This method might be well-known especially in hard efforts of solving stiff ODE's, but I do not find a relevant literature.

We want to find a numerical solution of the initial value problem of the ordinary differential equation

$$
\frac{dF}{dt} = P(t)F
$$

(13) \[eq:ode1\]

$$
F(t_0) = F_0^{true} \in \mathbb{R}^n
$$

(14) \[eq:init1\]

where $P(t)$ is an $r \times r$ matrix, $F(t)$ is a column vector function of size r, and F_0^{true} is the initial value of F at $t = t_0$.

Solving this problem is the final step of the holonomic gradient method (HGM) \[4\]. We often encounter the following situation in the final step.

Situation 1

1. The initial value has at most 3 digits of accuracy. We denote this initial value F_0.
2. The property $|F| \to 0$ when $t \to +\infty$ is known, e.g., from a background of the statistics.
3. There exists a solution \hat{F} of (12) such that $|\hat{F}| \to +\infty$ or non-zero finite value when $t \to +\infty$.

Under this situation, the HGM works only for a very short interval of t because the error of the initial value vector makes the fake solution \hat{F} dominant and it hides the true solution $F(t)$. We call this bad behavior of the HGM the instability of the HGM.
Example 1

\[\frac{d}{dt} F = \begin{pmatrix} -1 & 1 & 0 \\ 0 & -1 & 1 \\ 0 & 0 & 0 \end{pmatrix} F \]

The solution space is spanned by \(F^1 = (\exp(-t), 0, 0)^T \), \(F^2 = (0, \exp(-t), 0)^T \), \(F^3 = (1, 1, 1)^T \). The initial value \((1, 0, 0)^T\) at \(t = 0 \) yields the solution \(F_1 \). Add some errors \((1, 10^{-30}, 10^{-30})^T\) to the initial value. Then, we have

<table>
<thead>
<tr>
<th>(t)</th>
<th>value (F_1) by RK</th>
<th>difference (F_1 - F_1^1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>1.92827e-22</td>
<td>9.99959e-31</td>
</tr>
<tr>
<td>60</td>
<td>8.75556e-27</td>
<td>1.00000e-30</td>
</tr>
<tr>
<td>70</td>
<td>1.39737e-30</td>
<td>1.00000e-30</td>
</tr>
<tr>
<td>80</td>
<td>1.00002e-30</td>
<td>1.00000e-30</td>
</tr>
</tbody>
</table>

We can see the instability.

Example 2

\[P(t) = \begin{pmatrix} 0 & 1 \\ t & 0 \end{pmatrix} \]

This differential equation is obtained from the Airy differential equation

\[y''(t) - ty(t) = 0 \]

by putting \(F = (y(t), y'(t))^T \). It is well-known that the Airy function

\[\text{Ai}(t) = \frac{1}{\pi} \lim_{b \to +\infty} \int_0^b \cos\left(\frac{s^3}{3} + ts \right) ds \]

is a solution of the Airy differential equation and

\[\text{Ai}(0) = \frac{1}{3^{2/3} \Gamma(2/3)} = 0.355028053887817 \ldots \]
\[\text{Ai}'(0) = \frac{1}{3^{1/3} \Gamma(1/3)} = -0.258819403792807 \ldots \]
\[\lim_{t \to +\infty} \text{Ai}(t) = 0 \]
\[\lim_{t \to +\infty} \text{Ai}'(t) = 0 \]

Figure 2 is a graph of Airy Ai function and Airy Bi function. The function \(F(t) = (\text{Ai}(t), \text{Ai}'(t))^T \) satisfies the condition 2 of the Situation of the instability problem.

We can also see that the condition 3 of the Situation holds by applying the theory of singularity of ordinary differential equations (see, e.g., the manual \texttt{DEtools/formal_sol} of Maple and its references on the theory, which has a long history). In fact, the general solution of the Airy differential equation is expressed as

\[C_1 t^{-1/4} \exp\left(-\frac{2}{3} t^{3/2} \right) (1 + O(t^{-3/2})) + C_2 t^{-1/4} \exp\left(\frac{2}{3} t^{3/2} \right) (1 + O(t^{-3/2})) \]
when $t \to +\infty$ where C_i's are arbitrary constants.

We note that the high precision evaluation of the Airy function is studied by several methods (see, e.g., [1] and its references). Some mathematical software systems have evaluation functions of the Airy function. For example, \texttt{N[AiryAi[10]]} gives the value of $\text{Ai}(10)$ on Mathematica. By utilizing these advanced evaluation methods, we use the Airy differential equation for our test case to check the validity of our heuristic algorithm.

We are going to propose some heuristic methods to avoid the instability problem of the HGM. Numerical schemes such as the Runge-Kutta method obtain a numerical solution by the recurrence

$$F_{k+1} = Q(k,h)F_k$$

from F_0 where $Q(k,h)$\footnote{It was denoted by $Q(t_0 + kh, h)$ in the previous section. We denote $Q(t_0 + kh, h)$ by $Q(k,h)$ as long as no confusion arises.} is an $r \times r$ matrix determined by a numerical scheme and h is a small number. The vector F_k is an approximate value of $F(t)$ at $t = t_k = t_0 + kh$.

Example 3 The Euler method assumes $dF/dt(t)$ is approximated by $(F(t + h) - F(t))/h$ and the scheme of this method is

$$F_{k+1} = (E + hP(t_k))F_k$$

where E is the $r \times r$ identity matrix.

In case that the initial value vector F_0 contains an error, the error may generate a blow-up solution \tilde{F} under the Situation 1 and we cannot obtain the true solution.

Let N be a suitable natural number and put

$$Q = Q(N-1,h)Q(N-2, h) \cdots Q(1,h)Q(0,h)$$

\hfill (16)
We assume the eigenvalues of Q are positive real and distinct to simplify our presentation. The following heuristic algorithm avoids to get the blow-up solution.

Algorithm 1

1. Obtain eigenvalues $\lambda_1 > \lambda_2 > \cdots > \lambda_r > 0$ of Q and the corresponding eigenvectors v_1, \ldots, v_r.

2. Let λ_m be the eigenvalue which is almost equal to 0.

3. Express the initial value vector F_0 containing errors in terms of v_i’s as

 \[F_0 = f_1 v_1 + \cdots + f_r v_r, \quad f_i \in \mathbb{R} \]

 \[(17) \text{eq:F0_by_vi} \]

4. Choose a constant c such that $F'_0 := c(f_m v_m + \cdots + f_r v_r)$ approximates F_0.

5. Determine F_N by $F_N = QF'_0$ with the new initial value vector F'_0.

We call this algorithm the defusing method. This is a heuristic algorithm and we cannot claim that F'_0 gives a better approximation of the initial value vector than F_0 for now, but we can avoid the blow-up of the numerical solution with this method. However, it works well for the Airy differential equation as follows. We will see that this method also works well for the function $H_k^n(1,y)$ in Example 6.

The function `fit_init` in `ev_ak2.rr` performs the steps 3 and 4 of the Algorithm 1.

Example 4 We set $t_0 = 0$, $h = 10^{-3}$, $N = 10 \times 10^3$ and use the 4-th order Runge-Kutta scheme. We have $\lambda_1 = 9.708 \times 10^9$, $v_1 = (-5.097, -159.919)^T$ and $\lambda_2 = 3.247 \times 10^{-7}$, $v_2 = (-5.09798, 37.164813649680576037539971418209465086)^T = (a, b)$ Then, $m = 2$. We assume the 3 digits accuracy of the value $\text{Ai}(0)$ as 0.355 and set $F'_0 = (0.355, 0.355b/a)$. Then, the obtained value F_{5000} at $t = 5$ is $(0.000108088745179140, -0.000246853220440734)$. We have the following accurate value by Mathematica...
Note that 3 digits accuracy has been kept for the value $\text{Ai}(5)$. On the other hand, we apply the 4th order Runge-Kutta method with $h = 10^{-3}$ for $F_0 = (0.355, -0.259)^T$, which has the accuracy of 3 digits. It gives the value at $t = 5$ as $(-0.147395, -0.322215)$, which is a completely wrong value, and the value at $t = 10$ as $(-102173, -320491)$, which is a blow-up solution.

This heuristic algorithm avoids the blow-up of the numerical solution. Moreover, when the numerical scheme gives a good approximate solution for the exact initial value, we can give an error estimate of the solution by our algorithm. Let $\| \cdot \|$ be the Euclidean norm.

Lemma 1 Let $F(t)$ be the solution. When $|QF_0^{\text{true}} - F(Nh)| < \delta$ holds, we have

$$
|QF_0' - F(Nh)| < |QF_0'| + |F(Nh)| + 2\delta
$$

for any $F_0' \in \mathbb{R}^n$.

Proof. It is a consequence of the triangular inequality. In fact, we have

$$
|QF_0' - F(Nh)| = |QF_0' - QF_0^{\text{true}} + QF_0^{\text{true}} - F(Nh)| \\
\leq |QF_0' - QF_0^{\text{true}}| + |QF_0^{\text{true}} - F(Nh)| \\
\leq |QF_0'| + |QF_0^{\text{true}}| + \delta \\
\leq |QF_0'| + |F(Nh)| + 2\delta
$$

The first variation: We apply the algorithm to obtain the local solutions near a singularity before applying our heuristic defusing method.
Let us explain this method by the example of the Airy differential equation. We put $t = x^2$. Then the differential equation transformed into

$$xf'' - f' - 4xf = 0, \ f(x) = y(x^2) \ (y(t) \text{ is a solution of the Airy differential equation}).$$

We denote x by t in the sequel. The asymptotic series solutions of this differential equation at the infinity can be obtain by algorithmic was as

```
# Maple
--> with(DEtools);
--> formal_sol(t*Dt^2-Dt-4*t,[Dt,t],t=infinity);
```

and they are spanned by

$$t^{-1/2} \exp\left(-\frac{2}{3} t^3\right) (1 + O(t^{-3})), \ t^{-1/2} \exp\left(\frac{2}{3} t^3\right) (1 + O(t^{-3}))$$

We replace the unknown function $f(t)$ by $g(t) \exp\left(-\frac{4}{3} t^3\right)$. Then, the function $g(t)$ satisfies

$$tg'' - (4t^3 + 1)g' - 2t^2g = 0 \quad (19) \text{ eq:modified_airy}$$

We have

$$g(t) = f(t) \exp((2/3)t^3) = y(t^2) \exp((2/3)t^3).$$

Example 5 We set $t_0 = 1$, $h = 10^{-3}$, $N = 1.5 \times 10^3$ and use the 4-th order Runge-Kutta scheme. We have $\lambda_1 = 1.1290 \times 10^{10}$, $v_1 = (-0.040271, -0.99918)$ and $\lambda_2 = 0.66834$, $v_2 = (-0.94307, 0.33257)$. Then, we choose $m = 2$. We give 3 digit accurate value for $\text{Ai}(1) \sim 0.135$.

<table>
<thead>
<tr>
<th>t^2</th>
<th>$\text{Ai}(t^2)$ by our Algorithm</th>
<th>Exact value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.135</td>
<td>0.135292</td>
</tr>
<tr>
<td>4</td>
<td>0.000951564</td>
<td>0.00094928</td>
</tr>
<tr>
<td>4.9997</td>
<td>0.00010816</td>
<td>0.000108419</td>
</tr>
<tr>
<td>5.9976</td>
<td>0.000010073</td>
<td>0.0000099654</td>
</tr>
</tbody>
</table>

There is a loss of accuracy, but we have no blowup.

```ruby
--> load("2gauge.rr")$
--> rk_mairy(2000); // mairy means "m"odified "airy"
```

In the Lemma 1, the error is bounded by $|QF_0| $ where F_0 is a given initial value. Let us see the shape of $\{ v \in \mathbb{R}^2 \mid |Qv|^2 = c \}$ where $c > 0$ is a constant. Since $|Qv|^2 = v^T Q^T Q v$, this is a quadratic form with respect to v and the eigenvalues of $Q^T Q$ determines the shape of this. The eigenvalues and eigenvectors are $\lambda_1 = 1.3956 \times 10^{18}$, $v_1 = (-0.33257, -0.94307)$ and $\lambda_2 = 0.40798$ $v_2 = (-0.94307, 0.33257)$. Then, it is the ellipsoid of almost crushed shape. When F_0 belongs to the eigenspace of λ_2, $|QF_0|^2 = \lambda_2 |F_0|^2$ and this choice makes the error minimum. In our example, $|F_0|^2 \lambda_2$ is equal to 0.031715.
We have shown that the defusing method works for the Airy function. Does it work for HGM problems? We apply the defusing method (removing components belonging to some eigenspaces, a heuristic method) to the evaluation of

\[H^k_n(x, y) = \int_0^x t^k e^{-t} F_1(n; yt) dt. \]

by solving differential equation with respect to \(y \). The equation is unstable as shown in [5]. The slides of Kang-Alouini show numerical experiments and some analysis on this unstability. Although the accuracy is not very high, but it seems to work well as long as we do not need a very high accuracy results.

Kang-Alouini show that the outage probability of a communication system can be expressed by this function \(H^k_n \).

Theorem 1 [2] When the matrix \(\Sigma^{-1} M M^* \) has the positive eigenvalues \(0 < y_1 < y_2 < \cdots < y_s \), then the cumulative distribution function of the largest eigenvalue \(\phi_s \) of \(S \) for the threshold \(x \) is

\[
P(\phi_s \leq x) = \frac{\exp(-\sum_{i=1}^{s} \lambda_i)}{\Gamma(t-s+1) \prod_{1 \leq i < j \leq s} (\lambda_j - \lambda_i)} \det \Psi(x)
\]

where \(\Psi(x) \) is a matrix valued function of which \((i, j) \) element is

\[
H_{t-s+1}^{e-i} (x, \lambda_j) = \int_0^x y^{e-i} \exp(-y) F_1(1, t - s + 1, y \lambda_j) dy
\]

Proposition 1 [5] The function \(u = H^k_n(x, y) \) satisfies

\[
\{ \theta_x (\theta_x + n - 1) + y (\theta_x - \theta_y - k - 1) \} \bullet u = 0,
(\theta_x - \theta_y - k - 1 + x) \theta_x \bullet u = 0.
\]

where \(\theta_x = x \frac{\partial}{\partial x}, \theta_y = y \frac{\partial}{\partial y} \). The holonomic rank of this system is 4.

When \(y \to +\infty \), solutions of the system has the following asymptotic behavior. It is shown by the \texttt{DEtools[formal_sol]} function of Maple.

\[
\begin{align*}
 h_1 &= (xy)^{-1/2(1/2+n)} \exp(-2(xy)^{1/2}(1 + O(1/y^{1/2})), \\
 h_2 &= y^{-k-1}(1 + O(1/y)), \\
 h_3 &= (xy)^{-1/2(1/2+n)} \exp(2(xy)^{1/2}(1 + O(1/y^{1/2})), \\
 h_4 &= y^{1-n+k} \exp(y)(1 + O(1/y)), \\
\end{align*}
\]

What is the asymptotic behavior of the function \(H^k_n(x, y) \) where \(x \) is fixed. We compare the value of \(h_4 \) and the value by a numerical integration in Mathematica.\(^8\)

\(^7\)channel matrix \(H \) is \(N \times N \) complex valued random matrix. The column vector \(X \) satisfies \(E[X] = M \) and the covariance is \(\Sigma^{-1} \). \(S = \Sigma^{-1} HH^* \).
\(^8\)The method to evaluate hypergeometric functions in Mathematica is still a black box. It is not easy to give a numerical evaluator of hypergeometric functions which matches to Mathematica in all ranges of parameters and independent variables.
This computational experiments suggest that H^k_n is expressed by h_1, h_2, h_3 without the dominant component h_4.

Example 6 We apply the defusing method to $H^{10}_1(1, y)$ with $h = 10^{-3}$ and setprec(30) as

\[\text{load("test3-ak2.rr");}\]
\[\text{setprec(30);}\]
\[\text{Ans=hkn_y_multi_defused(to=1001, strategy=3)$//long}\]
\[\text{Ans[0][0];}\]
\[\begin{array}{cccc}
1000 & 7.36595030875893e-452 & 2.64621603289928e-881 & 2.67723893601667e-1311 \\
2000 & 9.999999999999999998444, & 1591893178519085510587.3578603 & 10759414054929503303.233084211 -93355693549146070561.700159933 -97194717520494769123.600709482 \\
3000 & 999.88399999999999999999984454, & 1547198856939613400633.6203503 & 1046285813951482973.498407182 -90774017565658103232.026934747 -94509067405993825995.496968597 \\
\end{array}\]

The exact values compared are evaluated by the numerical integrator of Mathematica as

\[\text{hh[k,n,x,y]:=NIntegrate[t^k*Exp[-t]*HypergeometricPFQ[{},{n},t*y],{t,0,x}]};\]
\[\text{hh[10,1,1,1000]};\]

The Figure 3 shows that the adaptive Runge-Kutta method fails before y becomes 30. The Figure 4 presents the relative error of values by the defusing method and exact values. It shows that the defusing method works even when $y = 10^3$.

In [5], the cases of $N_T = 5, N_R = 7, y = [0.4, 6] \times 10^8, 10^8 \leq x \leq 2 \times 10^8$, are studied. The differential equation with respect to x, which is obtained by a block diagonalization of the system of rank 4, is used. The initial value is evaluated by the numerical integration around small $x = 1000$ and the large y near 10^8. We have tried our defusing method only up to $y = 10^8$, because we have not yet made an efficient implementation of the method.

4 A method to obtain a stabile system

We gave a notion of a stabile linear ODE and it is announced in [5] that any linear ODE can be transformed into a stabile system for a target function in an algorithmic way.

Let us review the definition of a stabile ODE for a target function $f(x)$ following [5].

Consider a holonomic function $f(x)$ that satisfies a LODE of order m and denote with $f_1(x), \ldots, f_m(x)$ its linearly independent solutions. Then, let $f_i(x)$ be the dominant solution for $x \to \infty$, i.e., $|f_i(x)| \geq |f_j(x)|, \forall j$. We refer to the LODE as stabile for $f(x)$ if $\lim_{x \to \infty} \frac{|f_i(x)|}{|f(x)|} < \infty$. (Note that a LODE is
Figure 3: log $H_1^{10}(1, y)$. Exact value (by numerical integration) and the value by our defusing method agree. The adaptive Runge-Kutta method with the initial relative error 10^{-20} (upper curve) does not agree with the exact value when y is larger than about 25.

The notion of stabile LODE is defined analogously in the case of a vector-valued function, by replacing $| \cdot |$ with a vector norm $|| \cdot ||$.

Theorem 2 \cite{5} From a given LODE system that is not stabile, a lower-dimensional stabile LODE system can be derived algorithmically by gauge transformations.

This theorem only gives a general scheme and we need some ideas specialized to each problems to give an implementation which works well.

We explain this method and ideas in case of the Airy differential equation $y'' - xy = 0$. Put $F = (y, xy')^T$. Then, we have $x \frac{d}{dx} F = \left(\begin{array}{cc} 0 & 1 \\ x^3 & 1 \end{array} \right) F$.

Changing the independent variable x to t with the relation $x = t^2$, we obtain the system

$$t \frac{d}{dt} F = 2 \left(\begin{array}{cc} 0 & 1 \\ t^6 & 1 \end{array} \right) F.$$ \hspace{1cm} (20) \hspace{1cm} \text{eq:20191105a}

When F stands for the Airy function $\text{Ai}(t^2)$, the first component of F has the asymptotic behavior $y(t) = t^{-1/2} \exp(-(2/3)t^3) \cdot O(1)$. Divide the both hand sides of (20) by t. We want to transform the differential equation

$$\frac{dF}{dt} = \left(\begin{array}{cc} 0 & 2/t \\ 2t^5 & 2/t^5 \end{array} \right) F$$ \hspace{1cm} (21) \hspace{1cm} \text{eq:0930a}

into a upper triangular form such that we can obtain the numerical value of the Airy function $\text{Ai}(t^2)$ without the instability caused by the solution $\text{Bi}(t^2)$ which
Figure 4: The relative error of $H_{10}^{1}(1,y)$ of our defusing method. The relative error is defined as $(H_d - H)/H$ where H_d is the value by the defusing method and H is the exact value.

grows rapidly as $t^{-1/2} \exp((2/3)t^3) \cdot O(1)$. Note that possible asymptotic behaviors can be obtained by an algorithmic method based on the singularity theory of ODE (see, e.g., Hukuhara-Turrittin reduction, ..., DEtools:formal_sol or ISOLDE in Maple).

We put

$$F = \begin{pmatrix} g_1 \\ g_2 \end{pmatrix} = \begin{pmatrix} \tilde{g}_1 t^{-1/2} \exp((2/3)t^3) \\ \tilde{g}_2 t^{5/2} \exp((2/3)t^3) \end{pmatrix}$$

The exponential part is chosen to be the solution $(g_1, g_2)^T$ is the dominant solution. The exponential part is obtained by the algorithmic method of obtaining the possible asymptotic behaviors. The function $(\tilde{g}_1, \tilde{g}_2)^T$ satisfies the following differential equation (try the functionairy()[1] in our expository program Sstabile.rr).

$$\frac{d}{dt} \begin{pmatrix} \tilde{g}_1 \\ \tilde{g}_2 \end{pmatrix} = \begin{pmatrix} -2t^2 + \frac{1}{t^2} & -2t^2 - \frac{1}{t^2} \\ 2t^2 & -2t^2 + \frac{1}{t^2} \end{pmatrix} \begin{pmatrix} \tilde{g}_1 \\ \tilde{g}_2 \end{pmatrix}$$

Following the algorithm in [5], we apply the Gauge transformation

$$F = \begin{pmatrix} g_1 & 0 \\ g_2 & 1 \end{pmatrix}$$
and obtain the differential equation for H

\[
\frac{dH}{dt} = \begin{pmatrix} 0 & 2g_1^{-1}t^{-1/2}\exp(-(2/3)t^3) \\ 0 & -g_2\int t^2 + \frac{2}{t} \end{pmatrix} H
\]

(24) \hspace{1cm} \text{(eq:0930b)}

Try \texttt{sairy()} in \texttt{3stabile.rr} to get this equation. Put $H = (h_1, h_2)^T$. Then, $F = (g_1h_1, g_2h_1 + h_2)$.

We solve the subsystem of (24)

\[
\frac{dh_2}{dt} = \left(-\frac{2g_2}{g_1}t^2 + \frac{2}{t}\right)h_2
\]

(25) \hspace{1cm} \text{(eq:0930b)}

We expect that $h_2 = \exp(-(2/3)t^3)O(1)$ when $t \to +\infty$. The ODE (25) is stable for this solution and we will show that this solution gives the second dominant solution of the original system. In this sense, we claim that a stable system can be obtained in an algorithmic way in [5]. It follows from the Gauge transformation that we have $F = (g_1h_1, g_2h_1 + h_2)^T$.

In order to obtain the second dominant solution from h_2, we will decompose F as

\[
F = \begin{pmatrix} g_1 \\ g_2 \end{pmatrix} h_1(\infty) + \begin{pmatrix} -g_1\tilde{h}_1(t) \\ -g_2h_1(t) + h_2 \end{pmatrix}
\]

(26) \hspace{1cm} \text{(26)}

where the first part of the sum is the first dominant solution and the second part of the sum is the second dominant solution. This decomposition is the key idea to make a practical numerical evaluation. Let us explain what are h_1 and $h_1(\infty)$.

The function h_1 is determined from (24) by

\[
\frac{dh_1}{dt} = h_3(t)\exp(-4t^3/3), \quad h_3(t) = \frac{2t^{-1/2}\tilde{h}_2(t)}{g_1}, \quad \tilde{h}_2(t) = h_2(t)\exp(2t^3/3)
\]

// contined from the above input
--> gen_h2();
--> Table_h2_tilde[0];
[1, -0.513474647706052] // value of tilde h2

Fix a point $t = t_0$. Put

\[
\tilde{h}_1(s) = \int_s^\infty h_3(t)\exp(-4t^3/3)dt.
\]

(27) \hspace{1cm} \text{(eq:0930c)}

Then, $h_1(s) = \tilde{h}_1(t_0) - \tilde{h}_1(s)$ is a solution of the differential equation. The numerical integration of the function $\tilde{h}_1(s)$ can be done as follows.

\[
\tilde{h}_1(s)\exp(4s^3/3) = \int_s^\infty h_3(t)\exp\left(-\frac{4}{3}(t^3 - s^3)\right)dt
\]

(28) \hspace{1cm} \text{(28)}

The argument of \texttt{exp} is always negative, and then the numerical integration is easy to perform.
A sketch of a formal proof. A formal partial integration yields

\[h_1(s) = \int_s^\infty h_3(t) \frac{1}{4t^2} (\exp(-4t^3/3))' \, dt \]

\[= \left[h_3(t) \frac{1}{4t^2} (\exp(-4t^3/3)) \right]_s^\infty - \int_s^\infty \left(h_3(t) \frac{1}{4t^2} \right)' \exp(-4t^3/3) \, dt \]

\[= -h_3(s) \frac{1}{-4s^2} \exp(-4s^3/3) + \text{(the integral above)} \]

Repeating this partial integration, we obtain the estimate \(\tilde{h}_1(s) = O(\exp(-4t^3/3)) \).

Since \(g_1(s) = O(\exp(2t^3/3)) \), we have an estimate for \(g_1 \tilde{h}_1 \). \(g_2 \tilde{h} = 1 \) can be estimated analogously.

5 Other tips and tricks for HGM

5.1 Using HGM for a subprocedure of a numerical integration

In [7], a generalization of \(\chi^2 \) distribution is studied motivated by the work of Marumo, Oaku, Takemura [3]. He obtains the following integral formula, which can be numerically evaluated by HGM. He defined the following function \(\varphi_3 \).

\[\varphi_3(s) = \int_0^\infty \exp(-st^r) \exp \left(-\frac{e^{2\pi \sqrt{-1/r}}}{2} t^2 \right) \, dt \] \hspace{1cm} \text{(29)} \hspace{1cm} \text{eq:phi3}

for \(s > 0 \). We will also call this function \(\text{Akm}(r; s) \) (modified Ak). The real part and the imaginary part of \(\varphi_3 \) are

\[\text{Re} \, \varphi_3(s) = \int_0^\infty \exp(-st^r) - (\cos(2\pi/r)t^2/2) \cos(\sin(2\pi/r)t^2/2) \, dt \] \hspace{1cm} \text{(30)} \hspace{1cm} \text{eq:phi3_re}

\[\text{Im} \, \varphi_3(s) = -\int_0^\infty \exp(-st^r) - (\cos(2\pi/r)t^2/2) \sin(\sin(2\pi/r)t^2/2) \, dt \] \hspace{1cm} \text{(31)} \hspace{1cm} \text{eq:phi3_im}

\text{phi3(R,S | diff=K)} \text{ in ak2.rr returns the real part of } \varphi_3^K(S), r = \text{R.} \text{ phi3(R,S | im=1, diff=K)} \text{ returns the imaginary part of } \varphi_3^K(S), r = \text{R.} \text{ They are evaluated by the DE numerical integration formula.}

Theorem 3 (\cite{7}) The probability density function \(f(x) = \frac{4}{\pi} P(\sum_{k=1}^n X_k^r < x) \) \((X_k’s \text{ are i.i.d random normal variables, } r \geq 3) \) is expressed by the following
integrals.

\[
f(x) = \frac{1}{\pi} \left(\frac{2}{\pi} \right)^{n/2} \int_0^\infty \exp(-xs) \Im \left[\varphi_3(s) \exp\left(\sqrt{-1} \pi / r \right) + \varphi_0(s) \right]^n ds, \quad (r \text{ is odd}) \quad \text{eq:f_odd}
\]

\[
f(x) = \frac{1}{\pi} \left(\frac{2}{\pi} \right)^{n/2} \int_0^\infty \exp(-xs) \Im \left[\varphi_3(s) \exp\left(\sqrt{-1} \pi / r \right) \right]^n ds, \quad (r \text{ is even}) \quad \text{eq:f_even}
\]

where

\[
\varphi_0(s) = \int_0^\infty \exp(-st - t^2/2) dt
\]

These are derived from a Levy type formula of the characteristic function with changes of the path of integration in the complex domain. We evaluate the function \(\varphi_3 \) by the HGM by a differential equation shown later. It seems that it is not good method to evaluate \(f(x) \) itself by the HGM, because the rank of the holonomic system for the integrand becomes very high when \(n \) increases and it will be a good method to generate a table of \(\varphi_3 \) by the HGM and use a one dimensional numerical integration method to obtain the value of the PDF \(f(x) \). Note that the HGM is a good method to generate a table of values.

Trick: use HGM as a subprocess of a numerical integration.

\[
\text{hgm_f_r4(N=2,X=1); // From=1, To=2. H=0.001, N=2, X=1}
\]

\[
0.0969109812000352 \quad \text{Fast}
\]

\[
\text{psi3_im(R=4,N=2,X=1 | from=1, to=2); // double integral}
\]

\[
0.0968470258202232 \quad \text{Slow}
\]

\[
\text{load("test-ak2.rr");}
\]

\[
[2795] \text{Ans=hgm_phi3(R=6,X=100}$ // evaluate by hgm. every 0.1 H=0.001
\]

\[
\text{Time=[41.2335 0 2313312788 41.2705]}
\]

\[
[2796] \text{Ans[0];}
\]

\[
[100,[(0.422963949995807-0.0123543330871498*1i) (-0.00067813968444877+6.03046590444843e-05+1i) (7.78402323664449e-06-8.92422761251439e-07*1i)]}
\]

The figure 5 is a set of graphs of \(f(x) \).

Let \(F(y) \) be the cumulative distribution function (CDF). In other words,

\[
F(y) = \int_0^y f(x)dx
\]

When we need to specify the \(r \) (power) and \(n \) (freedom), we denote them by \(F_n(r;y) \) and \(f_n(r;y) \) respectively.

As an application of the result by T.Koyama we have the following formula.

Proposition 2 The cumulative distribution function (CDF) is approximately expressed as

\[
F(y) = P\left(\sum_{i=1}^n X_i^r < y \right)
\]

\[
\sim \int_0^b \frac{1 - \exp(-ys)}{s} \xi(s) ds + c_\alpha \frac{b^{-\alpha}}{\alpha} - c_\alpha y^\alpha \int_b^\infty e^{-t}t^{-\alpha-1} dt \quad \text{eq:pdf-Xr}
\]
where b is a sufficiently large number, $\alpha = n/r$, and $\xi(s)$ is given in (37) and (38).

Proof. We will give a method to evaluate $F(y)$ with the HGM. We introduce the function $\xi(s)$ to save the space

\[
\xi(s) = \begin{cases}
\frac{1}{\pi} \left(\frac{2}{\pi} \right)^{n/2} \text{Im} [\varphi_3(s) \exp(\sqrt{-1\pi/r}) + \varphi_0(s)]^n & \text{if } r \text{ is odd} \\
\frac{1}{\pi} \left(\frac{2}{\pi} \right)^{n/2} \text{Im} [\varphi_3(s) \exp(\sqrt{-1\pi/r})]^n & \text{if } r \text{ is even}
\end{cases}
\]

We firstly split the integral into two parts.

\[
F(y) = \int_0^y dx \int_0^\infty ds \exp(-xs) \xi(s)
= \int_0^\infty ds \xi(s) \int_0^y dx \exp(-xs)
= \int_0^\infty \frac{1 - \exp(-ys)}{s} \xi(s) ds
\]

Let $b > 0$ be a number. Put

\[
I_1 = \int_0^b \frac{1 - \exp(-ys)}{s} \xi(s) ds \quad \text{(39)}
I_2 = \int_b^\infty \frac{1 - \exp(-ys)}{s} \xi(s) ds \quad \text{(40)}
\]
Then, $F(y) = I_1 + I_2$. When s is large $\varphi_3(s)$ is approximated by $c_r s^{-1/r}$ for a constant c_r by numerical experiments and the expression of local solutions of the ODE for φ_3. Let r be an even number. Put $\alpha = n/r$ and

$$c_\alpha = \frac{1}{\pi} \left(\frac{2}{\pi} \right)^{n/2} \Im \left(c_r^n \exp \left(-\Im n \pi/r \right) \right)$$

We approximate I_2 when $y > 0$ in (40) as follows.

$$I_2 \sim c_\alpha \int_b^\infty \frac{1 - \exp(-ys)}{s} s^{-\alpha} ds$$

$$= c_\alpha \int_b^\infty s^{-\alpha-1} - c_\alpha \int_b^\infty \exp(-ys) s^{-\alpha-1} ds$$

$$= c_\alpha b^{-\alpha}/\alpha - c_\alpha y^\alpha \int_{by}^\infty e^{-t} t^{-\alpha-1} dt$$

The last integral is the incomplete gamma function. When $y = 0$, we put $I_2 = 0$.

Here is a method to obtain the CDF. (We have tried for $r = 3, 4, 5, 6$ for the step 1 and for $r = 4$ for the step 2.)

Step 1. Generate a table of values of $\varphi_3(s)$ We use the numerical integration for $s \in [0, 1/10]$ (the step size is 10^{-3}). We solve numerically the differential equation for $s \in [1/10, 10^4]$ with the starting point $s = 1$ (HGM).

Step 2. Evaluate (40) with $b = 1000$ with the table and a numerical integration. Evaluate (40) by determining the constant c_r by the table. Return $I_1 + I_2$ as the value of $F(y)$.

We evaluate numerically some CDF’s. The results are Figures 6 and 7.

5.2 Exact ODE coefficients are necessary

Let us derive a differential equation for φ_3 in (29). We consider a little more general integral.

Let $r \geq 3$ be a natural number and we assume $x_1 \in \mathbb{R}_{<0}$, $x_2 \in \sqrt{-1} \mathbb{R}$. Put

$$f(x_1, x_2) = \int_{-\infty}^\infty \exp(x_1 z^2 + x_2 z^r) dz$$

(42)
Figure 6: The CDF $F_n(y)$ for $y \in [0, 10]$, $r = 4$, $n = 1, 3, 5, 7, 9, 10$ (from the top to the bottom).

Lemma 2 The function f satisfies the following A-hypergeometric system

$$\begin{align*}
(2\theta_1 + r\theta_2 + 1) \cdot f &= 0 \quad (r = 0) \quad \text{(eq: euler)} \\
(\partial_1^r - \partial_2) \cdot f &= 0, \quad (r = 2, \text{ even}) \quad \text{(eq: box1)} \\
(\partial_1^r - \partial_2^2) \cdot f &= 0, \quad (r \text{ is odd}) \quad \text{(eq: box2)}
\end{align*}$$

where $\theta_i = x_i \partial_i = x_i \frac{\partial}{\partial x_i}$.

Proof. Since the integrand is rapidly decaying function with respect to z, we may exchange differentiations and the integral sign. The relations (eq: box1) or (eq: box2) can be obtained by a straightforward calculation. Let us show (eq: euler). Since

$$\begin{align*}
(2\theta_1 + r\theta_2) \cdot \exp(x_1z^2 + x_2z^r) &= (2x_1z^2 + rx_2z^r) \exp(x_1z^2 + x_2z^r) \\
&= z \frac{\partial}{\partial z} \exp(x_1z^2 + x_2z^r),
\end{align*}$$

the relation (eq: euler) can be obtained by the integration by parts. //

Note that, from this proof, the integral

$$\int_0^\infty \exp(x_1z^2 + x_2z^r)dz$$

also satisfies the same A-hypergeometric system.

We are going to eliminate ∂_1 from the A-hypergeometric system. Let us consider the case that $r = 2r_1$ is even. Multiplyng $x_1^{r_1}$ to (eq: box1), we obtain

$$\begin{align*}
L &= x_1^{r_1} \partial_1^{r_1} - x_1^{r_1} \partial_2 \\
&= \theta_1(\theta_1 - 1) \cdots (\theta_1 - r_1 + 1) - x_1^{r_1} \partial_2
\end{align*}$$
Figure 7: The CDF $F_n(y)$ for $y \in [10, 210]$, $n = 10, 30, 50, 70, 90, 100$. Note that
$n = 90, 100$ cases (two lower curves) give wrong values because of numerical
error of high powers n.

From (eq:euler), we have
\[\theta_1 = \frac{1}{2}(r\theta_2 + 1) \]
and substitute θ_1 in L by the righthand side. Then, we have
\[
L = \prod_{k=0}^{r_1-1} \left(-\frac{r}{2} \theta_2 - \frac{1}{2} - k \right) - x_1^{r_1} \partial_2
\]
\[
= \left(-\frac{r}{2} \right)^{r_1} \prod_{k=0}^{r_1-1} \left(\theta_2 + \frac{2k + 1}{r} \right) - x_1^{r_1} \partial_2
\]

We can perform an analogous calculation for the case that r is odd. Thus, we
have the following relations.

Lemma 3 Fix x_1 to a number. The function $f(x_1, x_2)$ annihilated by the fol-
lowing ordinary differential operator
\[
\left(-\frac{r}{2} \right)^{r_1} \prod_{k=0}^{r_1-1} \left(\theta_2 + \frac{2k + 1}{r} \right) - x_1^{r_1} \partial_2 \quad (r \text{ is even})
\]
\[
\left(-\frac{r}{2} \right)^{r_1-1} \prod_{k=0}^{r_1-1} \left(\theta_2 + \frac{2k + 1}{r} \right) - x_1^{r_1} \partial_2 \quad (r \text{ is odd})
\]

Multiplying $-x_2x_1^{-r_1}$ to (16), we have
\[
\theta_2 - x_2x_1^{-r_1} \left(-\frac{r}{2} \right)^{r_1-1} \prod_{k=0}^{r_1-1} \left(\theta_2 + \frac{2k + 1}{r} \right)
\]

It is the differential operator for the generalized hypergeometric function
\[
r_1, F_0 \left(\begin{array}{c} 1, \frac{3}{r}, \ldots, \frac{2r_1 - 1}{r} \end{array} ; x_2x_1^{-r_1} \left(-\frac{r}{2} \right)^{r_1} \right).
\]
Multiplying \(-x_2 x_1^{-r}\) to Eq.47, we have
\[
\theta_2(\theta_2 - 1) - x_2^2 x_1^{-r} \left(\frac{-r}{2} \right) \prod_{k=0}^{r-1} \left(\theta_2 + \frac{2k+1}{r} \right)
\]
By putting \(z = x_2^2 x_1^{-r} \left(\frac{-r}{2} \right) \), we obtain the differential equation for \(_r F_1 \). In fact,
\[
_r F_1 \left(\frac{1}{2r}, \frac{3}{2r}, \ldots, \frac{2r-1}{2r}; \frac{1}{2}; \left(\frac{-r}{2x_1} \right)^{2r-2} x_2^2 \right)
\]
is a solution of the ODE.

These discussions yields the following problem.

Problem: Study high precision and arbitrary precision evaluation of the generalized hypergeometric function \(_r F_1 \) globally.

We have
\[
\varphi_3(s) = f \left(-\frac{e^{2\pi \sqrt{-1}/r}}{2}, -s \right).
\]
The differential equation contains the constant \((-\frac{e^{2\pi \sqrt{-1}/r}}{2})^m\), \(m = r\) or \(m = r_1\). The author firstly use approximate value of this constant in the differential equation and obtained stupid values for \(\varphi_3\). He realized this constant should be an exact value to get an exact matrix factorial for the Runge-Kutta method.

Trick: Exact ODE yields the exact matrix factorial \(\prod_k Q(k, h)\).

5.3 Solving ODE in the complex domain

The characteristic function of \(r\) powered sum of the normal random variable \(X_i\), \(\varphi(w)\) is \(\frac{1}{\sqrt{2\pi}} f(-1/2, \sqrt{-1}w)\) where \(f\) is Eq.12. In other words,
\[
\varphi(w) = \int_{-\infty}^{\infty} \exp(\sqrt{-1}w x^r) \frac{1}{\sqrt{2\pi}} \exp(-x^2/2)dx
\]
This integral is considered in [koyama2019] to study the powered sum of independent identically and normally distributed random variables. This function is a generalization of the Airy function or the Airy integral and we call it the Ak integral or the Ak function in this paper to avoid a confusion on the name “generalized Airy function”. We use the notation
\[
\text{Ak}(r, w) = \varphi(w) = \int_{-\infty}^{\infty} \exp(\sqrt{-1}w x^r) \frac{1}{\sqrt{2\pi}} \exp(-x^2/2)dx
\]
We want to consider the problem of numerical evaluation of this function. As is shown in the example below, solving in the complex domain is useful.

When we change the independent variable, we need to translate the initial value for higher rank ODE. Let us note this fact by an example. Assume we evaluate
\[
\left(\frac{d}{dw_2} \right)^k \varphi(\sqrt{-1}w_2) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} (-t^r)^k \exp(-w_2 t^r - t^2/2)dt
\]
\[23\]
numerically. Since \(w = \sqrt{-1}w_2 \), we have \((d/dw)^k = \left(\frac{1}{\sqrt{-1} \, dw_2} \right)^k \). We need multiply \((1/\sqrt{-1})^k\) for the value of the integral above to get the \(k \)-th derivative of \(\varphi^{(k)}(\sqrt{-1}w_2) \).

\[\frac{\partial}{\partial R} \] \(w_0 \)

Figure 8: When \(w_0 \) is not too small, it works, \texttt{ak_even()}.

\[
\texttt{ak_even_rec(4,1/100 | fixed_start=1)}; \\
(7.24245451318315e+131+5.74558790493557e+131*@i) \\
\texttt{ak_even(4,1/100)} \\
(0.99535327756843+0.0286105510980157@i)
\]

Trick: Use a good path of integration in the complex domain.

5.4 Using power series and bigfloat for inaccurate data

In [10], the expected Euler characteristic for the largest eigenvalue of a real Wishart matrix is numerically evaluated for a small sized Wishart matrix by HGM. Let \(A = (a_{ij}) \) be a real \(m \times n \) matrix valued random variable (random matrix) with the density

\[
p(A)dA, \quad dA = \prod da_{ij}. \]

\[\frac{2}{w_0} \]

Figure 9: When \(w_0 \) is small, the numerical solution makes a blow-up, \texttt{ak_even_rec()}.
We assume that \(p(A) \) is smooth and \(n \geq m \geq 2 \). Define a manifold
\[
M = \{hg^T \mid g \in S^{m-1}, h \in S \} \cong S^{m-1} \times S^{n-1}/\sim
\]
where \((h, g) \sim (-h, -g)\) and \(h \) and \(g \) are regarded as column vectors and \(hg^T \) is a rank 1 \(m \times n \) matrix. Put
\[
f(U) = \text{tr}(UA) = g^T Ah, \quad U \in M
\]
and
\[
M_x = \{hg^T \in M \mid f(U) = g^T Ah \geq x\}
\]
Assume \(m = n = 2 \) and \(p(A) \) is a Gaussian distribution
\[
p(A)dA = \frac{1}{(2\pi)^{mn/2}\det(\Sigma)^{n/2}} \exp \left\{ -\frac{1}{2} \text{Tr} (A-M)^T \Sigma^{-1} (A-M) \right\} dA.
\]
The mean is expressed by the variable \(M = (m_{ij}) \). We gave an integral representation of \(E(\chi(M_x)) \) in [10]. Moreover, we derived an ODE of rank 11 for (51) by the computer algebra package HolonomicFunctions.m.

\[
E[\chi(M_x)] = \frac{1}{2\pi^2} \int_0^\infty d\sigma \int_0^\sigma db \int_0^s ds \int_0^t dt \frac{s_1s_2(s^2 - b^2)}{(1 + s^2)(1 + t^2)} \exp \left\{ -\frac{1}{2} \tilde{R} \right\}, \quad (51)
\]
where \(\tilde{R} \) is a rational function in \(\sigma, b, s, t, s_1, s_2, m_{11}, m_{21}, m_{22} \). More precisely, put
\[
R = s_1 (b \sin \theta \sin \phi + \sigma \cos \theta \cos \phi - m_{11})^2 + s_2 (\sigma \sin \theta \cos \phi - b \cos \theta \sin \phi - m_{21})^2 + s_1 (\sigma \cos \theta \sin \phi - b \sin \theta \cos \phi)^2 + s_2 (b \cos \theta \cos \phi + \sigma \sin \theta \sin \phi - m_{22})^2,
\]
replace \(\sin, \cos \) in \(R \) by
\[
\sin \theta = \frac{2s}{1 + s^2}, \quad \cos \theta = \frac{1 - s^2}{1 + s^2}, \quad \sin \phi = \frac{2t}{1 + t^2}, \quad \cos \phi = \frac{1 - t^2}{1 + t^2},
\]
and we set this \(\tilde{R} \). We want to evaluate it when \(m_{11} = 1, m_{21} = 2, m_{22} = 3 \) (means) and \(s_1 = 10^3, s_2 = 10^2 \). See [10] as to details.

The following is a quotation from [10]:

As far as we have tried, it is hard to evaluate (51) for these relatively large parameters \(s_i \) by numerical integration (even the Monte Carlo integration). Thus, we take a different approach. Using an algebraic method, we can compute a linear ODE for (51) of rank 11 with respect to the independent variable \(x \). Then we construct series solutions for this differential equation and use them to extrapolate results by simulations.

Although this extrapolation method is well-known, we explain it in a subtle form with application in our evaluation problem. Consider
an ODE with coefficients in \(\mathbb{Q}(x) \) of rank \(r \). Let \(c \in \mathbb{Q} \) be a point in the \(x \)-space and we take \(r \) increasing numbers \(y_j \in \mathbb{Q} \), where \(j = 0, 1, \ldots, r - 1 \). We construct a series solution \(f_i(x) \) as a series in \(x - (c + y_i) \). We may further assume that \(c + y_i \) is not a singular point of the ODE for each \(i \). The initial value vector may be taken suitably so that the series is determined uniquely over \(\mathbb{Q} \).

\[
\begin{array}{ccc}
x & f(x) & \text{simulation} \\
3.8133 & 0.051146 & 0.051176 \\
3.8166 & 0.047517 & 0.047695 \\
3.82 & 0.044120 & 0.044515 \\
\end{array}
\]

Figure 10: Numerical evaluation by extrapolation series

The Figure 10 and Figure 11 are respectively a table of values and a graph obtained by extrapolating simulation values by these power series solutions. We use bigfloat of size 380 to determine series solutions.

| Trick: Do not hesitate to use the bigfloat and powerseries. | We use series solutions as a basis of interpolation or extrapolation. |

6 Computational Challenges and Questions

Computational Try 1 R. Vidunas and A. Takemura [11] derived a system of linear partial differential equations for the outage probability \(P(\phi_s \leq x) \). Try to make a numerical analysis of this system with Gröbner basis, the defusing method, or the method to obtain a stable system.

Problem 1 Derive a good system of non-linear equations satisfied by \(\det \Psi(x) \).
The theory of holonomic quantum field and Hirota bilinear equations might help to solve this problem. If we can find such system, try a numerical analysis of it.

Computational Try 2 The defusing method for non-linear equation needs to compute a composition of non-linear functions instead of the matrix factorial. What is the size of a problem feasible by current computer algebra systems?

Computational Try 3 Try the defusing method for \(H_n^k(x, y) \) upto \(y \sim 10^8 \), which lies in a range to apply to practical problems.

Computational Try 4 Marumo, Oaku, Takemura gave a method to derive a linear ODE for \(\varphi^n \). The function \(\varphi_3 \) for \(r = 4 \) satisfies a 2nd order linear ODE. Try to make a numerical analysis of the system for \(\varphi^n \) with the defusing method, or the method to obtain a stable system.

Problem 2 Give a method for a high precision evaluation of the hypergeometric function \(_rF_1 \) and \(_rF_0 \). Refer, e.g., to [11].
Computational Try 5 Try to make a numerical analysis of the ODE of rank 11 for $E[\chi(M_x)]$ with the defusing method, or the method to obtain a stable system.

References

Yoshihito Tachibana, Yoshiaki Goto, Tamio Koyama, Nobuki Takayama, Holonomic Gradient Method for Two Way Contingency Tables, arxiv:1803.04170

N. Takayama, L. Jiu, S. Kuriki, Y. Zhang, Computations of the Expected Euler Characteristic for the Largest Eigenvalue of a Real Wishart Matrix, arxiv:1903.10099

R. Vidunas, A. Takemura, Differential relations for the largest root distribution of complex non-central Wishart matrices, arxiv:1609.01799