Nobuki Takayama, 2019.12.05, et-3, Studies of distributions by HGM.

Toric model (discrete) defined by A, 1.

Switch to θ (common in statistics) to x or p.

Let $A = (a_{ij})$ be a $d \times n$ matrix $(a_{ij} \in \mathbf{Z})$. We denote by $a_j \in \mathbf{Z}^d$ the *j*-th column vector of A. We assume that the raw span contains (1, 1, ..., 1). For $\beta \in \mathbf{N}_0 A = \mathbf{N}_0 a_1 + \cdots + \mathbf{N}_0 a_n$, the polynomial

$$Z_{\mathcal{A}}(\beta; x) = \sum_{\boldsymbol{A}\boldsymbol{u}=\boldsymbol{\beta}, \boldsymbol{u}\in \mathbf{N}_{0}^{d}} \frac{x^{\boldsymbol{u}}}{\boldsymbol{u}!} = \sum_{\boldsymbol{A}\boldsymbol{u}=\boldsymbol{\beta}, \boldsymbol{u}\in \mathbf{N}_{0}^{d}} \frac{\prod x_{i}^{\boldsymbol{u}_{i}}}{\prod \boldsymbol{u}_{i}!}$$
(1)

is called the A-hypergeometric polynomial.

 $P(U = u) = \frac{x^u}{u!}/Z_A(\beta; x)$ is a probability distribution on $Au = \beta$ with a parameter vector x.

Goal: Exact numerical evaluation of the polynomial $Z_A(\beta; x)$ and its derivatives.

This problem is fundamental, e.g., for given number \overline{T}_i , obtain x s.t. $E[U_i] = x_i \frac{\partial Z}{\partial x_i} / Z = \overline{T}_i$ (MLE).

Toric model (discrete) 1'.
 When
$$A = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 \end{pmatrix}$$
, we

have

$$Z((u_1, u_3+u_4, u_1+u_3); p) = \frac{p_1^{u_1} p_3^{u_3} p_4^{u_4}}{u_1! u_3! u_4!} \sum_{i=0}^n \frac{(-u_1)_i (-u_4)_i}{(u_3+1)_i (1)_i} \left(\frac{p_2 p_3}{p_1 p_4}\right)^i.$$

Put
$$f(a) = {}_2F_1(a, b, c; y)$$
 and
 $F(a) = \begin{pmatrix} f(a) \\ y \partial_y f(a) \end{pmatrix}, M(a) = \frac{1}{a-c+1} \begin{pmatrix} by + a - c + 1 & y - 1 \\ -aby & a(1-y) \end{pmatrix}$

Then, we have the contiguity relation

$$F(a) = M(a)F(a+1).$$
 (2)

<ロト <回 > < 国 > < 国 > < 国 > < 国 > < 国 > < 図 へ () 2/30 Toric model (discrete) 2. Contiguity relations give a fast algorithm to evaluate $Z_A(\beta; p)$ and its derivatives.

$$\partial_i \bullet Z_A(\beta; x) = Z_A(\beta - a_i; x)$$

Step 0, holonomic rank	$\operatorname{vol}(A)^*$	
Step 1, diff eq	A-hg diff-diff, GG sys	
Step 1, contiguity (Pfaffian eq)	general alg's [†]	
Step 2, initial value	easy	
Step 3, numerical solver	matrix factorial alg's [‡]	
hgm openxm, search for links to references.		

*Ohara-T (2009), Holonomic rank of A-hypergeometric differential-difference equations

[†]1. Hibi-Nishiyama-T (2012), Pfaffian Systems of A-Hypergeometric Equations I, Bases of Twisted Cohomology Groups. 2. Ohara-T (2015), Pfaffian Systems of A-Hypergeometric Systems II — Holonomic Gradient Method. (Macaulay type matrix method)
 [‡]Tachibana-Goto-Koyama-T (2018)

Matrix factorial

We call

$M(-k)M(-k+1)\cdots M(-2)M(-1)$

the matrix factorial. Applying the matrix factorial to F(0), we obtain F(-k).

Methods for exact evaluation of matrix factorials (the binary splitting and the modular method) $\,{}^{\S}.$

 5×5 contingency table, a benchmark test [tgkt] of evaluating the normalizing constant (*A*-hypergeometric polynomial) with 32 processes by Risa/Asir with OpenXM. *N* is a parameter in the marginal sum β .

[§][tgkt] Y.Tachibana, Y.Goto, T.Koyama, N.Takayama, Holonomic Gradient Method for Two Way Contingency Tables arxiv:1803.04170 @ + < = + < = + = =

Toric model 3, contiguity > series.

Numerical evaluation of hypergeometric polynomial becomes a hard problem when dim Ker A and the rank of $H_A(\beta)$ increase and β becomes larger.

Example:

$$F_{C}(a, b, c; y) = \sum_{k \in \mathbb{N}_{0}^{n}} \frac{(a)_{|k|}(b)_{|k|}}{\prod k_{i}! \prod (c_{i})_{k_{i}}} y^{k}, \quad A = \begin{pmatrix} \mathbf{1} & \mathbf{1} \\ E_{n+1} & -E_{n+1} \end{pmatrix}$$

where
$$(a)_m = a(a+1)\cdots(a+m-1)$$
 and $|k| = k_1 + \cdots + k_n$.
 $n = 4, a = -179 - N, b = -139 - N, c = (37, 23, 13, 31),$
 $w = (31/64, 357/800, 51/320, 87/160)$

y — (51/04,557/000,51/520,67/100	')
Ν	Evaluating series	method of Macaulay type matrix ¶
0	6822s (1.89 hour)	61399s (about 17 hours)
100	138640s (1 day and about 14.5 h)	73126s(about 20.3 hours)
200	More than 2 days	84562s (about 23.5 hours)

[¶]Ohara-T (2015)

Toric model (discrete), direct sampler — Interlude

Contiguity

relations give a high quality random vector generator for $Au = \beta$ It is called a *direct sampler*.

Figure: Evaluation of a *p*-value by MCMC and direct sampler(Tatuya Hiradai (M2, 2018)). thining 100 is missing in the right.)

1. S.Mano (2016), The Ahypergeometric System Associated with the Rational Normal Curve and Exchangeable Structures. 2. S.Mano (2018), Partitions, Hypergeometric Systems, and Dirichlet Processes in Statistics, JSS Research Series in Statistics.

^{7/30}

Contingency table 1 2 way contingency table:

 $\overline{(k+1)\times(n+1)}$ matrix with $\mathbf{Z}_{\geq 0}$ entries.

	acetaminophen	diclofenac sodium	mefenamic acid
death	4	7	2
survival	32	5	6

$$P(U_{ij} = u_{ij}) = rac{\exp(-\rho_{ij})\rho_{ij}^{u_{ij}}}{u_{ij}!}$$

The conditional probability \parallel when the row and column sums are fixed to *I*, *J* is

$$P\left(U=u\left|\sum_{j}U_{ij}=I_{i},\sum_{i}U_{ij}=J_{j}\right\right)=\frac{p^{u}/u!}{Z(I,J;p)}$$

where Z is A-hypergeometric polynomial for $A = (e_i \oplus e_j)$. Example: $A = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{pmatrix}$ for 2 × 2 case.

 U_{ij} is a random variable of the Poisson distribution.

References on contingency tables (MSC2010: 62H17).

Takayuki Hibi *Editor*

Gröbner Bases

Statistics and Software Systems

$(k+1) \times (n+1)$ Contingency table			
Step 0, holonomic rank	$\left(\begin{pmatrix} k+n\\k \end{pmatrix} \ast \ast \right)$		
Step 1, diff eq	Aomoto-Gel'fand (\in A-hg)		
Step 1, contiguity (Pfaffian eq)	Goto-Matsutmo (2016) ^{††}		
Step 2, initial value	easy		
Step 3, numerical solver	matrix factorial alg's ^{‡‡}		
Packages	gtt_ekn3.rr on Risa/Asir		

**Aomoto (1975, 1977)

 $^{\dagger\dagger}Pfaffian$ equations and contiguity relations of the hypergeometric function of type (k+1,k+n+2) and their applications.

^{‡‡}Tachibana-Goto-Koyama-T (2018), Holonomic Gradient Method for Two Way Contingency Tables Numerical evaluation of Z makes exact MLE possible

Bed time \setminus Hours slept	less than 6 hour	6–7	more than 7 hours	
Before 24	1	6	123	
24–25	3	22	145	
After 25	86	91	176	
Categorical data for males	$5 \begin{pmatrix} 1 & 2 & 28 \\ 0 & 4 & 47 \\ 35 & 32 & 71 \end{pmatrix}.$			
Categorical data for females $\begin{pmatrix} 0 & 4 & 95 \\ 3 & 18 & 98 \\ 51 & 59 & 105 \end{pmatrix}$.				
(0.458	167657900967 1	<u>6.256</u>	76090279981	
CMLE for males:	0 1	<u>5.252</u>	00491199345	
	1 1		1 /	
CMLE for females:			,	
$\begin{pmatrix} 0 & 1 \\ 0.103351042187373 & 1 \end{pmatrix}$	<u>13.271477373765</u> 3.0487258615520	$\frac{57}{51}$		
	<u>3.040723001332</u> 1		□ ▶ < 분 ▶ < 분 ▶ 분 ∽ 약 11/30	

	acetaminophen	diclofenac sodium	mefenamic acid
death	4	7	2
survival	32	5	6
		*	

CMLE:
$$\begin{pmatrix} 1 & \frac{10.5557279737263}{1} & 2.62096714359908 \\ 1 & 1 & 1 \end{pmatrix}$$
.
Generalized odds ratios: $\begin{pmatrix} 1 & \frac{11.2}{1} & 2.66666666666666666667 \\ 1 & 1 & 1 \end{pmatrix}$.
 $11.2 = \frac{32 \times 7}{4 \times 5}$.

^{*}Data of the previous page

https://cran.r-project.org/web/packages/LearnBayes/index.html. Data of this papge https://www.pmda.go.jp/files/000148557.pdf =>>

Fisher-Bingham, Bingham distribution 1.

$$\overline{\frac{1}{Z(x,y,r)}\exp\left(\sum_{1\leq i\leq j\leq d+1}x_{ij}t_it_j+\sum_{i=1}^{d+1}y_it_i\right)}|dt| \text{ on } S^d(r).$$

$$Z(x, y, r) = \int_{S^{d}(r)} \exp\left(\sum_{1 \le i \le j \le d+1} x_{ij} t_{i} t_{j} + \sum_{i=1}^{d+1} y_{i} t_{i}\right) |dt| \quad (3)$$

PDF:

 $\begin{aligned} |dt| \text{ is the invariant measure on the sphere with the redius } r \text{ such} \\ \text{that } \int_{S^d(r)} |dt| &= r^d \frac{2\pi^{(d+1)/2}}{\Gamma((d+1)/2)}. \\ r &= 1, y_i = 0 \Rightarrow \text{Bingham distribution }^*. \\ \underline{\text{Step 0, holonomic rank}} & 2d + 2, \text{ Naka-Nishi-Ko-T[yama] (2014)} \\ \underline{\text{Step 1, diff eq}} & \text{ Naka-Nishi[yama]-Noro-Ohara-Sei-Takemura-T (2011)} \\ \underline{\text{Step 1, Pfaffian eq}} & \text{ Naka-Nishi-Ko-T[yama] (2013).} \\ \underline{\text{Kume-Sei (2018).}} \\ \underline{\text{Step 3, numerical solver}} & \text{ prototype} \\ \hline \end{aligned}$

hgm openxm , search for links to references.

*Sei-Kume (2013)

Fisher-Bingham, Bingham distribution 2 (MLE by HGM, stars, wind).

Wind direction at Kobe.

Fisher-Bingham, diff. eq $\partial_{r} = \partial/\partial r$, Z satisfies the following system. $\partial_{r} = \partial/\partial r$, Z satisfies the following system.

$$\partial_{ij} - \partial_i \partial_j, \quad \sum_{i=1}^{d+1} \partial_i^2 - r^2, \quad r \partial_r - 2 \sum_{i \le j} x_{ij} \partial_i \partial_j - \sum_i y_i \partial_i - d, \\ x_{ij} \partial_i^2 + 2(x_{jj} - x_{ii}) \partial_i \partial_j - x_{ij} \partial_j^2 + \sum_{s \ne i,j} (x_{sj} \partial_i \partial_s - x_{is} \partial_j \partial_s) + y_j \partial_i - y_i \partial_j \partial_j + y_j \partial_i - y_i \partial_j \partial_s + y_j \partial$$

(日)

15 / 30

The normalizing constant of the Bingham distribution satisfies

$$\sum_{i=1}^d \partial_{ii} - 1, \quad 2(x_{ii} - x_{jj}) \partial_{ii} \partial_{jj} - (\partial_{ii} - \partial_{jj}), \ (1 \leq i < j \leq d)$$

Fisher distribution $\exp(\operatorname{Tr} \Theta^{\top} X)\delta_{SO(n)}(X)/Z(\Theta)$ on $SO(p) = \{X \in \mathbb{R}^{p \times p} \mid X^{T}X = I_{p}, \det(X) = 1\}$ where $\delta_{SO(p)}(X)$ is the delta function supported on SO(p).

$$Z(\Theta) = \int_{X=(X_{ij})\in \mathbf{R}^{p\times p}} \exp(\operatorname{Tr}\,\Theta^{\top}X) \delta_{SO(p)}(X) dX$$

Step 0, holonomic rank	? (partially [ALSS])
Step 1, diff eq	Koyama (2015), any <i>n</i>
1	Any Lie group*
Step 1, Pfaffian eq	$n = 3^{\dagger}$
Step 2, initial value	series expansion $(n = 3, ")$
Step 3, numerical solver	Runge-Kutta method
Packages	hgm.ncso3 on R $(n = 3)$,
	a prototype for MLE on $R(n = 3)$ [ALSS]

*[ALSS] M.Adamer, A.Lorincz, A.L.Sattelberger, B.Sturmfels, Algebraic Analysis of Rotation Data, 1912.00396

[†]Sei-Shibata-Takemura-Ohara-T (2013)

diff eq

$$\begin{aligned} \mathcal{A}_{ij}^{(1)} &= \sum_{k=1}^{p} \partial_{ik} \partial_{jk} - \delta_{ij}, \quad \tilde{\mathcal{A}}_{ij}^{(1)} &= \sum_{k=1}^{p} \partial_{ki} \partial_{kj} - \delta_{ij} \quad (i \leq j), \quad \mathcal{A}^{(2)} = \det(\partial_{ij}) - 1, \\ \mathcal{A}_{ij}^{(3)} &= \sum_{k=1}^{p} \left(-\theta_{jk} \partial_{ik} + \theta_{ik} \partial_{jk} \right), \quad \tilde{\mathcal{A}}_{ij}^{(3)} &= \sum_{k=1}^{p} \left(-\theta_{kj} \partial_{ki} + \theta_{ki} \partial_{kj} \right) \quad (i < j), \end{aligned}$$

Here $\partial_{ij} = \partial/\partial\theta_{ij}$.

Note: the diagonal restriction $(\theta_{ij} = 0, i \neq j)$ is not known when n > 3.

Wishart matrix (Random matrix) 1 (test) Wishart matrix of the freedom *n* and $m \times m$ covariance matrix Σ^* . Let ℓ_1 is the maximal eigenvalue. Constantine (1963) proved

$$P[\ell_1 < x] = C \exp\left(-\frac{x}{2} \operatorname{Tr} \Sigma^{-1}\right) x^{\frac{1}{2}nm} {}_1F_1\left(\frac{m+1}{2}; \frac{n+m+1}{2}; \frac{x}{2} \Sigma^{-1}\right),$$
(4)

where C is a constant (omit).

$${}_{1}F_{1}(a;c;Y) = \frac{\Gamma_{m}(c)}{\Gamma_{m}(a)\Gamma_{m}(c-a)} \\ \cdot \int_{0 < X < I_{m}} \exp(\operatorname{Tr} XY) |X|^{a-(m+1)/2} |I_{m} - X|^{c-a-(m+1)/2} dX,$$

where $\Gamma_m(t) = \pi^{m(m-1)/4} \prod_{i=1}^m \Gamma(t - (i-1)/2)$, X < Y means Y - X is a positive definite symmetric matrix and $dX = \prod_{i \le i} dx_{ij}$.

*M= *n*-columns of *m*-dim normal central random variables of the covariance Σ , MM^T is the Wishart matrix.

Wishart matrix 2	
Step 0, holonomic rank	2 ^m
Step 1, diff eq	Muirhead (1970)
Step 1, Pfaffian eq	generic [HNTT] $(2013)^{\dagger}$, alg by Noro (2016)
Step 2, initial value	,Koev-Edelman (2005)
Step 3, numerical solver	Runge-Kutta method
Packages	hgm.cwishart on R, n_wishartd.rr(Noro)

Differential equations (Muirhead, 1970)

$$\begin{bmatrix} y_i \partial_i^2 + \left\{ c - \frac{m-1}{2} - y_i + \frac{1}{2} \sum_{j=1, j \neq i}^m \frac{y_i}{y_i - y_j} \right\} \partial_i \\ - \frac{1}{2} \sum_{j=1, j \neq i}^m \frac{y_j}{y_i - y_j} \partial_j - a \end{bmatrix} F = 0, \\ (i = 1, \dots, m)$$

where $Y = \text{diag}(y_1, \dots, y_m)$. Note: It is zero dimensional in R_m . Holonomic system is not known. Polyhedron probability of normal distribution for test 1. Polyhedron parametrized by a_{ij} , b_j

$$P = \{x \in \mathbf{R}^d : \sum_{i=1}^d a_{ij} x_i + b_j \ge 0, \ 1 \le j \le n\},$$
 (5)

$$Prob(x \in P) = \frac{1}{(2\pi)^{d/2}} \int_{x \in P} \exp\left(-\frac{1}{2} \sum_{i=1}^{d} x_i^2\right) dx_1 \cdots dx_d.$$
 (6)

Step 0, holonomic rank	\sharp (facet intersections \mathcal{F}), Koyama (2013)
Step 1, diff eq	Koyama (2013)
Step 1, Pfaffian eq	Koyama (2013)
Step 2, initial value	only simplex case, Koyama (2015)
Step 3, numerical solver	Runge-Kutta method
Packages	prototype when P is a simplex ‡

[‡]Koyama (2016), http://www.github.com/tkoyama-may10 < = > < = > > = <

Polyhedron probability of normal distribution for test 2. a = [[1,0], [0,1], [-1,-1]], b = [0,0,2], in other words, $x > 0, y > 0, -x - y + 2 > 0 \text{ (triangle)}. \mathcal{F} = \{\emptyset, 1, 2, 3, 12, 13, 23\}$ and $\sharp \mathcal{F} = 7.$./a.out 1 2 1 0 0 0 1 0 -1 -1 2 result: 0.1775361552 0.4772498666 0.4772498666 1.000000000 0.3100122972 0.1353352805

0.1353352805

Probability = 0.177536

Orthant probability (Koyama, Takemura (2012)):

```
library(hgm);
hgm.ncorthant(
  matrix(c(2,1,1,1),nrow=2),
  y=c(1,1.5));
[1] 0.7475185
```


differential equation (Koyama, 2013)

$$\begin{array}{lll} \partial_{a_{ij}}g^J &=& \displaystyle\sum_{k=1}^n a_{ik}\partial_{b_k}\partial_{b_j}g^J & (1 \leq i \leq d, \ 1 \leq j \leq n, \ J \in \mathcal{F}), \\ \partial_{b_j}g^J &=& g^{J \cup \{j\}} & (j \in J^c, \ J \in \mathcal{F}), \\ \partial_{b_j}g^J &=& \displaystyle-\sum_{k \in J} \alpha_J^{jk}(a) \left(b_kg^J + \sum_{\ell \in J^c} \alpha_{k\ell}(a)g^{J \cup \{\ell\}}\right) & (j \in J, \ J \in \mathcal{F}). \end{array}$$

Here $(\alpha_F^{ij}(a))_{i,j\in F}$ is the *ij* element of the inverse matrix of $\alpha_F(a)$ constructed by *a*. *ij* element of $\alpha_F(a)$ is $\sum_{k=1}^{d} a_{ki}a_{kj}$.

A difficulty of the Step 3, numerical instability

§ Defusing

method, stabile subsystem (projection method) \P .

Example

$$\frac{d}{dt}F = \left(\begin{array}{ccc} -1 & 1 & 0 \\ 0 & -1 & 1 \\ 0 & 0 & 0 \end{array} \right)F$$

The solution space is spanned by $F^1 = (\exp(-t), 0, 0)^T$, $F^2 = (0, \exp(-t), 0)^T$, $F^3 = (1, 1, 1)^T$. The initial value $(1, 0, 0)^T$ at t = 0 yields the solution F^1 . Add some errors $(1, 10^{-30}, 10^{-30})^T$ to the initial value. Then, we have

t	value F_1 by RK	difference $F_1 - F^1$
50	1.92827e-22	9.99959e-31
60	8.75556e-27	1.00000e-30
70	1.39737e-30	1.00000e-30
80	1.00002e-30	1.00000e-30

We can see the instability.

[§]I would like to present Some of my recent studies.

[¶]Algorithms to Reduce the Instability of the HGM and Tricks useful for the HGM, preliminary note $\square \rightarrow \square \square \square \square \square \square$

 $H_n^k(x, y)$: Outage probability 1

$$H_{n}^{k}(x,y) = \int_{0}^{x} t^{k} e^{-t} {}_{0}F_{1}(;n;ty)dt$$

Theorem (Kang-Alouni(2003) [∥])

Under some assumptions, the CDF (cumulative distribution function) of the outage probability (the probability of the maximal eigenvalue < x of a random matrix) is

$$\Pr\left(\phi_{s} \leq x\right) = \frac{\exp\left(-\sum_{i=1}^{s} \lambda_{i}\right)}{\Gamma(t-s+1)^{s} \prod_{1 \leq i < j \leq s} (\lambda_{j} - \lambda_{i})} \det \Psi(x)$$

where $\Psi(x)$ is a matrix with $H_{t-s+1}^{t-i}(x, \lambda_j)$ as the (i, j)-element. They expanded this determinant by the Malcume *Q*-functions. Proposition (Danufane-Ohara-T-Siriteanu(2017)**) The function H_n^k satisfies the following system

$$\{\theta_y(\theta_y+n-1)+y(\theta_x-\theta_y-k-1)\}\bullet u = 0,$$

$$(\theta_x-\theta_y-k-1+x)\theta_x\bullet u = 0.$$

The holonomic rank of the system is 4.

^{II}Largest Eigenvalue of Complex Wishart Matrices and Performance Analysis of MIMO MRC Systems 25/30 Outage probability 2

Table: CDF $Prob(\phi_5 \leq x)$ output by HGM

x	$\Pr(\phi_5 \leq x), 5 \times 5$	$\Pr(\phi_5 \leq x), 5 \times 6$	$\Pr(\phi_5 \leq x), 5 \times 7$
$1.9990 imes 10^{8}$	2.841503e-07	2.840696e-07	2.840035e-07
1.9991×10^{8}	3.372661e-06	3.371785e-06	3.371082e-06
1.9992×10^{8}	3.147594e-05	3.146851e-05	3.146270e-05
$1.9993 imes 10^{8}$	0.00023143703	0.00023138784	0.00023135066
$1.9994 imes 10^{8}$	0.0013442040	0.0013439501	0.0013437654
$1.9995 imes 10^{8}$	0.0061883532	0.0061873284	0.0061866184
1.9996×10^{8}	0.022687564	0.022684307	0.022682226
1.9997×10^{8}	0.066662879	0.066654839	0.066650189
1.9998×10^{8}	0.15839370	0.15837759	0.15836978
$1.9999 imes 10^{8}$	0.30816435	0.30813940	0.30812954
2.0000×10^{8}	0.49958230	0.49954954	0.49954438
2.0001×10^{8}	0.69109536	0.69106073	0.69105953
2.0002×10^{8}	0.84109309	0.84106275	0.84107198
2.0003×10^{8}	0.93306099	0.93303238	0.93305115
$3.0000 imes 10^8$	1.000017	0.99999227	1.000260

The rank 4 system is instable. We gave an ODE of rank 3 w.r.t x satisfied by $H_n^k(x, y)$, which is stabile for $H_n^{k\dagger\dagger}$.

^{††}Th 4 of Danufane-Ohara-T-Siriteanu, Holonomic Gradient Method-Based CDF Evaluation for the Largest Eigenvalue of a Complex Noncentral Wishart Matrix, 2017 Outage probability 3

Figure: Outage probability $Pr(\rho_{MRC} \leq \Gamma_{th} = 8.2 \text{ dB}) = Pr\left(\phi_s \leq \frac{(K+1)\Gamma_{th}}{\Gamma_b}\right) \text{ vs. } \Gamma_b, \text{ from HGM, for}$ $NT = 5, NR = 5, \text{ and set of eigenvalues } \lambda = \{0.4, 0.8, 1.2, 1.6, 2\} \times 10^8.$ Γ_b is the signal noise ratio.

log $H_1^{10}(1, y)$. Exact value (by numerical integration) and the value by our defusing method agree. The adaptive Runge-Kutta method with the initial relative error 10^{-20} (upper curve) does not agree with the exact value when y is larger than about 25.

The relative error of $H_1^{10}(1, y)$ of our defusing method. The relative error is defined as $(H_d - H)/H$ where H_d is the value by the defusing method and H is the exact value.

Expectation of the Euler characteristic for random manifolds

is a random $m \times n$ matrix with the distribution measure p(A). Put $M_x = \{hg^T \mid g^T Ah \ge x, g \in S^{m-1}, h \in S^{n-1}\}.$

Theorem (T-Jiu-Kuriki-Zhang (2018))

The expectation of the Euler characteristic number $E[\chi(M_x)]$ is equal to

$$\frac{1}{2} \int_{x}^{\infty} \sigma^{n-m} d\sigma \int_{\mathbb{R}^{(m-1)(n-1)}} dB \int_{S^{m-1}} G^{\mathsf{T}} dg \int_{S^{n-1}} H^{\mathsf{T}} dh det(\sigma^{2} I_{m-1} - BB^{\mathsf{T}}) p(A).$$

We set $G^T dg = \bigwedge_{i=1}^{m-1} G_i^T dg$, $H^T dh = \bigwedge_{i=1}^{n-1} H_i^T dh$, where G_i and H_i are the *i*-th column vectors of G and H, respectively, $dg = (dg_1, \ldots, dg_m)^T$ and $dh = (dh_1, \ldots, dh_n)^T$. $E[\chi(M_x)]$ approximates $P((\max \text{ singular value of } A) \ge x)$ when $x \to +\infty^{\ddagger\ddagger}$. Problem: Find differential equations for nice p(A)'s and apply the HGM.

^{‡‡}Adler-Taylor (2007), Kuriki-Takemura (2001)

Α

Summary HGM (holonomic gradient method) has been applied to several holonomic distributions for the (exact) MLE and statistical test in the past 10 years. The method utilizes the thoery of hypergeometric functions, algorithms for the ring of differential operators, and several methods in numerical analysis. The punchline of the method is that it provides a general algorithm to evaluate the normalizing constant and the theoretical study of *Z* can give more efficient method.