Who is today's speaker?

- 1. Name: Nobuki Takayama. Born: 1959
- 2. Lives in Kobe* and in Fukui[†] (after covid-19)

^{*}https://en.wikipedia.org/wiki/Kobe

[†]https://en.wikipedia.org/wiki/Fukui_Prefecture

Who is today's speaker? 2.

 1. 1984–Current: hypergeometric functions of several variables, A-hypergeometric system or GKZ HG. Special functions and computer algebra. "Askey-Bateman project, vol 2, Multivariable of special functions":

```
https://www.cambridge.org/jp/academic/subjects/mathematics/abstract-analysis/encyclopedia-special-functions-askey-bateman-project-volume-2-1?format=HB&isbn=9781107003736
```

- 2. 1995–2005: D-modules algorithms and algebraic geometry.
- 3. 2010—Current: Statistics, computer algebra, numerical analysis. http://www.math.kobe-u.ac.jp/OpenXM/Math/hgm/ref-hgm.html
- 4. Software projects: Kan/sm1, Risa/Asir: http://www.openxm.org. HGM package on R: https://cran.r-project.org/package=hgm

Euler characteristic heuristic and computer algebra

Nobuki Takayama (Kobe Univ), joint work with Lin Jiu, Satoshi Kuriki, Yi Zhang

Theorem

$$M_{x} = \{ hg^{T} | g^{T} Ah \ge x, h, g \in S^{m-1} \}$$

A is an $m \times m$ random matrix of the Gaussian distribution with the covariance E_m/s and the mean 0, i.e.,

$$p(A) \sim \exp\left(-\frac{1}{2}\mathrm{Tr}\left(sA^TA\right)\right).$$

Then, we have

$$E[\chi(M_x)] = \prod_{i=1}^{5} c_i \int_{x}^{+\infty} \exp\left(-\frac{s}{2}\sigma^2\right) {}_1F_1(-(m-1), 1; s\sigma^2) d\sigma$$

$E[\chi(M_x)]$ and the prob of the max eigenvalue of A is larger than x

m = 10, s = 1. The horizontal axis is x^2 .

 c_i are constants. Reference: "Computation of the expected Euler characteristic for the largest eigenvalue of a real non-central Wishart matrix",

https://doi.org/10.1016/j.jmva.2020.104642

Euler characteristic heuristic: Adler, Hosofer(1970's), Worsley(1994), Kuriki, Takemura(2000's)

Let f(U) be a smooth random field on a manifold M.

$$M_x = \{U \in M \mid f(U) \geq x\}.$$

The expectation of the Euler characteristic $M_x \sim P\left(\max_{U \in M} f(U) \geq x\right)$

Notation: $P(\cdots) = (\text{The probability of being } \cdots).$

If $M_x(f)$ is a simply connected domain or empty, then $\chi(M_x(f)) = 1$ or $\chi(M_x(f)) = 0$ respectively.

On the other hand,

$$P(\max_{U\in M} f(U) \ge x) = \int h_{M_x(f)}(f)\mu(f) = E[h_{M_x(f)}]$$

where $\mu(f)$ is the probability measure on the f-space, $h_{M_x}(f)$ is the supporting function defined by

$$\begin{cases} h_{M_x}(f) &= 1, & M_x \neq \emptyset \\ h_{M_x}(f) &= 0, & M_x = \emptyset \end{cases}$$

Our problem

 $A = (a_{ij})$: real $m \times n$ matrix valued random variable (random matrix), The probability density is

$$p(A)dA$$
, $dA = \prod da_{ij}$.

$$M = \{hg^T \mid g \in S^{m-1}, h \in S^{n-1}\} \simeq S^{m-1} \times S^{n-1} / \sim$$

h and g are column vectors. $(h,g) \sim (-h,-g)$. $(hg^T$ is $n \times m$ matrix.) Put

$$f(U) = \operatorname{tr}(UA) = g^T A h, \quad U = h g^T \in M,$$

The random field f is determined by the random matrix A.

$$M_{\mathsf{x}} = \{ h g^{\mathsf{T}} \in M \mid f(U) = g^{\mathsf{T}} A h \geq x \}$$

We assume p(A) is smooth and $n \ge m \ge 2$.

Evaluation of E of the Euler characteristic

We apply the Morse theory. Where are critical points? $\chi(M_x) = \sum_{\text{critical points } c} \operatorname{sign} |\operatorname{Hess}(f)(c)|$

Proposition (Well-known)

Fix an $m \times n$ matrix A. The following conditions are equivalent

- 1. The function $f(U) = g^T A h$ has a critical point at $U = h g^T$.
- 2. Vectors $g \in S^{m-1}$, $h \in S^{n-1}$ are a left and a right eigenvector of A respectively, i.e., there exists a real number c s.t. $g^T A = ch^T$, Ah = cg

f takes the value c at the critical point (g, h).

Proof sketch: Parametirze $g \in S^{m-1}$ by the local coordinate u_i , $1 \le i \le m-1$. Differentiate $g^Tg=1$ by u_i and we obtain $(\partial_i g^T)g+g^T(\partial_i g)=0$. Parametrize $h \in S^{n-1}$ by v_a , $1 \le a \le n-1$. Differentiation w.r.t. v_a is written as ∂_a (we use it later). Differentiate f(U) by u_i .

A new coordinate for the matrix A

Let (g, G(g)) be a family of elements of SO(m) parametrized by $g \in S^{m-1}$. (G is an $m \times (m-1)$ matrix). $(h, H(h)) \in SO(n)$, $h \in S^{n-1}$. Put

$$\sigma = g^{\mathsf{T}} \mathsf{A} \mathsf{h}, \ B = G^{\mathsf{T}}(g) \mathsf{A} \mathsf{H}(\mathsf{h}) \in \mathsf{M}(\mathsf{m} - 1, \mathsf{n} - 1) \tag{1}$$

Then the $m \times n$ A matrix can be written as

$$A = \sigma g h^T + G B H^T, \tag{2}$$

Idea: Use the change of coordinates

$$A \Leftrightarrow (\sigma, h, g, B)$$

The case m = n = 2

Fix two unit vectors

$$g = (\cos \theta, \sin \theta)^T, h = (\cos \phi, \sin \phi)^T \in S^1$$

 $0 < \theta, \phi < 2\pi$.

$$G = \left(\cos\left(\theta + \frac{\pi}{2}\right), \sin\left(\theta + \frac{\pi}{2}\right)\right)^{T} = \left(-\sin\theta, \cos\theta\right)^{T},$$

which satisfies

$$(g,G) = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \in SO(2).$$

Define *H* similarly.

$$A = \sigma g h^T + G B H^T,$$

where *B* is 1×1 matrix (*b*). Parameters: $\sigma \ge b$, θ , ϕ . It is a 1:2 correspondence.

Evaluation of E of the Euler characteristic

Theorem

Assume x > 0 and f(U) is a Morse function at a.e. A. The expectation of the Euler characteristic $E[\chi(M_x)]$ is

$$\frac{1}{2} \int_{x}^{\infty} d\sigma \int_{R^{(m-1)(n-1)}} dB
\int_{S^{m-1}} G^{T} dg \int_{S^{n-1}} H^{T} dh \det(\sigma^{2} I_{m-1} - BB^{T}) p(A).$$
(3)

 $G^T dg = \bigwedge_{i=1}^{m-1} G_i^T dg$, $H^T dh = \bigwedge_{i=1}^{n-1} H_i^T dh$ (G_i is the i-th column vector of G) $dg = (dg_1, \ldots, dg_m)^T$, $dh = (dh_1, \ldots, dh_n)^T$.

Proof sketch when m = n = 2

$$\begin{cases} Ah = \sigma g h^{T} h + b G H^{T} h &= \sigma g; \\ g^{T} A = \sigma g^{T} g h^{T} + b g^{T} G H^{T} &= \sigma h^{T}; \\ AH = \sigma g h^{T} H + b G H^{T} H &= b G; \\ G^{T} A = \sigma G^{T} g h^{T} + b G^{T} G H^{T} &= b H^{T}. \end{cases}$$

Namely, the function f has two critical points on M, which are at

- ▶ the point $P = hg^T \in M \Leftrightarrow (\alpha, \beta) = (\theta, \phi)$;
- ▶ and the point $Q = HG^T \in M \Leftrightarrow (\alpha, \beta) = (\theta + \pi/2, \phi + \pi/2)$.

Proof sketch when m = n = 2 (continued)

 $\det\left(\operatorname{Hess}_{P}f\right)=\sigma^{2}-b^{2}$ and $\det\left(\operatorname{Hess}_{Q}f\right)=b^{2}-\sigma^{2}$. The only nontrivial case is $\sigma\geq x\geq b$, then

$$\chi\left(M_{x}\right)=1\left(\sigma\geq x\geq b\right)\mathrm{sgn}\,\left(\sigma^{2}-b^{2}\right).$$

$$dA = (b^2 - \sigma^2) d\sigma db d\theta d\phi.$$

Morse theory:

$$\chi(M_x) = \sum_{\text{critical points } c} \operatorname{sign} |\operatorname{Hess}(f)(c)|$$

Problem

Goal

For a given probability densitiy p(A) of random matrices A, evaluate $E[\chi(M_x)]$ numerically. It follows from the Euler characteristic heuristic that $E[\chi(M_x)]$ approximates

$$P(\max_{g,h} g^T Ah \ge x) = P((\max singular value of A) \ge x)$$

Interesting case (Gaussian distribution):

$$p(A) = \frac{1}{Z} \exp\left(-\frac{1}{2}\operatorname{Tr}(A - M)^{T} \Sigma^{-1}(A - M)\right)$$
 (4)

The $m \times n$ matrix M is the mean. The $n \times n$ positive definite matrix Σ is the covariance.

Result 1: When M=0, Σ is a scalar matrix, the integral is studied by Aomoto and Kaneko.

The case of the Selberg type integral 1

Theorem

$$M_{x} = \{hg^{T} \mid g^{T}Ah \geq x, h, g \in S^{m-1}\}$$

A is the $m \times m$ random matrix of the Gaussian distribution with the covariance E_m/s and the mean 0.

$$p(A) \sim \exp\left(-\frac{1}{2}\mathrm{Tr}\left(sA^TA\right)\right).$$

$$E[\chi(M_X)] = \prod_{i=1}^{5} c_i \int_X^{+\infty} \exp\left(-\frac{s}{2}\sigma^2\right) {}_1F_1(-(m-1), 1; s\sigma^2) d\sigma$$

Idea: Calculate the integral (3) by the SVD coordinate of B.

The case of the Selberg type integral 2

Proof sketch.

$$ilde{G} = (egin{array}{c|c} g & G \end{array}) \in O(m), \quad g ext{ is a column vector,}$$

Put $\tilde{H} = (h, H)$. Then the $m \times n$ matrix A is

$$A = \tilde{G}\left(\begin{array}{c|c} \sigma & 0 \\ \hline 0 & B \end{array}\right) \tilde{H}^T,$$

We denote the mid matrix above by \tilde{B} . etr(X) is exp(Tr(X)). Note tr(PQ) = tr(QP), $\tilde{H}^T \tilde{H} = E$.

$$\begin{aligned}
&\operatorname{etr}(-\frac{1}{2}sA^{T}A) = \operatorname{etr}\left(-\frac{s}{2}\tilde{B}\tilde{B}^{T}\right) \\
&= \operatorname{exp}\left(-\frac{s}{2}\sigma^{2}\right)\operatorname{exp}\left(-\frac{s}{2}LL^{T}\right)
\end{aligned}$$

The matrix B is expressed in the form of the singular value decomposition $B = PLQ^T$, $P, Q \in O(m-1)$,

$$L = \operatorname{diag}(\ell_1, \dots, \ell_{m-1}).$$

The case of the Selberg type integral 3

$$c_1(S) = \frac{1}{2} \cdot \frac{1}{(2\pi)^{nm/2} \det(sE_m)^{n/2}},\tag{5}$$

$$c_2(m) = \int_{S^{m-1}} G^T dg \int_{S^{m-1}} H^T dh$$
 (6)

$$\tilde{c}_3(m; \sigma) = \frac{1}{(m-1)!} \exp\left(-\frac{s}{2}\sigma^2\right) \left(\int_{O(m-1)} \wedge_{i < j} P_j^T dP_i\right)^2 \tag{7}$$

$$q(s; \sigma) = \tilde{c}_3(m, \sigma) \int_{L \in \mathbb{R}^{m-1}} \prod_{1 \le i < j \le m-1} |\ell_i^2 - \ell_j^2| \prod_{i=1}^{m-1} (\sigma^2 - \ell_i^2)$$

$$\exp\left(-\frac{s}{2} \sum \ell_i^2\right) \prod_{i=1}^{m-1} d\ell_i \tag{8}$$

Put $\ell_i^2 = \ell_i'$, then the integral is reduced to the Selberg type integral of Aomoto and Kaneko.

Aomoto(1987), Kaneko(1993), Selberg type integral

$$\int_{[0,1]^{m-1}} \prod_{1 \le i \le m-1, 1 \le k \le r} (\ell_i - \sigma_k)^{\mu} D(\ell_1, \dots, \ell_{m-1}) d\ell_1 \cdots d\ell_{m-1},
D = \prod_{i=1}^{m-1} \ell_i^{\lambda_1} (1 - \ell_i)^{\lambda_2} \prod_{1 \le i < j \le m-1} |\ell_i - \ell_j|^{\lambda},$$
(9)

The system of differential equations, special values, and the series expansion is derived when $\mu=1$ or $\mu=-\lambda/2$ (J.Kaneko, Selberg Integrals and Hypergeometric Functions associated with Jack Polynomials, SIAM Journal on Mathematical Analysis 24 (1993), 1086–1110).

Confluence

Make the change of coordinates $\ell_i = y_i/N$, $\lambda_2 = N$, $\sigma_i = \tau_i/N$. Then, we have $d\ell_i = dy_i/N$, $(1 - \ell_i)^{\lambda} = (1 - y_i/N)^N$. Take the limit $(1 - y_i/N)^N \to \exp(-y_i)$, $N \to \infty$ and the (9) converges to

$$\int_{\mathsf{R}_{\geq 0}^{m-1}} \prod_{1 \leq i \leq m-1, 1 \leq k \leq r} (y_i - \tau_k)^{\mu} D(y_1, \dots, y_{m-1}) dy_1 \cdots dy_{m-1},$$

$$D = \prod_{i=1}^{m-1} y_i^{\lambda_1} \exp(-\sum_{i=1}^{m-1} y_i) \prod_{1 \le i < j \le m-1} |y_i - y_j|^{\lambda},$$

When r=1, $\mu=1$, the differential equation converges to

$$heta_{ au_1}(heta_{ au_1}+rac{2}{\lambda}(\lambda_1+1)-1)-rac{2}{\lambda} au_1(heta_{ au_1}-(extit{ extit{m}}-1))$$

When $\lambda = 1$, $\lambda_1 = -1/2$, the integral is equal to

$$c_5 \cdot {}_1F_1(-(m-1), 1; 2\tau_1)$$

Non-central, m = n = 2

$$m=n=2$$
. Let $M=egin{pmatrix} m_{11} & 0 \ m_{21} & m_{22} \end{pmatrix}$ and $\Sigma=egin{pmatrix} 1/s_1 & 0 \ 0 & 1/s_2 \end{pmatrix}$ such that $A=\sqrt{\Sigma}V+M$, where $V=(v_{ii})$, $v_{ii}\sim\mathcal{N}\left(0,1\right)$ i. i. d.

Then

$$p(A) = \frac{s_1 s_2}{(2\pi)^2} e^{-\frac{R}{2}},$$

where

$$R = s_1 (b \sin \theta \sin \phi + \sigma \cos \theta \cos \phi - m_{11})^2 + s_2 (\sigma \sin \theta \cos \phi - b \cos \theta \sin \phi - m_{21})^2$$

+ $s_1 (\sigma \cos \theta \sin \phi - b \sin \theta \cos \phi)^2 + s_2 (b \cos \theta \cos \phi + \sigma \sin \theta \sin \phi - m_{22})^2$.

$$E[\chi(M_x)] = F(s_1, s_2, m_{11}, m_{21}, m_{22}; x)$$

$$= \frac{1}{2} \int_x^{\infty} d\sigma \int_{-\infty}^{\infty} db \int_0^{2\pi} d\theta \int_0^{2\pi} d\phi (\sigma^2 - b^2) \frac{s_1 s_2}{(2\pi)^2} \exp\left\{-\frac{1}{2}R\right\},$$
(10)

A linear ODE for $E[\chi(M_x)]$

It follows from the theory of holonomic D-modules, there exists a linear ODE of polynomial coefficients of x satisfied by $E[\chi(M_x)]$.

Result 2. Use of the creative telescoping when m = n = 2

$$g = (\cos \theta, \sin \theta)^T$$
, $h = (\cos \phi, \sin \phi)^T$. We set

$$\sin \theta = \frac{2s}{1+s^2}, \quad \cos \theta = \frac{1-s^2}{1+s^2}, \quad \sin \phi = \frac{2t}{1+t^2}, \quad \cos \phi = \frac{1-t^2}{1+t^2}.$$

$$E[\chi(M_{x})] = F(s_{1}, s_{2}, m_{11}, m_{21}, m_{22}; x)$$

$$= \frac{1}{2\pi^{2}} \int_{x}^{\infty} d\sigma \int_{-\infty}^{\infty} db \int_{-\infty}^{\infty} ds \int_{-\infty}^{\infty} dt$$

$$\frac{s_{1}s_{2}(\sigma^{2} - b^{2})}{(1 + s^{2})(1 + t^{2})} \exp\left\{-\frac{1}{2}\tilde{R}\right\},$$

where \tilde{R} is a rational function in σ, b, s, t .

$$\Sigma^{-1} = \operatorname{diag}(s_1, s_2), M = [[m_{11}, 0], [m_{21}, m_{22}]].$$

Result 2. Use of the creative telescoping when m = n = 2

 $E[\chi(M_x)]$ satisfies an ODE of rank 11 (26MB).

HolonomicFunctions.m by C.Koutschan.

ODE data: https://yzhang1616.github.io/ec1/ec1.html

f(t,x) is annihilated by the left ideal I in D.

$$(I + \partial_t Q[t, x, \partial_t, \partial_x]) \cap Q[x, \partial_x]$$

Let $\ell \in \mathbb{Q}[x, \partial_x]$ be an element of above. Since

$$\ell = L + \partial_t T$$
, $L \in I$, $T \in Q[t, x, \partial_t, \partial_x]$

$$\ell \int_{C} f(t,x)dt = \int_{C} \ell f(t,x) = \int_{C} \partial_{t} (Tf(t,x))dt = [Tf]_{\partial C}$$

Computer algebra challenge Derive an ODE when m = 2, n = 3.

Numerical Analysis of the huge ODE

We want to extrapolate simulation values by the ODE of rank 11. Standard numerical algorithms (implicit Runge-Kutta method, ...) does not work well, e.g., for $m_{11} = 1, m_{21} = 2, m_{22} = 3, s_1 = 10^3, s_2 = 10^2$.

$$11 - 1, m_{21} - 2, m_{22} - 3, 3_1 - 10$$

Series solutions of 20,000 terms by rational arithmetics give

Problem

Computer algebra systems often output huge ODE's. Give algorithms and implementations to perform a numerical analysis of these equations.

Our rank 11 ODE:

$$hc_{11}(x)\partial_x^{11}+\cdots+c_1(x)\partial_x$$

where $c_{11}(x) = O(1)$, $c_1(x) = O(1)$, and $h \sim 10^{-33}$.

Sparse interpolation/extrapolation method

We solve an ODE Lf=0 of rank r when (approximate) values of the solution f(t) at $t=p_1,p_2,\ldots,p_r$ are known. We call the points $(p_i,q_i),q_i=f(p_i)$ data points.

We approximately expand the solution f by a given basis functions $\{e_k(t)\},\ k=0,1,\ldots,M$ as

$$f(t) = \sum_{k=0}^{M} f_k e_k(t), \quad f_k \in \mathbb{R}.$$
 (11)

Put this expression into Lf = 0. We minimize the loss function $\int_{t_s}^{t_e} |Lf(t)|^2 dt$ with the constraints $f(p_i) = q_i$ w.r.t f_k 's.

Or, minimize

$$\int_{t_s}^{t_e} |Lf(t)|^2 dt + \beta \sum_i |f(p_i) - q_i|$$

Sparse interpolation/extrapolation method

Solving the huge ODE of rank 11 by the sparse extrapolation method.

$$e_j(t) = (t - 3.8055)^j$$
, $j = 0, 1, \dots, 29$, $t_s = 3.8$, $t_e = 4.0$.

