Who is today's speaker?|

1. Name: Nobuki Takayama. Born: 1959

*https://en.wikipedia.org/wiki/Kobe

Thttps://en.wikipedia.org/wiki/Fukui_Prefecture
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Who is today's speaker? 2.

1. 1984—Current: hypergeometric functions of several variables,
A-hypergeometric system or GKZ HG. Special functions and
computer algebra. “Askey-Bateman project, vol 2,
Multivariable of special functions”:
https://www.cambridge.org/jp/academic/subjects/mathematics/abstract-analysis/
encyclopedia-special-functions-askey-bateman-project-volume-2-1?format=HB&isbn=

9781107003736
1995-2005: D-modules algorithms and algebraic geometry.

2010-Current: Statistics, computer algebra, numerical

ana |ySIS http://www.math.kobe-u.ac.jp/OpenXM/Math/hgm/ref-hgm.html

4. Software projects: Kan/sm1, Risa/Asir: nttp://wm.openxm.org .
HGM package on R: https://cran.r-project.org/package=hgm
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Euler characteristic heuristic and computer algebra ‘

Nobuki Takayama (Kobe Univ),
joint work with Lin Jiu, Satoshi Kuriki, Yi Zhang

Theorem

M, ={hg" |gTAh > x,h,g e S"1}

A is an m X m random matrix of the Gaussian distribution with the
covariance E,,/s and the mean 0, i.e.,

1
p(A) ~ exp (—2Tr (sATA)> .
Then, we have

00

E[x(My)] = ﬁc;/ exp (—%02> 1Fi(—=(m—1),1;s0%)do
i=1 X
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’ E[x(My)] and the prob of the max eigenvalue of A is larger than x
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m =10, s = 1. The horizontal axis is x2.

¢; are constants. Reference: “Computation of the expected Euler
characteristic for the largest eigenvalue of a real non-central
Wishart matrix”,
https://doi.org/10.1016/j.jmva.2020.104642
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Euler characteristic heuristic: Adler, Hosofer(1970’s),
Worsley(1994), Kuriki, Takemura(2000's)

Let f(U) be a smooth random field on a manifold M.
M, ={Ue M|f(U) > x}.

The expectation of the Euler characteristic My ~ P (maxyep F(U) > x)
Notation: P(---) = (The probability of being ---).
If M, (f) is a simply connected domain or empty, then

(M (f)) =1 or x(M.(f)) = 0 respectively.
On the other hand,

P(maxyem f(U) > x) = /hMX(f)(f)N(f) = E[hpy )]

where p(f) is the probability measure on the f-space, hy () is
the supporting function defined by

hm (f) =1, Mc#0
th(f) :O* MX:(/)
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Our problem

A = (ajj): real m x n matrix valued random variable (random
matrix), The probability density is

p(A)dA, dA=]] daj.

M=1{hgT |gcS™ L he S} ~5m x5/~

h and g are column vectors. (h,g) ~ (—h,—g). (hg™ is n x m
matrix.) Put

f(U) =tr(UA) =gTAh, U=nhg" € M,
The random field f is determined by the random matrix A.
M, ={hg"T € M|f(U)=gTAh > x}
We assume p(A) is smooth and n > m > 2.
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Evaluation of E of the Euler characteristic

We apply the Morse theory. Where are critical points?

X(Mx) = 2 critical points ¢ &1 [Hess(f)(c)|

Proposition (Well-known)

Fix an m x n matrix A. The following conditions are equivalent
1. The function f(U) = g" Ah has a critical point at U = hg .

2. Vectors g € S™ 1 h e S"1 are a left and a right eigenvector
of A respectively, i.e., there exists a real number c s.t.
g"A=ch’, Ah=cg

f takes the value c at the critical point (g, h).

Proof sketch: Parametirze g € S™=1 by the local coordinate u;,

1 < i< m—1. Differentiate g"g = 1 by u; and we obtain
(0igT)g + g7 (0ig) = 0. Parametrize h € S"! by v,,

1 < a < n— 1. Differentiation w.r.t. v, is written as 0, (we use it
later). Differentiate f(U) by u;.
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A new coordinate for the matrix A

Let (g, G(g)) be a family of elements of SO(m) parametrized by
g € S™ 1 (Gisan mx (m— 1) matrix). (h, H(h)) € SO(n),
h € S"1. Put
oc=g"Ah, B=GT(g)AH(h) e M(m—1,n—1) (1)
Then the m x n A matrix can be written as
A=ogh” + GBHT, (2)

Idea: Use the change of coordinates

A< (o,h,g,B)
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Thecase m=n=2
Fix two unit vectors
g = (cosf,sinf)" , h=(cosp,sing)” € S!

0<0,¢ < 2r.

G = (cos <0+g> ,sin (0+g>>T = (—sinG,cosO)T7

which satisfies

(g, G) = (mse _SM) € 50(2).

sinf cos@

Define H similarly.
A=ogh' + GBHT,

where B is 1 x 1 matrix (b). Parameters: o > b, 0, ¢. Itisa 1:2
correspondance.
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Evaluation of E of the Euler characteristic

Theorem
Assume x > 0 and f(U) is a Morse function at a.e. A. The
expectation of the Euler characteristic E[x(My)] is

1 oo
/ da/ dB
2 /s R(m—1)(n—1)

/S B Gng/S B H"dh det(c?l,,_1 — BBT)p(A). (3)

GTdg = A" 1GTdg, HT dh = AI=HT dh (G; is the i-th column
vector of G) dg = (dg1,...,dgm)", dh = (dhy,...,dh,)7.
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Proof sketch when m=n =2

Ah=o0gh"h+ bGH h =og;
g"TA=0g"gh” + bg" GHT =oh';
AH = ogh™H + bGH™H = bG;

GTA=0GTghT + bGTGHT =bHT.
Namely, the function f has two critical points on M, which are at
» the point P = hg" € M < (a, B) = (0, ¢);

» and the point Q = HGT € M & (a,B) = (0 + /2,0 + 7/2).
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Proof sketch when m = n = 2 (continued)

det (Hesspf) = 02 — b? and det (Hessgf) = b — o2.
The only nontrivial case is 0 > x > b, then

X (My) =1(0 > x > b)sgn (o — b?).

dA = (b* — ¢°) dodbdfde.

Morse theory:

x(My) = Z sign [Hess(f)(c)|

critical points ¢
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Problem

Goal

For a given probability densitiy p(A) of random matrices A,
evaluate E[x(M)] numerically. It follows from the Euler
characteristic heuristic that E[x(My)] approximates

P(maxg p g " Ah > x) = P((max singular value of A) > x)

Interesting case (Gaussian distribution):

p(A) = Z exp <—% Te(A— M) LA - M)) (4)
The m x n matrix M is the mean. The n x n positive definite
matrix X is the covariance.
Result 1: When M =0, ¥ is a scalar matrix, the integral is studied
by Aomoto and Kaneko.
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The case of the Selberg type integral 1

Theorem

M, ={hg"|gTAh>x, h g € S}

A is the m x m random matrix of the Gaussian distribution with
the covariance Ey,/s and the mean 0.

p(A) ~ exp (;Tr (sATA)> .

5 +o0
s
E[x(My)] = l_Ilc,-/X exp (—502> 1Fi(—(m—1),1;s0%)do
Idea: Calculate the integral (3) by the SVD coordinate of B.
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The case of the Selberg type integral 2
Proof sketch.

G=(g|G)eO(m), gisa column vector,

Put A = (h, H). Then the m x n matrix A is

_~ ag 0 ~T
A—G(ﬂ?w”

We denote the mid matrix above by B. etr(X) is exp(Tr(X)).

Note tr(PQ) = tr(QP), HTH = E.

1 .
etr(—5sATA) = etr (—%BBT)

= exp (—202> exp (—%LLT)

The matrix B is expressed in the form of the singular value
decomposition B = PLQT, P,@ € O(m — 1),
L= diag(ﬂl, . ,Em—l)-
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The case of the Selberg type integral 3

1 1
2 (2m)"m/2det(sEp)/2

o(m) = /5m1 GTdg /5m1 HTdh (6)

2
&(m;o) = (mil)!eXp (—202) (/O(ml) /\i<ijTdP,-) (7)

Cl(S) =

(5)

m—1
a(s:0) = 63(m,(r)/ I 12— -
Lerm=1 i=1

1<i<j<m-—1
~1

exp (—% Zﬁ?) "1’_[ di; (8)
i=1

Put 5,2 = (!, then the integral is reduced to the Selberg type
integral of Aomoto and Kaneko.
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’Aomoto(1987), Kaneko(1993), Selberg type integral‘

/ 11 (Ui — o 'D(le, ... A_1)dly - dlp1,
0.1™ 1  cicm_11<k<r
9)

m—1
pD=[[era-e T 16-u

i=1 1<i<j<m—1
The system of differential equations, special values, and the series
expansion is derived when p =1 oru = —\/2 (J.Kaneko, Selberg
Integrals and Hypergeometric Functions associated with Jack
Polynomials, SIAM Journal on Mathematical Analysis 24 (1993),
1086-1110).
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Confluence
Make the change of coordinates ¢; = y;/N, \p = N, o; = 7;/N.
Then, we have d¢; = dy;/N, (1 —¢;)* = (1 — y;/N)V. Take the
limit (1 — y;/N)N — exp(—y;), N — oc and the (9) converges to

/le H (Vi = 7)D(y1s - -, Ym—1)dy1 - - - dym—1,

>0 1<i<m—1,1<k<r

m—1 m—1
D=vtew=>_v) [I Ii-wl
i=1 =1 1<i<j<m-1

When r =1, u =1, the differential equation converges to

0+ 2 +1) = 1) — 2 (0, — (m— 1))

When A =1, A\; = —1/2, the integral is equal to
Cy 1F1(—(m — 1), 1; 27’1)
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Non-central, m=n=2

m=n=2. Let M= (mu 0 ) and ¥ = (1/51 0 ) such that

M1 Mmoo 0 1/s

A= VIV + M, where V = (v;), vj ~N(0,1) i.i.d.

Then
S15 ,g

(27)?

p(A) = ,

where

R =s1 (bsinfOsin ¢ + o cosf cos ¢ — m11)2 + 55 (osinf cos ¢ — bcosfsin ¢ — m21)2
+ 51 (0 cosBsin — bsinf cos )’ + s, (bcos cos ¢ + o sinfsin ¢ — ma)?.

E[x(M,)] =F(s1, 2, mu1, mo1, ma2; x)

/ da/ db/zwdé’/%dqbafﬁ(ls; exp{ ;R}

(10)
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’A linear ODE for E[x(M.,)] ‘

It follows from the theory of holonomic D-modules, there exists a
linear ODE of polynomial coefficients of x satisfied by E[x(Mx)].
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’ Result 2. Use of the creative telescoping when m = n = 2‘
g = (cosf,sinf)T, h = (cosp,sing)”. We set

. 2s 1-s% . 2t 1— 2
S|n6:m, Cosezm, S|n¢:1+t2, COS¢:1+t2.
Elx(Mx)] = F(s1,s2, m1, mo1, moo;x)

= 2%2/ do—/ db/ ds/ dt

51507 — 2
(1+£%u:f$) { *R}

where R is a rational function in o,b,s,t.
yl= diag(51>52)' M = [[mllv 0]7 [m217 m22]]'
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’ Result 2. Use of the creative telescoping when m=n =2
E[x(My)] satisfies an ODE of rank 11 (26MB).
HolonomicFunctions.m by C.Koutschan.

ODE data: https://yzhangl616.github.io/ecl/ecl.html

f(t,x) is annihilated by the left ideal / in D.
(I 4+ 0:Q[t, x, O¢, 0x]) N Q[x, Ok]
Let € Q[x, O«] be an element of above. Since

(=L+0T, Lel, TeQ[tx, 0]

K/Cf(t,x)dt:/CEf(t,x):/C(‘?t(Tf(t,X))dt:[Tf]ac

’ Computer algebra chaIIenge‘ Derive an ODE when m=2,n = 3.
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Numerical Analysis of the huge ODE‘

We want to extrapolate simulation values by the ODE of rank 11.
Standard numerical algorithms (implicit Runge-Kutta method, ...)
does not work well, e.g., for

mi1 = 17 mp1 = 27 moo = 3,51 = 103,52 = 102.

—

Series solutions of 20,000 terms by rational arithmetics give

07

Efchi(Mx)]
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Computer algebra systems often output huge ODE's. Give
algorithms and implementations to perform a numerical analysis of
these equations.

Our rank 11 ODE:
her1(x)OL + - + c1(x)0x

where c11(x) = O(1), c1(x) = O(1), and h ~ 1035,
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’Sparse interpolation /extrapolation method

We solve an ODE Lf = 0 of rank r when (approximate) values of
the solution f(t) at t = p1, p2, ..., pr are known. We call the
points (pi, qi), i = f(p;) data points.

We approximately expand the solution f by a given basis functions
{ek(t)}, k=0,1,..., M as

M
F(t)=> fee(t), fi R (11)
k=0

Put this expression into Lf = 0. We minimize the loss function
tie |Lf(t)|?>dt with the constraints f(p;) = g; w.r.t f;'s.

Or, minimize

[ ka5 If(e) i
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’Sparse interpolation /extrapolation method‘
Solving the huge ODE of rank 11 by the sparse extrapolation
method.

3.800 3.825 3.850 3.875 3.900 3.925 3.950 3.975 4.000

ej(t) = (t —3.8055), j =0,1,...,29, t; = 3.8, te = 4.0.
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