F4 restricted to hypersurface singularity
References
- Horn data
- A numerical analysis of $F_4$ on singularity
(link to google colaboratory)
- 2022-12-23-F4.rr (Program to generate the ODE used above).
- Vsevolod Chestnov, Saiei J. Matsubara-Heo, Henrik J. Munch, Nobuki Takayama,
Restrictions of Pfaffian Systems for Feynman Integrals,
doi:10.1007/JHEP11(2023)202
- mt_mm package manual
Data format
A Pfaffian system for Appell's $F_4$
restricted to the hypersurface singularity.
The ODE on the hypersurface singularity $f(x,y)=0$
is given by two square matrices
$P_1$ and $P_2$
whose elements lie in the quotient ring $K[x,y]/f$.
If we parametrize the singularity $f(x,y)=0$
as
$x=x(t), y=y(t)$
then the ODE is given as
$\frac{dF}{dt}= \left( P_1 x'(t)
+P_2 y'(t) \right) F
$
where $F$ is a column vector valued function.
Under construction
The following data are given for some special parameters.
For other parameters, please use the programs
2024-01-05-F4.rr
and
2023-03-29-rest-hs.rr .
- Differential operators:
$\partial_x (x \partial_x + c_1-1) - (x \partial_x+y \partial_y+a)(x \partial_x+y \partial_y+b)$,
$\partial_y (y \partial_y + c_2-1) - (x \partial_x+y \partial_y+a)(x \partial_x+y \partial_y+b)$.
- Singularity to restrict: $(x-y)^2-2(x+y)+1$.
- Parameter values:
$a=2/3$, $b=c_1=c_2=-1/3$.
$P_1$
In Risa/Asir format.
$P_2$
In Risa/Asir format.