Restriction algorithms for holonomic systems and their applications

Nobuki Takayama (Kobe University)

- CGM4T [3] <u>V.Chestnov</u>, F.Gasparotto, M.K.Mandal, P.Mastrolia, <u>S.J.Matsubara-Heo</u>, <u>H.J.Munch</u>, <u>N.Takayama</u>, Macaulay Matrix for Feynman Integrals: Linear Relations and Intersection Numbers, https://doi.org/10.1007/JHEP09(2022)187, Journal of high energy physics, 2022, 187(2022).
- CMMT2023 [4] Restrictions of Pfaffian Systems for Feynman Integrals, https://arxiv.org/abs/2305.01585.

Numerical solver for ODE's

Numerical evaluation of integrals at a few points

Holonomic systems (ODE's) for them (cohomology; GKZ; \mathcal{D} restriction ...; Computer algebra)

Definite integrals defined by Feynman diagrams. Normalizing constants in statistics

Physics, statistics: values of integrals, relations among integrals. OpenXM-hgm [6]

What is the restriction ideal (restriction to a linear space)

 $\mathcal{D}_m = \mathbb{C}\langle z_1,\ldots,z_m,\partial_1,\ldots,\partial_m \rangle$ and I is a left ideal of \mathcal{D}_m . The restriction ideal of I to $z_1=c_1,\ldots,z_{m'}=c_{m'}$ is

$$\left(I + \sum_{j=1}^{m'} (z_j - c_j) \mathcal{D}_m\right) \cap \mathbb{C}\langle z_{m'+1}, \dots, z_m, \partial_{m'+1}, \dots, \partial_m \rangle \quad (1)$$

If a function F(z) is annihilated by I and holomorphic around z=c, then

 $F(c_1,\ldots,c_{m'},z_{m'+1},\ldots,z_m)$ is annihilated by the restriction ideal.

It is the elimination of $z_1, \ldots, z_{m'}, \partial_1, \ldots, \partial_{m'}$. Algorithms for elimination have been studied in the Gröbner basis theory, but ...

Example

$$\partial_{\mathsf{x}} - \partial_{\mathsf{y}},$$
 (2)

$$\partial_{y} - (x\partial_{x} + y\partial_{y} + a) \tag{3}$$

Let f(x, y) be a solution of it. Can we find an ODE for f(x, 0)? Answer:

$$\partial_x - (x\partial_x + a)$$

Taking $y \to 0$ (2), (3) does not give the answer.

The left ideal I in $D = C\langle x, y, \partial_x, \partial_y \rangle$ generated by (2), (3) contains

$$\partial_x - (x\partial_x + y\partial_y + a)$$

Taking $y \to 0$ gives the answer; I + xD contains the answer. $f(x, y) = (1 - x - y)^{-a}$.

Example 1

massless box model.

$$G = U_G + F_G = x_1 + x_2 + x_3 + x_4 + x_1x_3 + zx_2x_4$$

$$I(d_0,\nu;z) = \operatorname{const} \cdot (-s)^{d_0/2-\varepsilon-|\nu|} \cdot \int_{[0,+\infty]^4} \mathcal{G}^{\varepsilon-d_0/2} \prod_{i=1}^4 x_i^{\nu_i} \frac{dx_i}{x_i}$$

$$z = \frac{p_2 \cdot p_3}{p_1 \cdot p_2}, \ s = 2p_1 \cdot p_2.$$

$\mathsf{GKZ}\ \mathsf{system} \Rightarrow \mathsf{restriction} \Rightarrow \mathsf{ODE}(\mathsf{Pfaff}\ \mathsf{eq})\ \mathsf{for}\ \mathsf{FI}$

$$G=z_1x_1+z_2x_2+z_3x_3+z_4x_4+z_5x_1x_3+z_6x_2x_4$$
 The integral $F(z)=\int_C G^{\beta_5}x^{-\beta}\frac{dx}{x}$ satisfies the GKZ system
$$\sum_{i=0}^6 a_{ij}z_j\partial_j-\beta_i, \partial^u-\partial^v, \quad (Au=Av)$$

where

$$A = (a_{ij}) = \left(egin{array}{cccccc} 1 & 0 & 0 & 0 & 1 & 0 \ 0 & 1 & 0 & 0 & 0 & 1 \ 0 & 0 & 1 & 0 & 1 & 0 \ 0 & 0 & 0 & 1 & 0 & 1 \ 1 & 1 & 1 & 1 & 1 & 1 \end{array}
ight)$$

If we can compute the restriction of the GKZ system to $z_1=\cdots=z_5=1$ then we can obtain a system of PDE's of the Lee-Pomenransky integral of

$$G = x_1 + x_2 + x_3 + x_4 + x_1x_3 + \overline{z_6}x_2\overline{x_4}$$

Algorithms and implementations

- 1. Restriction to a linear space Oaku1997 [2]. nk_restriction.rr(Nakayama, Nishiyama on Risa/Asir), Singular (V.Levandovsky), Macaulay2 (A.Leykin, H.Tsai). Several algorithms of computing b-function $C[z_1\partial_1 + \cdots + z_{m'}\partial_{m'}] \cap I$. (-1,1)-Gröbner basis. Hard, e.g., GKZ of 9-5-variables (1L1m box).
- We can get a Pfaffian system of restriction for larger systems CMMT2023 [4]. (1) Moser reduction, ... (2) Restriction to a point (probabilistic algorithm) and Macaulay matrix. It also gives a Pfaffian system of restriction to hypersurfaces. [CMMT2023] V.Chestnov, S.J.Matsubara-Heo, H.J.Munch, N.T., Restrictions of Pfaffian Systems for Feynman Integrals, https://arxiv.org/abs/2305.01585. mt.mm.rr

Current computer algebra systems compute restrictions for (small) inputs skip

$F(1, 1, 1, 1, 1, z_6)$ with $\beta = (d, d, d, d, e)$ satisfies the following ODE.

```
import("mt_gkz.rr")$ import("nk_restriction.rr")$
Xm noX=1$
A = \Gamma
        [1,0,0,0,1,0],
        [0.1.0.0.0.1].
        [0.0.1.0.1.0].
        [0,0,0,1,0,1],
        [1,1,1,1,1,1]
1:
Beta = [d,d,d,d,e];
F0=sm1.gkz([A,Beta])[0];
F=base_replace(F0,[[x1,x1+1],[x2,x2+1],[x3,x3+1],[x4,x4+1],[x5,x5+1]]);
dp gr print(1): // to be verbose
G=nk_restriction.restriction_ideal(F,[x1,x2,x3,x4,x5,x6],
 [dx1.dx2.dx3.dx4.dx5.dx6].[1.1.1.1.1.0]):
Output FO:
[x5*dx5+x1*dx1-d,x6*dx6+x2*dx2-d,x5*dx5+x3*dx3-d,x6*dx6+x4*dx4-d,
x6*dx6+x5*dx5+x4*dx4+x3*dx3+x2*dx2+x1*dx1-e,dx1*dx3*dx6-dx2*dx4*dx5]
Output G:
[(x6^3+x6^2)*dx6^3+((-6*d+e+3)*x6^2+(-6*d+2*e+3)*x6)*dx6^2+
 ((9*d^2+(-2*e-6)*d+e+1)*x6+9*d^2+(-6*e-6)*d+e^2+2*e+1)*dx6-4*d^3+e*d^2]
```

From restriction ideal to restriction (module)

$$\frac{\mathcal{D}_m}{I + \sum_{j=1}^{m'} (z_j - c_j) \mathcal{D}_m} = \frac{\mathcal{D}_m}{\sum_{j=1}^{m'} (z_j - c_j) \mathcal{D}_m} \otimes_{\mathcal{D}_m} \mathcal{D}_m / I.$$
 (4)

(Suppose $c_j = 0$ for simplicity.)

$$Y = \mathbb{C}^m$$
. $\mathcal{D}_Y = \mathbb{C}\langle z_1, \dots, z_m, \partial_1, \dots, \partial_m \rangle$. $J = \langle z_1, \dots, z_{m'} \rangle$, $m' \leq m$ or $J = \langle L \rangle$, L is an irreducible polynomial.

$$Y' = V(J)$$
. $\mathcal{O}_{Y'} = \mathbb{C}[z]/J$, $\mathcal{O}_Y = \mathbb{C}[z]$. The restriction \mathcal{N} of $\mathcal{M} = \mathcal{D}_Y/\mathcal{I}$ to Y' is

$$\mathcal{N} = \mathcal{O}_{\mathbf{Y}'} \otimes_{\mathcal{O}_{\mathbf{Y}}} \mathcal{M}$$

What is a Pfaffian system of the restriction $\mathcal{N}=\mathcal{O}_{Y'}\otimes_{\mathcal{O}_Y}\mathcal{M}?$

$$\mathcal{R}_{Y'} = \operatorname{frac}(\mathcal{O}(Y'))\langle \partial_{m'+1}, \dots, \partial_m \rangle$$
. Rational restriction

$$\mathcal{R}_{\mathbf{Y}'}\otimes_{\mathcal{D}_{\mathbf{Y}'}}\mathcal{N}$$

When \mathcal{M} is holonomic, the rational restriction is a finite dimensional vector space over the field $\operatorname{frac}(\mathcal{O}(Y'))$. $\{s_1, \ldots, s_r\}$ be a basis (standard monomials, RStd).

$$\partial_{i} \begin{pmatrix} s_{1} \\ s_{2} \\ \cdot \\ \cdot \\ \cdot \\ s_{r} \end{pmatrix} - P_{i} \begin{pmatrix} s_{1} \\ s_{2} \\ \cdot \\ \cdot \\ \cdot \\ s_{r} \end{pmatrix} \quad \text{in } \mathcal{R}_{Y'} \otimes_{\mathcal{D}_{Y'}} \mathcal{N}.$$

 P_i 's are $r \times r$ matrix of $\operatorname{frac}(\mathcal{O}(Y'))$ entries.

Algorithm for rational restriction (probalistic)

- 1. Choose a generic point in Y' (probalistic). Compute the restriction to the point to obtain a set of the standard monomials S (RStd) for the rational restriction (approximate, probalistic).
- 2. Find Q_i , P_i , q_i of Theorems 5, 6 by a Macaulay matrix method with increasing the order of ∂ in Q_i .

Restriction to a hypersurface: $J = \langle L \rangle$. $I = \langle f_1, \dots, f_{\mu} \rangle$.

Theorem 2 (Th6)

S: RStd (standard monomials of the restriction). There exist $r \times \mu$ matrix Q_i of entries in \mathcal{D}_Y , $r \times r$ matrix P_i of entries in $\mathbb{C}[z]$, polynomial $q_i \in \mathbb{C}[z]$ such that

$$q_i \partial_i S = P_i S + : Q_i \begin{pmatrix} f_1 \\ \cdot \\ \cdot \\ \cdot \\ f_\mu \end{pmatrix} : \mod L$$
 (5)

holds in \mathcal{D}_Y . Here, $\mathcal{D}_Y\ni\sum c_\alpha(z)\partial^\alpha=0\ \mathrm{mod}\ L$ means that L divides $c_\alpha(z)$.

 $q_i\partial_i - P_i$ is the Pfaffian system of the rational restriction $\mathcal N$ to V(L) of $\mathcal M$ modulo L.

Implementation in mt_mm.rr

```
F_2(a, b_1, b_2, c_1, c_2; x, y) = \sum_{m,n=0}^{\infty} \frac{(a)_{m+n}(b_1)_m(b_2)_n}{(1)_m(1)_m(c_1)_m(c_2)_m} x^m y^n. We
restrict the rank 4 system for Appell function F_2 to x=0.
(a)_k := a(a+1)\cdots(a+k-1).
import("mt_mm.rr")$
Ideal = [(-x^2+x)*dx^2+(-y*x)*dx*dy+((-a-b1-1)*x+c1)*dx-b1*y*dy-b1*a,
          (-y^2+y)*dy^2+(-x*y)*dy*dx+((-a-b2-1)*y+c2)*dy-b2*x*dx-b2*a]$
Xvars = [x,y]$
//Rule for a probabilistic determination
       of RStd (Std for the restriction)
Rule=[[y,y+1/3],[a,1/2],[b1,1/3],[b2,1/5],[c1,1/7],[c2,1/11]]$
Ideal_p = base_replace(Ideal,Rule);
RStd=mt_mm.restriction_to_pt_by_linsolv(Ideal_p,Gamma=2,KK=4,[x,y]);
RStd=reverse(map(dp_ptod,RStd[0],[dx,dy]));
Id = map(dp_ptod,Ideal,poly_dvar(Xvars))$
MData = mt_mm.find_macaulay(Id,RStd,Xvars | restriction_var=[x]);
P2 = mt_mm.find_pfaffian(MData, Xvars, 2 | use_orig=1);
```

Pfaffian system $\partial_{\nu}S - P_2S$, $S = (1, \partial_{\nu})^T$,

$$P_2 = \begin{pmatrix} 0 & 1\\ \frac{-b_2 a}{y(y-1)} & \frac{-(a+b_2+1)y+c_2}{y(y-1)} \end{pmatrix}$$

Larger example(2 loop 0 mass doublebox)

A of the GKZ system:

The holonomic rank (dim of solutions) of the GKZ system is 238. We need to restrict it to $z_i = 1$, $1 \le i \le 25$ $z_{26} = y$.

The rank of the rational restriction is 12 (< 238)

 $y=1/7, \ \gamma=3, \ k=5$, Specialize parameters to random numbers and the echelon form is computed with mod p=100000007. (generic_gauss_elim_mod).

$$[\partial_y \partial_{z_{15}}, \partial_{z_{23}} \partial_y, \partial_{z_{24}} \partial_y, \partial_y^2, \partial_{z_{13}}, \partial_{z_{15}}, \partial_{z_{21}}, \partial_{z_{22}}, \partial_{z_{23}}, \partial_{z_{24}}, \partial_y, 1]$$

Output S=RStd consisting of 12 elements. Computing rank 12 ODE (Pfaffian system) by the Macaulay matrix method (Th 5). Timing on t-PC(AMD EPYC 7552 48-Core Processor * 4 @ 1.5GHz, 1T memory)

23,815s (Guess RStd, $132,145 \times 33,649 \text{ matrix}$)

502s (Macaulay matrix, 2926×10775 matrix)

89,021s (rational reconstruction, FiniteFlow. About 20min by distributed computation)

http://www.math.kobe-u.ac.jp/OpenXM/Math/
amp-Restriction/ref.html

Example of the restriction to V(L)

$$F_4(a,b,c_1,c_2;x,y) = \sum_{i,j=0}^{\infty} \frac{(a)_{i+j}(b)_{i+j}}{(1)_i(1)_j(c_1)_i(c_2)_j} x^i y^j.$$
 (7)

$$f_{1} = \theta_{x}(\theta_{x} + c_{1} - 1) - x(\theta_{x} + \theta_{y} + a)(\theta_{x} + \theta_{y} + b), \quad (8)$$

$$f_{2} = \theta_{y}(\theta_{y} + c_{2} - 1) - y(\theta_{x} + \theta_{y} + a)(\theta_{x} + \theta_{y} + b). \quad (9)$$

generates the rank 4 holonomic ideal. The singular locus is

$$xy((x-y)^2 - 2(x+y) + 1) = 0 (10)$$

Let parameters be generic. Compute the restriction to $L = (x - y)^2 - 2(x + y) + 1 = 0$.

Ans: RStd is $(1, \partial_x, \partial_y)$ (rank 3, ODE).

Put $(a, b, c_1, c_2) = (-2/3, 1/3, 1/3, 1/3)$. Give initial value $(1,0,0)^T$ at (x,y) = (1/4,1/4). Numerically solve the ODE as https://colab.research.google.com/drive/1UQIOo4B2qz_

6BNUbbzP1XDkxZPZh0fJQ?usp=sharing Todo, include
Prog:amp22/Data2/2023-03-29-rest-hs.rr in mt_mm.rr 17/39

Summary

We give an algorithm to obtain the Pfaffian system (ODE's) of the rational restriction of a holonomic \mathcal{D} -module.

- 1. The algorithm can find rational restrictions, e.g., the GKZ system of 26 8 variables (2L0m model).
- 2. The algorithm can also find rational restrictions to hypersurfaces, e.g., Appell system F_4 to $(x-y)^2 2(x+y) + 1 = 0$.

Technical details

What is the restriction? Toward more general setting.

 $\mathcal{D}_m = \mathbb{C}\langle z_1,\ldots,z_m,\partial_1,\ldots,\partial_m \rangle$ and I is a left ideal of \mathcal{D}_m . The $restriction^1$ of the \mathcal{D}_m -module \mathcal{D}_m/I to a linear subspace $z_1=c_1,\ldots,z_{m'}=c_{m'}$, for some constant $c_i\in\mathbb{C}$, is defined by

$$\frac{\mathcal{D}_m}{\sum_{j=1}^{m'} (z_j - c_j) \mathcal{D}_m} \otimes_{\mathcal{D}_m} \mathcal{D}_m / I = \frac{\mathcal{D}_m}{I + \sum_{j=1}^{m'} (z_j - c_j) \mathcal{D}_m}.$$
 (11)

A left \mathcal{D}_m -module is called holonomic if the Hilbert polynomial w.r.t. a good filtration is of degree m. When \mathcal{D}_m/I is holonomic, then I is called holonomic ideal. The solution space of holonomic I (the space of functions annihilated by I) is finite dimensional space.

Theorem 3

(J.Bernstein 1972, see, e.g., dojo [1][Th 6.10.8, p.303].) If \mathcal{D}_m/I is a holonomic \mathcal{D}_m -module, then the restriction defined above is holonomic $\mathcal{D}_{m-m'}$ -module.

 $^{^1}$ It is an algebraic counterpart of the restriction of solutions of differential equations to the linear subspace.

What is the restriction? Tensor expression.

$$Y=\mathbb{C}^m$$
. $\mathcal{D}_Y=\mathbb{C}\langle z_1,\ldots,z_m,\partial_1,\ldots,\partial_m\rangle$. $J=\langle z_1,\ldots,z_{m'}\rangle$, $m'\leq m$ or $J=\langle L\rangle$, L is an irreducible polynomial. $Y'=V(J)$. $\mathcal{O}_{Y'}=\mathbb{C}[z]/J$, $\mathcal{O}_Y=\mathbb{C}[z]$. The restriction $\mathcal N$ of $\mathcal M=\mathcal D_Y/\mathcal I$ to Y' is

$$\mathcal{N} = \mathcal{O}_{Y'} \otimes_{\mathcal{O}_Y} \mathcal{M}$$

Lemma 4

(well-known) \mathcal{M} is holonomic. An maximal open strata $W \subset Y'$ of \mathcal{N} contains the origin. $S = \{s_i\}$ is a finite set of monomials of ∂ and is a basis of \mathbb{C} -vector space $\mathcal{D}_Y/(\mathcal{I} + \sum_{i=1}^m z_i \mathcal{D}_Y)$. Then, $1 \otimes s_i \in \mathcal{N}|_W$, $s_i \in S$, is a basis of $\mathcal{N}|_W$ as $\mathcal{O}_{Y'}$ -module.

The (holonomic) rank (the dimension of holomorphic solutions at generic points) of $\mathcal{N} \leq \text{rank}$ of \mathcal{M} .

What is a Pfaffian system of the restriction
$$\mathcal{N}=\mathcal{O}_{Y'}\otimes_{\mathcal{O}_Y}\mathcal{M}$$
? $\mathcal{M}=\mathcal{D}_Y/I$

$$\mathcal{R}_{Y'} = \operatorname{frac}(\mathcal{O}(Y'))\langle \partial_{m'+1}, \dots, \partial_m \rangle$$
. Rational restriction

$$\mathcal{R}_{Y'}\otimes_{\mathcal{D}_{Y'}}\mathcal{N}$$

When \mathcal{M} is holonomic, the rational restriction is a finite dimensional vector space over the field $\operatorname{frac}(\mathcal{O}(Y'))$. $\{s_1, \ldots, s_r\}$ be a basis.

$$\partial_{i} \begin{pmatrix} s_{1} \\ s_{2} \\ \cdot \\ \cdot \\ \cdot \\ s_{r} \end{pmatrix} - P_{i} \begin{pmatrix} s_{1} \\ s_{2} \\ \cdot \\ \cdot \\ \cdot \\ \cdot \\ s_{r} \end{pmatrix} \quad \text{in } \mathcal{R}_{Y'} \otimes_{\mathcal{D}_{Y'}} \mathcal{N}.$$

 P_i 's are $r \times r$ matrix of $\operatorname{frac}(\mathcal{O}(Y'))$ entries.

Note:

$$i: Y' \to Y$$

Since Y and Y' are ringed space, there exists a map

$$i^{\sharp}:\mathcal{O}_{Y}\to\mathcal{O}_{Y'}$$

The product of $g \in \mathcal{O}_Y$ and $h \in \mathcal{O}_{Y'}$ is defined by $g(i^{\sharp}h)$. When $\mathcal{O}_{Y'} = \mathbb{C}[z]/J$, the natural definition of i^{\sharp} gives $g(i^{\sharp}h)$ is gh in $\mathcal{O}_{Y'}$ when $h \in \mathbb{C}[z]$.

What is the stratification associated to \mathcal{N} ?

What is a Pfaffian system?

Example: Appell function F_2 .

$$F_{2}(a, b_{1}, b_{2}, c_{1}, c_{2}; x, y) = \sum_{m,n=0}^{\infty} \frac{(a)_{m+n}(b_{1})_{m}(b_{2})_{n}}{(1)_{m}(1)_{n}(c_{1})_{m}(c_{2})_{n}} x^{m} y^{n}$$

$$\partial_{x} \begin{pmatrix} F_{2} \\ \partial_{x} F_{2} \\ \partial_{y} F_{2} \\ \partial_{y}^{2} F_{2} \end{pmatrix} = P_{1} \begin{pmatrix} F_{2} \\ \partial_{x} F_{2} \\ \partial_{y} F_{2} \\ \partial_{y}^{2} F_{2} \end{pmatrix}$$

$$P_i$$
's are 4 × 4 matrix of rational function entries. $\{1, \partial_x, \partial_y, \partial_y^2\}$ is the set of the standard monomials of \mathcal{R}_YI where I is the annihilating left ideal of F_2 in \mathcal{D}_Y and $\mathcal{R}_Y = \mathbb{C}(x,y)\langle \partial_x, \partial_y \rangle$.

 $\partial_{y} \begin{pmatrix} F_{2} \\ \partial_{x} F_{2} \\ \partial_{y} F_{2} \\ \partial_{z} F \end{pmatrix} = P_{2} \begin{pmatrix} F_{2} \\ \partial_{x} F_{2} \\ \partial_{y} F_{2} \\ \partial_{z} F \end{pmatrix}$

Let r be the holonomic rank of the restriction \mathcal{N} .

 $\mathcal{R}_{Y'} = \mathbb{C}(z_{m'+1}, \dots, z_m) \langle \partial_{m'+1}, \dots, \partial_m \rangle.$

Meaning of

$$: \ell : |_{z_1 = \dots = z_{m'} = 0}$$

. Move ∂_i 's of ℓ to right and z_j 's to the left (by the relation $[\partial_i,z_j]=\delta_{ij}$). And put $z_1=\ldots=z_{m'}=0$ in the normally ordered expression. For example,

$$|z_1 z_1 z_1|_{z_1=0} = |(z_1 \partial_1 + 1)|_{z_1=0} = 1.$$

$$\mathcal{I} = \langle f_1, \dots, f_{\mu} \rangle$$
. $\mathcal{M} = \mathcal{D}_{Y}/\mathcal{I}$.

Theorem 5

We regard S in Lemma 4 as a column vector. There exist $r \times \mu$ matrix Q_i of entries in $\mathcal{R}_{Y'}[\partial_1, \ldots, \partial_{m'}]$ and $r \times r$ matrix P_i of entries in $\mathbb{C}(z') := \mathbb{C}(z_{m'+1}, \ldots, z_m)$ such that

$$\partial_i S = P_i S + : Q_i (f_1, \dots, f_{\mu})^T : \big|_{z_1 = \dots = z_{m'} = 0}$$

27 / 39

Restriction to a hypersurface: $J = \langle L \rangle$

Theorem 6

There exist $r \times \mu$ matrix Q_i of entries in \mathcal{D}_Y , $r \times r$ matrix P_i of entries in $\mathbb{C}[z]$, polynomial $q_i \in \mathbb{C}[z]$ such that

$$q_i \partial_i S = P_i S + : Q_i (f_1, \dots, f_\mu)^T : \mod L$$
 (12)

holds in \mathcal{D}_Y . Here, $\mathcal{D}_Y\ni\sum c_{\alpha}(z)\partial^{\alpha}=0\ \mathrm{mod}\ L$ means that L divides $c_{\alpha}(z)$.

 $q_i\partial_i - P_i$ is the Pfaffian system of the restriction $\mathcal N$ of $\mathcal M$.

Algorithm for rational restriction (probalistic)

- 1. Choose a point in $W \subset Y'$ (probalistic). Compute the restriction to the point to obtain a set of the standard monomials S (RStd) for the rational restriction (approximate, probalistic).
- 2. Find Q_i , P_i , q_i of Theorems 5, 6 by the method of undermined coefficients of ∂ with increasing the order of ∂ in Q_i .

Step 1: Find standard monomials S for rational restriction

(approximate, probalistic $c(k) = \sharp \{ \partial^{\alpha} \mid |\alpha| \leq k \}$. $v_k(\ell)$: the vector of coefficients of ℓ as a polynomial in ∂ .

Algorithm 1

(Rational restriction to $z_1 = \cdots = z_m = 0$)

Input: generators $\{f_1,\ldots,f_{\mu}\}$ of the holonomic $\mathcal{I}\subset\mathcal{D}_{Y}$. The dimension of the space of holomorphic solutions r at the origin $z=(z_1,\ldots,z_m)=0$. An integer γ such that $\gamma\geq\max(s_0,s_1)$.

Output: $\mathbb{C}\text{-basis}$ (S of Lemma 4) at the origin.

- 1: w = (1, ..., 1)
- 2: $k = \gamma$
- 3: repeat

4:
$$J = \mathbb{C} \cdot \left\{ v_k \left(: \partial^{\alpha} f_i : \big|_{z=0} \right) \mid \operatorname{ord}_{(-w,w)} \prod_{j=1}^m \partial_j^{\alpha_j} f_i \leq k, \ \alpha \in \mathbb{N}_0^m \right\} \subseteq \mathbb{C}^{c(k)}$$

- 5: k := k + 1
- 6: **until** dim $\mathbb{C}^{c(\gamma)}/J \cap \mathbb{C}^{c(\gamma)} = r$
- 7: **return** A vector space basis of $\mathbb{C}^{c(\gamma)}/J \cap \mathbb{C}^{c(\gamma)}$.

$$\operatorname{ord}_{(-w,w)}(z^{\alpha}\partial^{\beta}) = -w \cdot \alpha + w \cdot \beta$$

Example

 $x=z_1,y=z_2$. $\mathcal{I}=\{2y\partial_x+3x^2\partial_y,\,2x\partial_x+3y\partial_y-3\}$ has a solution $(y^2-x^3)^{1/2}$. We will compute the restriction of \mathcal{D}/\mathcal{I} to (x,y)=(1,2) approximately. Change of coordinate x:=x+1, y:=y+2. w=(1,1), m=2, Apply the algorithm with $\gamma=1$, $c(\gamma)=2$, r=1.

$$f_1 = 2(y+2)\partial_x + 3(x+1)^2 \partial_y f_2 = 2(x+1)\partial_x + 3(y+2)\partial_y - 3.$$

The generators of J at k=1 are

$$v_k(f_1|_{x=y=0}) = (4,3,0), v_k(f_2|_{x=y=0}) = (2,6,-3).$$

Each entiries of v_k is indexed by $(\partial_x, \partial_y, 1)$. $\begin{pmatrix} 4 & 3 & 0 \\ 2 & 6 & -3 \end{pmatrix}$ is transformed to $\begin{pmatrix} -2 & 0 & -1 \\ 0 & -3 & 2 \end{pmatrix}$. The rank of $\mathbb{C}^3/J \cap \mathbb{C}^3$ is 1, then $\{1\}$ is S.

What is the Macaulay matrix

$$A = (1, 2).$$

$$z_1\partial_1 + 2z_2\partial_2 - \beta_1 =: E$$
$$\underline{\partial_1^2} - \partial_2$$

$$\partial_2 E = z_1 \partial_1 \partial_2 + 2z_2 \partial_2^2 + 2\partial_2 - \beta_1 \partial_2$$

Implementation in mt_mm.rr

```
F_2(a, b_1, b_2, c_1, c_2; x, y) = \sum_{m,n=0}^{\infty} \frac{(a)_{m+n}(b_1)_m(b_2)_n}{(1)_m(1)_n(c_1)_m(c_2)_n} x^m y^n. We
restrict the system for F_2 to x = 0. (a)_k := a(a+1) \cdots (a+k-1).
import("mt_mm.rr")$
Ideal = [(-x^2+x)*dx^2+(-y*x)*dx*dy+((-a-b1-1)*x+c1)*dx-b1*y*dy-b1*a,
          (-y^2+y)*dy^2+(-x*y)*dy*dx+((-a-b2-1)*y+c2)*dy-b2*x*dx-b2*a]$
Xvars = [x,y]$
//Rule for a probabilistic determination
       of RStd (Std for the restriction)
Rule=[[y,y+1/3],[a,1/2],[b1,1/3],[b2,1/5],[c1,1/7],[c2,1/11]]$
Ideal_p = base_replace(Ideal,Rule);
RStd=mt_mm.restriction_to_pt_by_linsolv(Ideal_p,Gamma=2,KK=4,[x,y]);
RStd=reverse(map(dp_ptod,RStd[0],[dx,dy]));
Id = map(dp_ptod,Ideal,poly_dvar(Xvars))$
MData = mt_mm.find_macaulay(Id,RStd,Xvars | restriction_var=[x]);
P2 = mt_mm.find_pfaffian(MData, Xvars, 2 | use_orig=1);
```

Pfaffian system $\partial_{\nu}S - P_2S$, $S = (1, \partial_{\nu})^T$,

$$P_2 = \begin{pmatrix} 0 & 1\\ \frac{-b_2 a}{y(y-1)} & \frac{-(a+b_2+1)y+c_2}{y(y-1)} \end{pmatrix}$$

Larger example(2 loop 0 mass doublebox)

A of the GKZ system:

The holonomic rank of the GKZ system is 238. We need to restrict it to $z_i = 1$, $1 \le i \le 25$ $z_{26} = y$.

The rank of the rational restriction is 12 (< 238)

 $y=1/7, \ \gamma=3, \ k=5$, Specialize parameters to random numbers and the echelon form is computed with mod p=100000007. (generic_gauss_elim_mod).

$$[\partial_y \partial_{z_{15}}, \partial_{z_{23}} \partial_y, \partial_{z_{24}} \partial_y, \partial_y^2, \partial_{z_{13}}, \partial_{z_{15}}, \partial_{z_{21}}, \partial_{z_{22}}, \partial_{z_{23}}, \partial_{z_{24}}, \partial_y, 1]$$

Output S=RStd consisting of 12 elements. Computing rank 12 ODE (Pfaffian system) by the Macaulay matrix method (Th 5). Timing on t-PC(AMD EPYC 7552 48-Core Processor * 4 @ 1.5GHz, 1T memory)

23,815s (Guess RStd, $132,145 \times 33,649$ matrix)

502s (Macaulay matrix, 2926×10775 matrix)

89,021s (rational reconstruction, FiniteFlow. About 20min by distributed computation)

http://www.math.kobe-u.ac.jp/OpenXM/Math/
amp-Restriction/ref.html

Example of the restriction to V(L)

$$F_4(a,b,c_1,c_2;x,y) = \sum_{i,j=0}^{\infty} \frac{(a)_{i+j}(b)_{i+j}}{(1)_i(1)_j(c_1)_i(c_2)_j} x^i y^j.$$
 (14)

$$f_1 = \theta_x(\theta_x + c_1 - 1) - x(\theta_x + \theta_y + a)(\theta_x + \theta_y + b), \quad (15)$$

$$f_2 = \theta_y(\theta_y + c_2 - 1) - y(\theta_x + \theta_y + a)(\theta_x + \theta_y + b). \quad (16)$$

generates the rank 4 holonomic ideal. The singular locus is

$$xy((x-y)^2 - 2(x+y) + 1) = 0 (17)$$

Let parameters be generic. Compute the restriction to $L = (x - y)^2 - 2(x + y) + 1 = 0$.

Ans: RStd is $(1, \partial_x, \partial_y)$ (rank 3, ODE).

Put $(a, b, c_1, c_2) = (-2/3, 1/3, 1/3, 1/3)$. Give initial value $(1,0,0)^T$ at (x,y) = (1/4,1/4). Numerically solve the ODE as https://colab.research.google.com/drive/1UQIOo4B2qz_

6BNUbbzP1XDkxZPZh0fJQ?usp=sharing Todo, include Prog:amp22/Data2/2023-03-29-rest-hs.rr in mt_mm.rr 37/39

- [1] T.Hibi et al, Gröbner bases statistics and software systems, 2013, Springer
- [2] T.Oaku, Algorithms for the b-functions, restrictions, and algebraic local cohomology groups of D-modules, Advances in Applied Mathematics 19 (1997), 61–105.
 See also papers which cite this paper. You can find generalizations and improvements.
- [3] https://doi.org/10.1007/JHEP09(2022)187.
- [4] https://arxiv.org/abs/2305.01585.
- [5] FiniteFlow, multivariate functional reconstruction using finite fields and dataflow graphs. https://github.com/peraro/finiteflow
- [6] References for HGM, http://www.math.kobe-u.ac.jp/ OpenXM/Math/hgm/ref-hgm.html