Restriction algorithms for holonomic systems and their applications

Nobuki Takayama (Kobe University)

- CGM4T [3] V.Chestnov, F.Gasparotto, M.K.Mandal, P.Mastrolia, S.J.Matsubara-Heo, H.J.Munch, N.Takayama, Macaulay Matrix for Feynman Integrals: Linear Relations and Intersection Numbers, https://doi.org/10.1007/JHEP09(2022) 187, Journal of high energy physics, 2022, 187(2022).
- CMMT2023 [4] Restrictions of Pfaffian Systems for Feynman Integrals, https://arxiv.org/abs/2305.01585.

Numerical solver for ODE's

Numerical evaluation of integrals at a few points

Holonomic systems (ODE's)
for them (cohomology; GKZ; \mathcal{D} restriction ...; Computer algebra)

> Definite integrals defined by Feynman diagrams. Normalizing constants in statistics

Physics, statistics: values of integrals, relations among integrals. OpenXM-hgm [6]

What is the restriction ideal (restriction to a linear space)

$\mathcal{D}_{m}=\mathbb{C}\left\langle z_{1}, \ldots, z_{m}, \partial_{1}, \ldots, \partial_{m}\right\rangle$ and I is a left ideal of \mathcal{D}_{m}. The restriction ideal of I to $z_{1}=c_{1}, \ldots, z_{m^{\prime}}=c_{m^{\prime}}$ is

$$
\begin{equation*}
\left(I+\sum_{j=1}^{m^{\prime}}\left(z_{j}-c_{j}\right) \mathcal{D}_{m}\right) \cap \mathbb{C}\left\langle z_{m^{\prime}+1}, \ldots, z_{m}, \partial_{m^{\prime}+1}, \ldots, \partial_{m}\right\rangle \tag{1}
\end{equation*}
$$

If a function $F(z)$ is annihilated by I and holomorphic around $z=c$, then
$F\left(c_{1}, \ldots, c_{m^{\prime}}, z_{m^{\prime}+1}, \ldots, z_{m}\right)$ is annihilated by the restriction ideal.

It is the elimination of $z_{1}, \ldots, z_{m^{\prime}}, \partial_{1}, \ldots, \partial_{m^{\prime}}$. Algorithms for elimination have been studied in the Gröbner basis theory, but ...

Example

$$
\begin{align*}
& \partial_{x}-\partial_{y}, \tag{2}\\
& \partial_{y}-\left(x \partial_{x}+y \partial_{y}+a\right) \tag{3}
\end{align*}
$$

Let $f(x, y)$ be a solution of it. Can we find an ODE for $f(x, 0)$? Answer:

$$
\partial_{x}-\left(x \partial_{x}+a\right)
$$

Taking $y \rightarrow 0$ (2), (3) does not give the answer. The left ideal I in $D=\mathrm{C}\left\langle x, y, \partial_{x}, \partial_{y}\right\rangle$ generated by (2), (3) contains

$$
\partial_{x}-\left(x \partial_{x}+y \partial_{y}+a\right)
$$

Taking $y \rightarrow 0$ gives the answer; $I+x D$ contains the answer. $f(x, y)=(1-x-y)^{-a}$.

Example 1

massless box model.

$$
\begin{aligned}
& \mathcal{G}=\mathcal{U}_{G}+\mathcal{F}_{G}=x_{1}+x_{2}+x_{3}+x_{4}+x_{1} x_{3}+z x_{2} x_{4} \\
& \quad I\left(d_{0}, \nu ; z\right)=\text { const } \cdot(-s)^{d_{0} / 2-\varepsilon-|\nu|} \cdot \int_{[0,+\infty]^{4}} \mathcal{G}^{\varepsilon-d_{0} / 2} \prod_{i=1}^{4} x_{i}^{\nu_{i}} \frac{d x_{i}}{x_{i}} \\
& z=\frac{p_{2} \cdot p_{3}}{p_{1} \cdot p_{2}}, s=2 p_{1} \cdot p_{2} .
\end{aligned}
$$

GKZ system \Rightarrow restriction \Rightarrow ODE(Pfaff eq) for FI

$$
G=z_{1} x_{1}+z_{2} x_{2}+z_{3} x_{3}+z_{4} x_{4}+z_{5} x_{1} x_{3}+z_{6} x_{2} x_{4}
$$

The integral $F(z)=\int_{C} G^{\beta_{5}} x^{-\beta} \frac{d x}{x}$ satisfies the GKZ system

$$
\sum_{j=1}^{6} a_{i j} z_{j} \partial_{j}-\beta_{i}, \partial^{u}-\partial^{v}, \quad(A u=A v)
$$

where

$$
A=\left(a_{i j}\right)=\left(\begin{array}{llllll}
1 & 0 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 1 \\
1 & 1 & 1 & 1 & 1 & 1
\end{array}\right)
$$

If we can compute the restriction of the GKZ system to $z_{1}=\cdots=z_{5}=1$ then we can obtain a system of PDE's of the Lee-Pomenransky integral of

$$
\mathcal{G}=x_{1}+x_{2}+x_{3}+x_{4}+x_{1} x_{3}+z_{6} x_{2} x_{4}
$$

Algorithms and implementations

1. Restriction to a linear space Oaku1997 [2]. nk_restriction.rr(Nakayama, Nishiyama on Risa/Asir), Singular (V.Levandovsky), Macaulay2 (A.Leykin, H.Tsai). Several algorithms of computing b-function $\mathrm{C}\left[z_{1} \partial_{1}+\cdots+z_{m^{\prime}} \partial_{m^{\prime}}\right] \cap I .(-1,1)$-Gröbner basis. Hard, e.g., GKZ of $9-5$-variables (1L1m box).
2. We can get a Pfaffian system of restriction for larger systems CMMT2023 [4]. (1) Moser reduction, ... (2) Restriction to a point (probabilistic algorithm) and Macaulay matrix. It also gives a Pfaffian system of restriction to hypersurfaces. [CMMT2023] V.Chestnov, S.J.Matsubara-Heo, H.J.Munch, N.T., Restrictions of Pfaffian Systems for Feynman Integrals, https://arxiv.org/abs/2305.01585. mtmm.rr .

Current computer algebra systems compute restrictions for (small) inputs skip

$F\left(1,1,1,1,1, z_{6}\right)$ with $\beta=(d, d, d, d, e)$ satisifes the following ODE.

```
import("mt_gkz.rr")$ import("nk_restriction.rr")$
Xm_noX=1$
A = [
    [1,0,0,0,1,0],
    [0,1,0,0,0,1],
    [0,0,1,0,1,0],
    [0,0,0,1,0,1],
    [1,1,1,1,1,1]
];
Beta = [d,d,d,d,e];
F0=sm1.gkz([A,Beta])[0];
F=base_replace(F0,[[x1,x1+1],[x2,x2+1],[x3,x3+1],[x4,x4+1],[x5,x5+1]]);
dp_gr_print(1); // to be verbose
G=nk_restriction.restriction_ideal(F,[x1,x2,x3,x4,x5,x6],
    [dx1,dx2,dx3,dx4,dx5,dx6],[1,1,1,1,1,0]);
Output F0:
[x5*dx5+x1*dx1-d,x6*dx6+x2*dx2-d,x5*dx5+x3*dx3-d, x6*dx6+x4*dx4-d,
    x6*dx6+x5*dx5+x4*dx4+x3*dx3+x2*dx2+x1*dx1-e,dx1*dx3*dx6-dx2*dx4*dx5]
Output G:
[(x6^3+x6^2) *dx6^3+((-6*d+e+3)*x6^2+(-6*d+2*e+3)*x6)*dx6^2+
    ((9*d^2+(-2*e-6)*d+e+1)*x6+9*d^2+(-6*e-6)*d+e^2+2*e+1)*dx6-4*d^3+e*d^2]
```

From restriction ideal to restriction (module)

$$
\begin{equation*}
\frac{\mathcal{D}_{m}}{I+\sum_{j=1}^{m^{\prime}}\left(z_{j}-c_{j}\right) \mathcal{D}_{m}}=\frac{\mathcal{D}_{m}}{\sum_{j=1}^{m^{\prime}}\left(z_{j}-c_{j}\right) \mathcal{D}_{m}} \otimes_{\mathcal{D}_{m}} \mathcal{D}_{m} / I \tag{4}
\end{equation*}
$$

(Suppose $c_{j}=0$ for simplicity.)
$Y=\mathbb{C}^{m} . \mathcal{D}_{Y}=\mathbb{C}\left\langle z_{1}, \ldots, z_{m}, \partial_{1}, \ldots, \partial_{m}\right\rangle . J=\left\langle z_{1}, \ldots, z_{m^{\prime}}\right\rangle$,
$m^{\prime} \leq m$ or $J=\langle L\rangle, L$ is an irreducible polynomial.
$Y^{\prime}=V(J) . \mathcal{O}_{Y^{\prime}}=\mathbb{C}[z] / J, \mathcal{O}_{Y}=\mathbb{C}[z]$. The restriction \mathcal{N} of $\mathcal{M}=\mathcal{D}_{Y} / \mathcal{I}$ to Y^{\prime} is

$$
\mathcal{N}=\mathcal{O}_{Y^{\prime}} \otimes_{\mathcal{O}_{Y}} \mathcal{M}
$$

What is a Pfaffian system of the restriction $\mathcal{N}=\mathcal{O}_{Y^{\prime}} \otimes \otimes_{\mathcal{O}_{Y}}$ \mathcal{M} ?
$\mathcal{R}_{Y^{\prime}}=\operatorname{frac}\left(\mathcal{O}\left(Y^{\prime}\right)\right)\left\langle\partial_{m^{\prime}+1}, \ldots, \partial_{m}\right\rangle$. Rational restriction

$$
\mathcal{R}_{Y^{\prime}} \otimes_{\mathcal{D}_{Y^{\prime}}} \mathcal{N}
$$

When \mathcal{M} is holonomic, the rational restriction is a finite dimensional vector space over the field $\operatorname{frac}\left(\mathcal{O}\left(Y^{\prime}\right)\right)$. $\left\{s_{1}, \ldots, s_{r}\right\}$ be a basis (standard monomials, RStd).

$$
\partial_{i}\left(\begin{array}{c}
s_{1} \\
s_{2} \\
\cdot \\
\cdot \\
\cdot \\
s_{r}
\end{array}\right)-P_{i}\left(\begin{array}{c}
s_{1} \\
s_{2} \\
\cdot \\
\cdot \\
\cdot \\
s_{r}
\end{array}\right) \quad \text { in } \mathcal{R}_{Y^{\prime}} \otimes_{\mathcal{D}_{Y^{\prime}}} \mathcal{N}
$$

P_{i} 's are $r \times r$ matrix of $\operatorname{frac}\left(\mathcal{O}\left(Y^{\prime}\right)\right.$ entries.

Algorithm for rational restriction (probalistic)

1. Choose a generic point in Y^{\prime} (probalistic). Compute the restriction to the point to obtain a set of the standard monomials S (RStd) for the rational restriction (approximate, probalistic).
2. Find Q_{i}, P_{i}, q_{i} of Theorems 5, 6 by a Macaulay matrix method with increasing the order of ∂ in Q_{i}.
skip Restriction to a hypersurface: $J=\langle L\rangle . I=\left\langle f_{1}, \ldots, f_{\mu}\right\rangle$.
Theorem 2 (Th6)
S: RStd (standard monomials of the restriction). There exist $r \times \mu$ matrix Q_{i} of entries in $\mathcal{D}_{Y}, r \times r$ matrix P_{i} of entries in $\mathbb{C}[z]$, polynomial $q_{i} \in \mathbb{C}[z]$ such that

$$
q_{i} \partial_{i} S=P_{i} S+: Q_{i}\left(\begin{array}{c}
f_{1} \tag{5}\\
\cdot \\
\cdot \\
\cdot \\
f_{\mu}
\end{array}\right): \bmod L
$$

holds in \mathcal{D}_{Y}. Here, $\mathcal{D}_{Y} \ni \sum c_{\alpha}(z) \partial^{\alpha}=0 \bmod L$ means that L divides $c_{\alpha}(z)$.
$q_{i} \partial_{i}-P_{i}$ is the Pfaffian system of the rational restriction \mathcal{N} to $V(L)$ of \mathcal{M} modulo L.
$F_{2}\left(a, b_{1}, b_{2}, c_{1}, c_{2} ; x, y\right)=\sum_{m, n=0}^{\infty} \frac{(a)_{m+n}\left(b_{1}\right)_{m}\left(b_{2}\right)_{n}}{(1)_{m}(1)_{n}\left(c_{1}\right)_{m}\left(c_{2}\right)_{n}} x^{m} y^{n}$. We restrict the rank 4 system for Appell function F_{2} to $x=0$. $(a)_{k}:=a(a+1) \cdots(a+k-1)$.
import("mt_mm.rr")\$
Ideal $=\left[\left(-x^{\wedge} 2+\mathrm{x}\right) * \mathrm{dx}^{\wedge} 2+(-\mathrm{y} * \mathrm{x}) * \mathrm{dx} * \mathrm{dy}+((-\mathrm{a}-\mathrm{b} 1-1) * \mathrm{x}+\mathrm{c} 1) * \mathrm{dx}-\mathrm{b} 1 * \mathrm{y} * \mathrm{dy}-\mathrm{b} 1 * \mathrm{a}\right.$,
$(-y \wedge 2+y) * d y \wedge 2+(-x * y) * d y * d x+((-a-b 2-1) * y+c 2) * d y-b 2 * x * d x-b 2 * a] \$$
Xvars $=[x, y] \$$
//Rule for a probabilistic determination
// of RStd (Std for the restriction)
Rule $=[[y, y+1 / 3],[a, 1 / 2],[b 1,1 / 3],[b 2,1 / 5],[c 1,1 / 7],[c 2,1 / 11]] \$$
Ideal_p = base_replace(Ideal,Rule);
RStd=mt_mm.restriction_to_pt_by_linsolv(Ideal_p,Gamma=2, KK=4, [x,y]);
RStd=reverse(map(dp_ptod,RStd[0],[dx, dy]));
Id = map(dp_ptod,Ideal, poly_dvar(Xvars))\$
MData $=$ mt_mm.find_macaulay (Id,RStd,Xvars | restriction_var=[x]);
P2 = mt_mm.find_pfaffian(MData,Xvars,2 | use_orig=1);

Pfaffian system $\partial_{y} S-P_{2} S, S=\left(1, \partial_{y}\right)^{T}$,

$$
P_{2}=\left(\begin{array}{cc}
0 & 1 \\
\frac{-b_{2} a}{y(y-1)} & \frac{-\left(a+b_{2}+1\right) y+c_{2}}{y(y-1)}
\end{array}\right)
$$

Larger example(2 loop 0 mass doublebox)

A of the GKZ system:

 $\left.\begin{array}{lllll}1 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 \\ 1 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1\end{array}\right)$ (6)
(6)

The holonomic rank (dim of solutions) of the GKZ system is 238 . We need to restrict it to $z_{i}=1,1 \leq i \leq 25 z_{26}=y$.

The rank of the rational restriction is $12(<238)$
$y=1 / 7, \gamma=3, k=5$, Specialize parameters to random numbers and the echelon form is computed with $\bmod p=100000007$.
(generic_gauss_elim_mod).

$$
\left[\partial_{y} \partial_{z_{15}}, \partial_{z_{23}} \partial_{y}, \partial_{z_{24}} \partial_{y}, \partial_{y}^{2}, \partial_{z_{13}}, \partial_{z_{15}}, \partial_{z_{21}}, \partial_{z_{22}}, \partial_{z_{23}}, \partial_{z_{24}}, \partial_{y}, 1\right]
$$

Output $\mathrm{S}=$ RStd consisting of 12 elements. Computing rank 12 ODE (Pfaffian system) by the Macaulay matrix method (Th 5). Timing on t-PC(AMD EPYC 7552 48-Core Processor * 4 @ $1.5 \mathrm{GHz}, 1 \mathrm{~T}$ memory) 23,815s (Guess RStd, 132, $145 \times 33,649$ matrix) 502s (Macaulay matrix, 2926×10775 matrix) 89,021s (rational reconstruction, FiniteFlow. About 20min by distributed computation)
http://www.math.kobe-u.ac.jp/OpenXM/Math/ amp-Restriction/ref.html

Example of the restriction to $V(L)$

$$
\begin{align*}
& F_{4}\left(a, b, c_{1}, c_{2} ; x, y\right)=\sum_{i, j=0}^{\infty} \frac{(a)_{i+j}(b)_{i+j}}{(1)_{i}(1)_{j}\left(c_{1}\right)_{i}\left(c_{2}\right)_{j}} x^{i} y^{j} . \tag{7}\\
f_{1} & =\theta_{x}\left(\theta_{x}+c_{1}-1\right)-x\left(\theta_{x}+\theta_{y}+a\right)\left(\theta_{x}+\theta_{y}+b\right), \tag{8}\\
f_{2} & =\theta_{y}\left(\theta_{y}+c_{2}-1\right)-y\left(\theta_{x}+\theta_{y}+a\right)\left(\theta_{x}+\theta_{y}+b\right) . \tag{9}
\end{align*}
$$

generates the rank 4 holonomic ideal. The singular locus is

$$
\begin{equation*}
x y\left((x-y)^{2}-2(x+y)+1\right)=0 \tag{10}
\end{equation*}
$$

Let parameters be generic. Compute the restriction to $L=(x-y)^{2}-2(x+y)+1=0$. Ans: RStd is $\left(1, \partial_{x}, \partial_{y}\right)$ (rank 3, ODE).
Put $\left(a, b, c_{1}, c_{2}\right)=(-2 / 3,1 / 3,1 / 3,1 / 3)$. Give initial value $(1,0,0)^{T}$ at $(x, y)=(1 / 4,1 / 4)$. Numerically solve the ODE as https://colab.research.google.com/drive/1UQIOo4B2qz_ 6BNUbbzP1XDkxZPZhOf JQ?usp=sharing Todo, include Prog:amp22/Data2/2023-03-29-rest-hs.rr in mt_mm.rr

Summary

We give an algorithm to obtain the Pfaffian system (ODE's) of the rational restriction of a holonomic \mathcal{D}-module.

1. The algorithm can find rational restrictions, e.g., the GKZ system of $26-8$ variables (2 LOm model).
2. The algorithm can also find rational restrictions to hypersurfaces, e.g., Appell system F_{4} to $(x-y)^{2}-2(x+y)+1=0$.

Technical details

What is the restriction? Toward more general setting.
$\mathcal{D}_{m}=\mathbb{C}\left\langle z_{1}, \ldots, z_{m}, \partial_{1}, \ldots, \partial_{m}\right\rangle$ and I is a left ideal of \mathcal{D}_{m}. The restriction ${ }^{1}$ of the \mathcal{D}_{m}-module \mathcal{D}_{m} / I to a linear subspace $z_{1}=c_{1}, \ldots, z_{m^{\prime}}=c_{m^{\prime}}$, for some constant $c_{i} \in \mathbb{C}$, is defined by

$$
\begin{equation*}
\frac{\mathcal{D}_{m}}{\sum_{j=1}^{m^{\prime}}\left(z_{j}-c_{j}\right) \mathcal{D}_{m}} \otimes_{\mathcal{D}_{m}} \mathcal{D}_{m} / I=\frac{\mathcal{D}_{m}}{I+\sum_{j=1}^{m^{\prime}}\left(z_{j}-c_{j}\right) \mathcal{D}_{m}} . \tag{11}
\end{equation*}
$$

A left \mathcal{D}_{m}-module is called holonomic if the Hilbert polynomial w.r.t. a good filtration is of degree m. When \mathcal{D}_{m} / I is holonomic, then I is called holonomic ideal. The solution space of holonomic I (the space of functions annihilated by l) is finite dimensional space.
Theorem 3
(J.Bernstein 1972, see, e.g., dojo [1][Th 6.10.8, p.303].) If $\mathcal{D}_{m} /$ / is a holonomic \mathcal{D}_{m}-module, then the restriction defined above is holonomic $\mathcal{D}_{m-m^{\prime}}$-module.
${ }^{1}$ It is an algebraic counterpart of the restriction of solutions of differential equations to the linear subspace.

What is the restriction? Tensor expression.

$Y=\mathbb{C}^{m} . \mathcal{D}_{Y}=\mathbb{C}\left\langle z_{1}, \ldots, z_{m}, \partial_{1}, \ldots, \partial_{m}\right\rangle . J=\left\langle z_{1}, \ldots, z_{m^{\prime}}\right\rangle$, $m^{\prime} \leq m$ or $J=\langle L\rangle, L$ is an irreducible polynomial. $Y^{\prime}=V(J)$. $\mathcal{O}_{Y^{\prime}}=\mathbb{C}[z] / J, \mathcal{O}_{Y}=\mathbb{C}[z]$. The restriction \mathcal{N} of $\mathcal{M}=\mathcal{D}_{Y} / \mathcal{I}$ to Y^{\prime} is

$$
\mathcal{N}=\mathcal{O}_{Y^{\prime}} \otimes_{\mathcal{O}_{Y}} \mathcal{M}
$$

Lemma 4

(well-known) \mathcal{M} is holonomic. An maximal open strata $W \subset Y^{\prime}$ of \mathcal{N} contains the origin. $S=\left\{s_{i}\right\}$ is a finite set of monomials of ∂ and is a basis of \mathbb{C}-vector space $\mathcal{D}_{Y} /\left(\mathcal{I}+\sum_{i=1}^{m} z_{i} \mathcal{D}_{Y}\right)$. Then, $\left.1 \otimes s_{i} \in \mathcal{N}\right|_{W}, s_{i} \in S$, is a basis of $\left.\mathcal{N}\right|_{w}$ as $\mathcal{O}_{Y^{\prime}}$-module.
The (holonomic) rank (the dimension of holomorphic solutions at generic points) of $\mathcal{N} \leq$ rank of \mathcal{M}.

What is a Pfaffian system of the restriction $\mathcal{N}=\mathcal{O}_{Y^{\prime}} \otimes \otimes_{\mathcal{O}_{Y}}$ \mathcal{M} ? $\mathcal{M}=\mathcal{D}_{Y} / I$
$\mathcal{R}_{Y^{\prime}}=\operatorname{frac}\left(\mathcal{O}\left(Y^{\prime}\right)\right)\left\langle\partial_{m^{\prime}+1}, \ldots, \partial_{m}\right\rangle$. Rational restriction

$$
\mathcal{R}_{Y^{\prime}} \otimes_{\mathcal{D}_{Y^{\prime}}} \mathcal{N}
$$

When \mathcal{M} is holonomic, the rational restriction is a finite dimensional vector space over the field $\operatorname{frac}\left(\mathcal{O}\left(Y^{\prime}\right)\right)$. $\left\{s_{1}, \ldots, s_{r}\right\}$ be a basis.

$$
\partial_{i}\left(\begin{array}{c}
s_{1} \\
s_{2} \\
\cdot \\
\cdot \\
\cdot \\
s_{r}
\end{array}\right)-P_{i}\left(\begin{array}{c}
s_{1} \\
s_{2} \\
\cdot \\
\cdot \\
\cdot \\
s_{r}
\end{array}\right) \quad \text { in } \mathcal{R}_{Y^{\prime}} \otimes_{\mathcal{D}_{Y^{\prime}}} \mathcal{N} .
$$

P_{i} 's are $r \times r$ matrix of $\operatorname{frac}\left(\mathcal{O}\left(Y^{\prime}\right)\right.$ entries.

Note:

$$
i: Y^{\prime} \rightarrow Y
$$

Since Y and Y^{\prime} are ringed space, there exists a map

$$
i^{\sharp}: \mathcal{O}_{Y} \rightarrow \mathcal{O}_{Y^{\prime}}
$$

The product of $g \in \mathcal{O}_{Y}$ and $h \in \mathcal{O}_{Y^{\prime}}$ is defined by $g\left(i^{\sharp} h\right)$. When $\mathcal{O}_{Y^{\prime}}=\mathbb{C}[z] / J$, the natural definition of i^{\sharp} gives $g\left(i^{\sharp} h\right)$ is $g h$ in $\mathcal{O}_{Y^{\prime}}$ when $h \in \mathbb{C}[z]$.

What is the stratification associated to \mathcal{N} ?

What is a Pfaffian system?

Example: Appell function F_{2}.

$$
\begin{aligned}
F_{2}\left(a, b_{1}, b_{2}, c_{1}, c_{2} ; x, y\right)= & \sum_{m, n=0}^{\infty} \frac{(a)_{m+n}\left(b_{1}\right)_{m}\left(b_{2}\right)_{n}}{(1)_{m}(1)_{n}\left(c_{1}\right)_{m}\left(c_{2}\right)_{n}} x^{m} y^{n} \\
\partial_{x}\left(\begin{array}{c}
F_{2} \\
\partial_{x} F_{2} \\
\partial_{y} F_{2} \\
\partial_{y}^{2} F_{2}
\end{array}\right) & =P_{1}\left(\begin{array}{c}
F_{2} \\
\partial_{x} F_{2} \\
\partial_{y} F_{2} \\
\partial_{y}^{2} F_{2}
\end{array}\right) \\
\partial_{y}\left(\begin{array}{c}
F_{2} \\
\partial_{x} F_{2} \\
\partial_{y} F_{2} \\
\partial_{y}^{2} F_{2}
\end{array}\right) & =P_{2}\left(\begin{array}{c}
F_{2} \\
\partial_{x} F_{2} \\
\partial_{y} F_{2} \\
\partial_{y}^{2} F_{2}
\end{array}\right)
\end{aligned}
$$

P_{i} 's are 4×4 matrix of rational function entries. $\left\{1, \partial_{x}, \partial_{y}, \partial_{y}^{2}\right\}$ is the set of the standard monomials of $\mathcal{R}_{Y} l$ where I is the annihilating left ideal of F_{2} in \mathcal{D}_{Y} and $\mathcal{R}_{Y}=\mathbb{C}(x, y)\left\langle\partial_{x}, \partial_{y}\right\rangle_{\overline{\underline{\rightharpoonup}}}$

Let r be the holonomic rank of the restriction \mathcal{N}.
$\mathcal{R}_{Y^{\prime}}=\mathbb{C}\left(z_{m^{\prime}+1}, \ldots, z_{m}\right)\left\langle\partial_{m^{\prime}+1}, \ldots, \partial_{m}\right\rangle$.
Meaning of

$$
: \ell:\left.\right|_{z_{1}=\ldots=z_{m^{\prime}}=0}
$$

Move ∂_{i} 's of ℓ to right and z_{j} 's to the left (by the relation $\left.\left[\partial_{i}, z_{j}\right]=\delta_{i j}\right)$. And put $z_{1}=\ldots=z_{m^{\prime}}=0$ in the normally ordered expression. For example,

$$
: \partial_{1} z_{1}:\left.\right|_{z_{1}=0}=\left.\left(z_{1} \partial_{1}+1\right)\right|_{z_{1}=0}=1
$$

$\mathcal{I}=\left\langle f_{1}, \ldots, f_{\mu}\right\rangle . \mathcal{M}=\mathcal{D}_{Y} / \mathcal{I}$.

Theorem 5

We regard S in Lemma 4 as a column vector. There exist $r \times \mu$ matrix Q_{i} of entries in $\mathcal{R}_{Y^{\prime}}\left[\partial_{1}, \ldots, \partial_{m^{\prime}}\right]$ and $r \times r$ matrix P_{i} of entries in $\mathbb{C}\left(z^{\prime}\right):=\mathbb{C}\left(z_{m^{\prime}+1}, \ldots, z_{m}\right)$ such that

$$
\partial_{i} S=P_{i} S+: Q_{i}\left(f_{1}, \ldots, f_{\mu}\right)^{T}:\left.\right|_{z_{1}=\ldots=z_{m^{\prime}}=0}
$$

holds in $\mathcal{R}_{Y^{\prime}}\left[\partial_{1}, \ldots, \partial_{m^{\prime}}\right]$.

Restriction to a hypersurface: $J=\langle L\rangle$
Theorem 6
There exist $r \times \mu$ matrix Q_{i} of entries in $\mathcal{D}_{Y}, r \times r$ matrix P_{i} of entries in $\mathbb{C}[z]$, polynomial $q_{i} \in \mathbb{C}[z]$ such that

$$
\begin{equation*}
q_{i} \partial_{i} S=P_{i} S+: Q_{i}\left(f_{1}, \ldots, f_{\mu}\right)^{T}: \quad \bmod L \tag{12}
\end{equation*}
$$

holds in \mathcal{D}_{Y}. Here, $\mathcal{D}_{Y} \ni \sum c_{\alpha}(z) \partial^{\alpha}=0 \bmod L$ means that L divides $c_{\alpha}(z)$.
$q_{i} \partial_{i}-P_{i}$ is the Pfaffian system of the restriction \mathcal{N} of \mathcal{M}.

Algorithm for rational restriction (probalistic)

1. Choose a point in $W \subset Y^{\prime}$ (probalistic). Compute the restriction to the point to obtain a set of the standard monomials S (RStd) for the rational restriction (approximate, probalistic).
2. Find Q_{i}, P_{i}, q_{i} of Theorems 5, 6 by the method of undermined coefficients of ∂ with increasing the order of ∂ in Q_{i}.

Step 1: Find standard monomials S for rational restriction

(approximate, probalistic $c(k)=\sharp\left\{\partial^{\alpha}| | \alpha \mid \leq k\right\}$.
$v_{k}(\ell)$: the vector of coefficients of ℓ as a polynomial in ∂.
Algorithm 1
(Rational restriction to $z_{1}=\cdots=z_{m}=0$)
Input: generators $\left\{f_{1}, \ldots, f_{\mu}\right\}$ of the holonomic $\mathcal{I} \subset \mathcal{D}_{Y}$. The dimension of the space of holomorphic solutions r at the origin $z=\left(z_{1}, \ldots, z_{m}\right)=0$. An intger γ such that $\gamma \geq \max \left(s_{0}, s_{1}\right)$.
Output: \mathbb{C}-basis (S of Lemma 4) at the origin.
1: $w=(1, \ldots, 1)$
2: $k=\gamma$
3: repeat
4: $\quad J=\mathbb{C} \cdot\left\{v_{k}\left(: \partial^{\alpha} f_{i}:\left.\right|_{z=0}\right) \mid \operatorname{ord}_{(-w, w)} \prod_{j=1}^{m} \partial_{j}^{\alpha_{j}} f_{i} \leq k, \alpha \in \mathbb{N}_{0}^{m}\right\} \subseteq \mathbb{C}^{c(k)}$
5: $\quad k:=k+1$
6: until $\operatorname{dim} \mathbb{C}^{c(\gamma)} / J \cap \mathbb{C}^{c(\gamma)}=r$
7: return A vector space basis of $\mathbb{C}^{c(\gamma)} / J \cap \mathbb{C}^{c(\gamma)}$.

$$
\operatorname{ord}_{(-w, w)}\left(z^{\alpha} \partial^{\beta}\right)=-w \cdot \alpha+w \cdot \beta
$$

Example

$x=z_{1}, y=z_{2} . \mathcal{I}=\left\{2 y \partial_{x}+3 x^{2} \partial_{y}, 2 x \partial_{x}+3 y \partial_{y}-3\right\}$ has a solution $\left(y^{2}-x^{3}\right)^{1 / 2}$. We will compute the restriction of $\mathcal{D} / \mathcal{I}$ to $(x, y)=(1,2)$ approximately. Change of coordinate $x:=x+1$, $y:=y+2 . w=(1,1), m=2$, Apply the algorithm with $\gamma=1$, $c(\gamma)=2, r=1$.

$$
\begin{aligned}
& f_{1}=2(y+2) \partial_{x}+3(x+1)^{2} \partial_{y} \\
& f_{2}=2(x+1) \partial_{x}+3(y+2) \partial_{y}-3 .
\end{aligned}
$$

The generators of J at $k=1$ are

$$
v_{k}\left(\left.f_{1}\right|_{x=y=0}\right)=(4,3,0), v_{k}\left(\left.f_{2}\right|_{x=y=0}\right)=(2,6,-3) .
$$

Each entiries of v_{k} is indexed by $\left(\partial_{x}, \partial_{y}, 1\right)$. $\left(\begin{array}{ccc}4 & 3 & 0 \\ 2 & 6 & -3\end{array}\right)$ is transformed to $\left(\begin{array}{ccc}-2 & 0 & -1 \\ 0 & -3 & 2\end{array}\right)$. The rank of $\mathbb{C}^{3} / J \cap \mathbb{C}^{3}$ is 1 , then $\{1\}$ is S.

What is the Macaulay matrix

$A=(1,2)$.
$z_{1} \partial_{1}+2 z_{2} \partial_{2}-\beta_{1}=: E$

$$
\underline{\partial_{1}^{2}}-\partial_{2}
$$

∂_{1}	∂_{2}^{2}	$\partial_{1} \partial_{2}$	∂_{2}	1	
z_{1}	0	0	$-2 z_{1}$	β_{1}	E
0	$2 z_{2}$	z_{1}	$\beta_{1}-2$	0	$\partial_{2} E$
$1-\beta_{1}$	0	$2 z_{2}$	$-z_{1}$	0	$\partial_{1} E$

$$
\partial_{2} E=z_{1} \partial_{1} \partial_{2}+2 z_{2} \partial_{2}^{2}+2 \partial_{2}-\beta_{1} \partial_{2}
$$

$F_{2}\left(a, b_{1}, b_{2}, c_{1}, c_{2} ; x, y\right)=\sum_{m, n=0}^{\infty} \frac{(a)_{m+n}\left(b_{1}\right)_{m}\left(b_{2}\right)_{n}}{(1)_{m}(1)_{n}\left(c_{1}\right)_{m}\left(c_{2}\right)_{n}} x^{m} y^{n}$. We restrict the system for F_{2} to $x=0 .(a)_{k}:=a(a+1) \cdots(a+k-1)$.

```
import("mt_mm.rr")$
Ideal = [(-x^2+x)*dx^2+(-y*x)*dx*dy+((-a-b1-1)*x+c1)*dx-b1*y*dy-b1*a,
    (-y^2+y)*dy^2+(-x*y)*dy*dx+((-a-b2-1)*y+c2)*dy-b2*x*dx-b2*a]$
Xvars = [x,y]$
//Rule for a probabilistic determination
// of RStd (Std for the restriction)
Rule=[[y,y+1/3],[a,1/2],[b1,1/3],[b2,1/5],[c1,1/7],[c2, 1/11]]$
Ideal_p = base_replace(Ideal,Rule);
RStd=mt_mm.restriction_to_pt_by_linsolv(Ideal_p,Gamma=2,KK=4, [x,y]);
RStd=reverse(map(dp_ptod,RStd[0],[dx,dy]));
Id = map(dp_ptod,Ideal,poly_dvar(Xvars))$
MData = mt_mm.find_macaulay(Id,RStd,Xvars | restriction_var=[x]);
P2 = mt_mm.find_pfaffian(MData,Xvars,2 | use_orig=1);
```

Pfaffian system $\partial_{y} S-P_{2} S, S=\left(1, \partial_{y}\right)^{T}$,

$$
P_{2}=\left(\begin{array}{cc}
0 & 1 \\
\frac{-b_{2} a}{y(y-1)} & \frac{-\left(a+b_{2}+1\right) y+c_{2}}{y(y-1)}
\end{array}\right)
$$

Larger example(2 loop 0 mass doublebox)

A of the GKZ system:

The holonomic rank of the GKZ system is 238 . We need to restrict it to $z_{i}=1,1 \leq i \leq 25 z_{26}=y$.

The rank of the rational restriction is $12(<238)$
$y=1 / 7, \gamma=3, k=5$, Specialize parameters to random numbers and the echelon form is computed with $\bmod p=100000007$.
(generic_gauss_elim_mod).

$$
\left[\partial_{y} \partial_{z_{15}}, \partial_{z_{23}} \partial_{y}, \partial_{z_{24}} \partial_{y}, \partial_{y}^{2}, \partial_{z_{13}}, \partial_{z_{15}}, \partial_{z_{21}}, \partial_{z_{22}}, \partial_{z_{23}}, \partial_{z_{24}}, \partial_{y}, 1\right]
$$

Output $\mathrm{S}=$ RStd consisting of 12 elements. Computing rank 12 ODE (Pfaffian system) by the Macaulay matrix method (Th 5). Timing on t-PC(AMD EPYC 7552 48-Core Processor * 4 @ $1.5 \mathrm{GHz}, 1 \mathrm{~T}$ memory) 23,815s (Guess RStd, 132, $145 \times 33,649$ matrix) 502s (Macaulay matrix, 2926×10775 matrix) 89,021s (rational reconstruction, FiniteFlow. About 20min by distributed computation)
http://www.math.kobe-u.ac.jp/OpenXM/Math/ amp-Restriction/ref.html

Example of the restriction to $V(L)$

$$
\begin{align*}
& F_{4}\left(a, b, c_{1}, c_{2} ; x, y\right)=\sum_{i, j=0}^{\infty} \frac{(a)_{i+j}(b)_{i+j}}{(1)_{i}(1)_{j}\left(c_{1}\right)_{i}\left(c_{2}\right)_{j}} x^{i} y^{j} . \tag{14}\\
f_{1} & =\theta_{x}\left(\theta_{x}+c_{1}-1\right)-x\left(\theta_{x}+\theta_{y}+a\right)\left(\theta_{x}+\theta_{y}+b\right), \tag{15}\\
f_{2} & =\theta_{y}\left(\theta_{y}+c_{2}-1\right)-y\left(\theta_{x}+\theta_{y}+a\right)\left(\theta_{x}+\theta_{y}+b\right) . \tag{16}
\end{align*}
$$

generates the rank 4 holonomic ideal. The singular locus is

$$
\begin{equation*}
x y\left((x-y)^{2}-2(x+y)+1\right)=0 \tag{17}
\end{equation*}
$$

Let parameters be generic. Compute the restriction to
$L=(x-y)^{2}-2(x+y)+1=0$.
Ans: RStd is $\left(1, \partial_{x}, \partial_{y}\right)$ (rank 3, ODE).
Put $\left(a, b, c_{1}, c_{2}\right)=(-2 / 3,1 / 3,1 / 3,1 / 3)$. Give initial value $(1,0,0)^{T}$ at $(x, y)=(1 / 4,1 / 4)$. Numerically solve the ODE as https://colab.research.google.com/drive/1UQIOo4B2qz_ 6BNUbbzP1XDkxZPZhOf JQ?usp=sharing Todo, include Prog:amp22/Data2/2023-03-29-rest-hs.rr in mt_mm.rr

[1] T.Hibi et al, Gröbner bases - statistics and software systems, 2013, Springer
[2] T.Oaku, Algorithms for the b-functions, restrictions, and algebraic local cohomology groups of D-modules, Advances in Applied Mathematics 19 (1997), 61-105.
See also papers which cite this paper. You can find generalizations and improvements.
[3] https://doi.org/10.1007/JHEPO9 (2022) 187.
[4] https://arxiv.org/abs/2305.01585.
[5] FiniteFlow, multivariate functional reconstruction using finite fields and dataflow graphs. https://github.com/peraro/finiteflow
[6] References for HGM, http://www.math.kobe-u.ac.jp/ OpenXM/Math/hgm/ref-hgm.html

