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Algorithmic methods in D modules have been used in mathematical study of hy-
pergeometric functions and in computational algebraic geometry. In this paper, we
show that these algorithms give correct algorithms to perform several operations
for holonomic functions and also generates substantial information for numerical
evaluation of holonomic functions.

1. Introduction

As was observed by Castro and Galligo [3] , [5], the Buchberger algorithm
for computing Gröbner bases of ideals of the polynomial ring applies also
to the Weyl algebra, i.e., the ring of differential operators with polynomial
coefficients. This generalization of the Buchberger algorithm has turned
out to be very fruitful in the computational approach to the theory of D-
modules, which aims at an algebraic treatment of systems of linear partial
(or ordinary) differential equations and the theoretical foundation of which
was laid by Bernstein, Kashiwara, M. Sato, and many others.

The aim of this paper is to show that such an algorithmic approach to
the D-module theory, which essentially depends on the Buchberger algo-
rithm, enables us to solve some fundamental problems in symbolic compu-
tation, namely to perform computation with so-called holonomic functions.
Our motivation of studying computation with holonomic functions comes
from signal processing and numerical analysis. We sketch some applications
of computation of holonomic functions to these areas.

A function u is called holonomic, roughly speaking, if u satisfies a sys-
tem of linear differential equations P1u = . . . = Pru = 0 whose solutions
form a finite dimensional vector space; here P1, . . . , Pr are elements of the
Weyl algebra Dn = C〈x1, . . . , xn, ∂1, . . . , ∂n〉 over the field of the complex
numbers with ∂i = ∂xi = ∂

∂xi
. Such a system is called holonomic and plays
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a key role in the theory of D-modules.
Since a linear ordinary differential equation is always holonomic, special

functions of one variable, such as the Gauss hypergeometric function and
the Bessel function are holonomic by definition. Moreover, the rational
functions of arbitrary number of variables and their exponentials are simple
examples of holonomic functions. As nontrivial examples, the expression
fλ for an arbitrary polynomial f and an arbitrary complex number λ and
GKZ-hypergeometric systems (see, e.g., [18]) are holonomic.

We can expect to obtain substantial information on a holonomic func-
tion by studying the differential equations which it satisfies, rather than
dealing with the function itself. This holonomic approach to special func-
tion identities was initiated by Zeilberger et al. ([1], [22], [16], [23]).

We are concerned with the following computational issues on holonomic
functions: (1) Given two holonomic functions f , g and two differential
operators P , Q, find a holonomic system which the function Pf + Qg

satisfies; (2) Given two holonomic functions f , g, find a holonomic system
which the function fg satisfies; (3) Given a holonomic function f(t, x), find
a holonomic system which the integral

∫
C

f(t, x) dt satisfies.
We give answers to the three problems (under a technical condition

for the third one) by using the Buchberger algorithm applied to the Weyl
algebra. The class of holonomic functions are stable under these three
operations (addition, multiplication, integration) and two more operations
of restriction and localization [13]. We give explicit algorithms for these
constructions. Partial answers to the above three problems were given in
[1], [19], [22], [23].

2. Holonomic functions

Definition 2.1. A multi-valued analytic function f defined on (the univer-
sal covering of) Cn \ S with an algebraic set S of Cn is called a holonomic
function if there exists a left ideal I of Dn so that M = Dn/I is a holonomic
system and Pf = 0 holds on Cn \ S for any P ∈ I.

We set Ann(f) := {P ∈ Dn | Pf = 0 on Cn \ S}. Then f is holonomic
if and only if Dn/Ann(f) is holonomic.

Proposition 2.2. [2] Let f ∈ C[x] be a nonzero polynomial and let λ be

an arbitrary complex number. Then fλ is holonomic.

Algorithms to compute a holonomic system which fλ satisfies are given
in [10] and [8].
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Proposition 2.3. Let f and g be holonomic functions and P, Q ∈ Dn.

Then Pf + Qg and fg are holonomic.

We shall give an algorithmic proof to this proposition in Section 3.3.
The class of the holonomic functions is not closed under the division [23].

Proposition 2.4. Let f ∈ C(x) be a rational function. Then f , exp(f),
and log f are holonomic.

Proof. Suppose f = p/q with p, q ∈ C[x]. Then by Proposition 2.2, p

and q−1 are holonomic. Hence f is holonomic by Proposition 2.3. The
holonomicity of exp(f) is a special case of the proposition below. To prove
that u := log f is holonomic, we may assume that f is a polynomial. Then
u satisfies f∂if = fi with fi := ∂i(f). Let fi be of degree ni with respect
to xi. Then we have ∂ni

i f∂iu = 0 (i = 1, . . . , n). Then, this system is
identified with the left Dn-module M = Dn/(DnP1 + . . . + DnPn) with
Pi := ∂ni

i f∂i and M is a holonomic system on {x ∈ Cn | f(x) 6= 0} since
Char(M) ⊂ {(x, ξ) | ξif(x) = 0 (i = 1, . . . , n)}. In view of Theorem 3.1
of Kashiwara [7], the localization M [1/f ] is holonomic. Since M [1/f ] is
isomorphic to M outside f = 0, we are done.

We note that an algorithmic method for the localization is given in [13].

Proposition 2.5. [1] Let f be a multi-valued analytic function and assume

that (∂f/∂xi)/f is a rational function for every i = 1, . . . , n. Then f is

holonomic.

Proof. Put ai := (∂f/∂xi)/f = pi/qi with pi, qi ∈ C[x]. Then f satisfies
M : (qi∂i − pi)f = 0 (i = 1, . . . , n). Let q be the least common mul-
tiple of q1, . . . , qn. Then M is holonomic outside the hypersurface defined
by q = 0. This implies that f is holonomic in the same way as the proof of
the preceding proposition.

Example 2.6. For two polynomials f1(x), f2(x) in C[x1, . . . , xn], put
f(x) = exp(f1(x)/f2(x)). The system of differential equations M above
is not holonomic in general (consider, e.g., exp(1/(x3

1 − x2
2x

2
3))). A holo-

nomic system for f(x) can be found by the method in [13].

Let f be a holonomic function. By definition, it is a multi-valued an-
alytic function defined on Cn \ S. The algebraic set S is contained in the
singular locus of the annihilating ideal I of f . The singular locus is the
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zero set of
(
in(0,1)(I) : (ξ1, . . . , ξn)∞

) ∩ C[x1, . . . , xn], generators of which
are computable by the Buchberger algorithm in D from generators of I.
See [9] and [18, §1.4].

3. Four operations on holonomic functions

3.1. Restriction to xm+1 = · · · = xn = 0

Let u(x) be a holonomic function and suppose that a left ideal I of Dn

is explicitly given so that M := Dn/I is a holonomic system. Then
MY = M/xnM is a holonomic system. This holonomic system is called
the restriction of M to xn = 0. As a left Dn−1-module, MY is gener-
ated by the residue classes of 1, ∂n, . . . , ∂k0

n . Hence, there exists a sub-
module J such that Dk0+1

n−1 /J ' MY ; J is a system of equations for
u(x′, 0), (∂nu)(x′, 0), . . . , (∂k0

n u)(x′, 0), where x′ = (x1, . . . , xn−1). An al-
gorithm of finding generators of J from those of I is given in [11]. By an
elimination, we can find a system of equations for u(x′, 0) from J [18, §5.2].

Take an integer m such that 0 ≤ m < n. Let Z be the algebraic
set {(x1, . . . , xn) |xm+1 = · · · = xn = 0} and M a left Dn-module Dr

n/I

where I is a left submodule of Dr
n. The restriction of M to Z is defined by

M/(xm+1M +· · ·+xnM) and is denoted by MZ as in the case of the restric-
tion to a hypersurface. It follows from the definition we have M/(xn−1M +
xnM) ' ((M/xnM)/xn−1(M/xnM)), M/(xn−2M + xn−1M + xnM) '
(((M/xnM)/xn−1(M/xnM)) xn−2 ((M/xnM)/xn−1(M/xnM))) and so
on. Therefore, the iterative application of the restriction algorithm for
the hypersurface case provides an algorithm to get the restriction MZ . Yet
another algorithm which computes the restriction MZ without the iteration
is given in [18, §5.5], which uses weight vectors. It is an interesting question
to compare the two methods from the efficiency point of view. We finally
note that the book [18] and our discussion consider restrictions of a singly
generated left D-module D/I, but it is straightforward to generalize it in
the case of Dm/I.

3.2. Integrals of holonomic functions with parameters

Let f(x) be a holonomic function and let I be a left ideal of Dn such
that M := Dn/I is a holonomic system and I ⊂ Ann(f). For the sake
of simplicity, let us assume that f(x) is infinitely differentiable on Rn

and rapidly decreasing with respect to xn, i.e., limxn→∞ xj
n∂k

nf(x) = 0
holds for any x′ := (x1, . . . , xn−1) ∈ Rn−1 and j, k ∈ N. Put gk(x′) :=
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∫∞
−∞ xk

nf(x′, t) dt (k ∈ N). Then g0(x′), g1(x′), . . . , gk0(x
′) are solutions

of the holonomic system M/∂nM where k0 is the maximal non-negative
integral root of the associated b-function (see also [1],[19] although only g0

is considered there). Computation of M/∂nM can be reduced to that of
M/xnM by an isomorphism of Dn induced by the Fourier transform. See,
e.g., [18, §5.5] for details.

3.3. Sum and product of holonomic functions

Let u be a holonomic function and suppose that a left ideal I of Dn is
given so that I ⊂ Ann(u) and M := Dn/I is holonomic. First, for a given
Q ∈ Dn, we show that we can compute a holonomic system for Qu. The
fact that Qu is holonomic follows from DnQu ⊂ Dnu. Let P1, . . . , Pr be
generators of I. Then for P ∈ Dn, PQ ∈ I holds if and only if there exist
Q1, . . . , Qr ∈ Dn such that PQ + Q1P1 + . . . + QrPr = 0. By computing
a Gröbner basis of the ideal generated by Q,P1, . . . , Pr, we can obtain
generators of their syzygy module

S := {(P,Q1, . . . , Qr) ∈ Dr+1
n | PQ + Q1P1 + . . . + QrPr = 0}.

Then the projections of generators of S to the first component generate the
left ideal I : Q = {P ∈ Dn | PQ ∈ I}. Thus we have I : Q ⊂ Ann(Qu).
The left Dn-homomorphism Dn 3 P 7→ PQ ∈ Dn induces a homomorhism
Dn/(I : Q) → Dn/I, which is injective by the definition of I : Q. Hence
Dn/(I : Q) is holonomic.

Now let v be another holonomic function with an explicitly given left
ideal J ⊂ Ann(v) so that Dn/J is a holonomic system. Our first aim is to
compute a holonomic system for Pu + Qv for given P, Q ∈ Dn. Since the
holonomic systems for I : P and J : Q are computed in the way described
above, we may assume that P = Q = 1. Then we have I ∩J ⊂ Ann(u+ v).
This ideal intersection can be computed by the Buchberger algorithm in
the same way as in the polynomial ring (see, e.g., [4]). Dn/(I ∩ J) is
a holonomic system since the homomorphism Dn 3 P 7→ (P, P ) ∈ D2

n

induces an injective homomorphism

Dn/(I ∩ J) −→ (Dn/I)
⊕

(Dn/J).

Next let us consider an algorithm to find a holonomic system for
the product uv. Let Gu and Gv be finite sets of generators of I and
J respectively. Put D2n = C[x, y]〈∂x, ∂y〉 with y = (y1, . . . , yn) and
∂x := (∂x1 , . . . , ∂xn), ∂y := (∂y1 , . . . , ∂yn). Let Iu⊗v be a left ideal of D2n
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generated by both Gu(x) := {P (x, ∂x) | P ∈ Gu} and Gu(y) := {P (y, ∂y) |
P ∈ Gv}. Then it is easy to see that Iu⊗v ⊂ Ann(u(x)v(y)) and that
Mu⊗v := D2n/Iu⊗v is holonomic. Put ∆ := {(x, y) ∈ C2n | x = y}. Then
the restriction of M to ∆:

M∆ := D2n/((x1 − y1)D2n + · · ·+ (xn − yn)D2n + Iu⊗v)

can be computed by performing coordinate transformation xi − yi → yi

and xi → xi and then applying the restriction algorithm with respect to
the variables y1, . . . , yn. Note that M∆ is holonomic since holonomicity is
preserved under restriction. In fact, M∆ is nothing but the tensor product
of Dn/I and Dn/J over C[x], and the above algorithm was introduced in
[12]. From M∆, we can compute a left ideal Iuv of Dn so that Dn/Iuv is a
holonomic system for u(x)v(x) by elimination.

The above algorithm for Iuv is for general purpose but is not efficient
since it involves restriction to the n-dimensional linear space in the 2n-
dimensional space. Hence possible short cuts for some particular cases
would be worth mentioning. As one of such cases, consider v := efu with
a holonomic function u and a polynomial f . Suppose given a left ideal
I ⊂ Ann(u) such that Dn/I is holonomic. Put fi := ∂f/∂xi. Then the left
ideal J of Dn generated by

{P (x1, . . . , xn; ∂1 − f1, . . . , ∂n − fn) | P (x1, . . . , xn; ∂1, . . . , ∂n) ∈ I}
is contained in Ann(v) since (∂i−fi)•(efu) = ef (∂i•u). The characteristic
variety of Dn/J is

{(x, ξ1 − f1(x), . . . , ξn − fn(x)) ∈ C2n | (x, ξ) ∈ Char(Dn/I)}.
Hence Dn/J is holonomic. As another case, the product of a holonomic
function and the Heaviside function will be discussed later.

4. Holonomic distributions and their integrals

Since some important analytic holonomic functions are expressed as definite
integrals of distributions, the notion of holonomic function should be gen-
eralized; we will introduce holonomic distributions. They are closed under
four operations if the result of an operation is well-defined. Computation
of these operations can be done by the same algorithms as in the case of
holonomic functions.

Definition 4.1. Let u be a distribution (in the sense of Schwartz) defined
on Rn. Then u is said to be a holonomic distribution if there is a left ideal
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I of Dn so that Dn/I is holonomic and Pu = 0 holds as distribution for
any P ∈ I.

For example Dirac’s delta function δ(x) = δ(x1) · · · δ(xn) is a holonomic
distribution since x1δ(x) = · · · = xnδ(x) = 0. Let us introduce the Heav-
iside function Y (x1) defined by Y (x1) = 0 for x1 < 0 and Y (x1) = 1 for
x1 ≥ 0. Then we have ∂1Y (x1) = δ(x1) as distribution derivative. The
Heaviside function is a holonomic distribution since it satisfies the holo-
nomic system x1∂1Y (x1) = ∂2Y (x1) = · · · = ∂nY (x1) = 0. As another
example of holonomic distribution, let f(x) be a polynomial with real co-
efficients and λ be a complex numer. Then we introduce the symbol

f(x)λ
+ :=

{
f(x)λ if f(x) ≥ 0
0 if f(x) < 0.

It is easy to see that f(x)λ
+ is well-defined as a tempered distribution if the

real part of λ is positive by the pairing

〈f(x)λ
+, ψ(x)〉 =

∫

Rn

f(x)λ
+ψ(x) dx

for rapidly decreasing smooth functions ψ(x). By virtue of the identity of
the Bernstein-Sato polynomial

P (λ)f(x)λ+1
+ = bf (λ)f(x)λ

+

with the Bernstein-Sato polynomial bf (s) ∈ C[s] of f(x) and some P (s) ∈
Dn[s], the tempered distribution f(x)λ

+ can be analytically continued to
the whole complex plane as a meromorphic function with respect to the
parameter λ. The possible poles are contained in the set

{r − ν | r ∈ C, bf (r) = 0, ν = 0, 1, 2, . . .}, (4.2)

which is in fact a subset of the negative rational numbers according to the
celebrated theorem of Kashiwara [6]. Put Ann(fs) := {P (s) ∈ Dn[s] |
P (s)fs = 0}. Then the algorithm in [10] produces a set G of generators of
Ann(fs). If λ does not belong to the exceptional set (4.2), then we have
P (λ)f(x)λ

+ = 0 for any P (s) ∈ G. This follows easily from the definition of
the action of P (s) on fs viewed as a multi-valued analytic function together
with analytic continuation. However, even if P ∈ Dn annihilates fλ as an
analytic function, it does not necessarily annihilates f(x)λ

+ as a distribution.
For example, we have ∂x(1) = 0 but ∂x1+ = ∂xY (x) = δ(x) 6= 0 with n = 1.
Anyway, it is known that the ideal generated by {P (λ) | P (s) ∈ Ann(fs)}
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is holonomic [6, Prop 6.1]. Hence the distribution f(x)λ
+ is holonomic if λ

does not belong to (4.2).
The integral of a holonomic distribution with respect to some variables

is again holonomic and can be computed by the integration algorithm. In
general, let u = u(x1, . . . , xm) be a holonomic distribution on Rn such that
the projection πm : Rn 3 x 7→ (x1, . . . , xm) ∈ Rm restricted to the support
of u is proper. Then the integral

v(x1, . . . , xm) :=
∫

Rn−m

u(x1, . . . , xm, xm+1, . . . , xn) dxm+1 · · · dxn

is well-defined as a distribution on Rm. In fact, it is defined by the pairing

〈v, ψ〉 := 〈u, 1⊗ ψ〉
for a smooth function ψ(x1, . . . , xm) with compact support, where 1 ⊗ ψ

means regarding ψ(x1, . . . , xm) as a function on Rn. We have

〈∂iPu, 1⊗ ψ〉 = 〈u,−tP∂i(1⊗ ψ)〉 = 0

for any P ∈ Dn and i = m1, . . . , n, where tP denotes the formal adjoint
of P . It follows that v satisfies the integral of the D-module for u. In
particular, if u is a holonomic distribution, then so is its integral v.

Example 4.3. Put u = δ(t− x4
1 − x4

2) and

v(t) :=
∫

R2
δ(t− x4

1 − x4
2) dx1dx2.

Then by the integration algorithm, we know that the distribution v(t) satis-
fies (2t∂t +1)v(t) = 0 on R. From the definition, it follows that u(t) = 0 on
t < 0. Hence v(t) is written in the form v(t) = Ct

−1/2
+ with some constant

C.

5. Definite integral by using the Heaviside function

We can compute the definite integral of the form
∫ b

a

u(x) dx1 =
∫ ∞

−∞
Y (x1 − a)Y (b− x1)u(x) dx1,

where u(x) is a smooth function defined on an open neighborhood of [a, b]×
U with an open set U of Rn−1. The integrand Y (x1 − a)Y (b − x1)u(x) is
well-defined as a distribution on R×U with a proper support with respect
to the projection to U . In the extreme case b = ∞, we can define

v(x2, . . . , xn) :=
∫ ∞

a

u(x) dx1 =
∫ ∞

−∞
Y (x1 − a)u(x) dx1,
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which is a smooth function on U if u(x) is a smooth function on a neigh-
borhood of [a,∞) × U which is rapidly decreasing as x1 tends to infinity.
More precisely, we assume that limx1→∞ Pu(x) = 0 for any P ∈ Dn and
(x2, . . . , xn) ∈ U . The distribution Y (x1 − a)u(x) satisfies a holonomic
system M = Dn/Ann(Y (x1 − a)u(x)). Then we can see that v(x2, . . . , xn)
satisfies the integral M/∂1M in the same way as for a distribution with
proper support discussed in the previous section. A possible bottle neck in
this computation is that of the product of Y (x1− a)u(x). So let us present
a short cut for this computation. Let I be a left ideal of Dn which annihi-
lates u(x) such that Dn/I is holonomic. We assume a = 0 for the sake of
simplicity. First recall the formulae

xj
1δ

(k)(x1) =
{

(−1)jk(k − 1) · · · (k − j + 1)δ(k−j)(x1) (j ≤ k)
0 (j > k),

∂m
1 (Y (x1)u(x)) = Y (x1)∂m

1 u(x) +
m∑

k=1

(
m

k

)
δ(k−1)(x1)∂m−k

1 u(x).

Let P be an element of I whose order with respect to the weight vector
(−1, 0, . . . , 0; 1, 0, . . . , 0) is m. Using the above formulae, we get

P (Y (x1)u(x)) = Y (x1)Pu(x)+
max{m,0}∑

k=1

δ(k−1)(x1)Qku(x) =
max{m,0}∑

k=1

δ(k−1)(x1)Qku(x)

with some Q0, . . . , Qm ∈ Dn. It follows that

Ĩ := {sat(P ) := x
max{m,0}
1 P | P ∈ I, m = ord(−1,0,...,0;1,0...,0)P} ⊂ Ann(Y (x1)u(x)).

We conjecture that Dn/Ĩ is holonomic. In practice, we can take a gen-
erating set G of I and compute G̃ := {sat(P ) | P ∈ G}, the ideal which
generates is contained in Ann(Y (x1)u(x)). We can easily extend the argu-
ments so far to integrals of the form

∫ b1

a1

· · ·
∫ bm

am

u(x) dx1 · · · dxm.

Example 5.1. Let t, x be real variables and put

v(x) :=
∫ ∞

0

e(−t3+t)x dt,

which is a smooth function on x > 0. Then u := e(−t3+t)x satisfies a
holonomic system

(∂t + (3t2 − 1)x)u = (∂x + t3 − t)u = 0.
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By using the argument above, we know that Y (t)u satisfies

(t∂t + (3t3 − t)x)u = (∂x + t3 − t)u = 0.

By the integration algorithm, we can conclude that v(x) satisfies

(27x3∂3
x − 4x3∂x + 54x2∂2

x − 4x2 − 3x∂x + 3)v(x) = 0.

6. Mellin transform and z-transform

Let C be a path in the complex plane. The C-Mellin transform of a function
f(x) is defined as

f(x) 7−→ g[k] =
∫

C

f(x)xk−1dx. (6.1)

When the path C can be regarded as a twisted cycle with respect to
f(x)xk−1, we have the following identities:

(k − 1)E−1
k • g[k] = −

∫

C

(∂xf(x))xk−1dx, Ek • g[k] =
∫

C

xf(x)xk−1dx

where Ek • g[k] = g[k + 1]. The identities induce the correspondence

(k − 1)E−1
k ←→ −∂x, Ek ←→ x

In other words, if the function f(x) is a solution of a differential equation∑m
i=0 ai(x)∂i

xf = 0, then the function g(k) satisfies the difference equation∑m
i=0 ai(Ek)(−(k− 1)E−1

k )if = 0. Conversely, if the function g(k) satisfies
a difference equation

∑m
i=0 bi[k−1]Ei

kg = 0, then the function f(x) satisfies
the differential equation

∑m
i=0 bi(−∂xx)xig = 0.

Following these observations, we can prove, by a purely algebraic dis-
cussion, that C〈k, Ek〉 ' C〈−θx, x〉 and

C〈k, Ek, E−1
k 〉 ' C〈x, ∂x〉. (6.3)

Let us consider a function f [k, n] which satisfies a system of difference
operators J . We apply the Mellin transform

k ↔ −θx, Ek ↔ x, −E−1
k k ↔ ∂x, n ↔ −θy, En ↔ n, −E−1

n n ↔ ∂y

to J and obtain the ideal Ĵ in the ring of differential operators.

Theorem 6.4. We assume f [k, n] = 0 for a sufficiently large |k|. Put

I =
(
Ĵ + (x− 1)D2

)
∩C〈y, ∂y〉

By applying the inverse Mellin transform to I, we obtain a difference equa-

tion for F [n] =
∑

k f [k, n].
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Example 6.5. Put f [k, n] =
(
n
k

)
. Then, we have

(En − 2)
∑

k

f [k, n] = 0.

The function f [k, n] satisfies the system of difference equations {(n −
k + 1)En − (n + 1)}f = 0 and {(k + 1)Ek − (n − k)}f = 0. Let J the
ideal generated by the two difference operators above. Consider the inverse
Mellin transform of J . Apply the algorithm of restriction to obtain the
restriction Ĵ + (x − 1)D2. From the output of the algorithm, we can see
that the ideal I is generated by −y2∂y +2y∂y−2 = −yθy +2θy−2. Hence,
the sum is annihilated by Enn− 2n− 2 = (n + 1)(En − 2).

The inverse Mellin transform is called the z-transform in the theory of
signal processing. Let {s[k]} be a sequence of complex numbers indexed
by k = (k1, k2, . . . , kn) ∈ Zn, which we call a (multidimensional) discrete
signal. The z-transform of {s[k]} is the formal series

Z(s)(z) =
∑

k∈Zn

=
∑

k∈Zn

s[(k1, . . . , kn)]zk1
1 · · · zkn

n .

If the z-transform S(z) = Z(s)(z) is convergent around z = 0, then we have

s[k] =
1

(2π
√−1)n

∫

C

z−k1−1
1 · · · z−kn−1

n S(z)dz1 · · · dzn

by the residue theorem where C is the product of n circles with the center
at 0. The inverse z-transform is nothing but a multi-variable generalization
of C-Mellin transform. A signal s[k] is called bounded when s[k] = 0 for
k1, . . . , kn ¿ 0.

A bounded discrete signal is called holonomic if the annihilating set
of the difference operators of the signal is holonomic under the n-variable
generalization of the isomorphism (6.3).

Let x[k] and y[k] be one dimensional holonomic signals and X(z) and
Y (z) be the z-transforms of x[k] and y[k] respectively. Since we have

Z(x[k] ∗ y[k]) = X(z)Y (z)

and

Z(x[k]y[k]) =
1

2π
√−1

∫

C

X(w)Y (z/w)w−1dw,

the product and the convolution of holonomic signals are again holonomic
signal. It follows from discussions of the previous and this sections that we
have the following theorem.
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Theorem 6.6.

S(z) Z−1(S)[k]

sum and subtraction sum and subtraction

product convolution

multiplicative convolution (element-wise) product

restriction to zn = 1 Sum with respect to kn

integration w.r.t. zn

(the inverse of z-transform)

Holonomic signals are closed under the operations listed above if they are

well-defined and holonomic systems for new signals under these operations

are computable.

We consider a one dimensional discrete signal system with the impulse
response h[k]. Then, for an input signal x[k], the system outputs the signal
y[k] = h[k] ∗ x[k]. Let H(z), X(z), and Y (z) be the z-transforms of h[k],
x[k], and y[k] respectively. Then, we have Y (z) = H(z)X(z). The function
H(z) is called the transfer function of the system. In the theory of discrete
signals, rational functions are usually appear as transfer functions and a
beautiful theory is established for this class of transfer functions. We may
try to replace rational functions by holonomic functions. This idea is not
only mathematically natural, but has also been used in signal processing;
an example is the Kaiser window, which is expressed in terms of the zeroth-
order modified Bessel function of the first kind (see, e.g., [15]). The Bessel
function is no longer rational, but it is a holonomic function. Our holonomic
approach will give a systematic framework to design filters out of rational
functions. As the first step, numerical evaluation of holonomic functions is
necessary to design and evaluate a new filter. In the next section, we will
see that our holonomic approach gives an effective method of numerical
evaluations of holonomic functions.

7. Numerical evaluation of holonomic functions

Let us compare several computational techniques to evaluate a definite
integral. We consider the problem of checking numerically the identity
F ( 1

12 , 5
12 , 1

2 ; 1323
1331 ) = 3

4
4
√

11 (F.Beukers, 1990) where

F (α, β, γ; z) =
Γ(γ)

Γ(β)Γ(γ − β)

∫ 1

0

tβ−1(1− t)γ−β−1(1− tz)−αdt
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The function F is a holonomic function with respect to z; F satisfies the
Gauss differential equation

z(1− z)f ′′ + (γ − (α + β + 1)z)f ′ − αβf = 0, f(0) = 1. (7.1)

Let us try a numerical integration over [0, 1] by the adaptive Gauss
method; we do not utilize the differential equation. Since the integrand
is singular at the boundary, we use the following contiguity relation and
evaluate the two hypergeometric functions below [21]

F (
1
12

,
5
12

,
1
2
;
1323
1331

)

= −555146934690291893170809321
77265229938688

F (−31
12

,
37
12

,
13
2

;
1323
1331

)

23008497055530190854682531919
4017791956811776

F (−31
12

,
37
12

,
15
2

;
1323
1331

)

It takes about 9 seconds to get the value in the accuracy 10−4.
Let us evaluate the value by solving (7.1). The fourth order adaptive

Runge Kutta method [17] takes about 2 seconds to get the value in the
accuracy 10−4.

We can find the series solution of (7.1) in an algorithmic way. The
evaluation of the series expansion at z = 1323

1331 gives the value in the accuracy
10−4 in less than 1 second [21].

This example shows that differential equations give substantial informa-
tion for effective numerical evaluations and leads us to the following method
to evaluate a holonomic function f at x = b numerically.

(1) Find a system of differential equations for holonomic function f .
Let r be the rank of the system of differential equations.

(2) Choose a point x = a. Evaluate f(a), f (1)(a), . . ., f (r−1)(a). This
step is not algorithmic.

(3) Find the value f(b) by an adaptive Runge-Kutta method by the
system of differential equations and the initial values at x = a.

If we can find series solution at x = a and it converges at x = b rapidly,
we may replace the last step by a computation of a series solution and
its evaluation. As to methods to find series solutions, see the Chapter
2 of [18] and references of it, however there remains some fundamental
unsolved problems. As a demonstration of our method, we close this paper
with showing a graph of a solution of a Bessel differential equation in two
variables [14], which is drawn by using our method (Figure 1).
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Figure 1. Bessel function in two variables: We consider the integral f(a; x, y) =R
C exp(− 1

4
t2 − xt − y/t)t−a−1dt, where C = ~01 + {e2π

√−1θ | θ ∈ [0, 2π]} + ~10. The
function f(a; x, y) satisfies the holonomic system ∂x∂y +1, ∂2

x−2x∂x +2y∂y +2a, 2y∂2
y +

2(a + 1)∂y − ∂x + 2x. The rank of the system is 3. Take a = 1/2. It admits a unique
solution of the form y−ag(x, y) such that g is holomorphic at the origin and g(0, 0) = 1.
This is the graph of g for (x, y) ∈ [0, 1.4]× [0, 9]. The function f(1/2; x, y) is a constant
multiple of y−ag(x, y). The normal form computation in D is used to derive ODE’s to
apply for the adaptive Runge-Kutta method.
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geometric Differential Equations. Springer, 2000.
19. Takayama, N.: An algorithm of constructing the integral of a module,

Proceedings of International Symposium on Symbolic and Algebraic Com-
putation, (1990) 206–211.

20. Takayama, N.: Kan: A system for computation in algebraic analysis.
Source code available at http://www.openxm.org Version 1 (1991), Version
2 (1994), The latest version is 3.021108 (2002).

21. Tamura, Y.: A design and implementation of a digital formula book for
generalized hypergeometric functions, Thesis, (2003), Kobe University.

22. Wilf, H.S., Zeilberger, D.: An algorithmic proof theory for hypergeometric
(ordinary and ”q”) multisum/integral identities, Inventiones Mathemati-
cae 108 (1992), 575–633.

23. Zeilberger, D.: A holonomic systems approach to special function identi-
ties. Journal of Computational and Applied Mathematics 32 (1990), 321–
368.


