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Abstract. In this report we explain why a certain notion of isothermicity for discrete
surfaces in Euclidean 3-space is natural. We also consider isothermicity of discrete
surfaces in Minkowski 3-space.

Introduction

In this report on the contents of a talk given in December of 2008 at Osaka City
University, we give an already known description of isothermicity for discrete surfaces
in Euclidean 3-space, and we apply this description for the case of discrete surfaces in
Minkowski 3-space as well. We derive a motivation for this description from the case of
smooth surfaces in Euclidean 3-space.

1. Smooth isothermic surfaces in Euclidean 3-space, and their mean

curvature.

Let

x = x1(u, v)i + x2(u, v)j + x3(u, v)k

be a surface in Euclidean 3-space Im(Q) ≈ R3 with metric 4(dx2
1 + dx2

2 + dx2
3), where Q

denotes the quaternions and Im(Q) denotes the imaginary quaternions. Assume (u, v)
is a conformal curvature-line coordinate system. Every constant mean curvature (CMC)
surface can be parametrized this way, away from umbilic points. We call such coordinates
isothermic coordinates.

The choice of metric 4(dx2
1 + dx2

2 + dx2
3) instead of the more common dx2

1 + dx2
2 + dx2

3

comes from a unification of notation with cases where the ambient space is spherical
3-space S3 or hyperbolic 3-space H3. Although we do not consider those other two space
forms here, we keep the unifying notation, for the benefit of a reader who would like to
look at those other cases (see [4] or [7]).

Although the phrase ”isothermic coordinates” means simply conformal curvature-line
coordinates, we also use the phrase ”isothermic surface” to mean any surface for which
isothermic coordinates exist, even if those isothermic coordinates have not been deter-
mined yet.

A formula for the mean curvature is given in the next lemma:
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Lemma 1. The mean curvature H of x, with 4x = ∂u∂ux + ∂v∂vx, is

H = 1

2
(k1 + k2) = −1

2
|xu|−2 Re{4x · n} ,

where the kj ∈ R are the principal curvatures, i.e. ∂un = −k1∂ux and ∂vn = −k2∂vx.

Here, n is the unit normal vector to x.

Remark 1. Letting x1u denote d
du

(x1), and similarly taking other notations, the unit
normal vector n to the surface takes the explicit form

n =
1

2
· (x2ux3v − x3ux2v)i + (x3ux1v − x1ux3v)j + (x1ux2v − x2ux1v)k
√

(x2ux3v − x3ux2v)2 + (x3ux1v − x1ux3v)2 + (x1ux2v − x2ux1v)2
.

Note the presence of the factor 1

2
in front of this expression, which is due to our unusual

choice of metric for R3.

Proof. The first equality of the equation in the lemma is of course just the definition of
the mean curvature. We now prove the second equality. The first fundamental form (gij)
satisfies 〈xu, xv〉 = 0 = g12 = g21, and

g11 = 〈xu, xu〉 = 4|xu|2 = 4|xv |2 = 〈xv , xv〉 = g22 .

Then the second fundamental form (bij) satisfies

b11 = 〈xuu, n〉 = −4 Re{xuu · n} ,

b12 = b21 = 〈xuv , n〉 = 0 ,

b22 = 〈xvv , n〉 = −4 Re{xvv · n} .

The result follows. �

2. Christoffel transforms for smooth surfaces

We now define the Christoffel transform x∗, which for a CMC surface in R3 gives the
parallel CMC surface. Let x be a surface in R3 with mean curvature H and unit normal
n. The Christoffel transform x∗ satisfies that

• x∗ is defined on the same domain as x,
• x∗ has the same conformal structure as x,
• x and x∗ have opposite orientations, and
• x and x∗ have parallel tangent planes at corresponding points.

One can check that it automatically follows that the curvature directions at corresponding
points of x and x∗ will themselves also be parallel.

This definition above turns out to be equivalent to the following definition, and the
existence of the integrating factor ρ below is equivalent to the existence of isothermic
coordinates. Then, once we have x∗, we will see that we can take x∗ so that dx∗ =
x−1

u du − x−1
v dv.

Definition 1. A Christoffel transform x∗ of an umbilic-free surface x in R3 is a surface
that satisfies dx∗ = ρ(dn + Hdx) for some nonzero real-valued function ρ on the surface
x (here x∗ is determined only up to translations and homotheties).

Remark 2. The Christoffel transform is also sometimes called the “dual surface”, and
taking the Christoffel transform can be called “dualizing”.
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Remark 3. We did not allow umbilic points on x in the above definition, because they
can be troublesome. In particular, the case that x is a round sphere (i.e. is completely
umbilic) is a very special one in this discussion.

Proposition 1. Away from umbilics of x, the Christoffel transform x∗ exists if and only

if x is isothermic.

Proof. First we prove one direction, by assuming x is isothermic and then showing x∗

exists.
Take x to be isothermic, and take isothermic coordinates u, v for x, so xuv = Axu+Bxv

for some A, B. Then

d(x−1

u du − x−1

v dv) = 16g−2

11
(xuxuvxu + xvxuvxv)du ∧ dv = 0 .

This implies that there exists an x∗ such that

dx∗ = x−1

u du − x−1

v dv .

Also,

dn + Hdx = 1

8
(b11 − b22)(x

−1

u du − x−1

v dv) ,

implying that x∗ is a Christoffel transform, since b11 − b22 6= 0 at non-umbilic points.
Now we prove the other direction, by assuming x∗ exists and then showing that x has

isothermic coordinates.
For any choice of coordinates u, v for x = x(u, v), the Codazzi equations are

(b11)v − (b12)u = Γ1

12b11 + (Γ2

12 − Γ1

11)b12 − Γ2

11b22 ,

(b12)v − (b22)u = Γ1

22b11 + (Γ2

22 − Γ1

21)b12 − Γ2

21b22 .

(See, for example, page 97 of [6].) Here the Christoffel symbols are

Γh
ij =

1

2

2
∑

k=1

ghk(∂uj
gik + ∂ui

gjk − ∂uk
gij) ,

where u1 = u and u2 = v. Because we are avoiding any umbilic points of x, we may
assume that u and v are curvature line coordinates for x (see, for example, Appendix
B-5 of [8]), and so g12 = b12 = 0. It follows that

Γ1

11 =
∂ug11

2g11

, Γ2

22 =
∂vg22

2g22

, Γ2

11 = −∂vg11

2g22

,

Γ1

22 = −∂ug22

2g11

, Γ1

12 = Γ1

21 =
∂vg11

2g11

, Γ2

12 = Γ2

21 =
∂ug22

2g22

.

Denoting the principal curvatures by kj , the Codazzi equations simplify to

2(k1)v =
∂vg11

g11

· (k2 − k1) , 2(k2)u =
∂ug22

g22

· (k1 − k2) . (1)

Then existence of x∗ gives

d(ρdn + ρHdx) = 0 ,

from which it follows that
(

0 b11
g11

− b22
g22

b22
g22

− b11
g11

0

)

(

ρu

ρv

)

= ρ ·





(

b11
g11

+ b22
g22

)

v(

b11
g11

+ b22
g22

)

u



 .



4 Y. KINOSHITA AND W. ROSSMAN

Then because ρuv = ρvu (i.e. it does not matter which order we take mixed derivatives
in), we have

(

(k2 + k1)v

k1 − k2

)

u

=

(

(k1 + k2)u

k2 − k1

)

v

,

which implies

2(((k1)v)u + ((k2)u)v)

k1 − k2

+ 2(k2 − k1)
−2 ((k1)v(k2 − k1)u + (k2)u(k2 − k1)v) = 0 .

Substituting the Codazzi equations (1) into this, we have
(

log
g11

g22

)

uv

= 0 .

In particular, there exist positive functions f1(u) and f2(v) depending only on u and v,
respectively, so that

(f1(u))2g11 = (f2(v))2g22 .

Writing u = u(û) and v = v(v̂) for new curvature line coordinates û and v̂, we have

ĝ12 = b̂12 = 0 and ĝ11 = (uû)2g11 and ĝ22 = (vv̂)2g22, for the fundamental form entries

ĝij and b̂ij in terms of û and v̂. We can choose û and v̂ so that uû = f1(u(û)) and
vv̂ = f2(v(v̂)) hold. Then ĝ11 = ĝ22 and so û, v̂ are isothermic coordinates. �

Corollary 1. Away from umbilic points, one Christoffel transform x∗ of an isothermic

x = x(u, v) can be taken as a solution of dx∗ = x−1
u du − x−1

v dv.

Because of dx∗ = ρ(dn + Hdx), we have

0 = d2x∗ = dρ ∧ (dn + Hdx) + ρ · dH ∧ dx ,

which gives, with respect to isothermic coordinates (u, v), that

ρu = − g11∂uH

g11H − b22

· ρ , ρv = − g11∂vH

g11H − b11

· ρ . (2)

The existence of x∗ then automatically implies the compatibility condition (ρu)v = (ρv)u,
with ρu and ρv as just above. This pair of equations tells us that ρ is uniquely determined
once its value is chosen at a single point, and thus the solution ρ is unique up to scalar
multiplication by a constant factor. Thus the Christoffel transform in Corollary 1 is
essentially the unique choice, up to homothety and translation in R3. As a result of this,
without loss of generality, we can now simply take the definition of x∗ as follows:

Definition 2. The Christoffel transform of a surface x with isothermic coordinates (u, v)
is any x∗ (defined in R3 up to translation) such that dx∗ = x−1

u du − x−1
v dv.

Remark 4. The function ρ in Definition 1 is generally a constant scalar multiple of
the multiplicative inverse of the mean curvature of x∗, seen as follows: The Christoffel
transform of the Christoffel transform (x∗)∗, with respect to Definition 2, satisfies that

d((x∗)∗) = (x∗
u)−1du − (x∗

v)−1dv = (x−1

u )−1du − (−x−1

v )−1dv = xudu + xvdv = dx ,

so (x∗)∗ should be the original surface x, up to translation and homothety, with respect
to Definition 1. So by scaling and translating appropriately, we may assume (x∗)∗ = x.
Also, if the normal of x is n, then the normal of x∗ is −n. We have

dx = d((x∗)∗) = ρ∗(dn∗ + H∗dx∗) = ρ∗(−dn + H∗ρ(dn + Hdx)) ,
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and so

(1 − ρρ∗HH∗)dx = (H∗ρρ∗ − ρ∗)dn .

Since dx and dn are linearly independent away from umbilic points, it follows that

ρH∗ = ρ∗H = 1 .

Remark 5. When H is constant and we have isothermic coordinates, the equations in
(2) tell us that ρ is constant. Thus if x|| = x+H−1n is the parallel CMC surface, then x∗

and x|| differ by only a homothety and translation of R3. Thus the Christoffel transform
is essentially the same as the parallel CMC surface to x, as expected.

Remark 6. The round cylinder gives one simple example of a Christoffel transform’s
orientation reversing property. For the cylinder x(u, v) = (cosu)i + (sin u)j + vk in
R3, the normal vector is n = (− cosu)i + (− sinu)j, and the Christoffel transform is
x∗(u, v) = (− cosu)i + (− sin u)j + vk with its normal vector n∗ = (cosu)i + (sin u)j.
Thus n∗ = −n.

3. Discrete isothermic surfaces

Here we will give a definition of discrete isothermic surfaces in discrete differential
geometry, which is now well known.

The phrase “discrete differential geometry” is sometimes abbreviated as “DDG”, and
many researchers now work in this and related fields. Here we list some of those re-
searchers, but we first note that this list includes only people whose work is in some
way related to the viewpoint presented in these notes – and even with this restriction
is by no means a complete list: Sergey Agafonov, Andreas Asperl, Alexander Bobenko,
Christoph Bohle, Folkmar Bornemann, Ulrike Buecking, Fran Burstall, Adam Doliwa,
Charles Gunn, Udo Hertrich-Jeromin, Michael Hofer, Tim Hoffmann, Ivan Izmestiev,
Michael Joswig, Axel Kilian, Yang Liu, Vladimir Matveev, Christian Mercat, Franz
Pedit, Paul Peters, Ulrich Pinkall, Konrad Polthier, Helmut Pottmann, Jurgen Richter-
Gebert, Wolfgang Schief, Jean-Marc Schlenkev, Nicholas Schmitt, Oded Schramm, Peter
Schroeder, Boris Springborn, John Sullivan, Yuri Suris, Johannes Wallner, Wenping
Wang, Max Wardetzky.

Consider a discrete surface fp ∈ Im(Q), which we can consider to be a discrete surface
in Euclidean 3-space, since Im(Q) ≈ R3. Here p is any point in a discrete lattice domain
(locally always a subdomain of Z2). Consider any quadrilateral in the lattice with vertices
p, q, r, s (i.e. the points (m, n), (m +1, n), (m + 1, n+ 1), (m, n + 1) for some m, n ∈ Z)
ordered counterclockwise about the quadrilateral.

We change the notation ”x” for surfaces in the previous section to ”f” here. This is for
distinguishing between smooth surfaces, always denoted by ”x”, and discrete surfaces,
always denoted by ”f”.

It would be natural to assume that the points fp, fq , fr and fs are coplanar, so that
they are the vertices of a planar quadrilateral in R3, and thus the surface is comprized of
planar quadrilaterals connecting continuously along edges. It is even better if the points
fp, fq , fr and fs are concircular (i.e. all lie in one circle), because then we could extend
the notion of a surface comprized of planar quadrilaterals to the cases of other ambient
spaces, such as S3 or H3. In fact, once the vertices are concircular, there is no need to
think about ”planar faces”, as all the needed information is encoded in the circle itself.
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We will soon restrict to the concircular case, but for the moment we make no assumptions
about the positioning of fp, fq , fr and fs.

We define the cross ratio of this quadrilateral as

qpqrs = (fq − fp)(fr − fq)
−1(fs − fr)(fp − fs)

−1 .

This cross ratio is not invariant with respect to conformal transformations of R3,
but such an invariance almost holds, in the sense that we can produce a conformally
invariant version of the cross ratio by changing it into a complex-valued object, defined
up to conjugation, as follows:

q̂pqrs = Re(qpqrs) ± i||Im(qpqrs)|| .

Lemma 2. q̂pqrs is a Möbius invariant.

Proof. Applying the following maps to the space Im(Q):

ai + bj + ck → rai + rbj + rck ,

ai + bj + ck → ai + bj + ck + (a0i + b0j + c0k) ,

ai + bj + ck → −ai + bj + ck ,

ai + bj + ck → (cos(θ)a − sin(θ)b)i + (sin(θ)a + cos(θ)b)j + ck ,

ai + bj + ck → (cos(θ)a − sin(θ)c)i + bj + (sin(θ)a + cos(θ)c)k ,

ai + bj + ck → ai + (cos(θ)b − sin(θ)c)j + (sin(θ)b + cos(θ)c)k ,

ai + bj + ck → (ai + bj + ck)/(a2 + b2 + c2) ,

where θ, r, a0, b0, c0 are any real constants, and a, b, c represent coordinates of Im(Q) ≈
R3, we find that both Re(q) and ||Im(q)||2 are preserved in all seven cases. These
seven maps are a dilation, a translation, a reflection, three rotations, and an inversion,
respectively, that generate the full Möbius group. It follows that q̂ is a Möbius invariant.

�

A direct computation gives the following general formula for the cross ratio:

Lemma 3. For p1, p2, p3, p4 ∈ Im(Q), we define sij = (pi − pj)
2 and then we have

q̂p1p2p3p4
=

s12s34 − s13s24 + s14s23 ±
√
E

2s14s23

,

where E = s2
12s

2
34 + s2

13s
2
24 + s2

14s
2
23 − 2s13s14s23s24 − 2s12s14s23s34 − 2s12s13s24s34.

Because

E = 1

2
(s12s34 − s14s23)

2 + 1

2
(s12s34 − s13s24)

2+

1

2
(s13s24 − s14s23)

2 − s12s23s34s14 − s12s24s13s34 − s13s14s23s24 ,

it is not clear from straightforward algebraic considerations that E ≤ 0. However, this
does indeed hold, for geometric reasons (see [4] or [7] for a proof of this):

Lemma 4. E ≤ 0.
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Now let us assume that for every quadrilateral with vertices p, q, r, s, the image points
fp, fq , fr, fs are concircular, lying in a circle C. This makes the cross ratios all real-valued.
In fact, once the cross ratio is real, then the value q̂ of the cross ratio, along with the
values of fp and fq and fs, determine the point fr ∈ C uniquely. In this way, the cross
ratio gives a parametrization of the circle containing fp, fq and fs.

We consider the following additional condition:

Definition 3. When, for every quadrilateral, we can write the cross ratio as

qpqrs = apq/aps ∈ R

so that the cross ratio factorizing function apq defined on the edges of f satisfies

apq = asr ∈ R and aps = aqr ∈ R , (3)

then we say that f is discrete isothermic.

Note that the apq are symmetric, i.e. apq = aqp for any adjacent p and q.

4. Justification of the notion of discrete isothermic surfaces

One viewpoint on what a ”discrete isothermic surface” is, as in Definition 3, is as
follows: Take a smooth surface x with unit normal n. Give it curvature line coordinates
x = x(u, v), so xu ⊥ xv . (Curvature line coordinates always exist away from umbilics.)
Then the fundamental forms are

I =

(

g11 0
0 g22

)

, II =

(

b11 0
0 b22

)

.

One can always stretch the coordinates, so that x = x(u, v) = x(ũ(u), ṽ(v)) for any
monotonic functions ũ depending only on u, and ṽ depending only on v. Note that
〈xũ, xṽ〉 = 0, and xũṽ = xuv

du
dũ

dv
dṽ

implies 〈xũṽ , n〉 = 0, so (ũ, ṽ) are also curvature line
coordinates. The surface is then isothermic if and only if there exist ũ, ṽ such that
the metric becomes conformal, i.e. 〈xũ, xũ〉 = −4x2

ũ = −4x2
ṽ = 〈xṽ , xṽ〉, and this is

equivalent to
g11

g22

=
a(u)

b(v)
,

where the function a depends only on u, and b depends only on v.
Now consider the cross ratio qε of the four points x(u, v), x(u + ε, v), x(u + ε, v + ε)

and x(u, v + ε). Using that xu ⊥ xv implies xuxv +xvxu = 0, i.e. that xux−1
v = −x−1

v xu,
we see that

lim
ε→0

qε = −g11

g22

. (4)

So x is isothermic if and only if

lim
ε→0

qε = −a(u)

b(v)
,

where again a is some function that depends only on u, and b depends only on v. This
description of isothermicity does not involve any stretching of ũ or ṽ, which we would not
be able to do in the discrete case anyways, and now Definition 3 is a natural discretiza-
tion of this description in the smooth case: The corresponding statement for discrete
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surfaces, where stretching of coordinates is no longer possible, is that the surface is dis-
crete isothermic if and only if the cross ratio factorizing function can be chosen so that
apq = ars and aps = aqr for vertices p, q, r, s (in order) about a given quadrilateral.

There is another perspective on isothermicity, coming from a theorem proven by
Bobenko and Pinkall [2]:

Theorem 1. Let x(u, v) be a smooth surface in R3, and define the diagonal cross ratio

qd
ε = (x(u + ε, v − ε) − x(u − ε, v − ε))(x(u + ε, v + ε) − x(u + ε, v − ε))−1 ×

(x(u − ε, v + ε) − x(u + ε, v + ε))(x(u − ε, v − ε) − x(u − ε, v + ε))−1 .

Then

qd
ε = −1 + O(ε)

if and only if (u, v) are conformal coordinates for x, and

qd
ε = −1 + O(ε2)

if and only if (u, v) are isothermic coordinates for x.

The superscript ”d” in qd
ε stands for ”diagonal”, because we are using diagonal ele-

ments to define this cross ratio, unlike with the previous qε.

Proof. Without loss of generality, we may assume x(u, v) = 0, and then for ρu, ρv ∈ {±1},
we have

x(u + ρuε, v + ρvε) = ερuxu + ερvxv + 1

2
ε2(xuu + xvv + 2ρuρvxuv) + O(ε3) ,

so

qd
ε = xux−1

v xux−1

v +

ε(xux−1

v xuvx−1

v + xux−1

v xux−1

v xuvx−1

v − xuvx−1

v xux−1

v − xux−1

v xuvx−1

v xux−1

v ) + O(ε2) .

If the coordinates are conformal, then xux−1
v xux−1

v = −1, and we have

qd
ε = −1 + εx−4

u (xuxvxuv(xu + xv) + x2

uxuv(xu − xv)) + O(ε2) .

Now, if the coordinates are isothermic, then b12 = 0, and so there exist scalar functions
α and β so that

xuv = αxu + βxv .

From this it follows that qd
ε = −1 + ε · 0 + O(ε2). �

This theorem leads to the following definition for discrete isothermic surfaces in the
narrow sense: f is discrete isothermic if

qpqrs = −1

for all quadrilaterals, with vertices fp, fq, fr, fs.
However, with this definition, transformations, such as the Calapso transform for

discrete surfaces, of isothermic surfaces will not remain isothermic. Hence the broader
definition given in Definition 3 has been found to be more suitable.
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5. Christoffel transforms of discrete surfaces

When f is an isothermic surface in R3 ≈ Im(Q), we can define the Christoffel transform
f∗ (also in R3) of f as follows:

Definition 4. Let f be a discrete isothermic surface in R3, then the Christoffel transform

f∗ of f satisfies

df∗pqdfpq = apq . (5)

Here, for any object F defined on vertices, dFpq denotes the difference

dFpq := Fq − Fp

of the values of F at the vertices q and p.
To see that this definition is natural, we consider the Christoffel transform x∗ of a

smooth surface x in R3 with isothermic coordinates (u, v). In the smooth case, we may
assume x and x∗ satisfy

dx = xudu + xvdv , dx∗ = x−1

u du − x−1

v dv .

So

dx∗(∂u)dx(∂u) = 1 and dx∗(∂v)dx(∂v) = −1 .

We also have

lim
ε→0

qε = −1 =
dx∗(∂u)dx(∂u)

dx∗(∂v)dx(∂v)
,

by Equation (4). In the discrete case, we loosened the −1 in the right-hand side of
Equation (4) to the apq/aps in the right-hand side of qpqrs = apq/aps, as in Definition 3.
In this way, it is natural to consider that

apq

aps

=
df∗pqdfpq

df∗psdfps

,

where dfpq , df∗pq , dfps, df∗ps now represent discrete analogs of dx(∂u), dx∗(∂u), dx(∂v),
dx∗(∂v), and so Definition 4 becomes natural.

We can then prove the following:

Theorem 2. [1] If f is a discrete isothermic surface, then there exists a Christoffel

transform f∗.

Proof. First of all, f∗ exists if and only if the compatibility condition

df∗pq + df∗qr = df∗ps + df∗sr (6)

holds, that is to say, we can apply “discrete integration” of df∗ to obtain f∗.
We now assume f is discrete isothermic and prove that f∗ exists, i.e. that Equation (6)

holds with df∗ defined as in Equation (5). By Equation (5), Equation (6) is equivalent
to having

apqdf−1

pq + aqrdf−1

qr = apsdf−1

ps + asrdf−1

sr

hold. Because apq = asr and aps = aqr (using isothermicity), the above equation is
equivalent to

apq

aps

(df−1

pq − df−1

sr ) = df−1

ps − df−1

qr .
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The cross ratio is apqa
−1
ps = dfpqdf−1

qr dfrsdf−1
sp = df−1

qr dfrsdf−1
sp dfpq = df−1

qr dfpqdf−1
sp dfrs, and

so the equation becomes

df−1

qr dfrsdf−1

sp + df−1

qr dfpqdf−1

sp = df−1

ps − df−1

qr ,

that is to say,

dfrs + dfpq + dfqr + dfsp = 0 .

But this follows from the fact that f exists and so df is closed. �

Lemma 5. Let f be a discrete isothermic surface. Then the Christoffel transform f∗ of

f is isothermic with the same cross ratios as f.

Proof. Let q, q∗ be the cross ratios of f, f∗ respectively. Then

q∗ = df∗pq(df∗qr)
−1df∗rs(df∗sp)

−1 = apqdf−1

pq (aqrdf−1

qr )−1arsdf−1

rs (aspdf−1

sp )−1 =

(apq/aqr)(ars/asp)df−1

pq (df−1

qr )−1df−1

rs (df−1

sp )−1 = q2(df−1

sp dfrsdf−1

qr dfpq)
−1 .

We then have

q∗ = q2(dfpqdf−1

qr dfrsdf−1

sp )−1 = q2 · q−1 = q .

�

6. Smooth CMC surfaces in R3 and R2,1, without quaternions

Consider a smooth surface

x(u, v) = (x1(u, v), x2(u, v), x3(u, v))

in R3 or R2,1, with unit normal n. Suppose the surface is spacelike, in the case of R2,1.
Also, suppose that the surface is isothermic, with isothermic coordinates u, v. Then
conformality implies

I =

(

E 0
0 E

)

with E = xu ◦ xu, where ◦ denotes the inner product associated with R3 or R2,1. Then
the second fundamental form is

II =

(

n ◦ xuu n ◦ xvu

n ◦ xuv n ◦ xvv

)

,

and having isothermic coordinates implies nu = −k1xu and nv = −k2xv , and so

II =

(

k1E 0
0 k2E

)

.

The Hopf differential is, with z = u + iv,

Q = n ◦ xzz =
1

4
n ◦ (xuu − xvv − 2ixuv) =

1

4
n ◦ (xuu − xvv)

=
1

4
(b11 − b22) =

E

4
(k1 − k2) .

If the mean curvature H is constant, then it is well known that Qz̄ = 0, so Q =
(E/4)(k1−k2) ∈ R is constant. As a remark to motivate the next lemma and proposition,
if the constant H is nonzero, then the parallel CMC surface is x|| = x + H−1n, so the
equation dx∗ = h · d(Hx + n), for h = 2(E(k1 − k2))

−1 constant, is solvable for x∗.
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Lemma 6. If x is isothermic in R3 or R2,1 with isothermic coordinates u, v, then x∗

exists, solving dx∗ = −xu

E
du + xv

E
dv.

Proof. We want to show ”d2x∗ = 0”, i.e.

d(−xu

E
du +

xv

E
dv) = 0,

i.e. 2xuvE − xuEv − xvEu = 0. We can get this by noting that b12 = 0 implies xuv =
axu + bxv for some reals a and b, and that xu ◦ xv = 0. �

Proposition 2. Let x be an isothermic immersion in R3 or R2,1, with x∗ as in the

previous lemma. Then x is CMC H if and only if dx∗ = h(Hdx+ dn) for some constant

h.

Proof.

−xu

E
du +

xv

E
dv = h(Hdx + dn) , h constant

is equivalent to

(k1 + k2) = 2H , and h = 2E−1(k1 − k2)
−1 is constant .

The first of these is clearly true, and h is constant if and only if the Hopf differential Q
is constant, which is true if and only if x is CMC. �

Corollary 2. An isothermic immersion x in R3 or R2,1 is CMC if and only if

−xu

E
du +

xv

E
dv = h(Hdx + dn)

for some real constants h and H.

7. Discrete isothermic CMC surfaces in R3, without quaternions

The notion of constant mean curvature for discrete isothermic surfaces in R3 was given
in [1]. For the case that the ambient space is a general simply-connected complete 3-
dimensional Riemannian manifold of constant sectional curvature, this notion of “discrete
CMC” was extended in [4]. To make this extension, [4] used discrete versions of linear
conserved quantities, analogous to the way smooth CMC surfaces possess smooth linear
conserved quantities. We do not explain the linear conserved quantities here, but rather
use an equivalent property to define “discrete CMC”, a property that was proven to be
equivalent in [4] (see also [7]) and can be stated without any use of conserved quantities.
As we state the following definition only in the case that the ambient space is R3, it is
also equivalent to the definitions found in [1].

Starting with the equation

df∗pq = apq

−dfpq

|dfpq |2
we have the following:

Definition 5. A discrete isothermic surface f in R3 is CMC if and only if there exist
constants h, H ∈ R and np with |np|2 = 1 and dfpqnq + npdfpq = 0 so that

h(dnpq + Hdfpq) =
−apqdfpq

|dfpq |2
.
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However, dfpqnq + npdfpq = 0 is still a quaternionic equation. But this equation is
equivalent to dfpq∧nq +np∧dfpq−dfpq ◦(np+nq) = 0, where dfpq∧nq +np∧dfpq ∈ Im(Q)
and dfpq ◦ (np +nq) ∈ R. So, instead, the equations we want are dfpq ∧nq +np ∧ dfpq = 0
and dfpq ◦ (np + nq) = 0. Then we can restate the previous definition, without any use
of quaternions, as:

Theorem 3. A discrete isothermic surface f in R3 is CMC if and only if there exist

constants h, H ∈ R and vectors np so that

• |np|2 = 1,
• dfpq ∧ nq + np ∧ dfpq = 0,
• dfpq ◦ (np + nq) = 0, and

• h(dnpq + Hdfpq) =
−apqdfpq

|dfpq|2
.

The second item in the above theorem actually follows from the fourth item, because
the second item is just saying that dfpq is parallel to dnpq .

8. Discrete CMC surfaces in R2,1

We now propose possible definitions for discrete isothermic surfaces and discrete space-
like CMC surfaces in R2,1.

To define the apq in the case of R2,1, we need to define some analogue of the cross
ratio, call it q = qpqrs. Then we can define the apq in the usual way.

We now consider how to define the cross ratio on quadrilaterals. We could consider
quadrilaterals in spacelike planes, without rotating those planes to horizontal. However,
we choose in the argument below to rotate the planes to horizontal, so that the metric
will be exactly the Euclidean metric that is so familiar to us.

We assume that the points p, q, r, s lie in a ”circle” in R2,1 lying in a spacelike plane.
In general, such a circle is










cosβ sin β 0
− sinβ cosβ 0

0 0 1









cosh γ 0 sinh γ
0 1 0

sinh γ 0 cosh γ









ρ cos θ
ρ sin θ

0



+





x0

y0

z0





∣

∣

∣

∣

∣

∣

θ ∈ [0, 2π)







,

where x0, y0, z0, ρ, γ, β are all real constants. By a rigid motion, we can move the ”circle”
to the horizontal circle

{(ρ cos θ, ρ sin θ, 0) | θ ∈ [0, 2π)} .

Then the vertices p, q, r, s go to points (ρ cos θj , ρ sin θj , 0) for j = 1, 2, 3, 4, respectively.
After doing this, we can compute the cross ratio in the usual way for the space R3 (that

is, we can replace the metric for R2,1 with the metric for R3 and then compute the cross
ratio, which is allowed because the circle is now horizontal and therefore ”Euclidean”):

qpqrs = sin(
θ1 − θ2

2
) csc(

θ2 − θ3

2
) sin(

θ3 − θ4

2
) csc(

θ4 − θ1

2
) .

Remark 7. This qpqrs is invariant under isometries of R2,1, but is not Moebius invariant
(unlike the case of R3).

Once the qqprs are defined, then the apq can be defined by

qpqrs = apq/aps ,
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and then we could use the same equations as for the R3 case, that is, the equations in
(3), to determine when the surface is discrete isothermic, with spacelike quadrilaterals.

Then, after restricting to discrete isothermic surfaces, we could define discrete spacelike
CMC surfaces in R2,1 by imitating the equations from the case of discrete CMC surfaces in
R3, as found in the previous section. This is justified by looking at smooth CMC surfaces
in R3 and R2,1, which have exactly the same equations – only the metric changes, see
Corollary 2.

So the equations we want for defining a discrete spacelike CMC surface in R2,1 are as
follows: there exist h, H ∈ R and ”normals” np so that

(1) np ◦ np = −1,
(2) dfpq ∧ nq + np ∧ dfpq = 0,
(3) dfpq ◦ (np + nq) = 0, and

(4) h(dnpq + Hdfpq) =
−apqdfpq

|dfpq|2
,

where here ◦ represents the R2,1 inner product, and ∧ is the R2,1 cross product, and | · |
is the R2,1 norm.
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