2 平均曲率一定曲面, ウェイン・ラスマン

この章では平均曲率一定曲面 (CMC 曲面) を扱う。この分野における研究のテーマと研究方法、そして多くの研究者達がなぜ CMC 曲面に興味を抱くのかについての 1 つの手懸りをお示しするのが目標である。この章は全 5 篇から成り、節が進むにつれて、入門的な話から、より専門的で技術的な話へとなっていくだろう。最初の節では、CMC 曲面が石鹸膜の数学的モデルであることを説明し、さらに CMC 曲面と他分野との関係を見る。第 2 篇においては、CMC 曲面と石鹸膜との関係をより深く理解するために、変分的性質について述べる。第 3 篇では、ユークリッド空間以外の空間の中で CMC 曲面を考える。とくに 3 次元双曲型空間について詳しく見る。第 4 篇においては、この半世紀における CMC 曲面の研究の結果の一部を紹介する。最後の第 5 篇では、古典的なメビウス幾何学の立場から、曲面のより専門的語を扱う。

最初の 2 篇に関しては、この分野を専門としていない読者でも読めるように、また面白さを見出してもらえるように努めた。とくにこの 2 篇はそれだけで完結した話になるように書かれている。すでに曲面論をよくご存じの読者にとっても、最後の第 5 篇が興味あるものになることを願う。

ところです。本章はこの分野の歴史的な発展を沿って記述されているわけではないことに注意すべきである。それにもかかわらず、その発見の歴史は文中に現れる有名な人名からある程度明らかになる。例えば、ワイエルシュトラウス (Weierstrass), リーマン (Riemann), エネパー (Enneper), クリストッフェル (Christoffel), ミンコフスキー (Minkowski), ウィルモア (Willmore), トムセン (Thomsen), ブラシュケ (Blaschke), メビウス (Moebius), ボアンカレ (Poincare), クライン (Klein), デロネイ (Delaunay), シュワルツ (Schwarz), ラプラス (Laplace), ボップ (Hopf), ガウス (Gauss), コダッチ (Codazzi)といった名前である。また、まだ現役で活動している数学者の名前も多く現れるが、この分野の現代の研究者の名前を網羅しようとしたもの。実際そんなことをすれば、それらの名前のリストは、かなり小さいフォントでも使わない限り、1つのページには収まらないであろう。

2.1 CMC 曲面を学ぶことへの動機づけ

本章では、平均曲率一定 (constant mean curvature) 曲面、略して「CMC」曲面に関して述べる。

CMC 曲面は石鹸膜の数学的モデルとがことができる。あるいは「数学的に完全な」石鹸膜といえるかもしれない。確かに「CMC 曲面は石鹸膜の数学的モデルである」という表現は厳密な数学的定義とはいかないが、しぶしぶはなさ CMC 曲面が興味深い対象であるかを認識するための良い出発点である。実際に、石鹸膜や流体の境界面などの議論なくして、なぜ数学者が CMC 曲面の研究にこれほどまでに多大な努力をしてきたかを説明することは不可能であろう。今日の CMC 曲面の研究は、いつも石鹸膜に直接関係しているわけではないけれども、背景にはつねに石鹸膜がある。そこでまずこれを、CMC 曲面の素朴な定義としよう。

CMC 曲面とは石鹸膜のことである。

実際にには CMC 曲面は、その名に示すように、平均曲率が一定である曲面として定義される。しかし平均曲率の定義が後に回そう、この厳密な定義と
いいうのは局所的には上の素朴な定義に等しい。そのことも後ほど説明する。

2.1.1 石鹸膜

石鹸膜は与えられた制約に関して面積を最小にするような曲面を形成し、どのようなタイプの石鹸膜が形成されるかを決めるのはその制約条件である。いくつか例を見せてみよう。これらのすべては必要な材料が手に入れば実際に作ることができる。

(1) 円形の針金を石鹸液に入れて取り出せば石鹸膜ができ、それはこの針金の輪を境界とする平面円板となる。ここでこの石鹸膜の唯一の制約はその境界であり、それは固定された円である。この境界の制約が、生じる石鹸膜を決定しているのである。

(2) 上の (1) における平面円板がある程度強く息を吹きかけると、この石鹸膜は輪から解き放たれて空中を漂う球面になるであろう。（これはシャボン玉といわれる。）この球面は内部に一定体積の空気を含んでおり、その空気は石鹸膜の外側へ逃れることはできないので、この体積は変わらない。ここでこの石鹸膜の唯一の制約はそれが含む一定の体積である。この体積の制約に関して、石鹸膜は自身の表面積を最小にする。そして球面膜はこれをみたす唯一の形である。

(3) 同じ半径をもつ 2 つの丸い針金の輪用いると、(1) のようにして、円板の形をした 2 つの平たい石鹸膜を作ることができる。この 2 つの円板をぴったり重ねるように合わせてからそれらをその表面に対して垂直方向に少し引き離すと、1 つの円に沿って会合する 3 つのなめらかな部分をもつ石鹸膜ができる（図 2.1 の左から 3 番目）。そのうちの 2 つのなめらかな部分は回転面であり、それらは互いに、2 つの針金の間にある平面に関して、対称である。3 番目のなめらかな部分は 2 つの針金の中間にある平面円板である。その 3 番目のなめらかな部分を（鉛筆のよう）先の尖った形の物体で突くと、石鹸膜は弾けて一瞬にして、図 2.1 の左から 4 番目のような、かなとこ型の回転面になる。この最後の石鹸膜は懸垂面 (catenoid) と呼ばれる、この曲面はその境界の制約である 2 つの固定された針金の輪によって
決定される。
(4) 次に、(3) においてできた懸垂面の石鹸膜に対して、それの境界となってい
る 2 つの針金の内側に平らなプラスチックの円板を配置して蓋をする。そ
のようにして懸垂面内部の空気を閉じ込む。片方のプラスチック円板に
小さな穴を 1 つ開けてこの内部に空気を送り込むと、かなあと型の懸垂面
の側面は内部の体積の増加に応じて膨張する。もし空気が適切な量だけ送
り込まれれば（かつ、境界となっている 2 つの円形の針金が互いにそれほど
離れていないとすると）、この石鹸膜はちょうど円柱面 (cylinder) の一部
になる（図 2.1 の右端）。よって円柱面は石鹸膜を用いて作ることができる
といえる。この場合には 2 つの制約がある。一方の制約は固定された境界
(2 つの針金の輪) であり、そしてもう一方は（円柱面内部の）一定の体積で
ある。内側の領域に空気を送り込むというこの方法によって、他にも石鹸膜
から作ることができる回転面が存在し、これらの曲面はデロネイ曲面の一
部であることがわかる。デロネイ曲面についての詳細は[9]をご覧いただき
たい。
これらの例は、平面、球面、懸垂面、円柱面がすべて CMC 曲面であることを
示している。

図 2.1 2.1 節の始め (1), (2), (3), (4) で説明されている石鹸膜。

上述の 4 つの例では、2 番目と 4 番目の例だけが体積の制約をもっている（体
積一定という条件をもたしている)。
2.1 CMC曲面を学ぶことへの動機づけ

（1番目と2番目の例のように）体積の制約はなくて境界の制約のみがある場合、生じる石鹸膜は極小曲面と呼ばれ、CMC曲面の特別な場合である。つまり平面と垂直面は極小曲面である。（2番目と3番目の例のように）体積の制約がある場合、生じる石鹸膜は極小曲面ではないCMC曲面である。したがって球面と円柱面は極小曲面ではないCMC曲面である。

2.1.2 境界面

より一般に、CMC曲面は2つの異なる（一様な）流体間の境界面のモデルといえる。例えば、水よりも軽い油を水の入ったカップに注ぐと、油は浮かび上がってきてその油と水の境界面は水平の平面、すなわち極小曲面になる。また、互いに反応しない同じ密度をもつ2種類の油があるとして、その一方の油で満たされているカップの容器にもう一方の油を少量入れると、その少量の油は容器を満たしている油の中で浮かび上がる玉の形をとるであろう。この玉は丸いので、2種類の油の境界面はCMC曲面である球面となる。（重力の存在下では、一様で反応しない油の流体の境界面はcapillary曲面と呼ばれ、CMC曲面であるとは限らないより一般的な曲面のタイプになり得る。Robert Finnはcapillary曲面についての多くの業績を残している。例えば[7]を見よ。）

2.1.3 変分的性質

与えられた制約に対して石鹸膜がその面積を最小にすることが変分的性質と呼ばれる。こののち、もし仮に与えられた制約が保たれると石鹸膜が連続的に変分（変形）するとその石鹸膜の面積は増加するので、（もとの）石鹸膜は制約を保つような連続的な変形のうち面積を最小にするものだからである。CMC曲面の厳密な定義を与えると、CMC曲面の全体は、“不安定な”石鹸膜と呼ばれる非物理的な対象をも含め、石鹸膜全体よりももっと広い曲面のクラスになる。このことから、上で述べた「CMC曲面とは石鹸膜のこともある」という主張は厳密には正しくない。しかしながら、これは当面は無視してもよい専門的なことである。留意すべき大切なことは、上の変分的性質がCMC曲面に対して
も局所的に成立することである。言い換えれば、CMC 曲面の十分に小さい部分を、そのを与えられた制約がややもすると連続的に変形すれば、変形された曲面のその部分の面積はもとの CMC 曲面におけるその部分の面積よりも大きくなるのである。よって我々は CMC 曲面の 2 番目の定義を与えることができ、それは依然として厳密ではないが直感的で有用である。

CMC 曲面とは、境界および体積の制約に関して局所的に面積を最小にする曲面のことである。

“不安定な” CMC 曲面の意味については 2.2 節でより詳細に述べる。さらにそこでは、いくつかの例を紹介する。

図 2.2 いろいろな石製膜の例。複数の石製膜が 1 つの曲線に沿って集まるとときは常に 120 度で 3 面が会合する。またそのような曲線のいくつかが 1 つの頂点で会合するときは常に 4 面体の角度（約 109 度）で 4 つが集まる。
2.1 CMC曲面を学ぶことへの動機づけ

2.1.4 他分野との関係

CMC曲面は石鹸膜や流体の間の境界面のモデルであるがゆえに、物理学、化学、ポリマー科学と関係が深い。実際に、ときにCMC曲面の新しい例が、これら他分野の研究者によって発見されることがある。（FischerとKoch[8]によって発見された極小曲面がその一例である。[9]の図3.4.10を参照。）またCMC曲面は生物学としても大いに接点がある。例えばサンゴの形態もCMC曲面に似た形をとることがその一例である。実際、図2.3で描かれているCMC曲面の形状がそのようなものである。ちなみにこれは3つの垂直する方向に関じて周期的である。また、極小曲面に似た屋根をもつミュンヘンのオリンピックスタジアムやベルリンのソニーセンターから見るように、CMC曲面はときとして建築とされ関係がある。そうした建築との関連を非常に詳しく説明している書物[20]も最近出版された。このように、CMC曲面は数学以外の諸分野とも興味深い関連がある。このことは、まさに我々がCMC曲面を研究する1つの理由となっている。

図2.3 3重周期のシュワルツP曲面（これは極小曲面）。左側の図はその曲面の1つの基本的な部分。右側の図はこの曲面の周期的な性質を表している。
2.1.5 数学内での関係

CMC 曲面を研究する他の理由は、それが豊かな数学的構造をもつ、かつ数学における様々な分野と興味深い結びつきがあるからである。極小曲面や CMC 曲面は幾何学における研究テーマであるけれども、上記説明した変分的性質から明らかなように、それらは変分法とも密接に関係している（この関係については、2.2節においてごく手短に紹介する）。

極小曲面はまた、ワイエルシュトラウスの表現公式と呼ばれる公式によって、複素解析の分野とも強く結びついている（この表現公式は[9]にある）。この表現公式は、リーマン面上で定義された複素解析関数の組を用いることで極小曲面を表す 1 つの方法を与える。このことから、極小曲面は豊かな数学的構造をもと、かつ多くの例を構成することができる。実際、[9]ではたくさんの例が説明されている。

また、極小曲面ではない CMC 曲面も、同様に、リーマン面上で定義された複素解析関数の言葉での記述が可能である（[9]参照）。したがって、我々は、この場合にもまた複素解析学との関係を見ることになる。その上さらに、ある種の孤立特異点（鞍点のこと、鞍点については後述）を除いたところでは、極小曲面ではない CMC 曲面は sinh-Gordon 方程式の解に対応している。この sinh-Gordon 方程式は可積分系の理論において現れる顕著な方程式であり、CMC 曲面はこうした分野とも直接的な関係があるといえる。実際のところ、[9]で重点的に扱われている DPW の方法の背後にある本質的なアイデアは可積分系の理論からきている。DPW の方法とは、可積分系の理論に由来するループ群の手法を用いて CMC 曲面を構成するものである。最後に、極小・非極小 CMC 曲面はともによく知られた偏微分方程式で記述されることに注意しておく。したがって、これらの曲面と偏微分方程式の分野には、やはり明瞭な関係がある。

このように、CMC 曲面に他の数学分野の技巧や研究成果が応用できるということは、CMC 曲面が豊かな数学的構造をもつことを示して余りない。実際そのことが、さらには CMC 曲面の多くの例を提供するための手段を与える源泉となっている。
2.1.6 非ユークリッドアンビエント空間

対象となる曲面が、より大きな（すなわち、より次元の高い）空間の中にあるとしよう。その大きい方の空間のことをアンビエント空間*1 という。3次元ユークリッド空間 \(\mathbb{R}^3 \) 以外のアンビエント空間内にある CMC 曲面の研究に関しては、化学、ポリマー科学、建築学との関係はもはや期待できないが、物理学との結びつきは依然として存在する。また数学の他分野との強い結びつきはそのまま完全に残る。というのも、CMC 曲面の豊かさの数学者の構造や他の数学的分野との関係を引き継ぎような別のアンビエント空間を見出すことができるからである。この場合、その理論的構造に関する研究は \(\mathbb{R}^3 \) の場合と類似のやり方で引き継がれるが、観点を変えれば、その構造にも興味深い変化が起こる。例えば、曲面に直交する方向の振る舞い（ガウス写像）は別の3次元アンビエント空間において全く異なる様相を呈する場合がある。さらに CMC 曲面の大域的な性質が大きく違うてくる可能性もある。

2.1.7 離散 CMC 曲面

近年、解析学や幾何学の様々な場面で見られるように、なめらかな対象に対し、その離散的類似物を見つけることが数学における重要なテーマとなってい る。なめらかな極小曲面や、CMC 曲面の離散的な類似物を考えることもまた自然である。しかしここにはこれといった決定的なアプローチは存在しない。対象とするなめらかな極小曲面や、CMC 曲面のどのような性質に着目し、対応する離散的対象の構成を行うのかということが依存し離散化の方法や定義は決まってくるのである。

例えば、3次元ユークリッド空間 \(\mathbb{R}^3 \) 内の離散的な極小曲面として、次のよう な性質をみたす区分的に線型三角形分割された曲面を定義してみよう。これは、その単体構造を保つような、台がコンパクトで境界が固定された連続的で区

*1 小沢武彦氏（神戸大学名誉教授）によると、戦前（第2次世界大戦以前）には、アンビエント空間は対流（カンジョウ、カンニョウ）空間と呼ばれていた。彼は、めぐること、かくむこと、まつわることの意。あるいは、漢字構成上の名称で、漢字の左から下の部分に付記字。例えば「しんにょう」、「えんにょう」など。
分的に線型な任意の（その各頂点の）変分に関して、面積保留数が臨界となるという性質を着目した定義といえる。また離散 CMC 曲面に関しても、「変分は曲面の体積を保たなければならない」という条件が加わる以外は、同じように定義できる。これらの定義は明らかに、なめらかな場合の極小曲面や CMC 曲面のもつ変分的性質を模倣したものである。その結果、適切な変分的性質を備えながらも、対応するなめらかな曲面がもつ、エレガントな「正則」構造はないような離散的な曲面が生まれる。このような方法で構成された離散的な懸垂面とデロネイ曲面の例を図 2.4 に示す。

上述の方法とは異なり、なめらかな極小曲面や CMC 曲面のもつ可積分系の性質のアナロジーを用いて離散版の可積分系を考えることによって、これらの離散的曲面を定義することも可能である。それは、[4] における Bobenko と Pinkall が示したアプローチであり、その方法で得られた離散的な曲面は平面四角形から構成される。このアプローチによって与えられた離散的な極小曲面や CMC 曲面は「離散的正則」な数学的構造をもち、それはなめらかな極小表面と CMC 曲面の正則構造に対応している。このように、この定義では、離散化に対し豊富な数学的構造を保つという利点がある。しかし一般に、それらの頂点の変分に関して面積保留数が臨界となるような離散的な曲面を与えることはない。このアプローチを通じて構成された離散的なデロネイ曲面の例を図 2.4 の右側に示しておく。

図 2.4 3 次元ユークリッド空間 \mathbb{R}^3 内の離散的な懸垂面とデロネイ曲面。左の曲面は離散的な極小曲面であり、中央と右の 2 つの曲面は離散的な CMC 曲面。
2.2 CMC曲面とその変分的性質

第1章では定義1.8において平均曲率を定義している。そして、平均曲率 H が一定であるような曲面は CMC曲面であり、また極小曲面とは平均曲率 $H = 0$ をもつ CMC曲面であるとされている。この節では、なぜこの定義で極小曲面および CMC曲面が石鹸膜のモデルになるのかを考える。

面積不変数の第1, 第2変分公式は、CMC曲面および極小曲面がどのようにして石鹸膜のモデルになるのかを理解するために不可欠であり、同様になぜ我々がそのような曲面に興味を抱くのかを知るうえでも重要である。しかしながらこの章においては、第1, 第2変分公式が直接的に用いられることはない。したがってこれからは dkみ抜きで紹介する。同様に、他の種々の性質についても説明なしで述べるに留める。さらに、議論をいくぶん平易にするために、この節では \mathbb{R}^3 内の曲面である場合に限定する。他のアングリメント空間内での極小曲面および CMC曲面についても、公式はやや異なるが、議論は (ほぼ) そのまま保たれる。

今,

$$ f : \Sigma \to \mathbb{R}^3 $$

を直交座標 u,v をもつ平面 \mathbb{R}^2 内の2次元領域 Σ から \mathbb{R}^3 への射影とりとし、その誘導計量を g とする。また、f の単位法線ベクトルを $\vec{N} = \vec{N}(u,v)$ で表す。このとき、$p \in \Sigma$ に対し、$f(p)$ における平均曲率 H を定義しよう※2。まず、接方向

$$ \vec{v} \in \mathcal{S} := \{ \vec{w} \in T_p \Sigma \mid g(\vec{w}, \vec{w}) = 1 \} $$

に対して、法曲率

$$ - (\vec{v}, D_{\vec{v}}\vec{N}) $$

を考える。ただし、$T_p \Sigma$ は $p \in \Sigma$ における Σ の接空間、$D_{\vec{v}}$ は \vec{v} 方向への方向微分を表している。直感的には、法曲率は、\vec{N} に対して \vec{v} 方向に曲面が曲がって

※2 この場合、f が射影とは考えられず、領域 Σ の点 $p = (u,v)$ で $f_u(u,v)$ と $f_v(u,v)$ が独立であることを

※3 この定義の仕方は、第1章の定義1.8のそれとは異なっている。しかし、ここで定義される平均曲率は、第1章の定義1.8における平均曲率と同値である。
いる割合を表している。そして、すべての接方向方向 S について、法曲率の平均をとることによって平均曲率 H を定義する。ここでその平均は、\(-\langle \vec{r}, D_{\vec{N}} \rangle \) を S 上で積分することによって計算される。したがって、例えば、極小曲面は任意の点で法曲率の平均が 0 といえる。このことは 1 つの物理的解釈を示している。これに関して、Hoffman と Meeks [11] から引用する：

「大雑把に言うと、曲面は、さまざまな方向に張られた非常に多く
のゴムバンドの集まりから成っていると思うことができる。そして
極小曲面の場合は、各点においてゴムバンドのにかかる力は釣り合っ
ており、曲面は張力を減少させるように動く必要はない。」

このことをより厳密に述べよう。\(\Sigma \) を \((u, v)\)-平面内のコンパクトな領域と仮定する。はじめ込む \(f(\Sigma) \) の境界が固定されたなめらかな変分を次の 3 つの性質を持つ \(C^\infty \) 級の写像 \(f_t : (-1, 1) \times \Sigma \to \mathbb{R}^3 \) として定義する:
(1) 任意の \(t \in (-1, 1) \) に対して、\(f_t(\cdot) : \Sigma \to \mathbb{R}^3 \) はなめ込み、
(2) \(\Sigma \) 上で \(f_0 = f \).
(3) 任意の \(t \in (-1, 1) \) に対して、\(f_t|_{\partial \Sigma} = f|_{\partial \Sigma} \)。（\(f \) を \(\Sigma \) の境界 \(\partial \Sigma \)
に制限したもの。）

このとき、

\[\mathcal{E} = \frac{d}{dt} f_t|_{t=0} \]

のことを \(t = 0 \) における \(f_t \) の変分ベクトル場と呼ぶ。

\(A(f_t(\Sigma)) \) で \(f_t(\Sigma) \) の面積を表すとすると、\(A(f_t(\Sigma)) = \int_\Sigma dA_t \) である。ここで

\[dA_t = \sqrt{g_{11}g_{22} - g_{12}^2} \, du \, dv \]

は、\(\Sigma \) の座標 \((u, v)\) に関する、はじめ込み \(f_t \) の誘導された計量 \(g_t = (g_{t,ij}) \) の体積要素（面積 2 次形式）である。このとき、境界が固定されたなめらかな変分の第 1 変分公式は

\[\left. \frac{d}{dt} A(f_t(\Sigma)) \right|_{t=0} = - \int_\Sigma \left\langle H \vec{N}, \mathcal{E} \right\rangle \, dA_0 \]

で与えられる。とくに、極小曲面 \((H \equiv 0)\) では、\(\Sigma \) の任意のコンパクトな部分領域上の、境界が固定されたなめらかな変分すべてに関して面積増減数が臨界
2.2 CMC 曲面とその変分的性質

となる。我々は極小曲面をこの観点から定義したのである。実際に, ウイガが十分
小さいときには, \(f(\Sigma) \) は面積圧縮数に関して臨界であるだけでなく, 一意的に
定まる面積最小曲面である。したがって, そのような曲面を「極小」曲面と呼ぶ
のはもっともである。

十分に短い区間で定義された測地線 (測地線に関しては, 1 章の小節 1.1.1 を
参照) というのは, 一方の端点からもう一方の端点への最短経路であるから, 実
のところ極小曲面は測地線の自然な 2 次元への一般化である ([23], あるいは
[9] の Section 1.1 参照)。また, 測地線は長い区間の端点の間では最短になると
は限らないが, 依然として端点の固定された曲线のなめらかな変分について, 長さ
に関して常に臨界である (再度[23]や[9]を参照)。このように, 極小曲面の変
分的性質は, 測地線の性質の拡張になっている。

同様に, 極小曲面でない CMC 曲面は, 次のような定義 \(f: \Sigma \rightarrow \mathbb{R}^3 \) とし
て定義できる。つまり, \(f(\Sigma) \) が, 曲線の体積 (体積に関しては, 1 章の小節 1.5.3
を参照) が変わらないような, 絶対が固定されたなめらかな変分すべてに関し
て, 面積圧縮数が臨界となるものとして定義するのである。この体積圧縮数の \(t
\) に関する微分は, \(t = 0 \) において

\[
\int_{\Sigma} (\vec{N} \cdot \vec{E}) dA_t
\]

となる。その定義において体積が不変, すなわち \(\int_{\Sigma} (\vec{N} \cdot \vec{E}) dA_t = 0 \) で
あり, かつ \(H \) が一定であるとすると, 式 (2.1) から

\[
\left. \frac{d}{dt} A(f_t(\Sigma)) \right|_{t=0} = 0
\]

が得られる。この \(f_0|_{\Sigma} \) の体積を保つような変分は体積保存の変分と呼ばれる。
体積を保つというこの制約は非極小 CMC 曲面を生み出すうえでの自然な制約
であることが, 小節 2.1.1 の石鹸膜の例 (2) から見て取れる。実際, 例 (2) で解
説されている球面の石鹸膜が, その内部の体積を保たないように変形すること
が許されるならば, それは半径が小さくなることで表面積が減少し, 最終的には
面積をもたない 1 つの点に縮むであろう。しかし, 実際には体積の制約がある
ので, このようなことは起こるはずがないのである。

結論をまとめると次のようになる。\(\mathbb{R}^3 \) 内の極小曲面とは, 境界が固定された
なめらかな変分に関して面積変数が臨界となる曲面のことであり、CMC 曲面とは、境界を固定し、かつ曲面の体積を保存するようななめらかな変分に関して面積変数が臨界となる曲面のことである。したがって、極小曲面および CMC 曲面は石鹸膜のモデルである。すなわち、極小曲面は、内側に空気を含まないような石鹸膜のモデルとなり、そのような膜は境界が固定された任意の変分に対して面積最小となる。また、非極小 CMC 曲面は、内側に空気を含む石鹸膜のモデルとなり、そのような膜は内側の空気の体積をそのまま保つような変分に関してのみ表面積最小となる。

図 2.5 3 次元ユークリッド空間 \mathbb{R}^3 内の完備な極小曲面のコンパクト部分の例。上段左から、螺旋面 (helicoid), 懸垂面, エネル曲面, Jorge-Meeks trinoid. 下段左は、種数 1 の Chen-Gackstätter 曲面, 右は種数 1 の Costa 曲面. また, 螺旋面, 懸垂面, Costa 曲面は, 完備な極小曲面に拡張できる。

\mathbb{R}^3 の場合におけるこのような変分的性質は S^3 や \mathbb{H}^3 といった他のアンビエント空間についても同様に成り立つ ([9]を参照).

CMC 曲面の、体積を保つ変分に対する第 2 変分公式は
2.2 CMC 曲面とその変分的性質

\[\frac{d^2}{dt^2} A(f_t(\Sigma)) \bigg|_{t=0} = \int_{\Sigma} h \, L(h) dA_0 \]

となる (CMC 曲面が極小曲面である場合は体積を保つという条件を満足してよい)。ここで, \(h = \langle \vec{N}, \vec{V} \rangle \) であり, \(L \) は, ラプラス-ベルトラミ作用素と, 曲面の平均曲率およびガウス曲率によって記述される作用素である。ただし, \(L \) の正確な定義は, ここでの入門的な議論には不要であるから割愛する。

CMC 曲面については, 体積保存かつ境界固定のなめらかな変分に関し面積変
関数の 1 階の微分

\[\frac{d}{dt} A(f_t(\Sigma)) |_{t=0} \]

が 0 になるので, 2 階の微分 (2.2) の符号がその変分が面積を増加させるのかあるいは減少させるのかを決定する。もし (2.2) が負の値をとるような変分 \(f_t \)
が存在するならば, その極小曲面あるいは CMC 曲面は, 体積保存かつ境界固定のなめらかな変形に関して面積最小ではない。その一方で, もし (2.2) が体積保
存在かつ境界固定のなめらかな変形の任意の非自明な変分 \(f_t \) に対して正の値をと
るならば, 極小曲面あるいは CMC 曲面は (局所的には) 面積最小となる。

2.1 節の最初に説明された石塚強の 4 つの例は面積最小である極小曲面と
CMC 曲面の例である。もしそれらが面積最小でなかったなら, 我々はそこでそれらを石塚強で構成することは決してできなかったであろう。しかしながら, こ
れら 4 つの例すべてが, 面積最小であるような, より大きな CMC 曲面に拡張でき
るわけではない (たとえ CMC 曲面としての拡張が, 第 1 変分公式 (2.1) によ
って, 依然として面積の関連であろうとも)。1 番目の例の平面円板は, 極小
曲面である完備な平面に拡張できる。完備な平面は次の意味で面積最小である。
任意のコンパクトな領域 \(\Sigma \) は, その範囲内で, (コンパクトな領域の境界に関
して) 面積最小であり, 針金の枠を境界にもつような石塚強として構成できる。
と
くに, (2.2) は, そのようなコンパクトな領域 \(\Sigma \) の境界を固定した任意のなめら
かな変形に対して, 常に正の値をとる。ところが 2 番目の例である球面は, す
でに完備であるから拡張はできない。

3 番目と 4 番目の例では, それらは面積最小ではない曲面に拡張される。まず
は 4 番目の例を考察しよう。4 番目の例は円柱面であり, それは \(\mathbb{R}^3 \) の等長変換
によって移り合うものは同じだと見なせば唯一に決まり,

\[f(u, v) = (r \cos u, r \sin u, rv) , \]

\[(u, v) \in \Sigma = [0, 2\pi] \times [0, \frac{d}{r}] \subset \mathbb{R}^2, r, d \in \mathbb{R}^+ \]

と表すことができる．これは半径が \(r \) の円柱面の一部であるが，高さは \(d \) である．この \((2.2)\) における面積の微分数の \(2 \) 階微分は，\(d > 2\pi r \) であるときに限って，境界を固定した体積を保つある変分に対して負になる．その円柱面が，どうして \(d = 2\pi r \) を境として面積最小となるかを明らかにしないのでは理由がある．ここではその理由を十分に説明しないが，なぜそうなるのかについて1つだけのヒントを与える．関数

\[h = h(v) = \sin \frac{2\pi v}{d} \]

と考えると，これは次の性質をもつ

- \(h|_{v=0} = h|_{v=\frac{d}{r}} = 0 \) (無限小の意味での「境界固定」性)，
- \(\int_0^{\frac{d}{r}} hdv = 0 \) (無限小の意味での「体積保存」性)，
- \(\mu = \frac{4\pi r^2 - d^2}{r^2d^2} \) とおくと \(L(h) = \mu h \).

このように，\(h \) は，固有値 \(\mu \) をもつ作用素 \(L \) の固有関数であり，\(d > 2\pi r \) のときには \(\mu < 0 \) となる．したがって，関数 \(h \) についての回転対称な変分（つまり，\(t = 0 \) における変分ベクトル場が \(hN \) となる回転対称な変分である．ただしここで，\(N = (\cos u, \sin u, 0) \) は \(f = f(u, v) \) の単位法線ベクトル）を選べば，第 2 変分公式 (2.2) における被積分関数は，\(d > 2\pi r \) のときに負になる．その結果，半径が \(r \) で高さが \(d > 2\pi r \) の円筒の管は物理的な膜としては構成できないのである．（半径 \(r \)，高さ \(d \) の円柱面に対し，\(d = 2\pi r \) の成立はその円柱面の円周の長さと高さが等しいことを意味している．）

2.1 節の石鹸膜の 3 番目の例は懸垂面である．懸垂面の生成曲線は双曲线の余弦関数であるので，懸垂面は

\[f(u, v) = (\cosh v \cos u, \cosh v \sin u, v) , \]

\[(u, v) \in \Sigma = [0, 2\pi] \times [-d, d] \subset \mathbb{R}^2, d \in \mathbb{R}^+ \]

のようにパラメータ表示できる．ここで \(2d \) は 2 つの境界となっている円の間の距離である．\(v \sinh v = \cosh v \) の唯一の正の解は \(d_0 \approx 1.2 \) である．そのとき \(f \)
は、\(d < d_0 \) ならば面積最小となり、\(d > d_0 \) ならば面積最小にならない（すなわち、面積臨界のみ）。それゆえに \(d \) の値を、\(d_0 \) を超えて拡大させると、懸垂面はもはや不適当では構成できない。実際に \(d > d_0 \) の石墨膜 (図 2.6 の右側) に起こるであろうことは、境界円を保っている限り、曲面の内側は、図 2.6 の左側に描かれている曲面が新たに形成され、そのような形状は面積を減少させる。

図 2.6 左、真中、右の生成曲線は、それぞれ、安定、弱安定、不安定な懸垂面を作ること

懸垂面が面積最小にならない直径の値が、なぜちょうど \(d_0 \) であるかの理由の厳密な説明は略去するが、ここでもそのヒントを与えておこう。値 \(d_0 \) については、次のような幾何学的解釈ができる。各々の \(v > 0 \) に対して、円錐

\[
C_v = \left\{ (x, y, z) \mid z = \frac{v}{\cosh v} \sqrt{x^2 + y^2} \right\}
\]

を考えると、円錐 \(C_v \) は、\(v = d_0 \) のとき、またそのときに限って、懸垂面と接するように交わる。\(d < d_0 \) の場合、原点 \((0, 0, 0)\) を中心とする \(\mathbb{R}^3 \) の任意の相似変換はその懸垂面を元の懸垂面と共通部分をもたない別の懸垂面に移す。一方、\(d > d_0 \) のときはそうではない。これらの事実は、\(f \) の境界を固定した変分 \(f_t \) で、2 階微分が負であるものが存在するかという問題と関係している (懸垂面は極小曲面なので、ここでは「体積保存」性を必要としない)。
2.3 アンビエント空間

曲面はつねに何かしらより大きなアンビエント空間の中に存在している。2.1節と2.2節で見た石鹸膜の例では、そのCMC曲面は3次元ユークリッド空間\mathbb{R}^3内にあるものとしていた。しかし、我々はCMC曲面を\mathbb{R}^3以外の非ユークリッド空間の中でも考えることができる。本節ではアンビエント空間として主に3次元双曲型空間について説明する。またこの節には、$n+1$次元ミンコフスキ空間$\mathbb{R}^{n,1}$と3次元球面(空間)S^3も出てくるが、読者はすでにある程度それらの空間に慣れ親しんでいるものとする。

2.3.1 3次元双曲型空間

3次元双曲型空間は定めの断面曲率 -1 をもつ単連続な3次元空関リーマン多様体のことである。それは様々なモデルによって表現される。具体的には、ミンコフスキ空間モデル、ポアンカレ球モデル、エルミート行列モデル、クリン球モデル、上半空間モデルなどである。

ローレンツ計量 $g_{\mathbb{R}^{3,1}}$ をもつ4次元ミンコフスキ空間 $\mathbb{R}^{3,1}$ を用いて3次元双曲型空間のミンコフスキーモデル \mathbb{H}^3 を定義する。この場合、それは二葉双曲面の上側部分

$$\left\{(x_1,x_2,x_3,x_0) \in \mathbb{R}^{3,1} \left| x_0^2 - \sum_{j=1}^{3} x_j^2 = 1, x_0 > 0 \right.\right\}$$

で、計量 g は $g_{\mathbb{R}^{3,1}}$ の、上で定義した集合への誘導計量（g は $g_{\mathbb{R}^{3,1}}$ のそこへの制限である）として定義される。これを3次元双曲型空間のミンコフスキーモデルと呼ぶ。計量 $g_{\mathbb{R}^{3,1}}$ はローレンツ計量であるので正定値ではないが、誘導計量 g は正定値となる。したがって、このミンコフスキーモデル \mathbb{H}^3 はリーマン多様体である。

3次元双曲型空間のミンコフスキーモデル \mathbb{H}^3 の等長変換群は、行列群

$$O_+(3,1) = \{ A = (a_{ij})_{i,j=1}^4 \in O(3,1) \mid a_{44} > 0 \}$$

を用いて記述される。与えられた $A \in O_+(3,1)$ について定まる写像 $\mathbb{H}^3 \ni \rightarrow$
2.3 アンビエント空間

\(\delta \rightarrow A \delta \in \mathbb{R}^{3,1} \) は、ミンコフスキーモデル \(\mathbb{H}^3 \) を保つ \(\mathbb{R}^{3,1} \) の等長変換であり、したがってそれは 3 次元双曲型空間の等長変換である。さらに 3 次元双曲型空間のすべての等長変換はこのようにして得られることもわかる。次の補題は、ミンコフスキーモデル \(\mathbb{H}^3 \) が実際に 3 次元双曲型空間であることを示している。

補題 2.1 ミンコフスキーモデル \(\mathbb{H}^3 \) は、一定の断面曲率 -1 をもつ単連結な 3 次元完備リーマン多様体である。

【証明】 ミンコフスキーモデル \(\mathbb{H}^3 \) が単連結であることは明らかであるので、まずははじめに断面曲率が恒等的に -1 であることを確かめよう。

任意の点 \(P = (x_1, x_2, x_3, x_0) \in \mathbb{H}^3 \) に対して、\(x_0 = \cosh(s), s \in \mathbb{R} \) とするとき、\(x_1^2 + x_2^2 + x_3^2 = \sinh^2(s) \) であるから、

\[
A \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ \sinh(s) \end{pmatrix}
\]

となる行列 \(A \in SO_3 = O(3) \cap \{ A \in M_{3 \times 3} | \det A = +1 \} \) が存在する。このとき、4 × 4 行列

\[
\begin{pmatrix} 0 & 0 & 0 & 0 \\ A & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}
\]

は \(\mathbb{H}^3 \) を保ち、かつ \(P \) を点 \((0, 0, \sinh(s), \cosh(s)) \) へ移す。そのとき行列

\[
\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & \cosh(-s) & \sinh(-s) \\ 0 & 0 & \sinh(-s) & \cosh(-s) \end{pmatrix}
\]

は、\(\mathbb{H}^3 \) を保ち、点 \((0, 0, \sinh(s), \cosh(s)) \) を点 \((0, 0, 0, 1) \) へ移す \(\mathbb{H}^{3,1} \) の等長変換である。したがって、\(\mathbb{H}^3 \) の任意の点を \(\mathbb{H}^3 \) の等長変換で点 \((0, 0, 0, 1) \) に移すことができるのである。今、\(\mathcal{V}_1, \mathcal{V}_2 \) を \(T_{(0,0,0,1)}(\mathbb{H}^3) \) の 2 次元空間とすると、

\[
d\psi_{(0,0,0,1)}(\mathcal{V}_1) = \mathcal{V}_2
\]

となるような、\((0, 0, 0, 1) \) を固定する \(\mathbb{H}^3 \) の等長変換を表
す行列 $A \in O_+(3,1)$ が存在する。それゆえ（例えば、[9]の補題 1.1.6 に到り、
このモデルは一定の断面曲率をもつ。よって \mathbb{H}^3 が一定の断面曲率 -1 をもつ
ことを見るためには次のことが確かめればよく。それは $-1 = T_{(0,0,0,1)}(\mathbb{H}^3)$
の 1 つ固定的な 2 次元部分空間の断面曲率の値となることである。この計算
は読者に残しておこう（例えば、[9]の式 (1.1.10) や式 (1.1.14) を参照）。

最後に \mathbb{H}^3 が完備であることを示す。\mathbb{H}^3 と平面 $\{x_1 = x_2 = 0\}$ の共通部分
は, $\alpha(s) = (0,0,\sinh(s), \cosh(s))$ と表示される。このパラメータ s は \mathbb{H}^3 の
計量 g に関して弧長である。$\alpha(s)$ はすべての $s \in \mathbb{R}$ に対して定義されている
から、この曲線 $\alpha(s)$ は完備である。しかも, \mathbb{H}^3 の任意の測地的線分はある等長
変換によって, $\alpha(s)$ の一部に移される。したがって, 任意の測地的線分が無限の
長さの測地線へ延長されることがわかる。したがって \mathbb{H}^3 は完備である。これで
補題の証明が完了した。

以後, 3 次元双曲型空間とそのミンコフスキーモデル \mathbb{H}^3 について記号の混用
を行う。

\mathbb{H}^3 の等長変換群は行列群 $O_+(3,1)$ であるから, 測地線

$$\alpha(t) = (0,0, \cosh t, \sinh t)$$

の等長変換による像は, 原点を含む $\mathbb{R}^{3,1}$ の 2 次元平面に含まれている。した
がって \mathbb{H}^3 の任意の測地線 (の像) は, $\mathbb{R}^{3,1}$ の原点 $(0,0,0,0)$ を通る 2 次元平面
と \mathbb{H}^3 との交わりによって構成されるといえる。

ミンコフスキーモデルは, \mathbb{H}^3 における等長変換や測地線を理解するための最
良のモデルであろう。しかししながら, ミンコフスキー模型は 4 次元空間 $\mathbb{R}^{3,1}$
にあるので, \mathbb{H}^3 内の曲面のグラフィックスのためには使えない。したがって, 印
刷されたページの上で見ることができない他のモデルも手にしたい。また, \mathbb{H}^3
を
表現するために 2×2 行列を用いるモデルもほしい。これは DPW の方法に対
して有用である (次の節を参照)。これを踏まえて \mathbb{H}^3 の他のモデルを与える。
2.3 アンピエント空間

図 2.7 左の、2つの曲面は、3次元ユークリッド空間 \(\mathbb{R}^3 \) 内のデロネイ曲面であるアンダールイド (unduloid) とノドイド (nodoid)。
これらは半径を一定の回転面であり、曲面内部を見せるために一部が切り取られている (下瀬浩一によるグラフィック)。また、
3次元球面 \(S^3 \) と3次元双曲面空間 \(\mathbb{H}^3 \) 内のデロネイ曲面が右に描かれている (N. Schmitt のソフトウェア CMCLab [21] で作
られたグラフィック)。\(S^3 \) は \(\mathbb{R}^3 \) への立体射影を用いて、\(\mathbb{H}^3 \) はポ
アンカレ球モデルを用いて表されている。

2.3.2 クラインモデル

本節ではクラインモデルは使わないが、それは \(\mathbb{H}^3 \) のよく知られたモデルであるので、ここで簡単に言及しておく。
\(K \) を、\(\mathbb{R}^{3,1} \) の超平面 \(\{ x_0 = 1 \} (\approx \mathbb{R}^3) \)にある半径が1で中心が \((0,0,0,1) \) である3次元球とする。ミンコフスキーモデル \(\mathbb{H}^3 \) を原点 \((0,0,0,0) \in \mathbb{R}^{3,1} \) から \(K \) への立方射影することによって、\(K \) は
\(\mathbb{H}^3 \) のクラインモデルとなる。クライぬモデル \(K \) にはこの立方射影を \(\mathbb{R}^{3,1} \) の等
長写像にするような計量が与えられる。ミンコフスキーモデルにおける \(\mathbb{H}^3 \) の
測地線は原点を通る \(\mathbb{R}^{3,1} \) の2次元平面と \(\mathbb{H}^3 \) の交わりによって構成されるの
で、\(K \) への射影の後、クライぬモデルにおいての測地線は、(ユークリッド計量
での) 直線となることは明らかであり、そしてこのことはクライぬモデルの利点
である。しかしながら、クライぬモデルのデメリットはその計量がユークリッド
計量と共形的 (conformal) でないことである。ある計量がユークリッド計量と
共形的であるとは、2つのベクトルのなす角度、および2つのベクトルの長さの
比が、ユークリッド計量の場合と変わらないということ。)
2.3.3 ポアンカレモデル

\mathcal{P} を $\mathbb{R}^{3,1}$ の超平面 \(\{x_0 = 0\} \) にある、半径が 1 で中心が \((0,0,0,1)\) である 3 次元球とする。\(\mathbb{H}^3 \) のミンコフスキーモデルを点 \((0,0,0,−1)\) から \mathcal{P} へ立体射影することによって、\mathcal{P} は \mathbb{H}^3 のポアンカレモデルとなる。この立体射影は

\[
(x_1, x_2, x_3, x_0) \in \mathbb{H}^3 \rightarrow \left(\frac{x_1}{1 + x_0}, \frac{x_2}{1 + x_0}, \frac{x_3}{1 + x_0}, 0 \right) \in \mathcal{P}
\]

dである。\(\mathcal{P} \) にはこの立体射影を等長写像にするような計量が与えられる。このポアンカレモデルでは 4 番目の座標が自明に 0 であるから、それを取り除くことで、ポアンカレモデルを $\mathbb{R}^3 = \{(x_1, x_2, x_3) \in \mathbb{R}^3 \}$ 内の単位球

\[
B^3 = \{(x_1, x_2, x_3) \in \mathbb{R}^3 \mid x_1^2 + x_2^2 + x_3^2 < 1 \}
\]
と見なすことができ、その双曲計量 g は

\[
g = \left(1 - \frac{2}{1 - x_1^2 - x_2^2 - x_3^2}\right)^2 (dx_1^2 + dx_2^2 + dx_3^2)
\]

となる。この計量 (2.4) に関して、立体射影 (2.3) は等長写像であり、それゆえ断面曲率は依然として −1 である。\(2.4 \) の計量 g はユークリッド計量 $dx_1^2 + dx_2^2 + dx_3^2$ の関数値である。このことはポアンカレモデルの計量がユークリッド計量と共形であることを意味している。したがって、2 つのベクトルのなす角度が双曲計量の場合とユークリッド計量の場合双方で同じになる。そしてこのことが、3 次元反曲型空間内の曲面のグラフィックスを描く際にポアンカレモデルが重宝される理由である。ところが、その距離は明らかにユークリッドの距離ではない。実は、ポアンカレモデルの境界

\[
\partial B^3 = \{(x_1, x_2, x_3) \in \mathbb{R}^3 \mid x_1^2 + x_2^2 + x_3^2 = 1 \}
\]

は、\(2.4 \) の双曲計量 g に関して B^3 のどの点からも無限に離れているのである。例として、ポアンカレモデル内の曲線

\[
c(t) = (t,0,0), \quad t \in [0,1)
\]
を考えよう、その長さは

2.4 1950年代以降のCMC曲面の研究

\[
\int_0^1 \sqrt{g(c'(t), c'(t))} dt = \int_0^1 \frac{2dt}{1-t^2} = +\infty
\]

となる。つまりポアンカレモデルにおいては、境界の点 (1, 0, 0) は点 (0, 0, 0) から無限に離れているのである。この理由から、境界 \(\partial B^3 \) はしばしば \(B^3 \) の無限遠理想境界と呼ばれる。

クリンモデルは違いない、ポアンカレモデルの関係線は（ユークリッド計量の）直線ではない。その代わり、それらは理想境界 \(\partial B^3 \) と直交するような（ユーダリッド計量の）直線や円の一部となる。

\[\text{図 2.8 } \mathbb{H}^3 \text{のクリンモデル、ポアンカレモデル、ミンコフスキー-モデル。} \]

注意 \(\mathbb{H}^3 \)のモデルとしては上半空間モデルやエルミート行列モデルもあるが、この章では触れない。

図 2.7、図 2.9、図 2.10、図 2.12では、いろいろなアンピエント空間内の曲面が描かれている。

2.4 1950年代以降のCMC曲面の研究

\(\Sigma \)を2次元多様体とする。へめ込み \(f: \Sigma \to \mathbb{R}^3 \)の著点（せいてん）とは、2つの主曲率が等しい点のことである。直感的には、著点とは「あらゆる方向に曲
図 2.9 極大曲面、すなわち、3 次元ミンコフスキー空間 \(\mathbb{R}^{2,1} \) 内の \(H = 0 \) である空間的曲面 (spacelike surface)。左側は、極大懸垂面と呼ばれる回転面。真中の曲面は極大螺旋面で、これは 3 次元ユークリッド空間 \(\mathbb{R}^3 \) 内の極小螺旋面の像に含まれている。右側は極大エネルギー型曲面で、\(\mathbb{R}^3 \) 内の極小エネルギー曲面に対応している。これらの曲面はすべて、小林治[16]の表現公式を用いて構成できる。

図 2.10 3 次元双曲型空間 \(\mathbb{H}^3 \) 内の、ポアンカルモデルって表された、\(H = 1 \) である CMC 曲面。左から horosphere, 2 つの異なる catenoid cousins (回転面), エネベー cousin, trinoid cousin。
2.4 1950年代以降の CMC 曲面の研究

がり具合が同じ点」のことである。

よって、例えば、平面や球面の任意の点は等点であり、円柱面は等点をもたない。懸垂面もまた等点をもたないことが確かめられる。

全ての点が等点であるとき、その曲面は全等的なであるという。このとき、そのような曲面は球面か平面になる。nextの事実は、例えば[23]で証明されている。

補題 2.2 Σ を 2 次元多様体とし、f : Σ → R^3 を全等的なはめ込みとする。このとき、f(Σ) は平面の一部かまたは球面の一部である。

図 2.11 (CMC) Wente プラスと、その半分をカットした曲面
(下瀬浩一によるグラフィック)。

Σ が向き付け可能で、開曲面 (すなわちコンパクトで境界のない曲面) である場合、さらに議論を進めることができる。向き付け可能な開曲面は種数によって分類される。例えば、Σ が球面ならばその種数は 0 で、トーラスならば種数は 1 となる。以後、Σ は向き付け可能な開曲面とし、その種数を g とする。

次はホップの有名な定理である[12]:

定理 2.3 (ホップの定理) Σ が種数 0 の開 2 次元多様体であり、f : Σ → R^3 が (極小ではない)CMC はめ込みであるならば、f(Σ) は球面である。

注意 実は R^3 内で境界のないコンパクトな極小曲面というのは存在しない。したがって、上の定理は、実は f が極小であるという仮定はなくても成立する。

Σ が g ≥ 1 の向き付け可能な開曲面で、f : Σ → R^3 が共形的で CMC はめ込みの場合を考えよう (上の注意から、f は極小曲面ではない)。この場合、f(Σ) はもちろん球面ではない。このとき、曲面上にはちょうど 4g - 4 個の等点が存在することが示されて、次がいえる。
系 2.4 \mathbb{R}^3 内の種数 1 の CMC 閉曲面は薄点をもたず, \mathbb{R}^3 内の種数が 1 より大きい閉じた CMC 曲面は薄点をもつ。

図 2.12 \mathbb{R}^3 内の平面 (ガウス曲率が 0) な回転面 (清水弘也によるグラフィック)。

ホッフの定理によると, \mathbb{R}^3 内の任意の種数 0 の CMC 閉曲面は球面に他ならない。さらにホッフは, 曲面の種数に関する仮定をなくして, 任意の閉じた CMC 曲面が球面になるかを問うた。つまり彼は \mathbb{R}^3 内の任意種数の閉じた CMC 曲面は種数 0 すなわち球面になるであろうと予想したのである。

この予想が正しいであろうと考えられる 1 つの根拠として, CMC 曲面に対する最大値原理があった。この原理は \mathbb{R}^3 内の任意の埋め込まれた CMC 閉曲面が球面になることを示すための方法を与えるものである。この原理を用いると, CMC 閉曲面が種数 0 である。または埋め込みであるならば, それは球面になることがわかる。

的な表示を示した。この Walter のパラメータ表示は、曲率線のすべてが平面に入っているならば、それに直交する曲率線は球面に入っているという事実を用いることによって発見された。その結果について、J. Spruck [22] は、1988 年、Abresch と Walter によって考察された CMC トーラスは、実は Wente が先に見つけた曲面に他ならないことを示した。

上述の業績と 1960 年代以降の可積分系の理論の発展は、次の 2 つを認識するための手助けとなった。1 つは、CMC トーラスは可積分系の理論の技法を使って研究できるという事実であり、2 つ目は、CMC トーラスは、それらが「有限型」であるという意味で、特に CMC 曲面であるという認識である。このことは、1989 年から 1991 年にかけての U. Pinkall と I. Sterling [19]、および A. Bobenko [3] の仕事で示されている。さらに、それらの研究において \(\mathbb{R}^3 \) 内のすべての CMC トーラスが分類された。また、N. Kapouleas は 1991 年と 1995 年に、任意の種数 \(g(> 1) \) に対して、閉じた CMC 曲面を構成している [13]、[14]。しかし Kapouleas が用いたのは、可積分系の理論としては異なり様々な解析的手法であった。その方面における更なる発展が最近 Kusner, Mazzeo, Pacard, Pollack, Ratzkin によって得られている。

Bobenko の仕事で用いられた可積分系の方法では、対象となる CMC 曲面の研究を \(2 \times 2 \) 行列の言葉に換えることができた。Dorfmeister, Pedit, Wu らが、1998 年に出版された論文[5]において、後に DPW の方法と呼ばれる手法を開発する際にも同様のアプローチがなされた。\(2 \times 2 \) 行列の使用は、\(\mathbb{R}^3 \) の古典的な微分幾何学の観点からはあまり自然なものとは思われないが、一方で、可積分系の立場から見ればそれは非常に自然であり、DPW の方法を展開するには確かに便利である。

\(2 \times 2 \) 行列を用いたとき、DPW の方法の背後には、岩澤分解と呼ばれる行列の分解を用いる考え方がある。実際、\(S^1 \) から \(2 \times 2 \) 行列への写像に（正則データを使い）岩澤分解を適用することにより、必要とされる方程式とその解を見つけられるのである。このアイデアは、もっと以前からあったかもしれないが、少なくとも I. M. Kričever [18] (1980) まで遡る。J. Dorfmeister, F. Pedit, H. Wu は、そのアイデアを広く適用して CMC 曲面を構成した[5]。
2.5 5次元ミンコフスキー空間と曲面理論

この節では，5次元ミンコフスキー空間 $\mathbb{R}^{4,1}$ を用いて3次元空間形を記述する。この方法は異なる3次元空間形の曲面を統一的に記述するのに有効である。この節は前の4つの節よりも専門的な内容を含んでいる。

2.5.1 5次元ミンコフスキー空間

5次元ミンコフスキー空間 $\mathbb{R}^{4,1}$ を得るために次のような 2×2 行列の集合を考える。H を4元数体とする。$\text{Im } H$ を4元数体 H の実数部分とし，

$$\mathbb{R}^{4,1} = \left\{ X = \begin{pmatrix} x & x \in \text{Im } H, x_0, x_\infty \in \mathbb{R} \right\} \right.$$

とおく。$X, Y \in \mathbb{R}^{4,1}$ に対し

$$\langle X, Y \rangle = -\frac{1}{4} \cdot \text{tr}(XY + YX)$$

と定義する。ここで I は2次の単位行列である。このとき \langle , \rangle は $\mathbb{R}^{4,1}$ 上，符号 $(+,+,+,+,−)$ の計量となる。この計量に関して

$$\begin{pmatrix} i & 0 \\ 0 & −i \end{pmatrix}, \begin{pmatrix} j & 0 \\ 0 & −j \end{pmatrix}, \begin{pmatrix} k & 0 \\ 0 & −k \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ −1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

は $\mathbb{R}^{4,1}$ の正規直交基底となる。ただし，上で $1, i, j, k$ は H の基底とする。$x_4 = \frac{1}{2}(x_\infty - x_0), x_5 = \frac{1}{2}(x_\infty + x_0)$ とすれば，$X = \begin{pmatrix} \frac{i}{2} & x_2 \end{pmatrix} = \begin{pmatrix} \frac{i}{2} & \end{pmatrix}$

と書ける。ここで $x = x_1 + x_2 j + x_3 k$ であり，対応 $X \leftrightarrow (x_1, x_2, x_3, x_4, x_5)$ によって，$\mathbb{R}^{4,1}$ は5次元ユークリッド空間 \mathbb{R}^5 と同一視され，ノルムとして

$$||x|| = sgn(\delta) \sqrt{\delta}, \delta = x_1^2 + x_2^2 + x_3^2 + x_4^2 - x_5^2, (x_1, x_2, x_3, x_4, x_5) \in \mathbb{R}^5$$

を考える。また4次元の光円錐は
2.5 5次元ミンコフスキー空間と曲面理論

\[L^4 = \{ X \in \mathbb{R}^4 | ||X|| = 0 \} \]

となる。さて、3次元の空間形を次のように構成できる：零ベクトルでない任意の \(Q \in \mathbb{R}^4 \) に対して、1つの空間形 \(M \) を \(M = L^4 \cap \{ X | \langle X, Q \rangle = -1 \} \) で定めよう。\(M \) は \(Q^2 = \kappa \cdot I \) となるどんな \(Q \) に対しても一定の断面曲率 \(\kappa \) をもつつので、

(2.5)

\[Q = \begin{pmatrix} 0 & 1 \\ \kappa & 0 \end{pmatrix} \]

と選べば任意の空間形を得ることができるである（証明は後述）。このとき、\(x \)の長さを調整し、さらに \(\text{Im} \ H \cup \{ \infty \} \) を \(\text{Im} \ H \) の1点コンパクト化すれば、

\[M = \left\{ X = \frac{2}{1-\kappa x^2} \cdot \begin{pmatrix} x & -x^2 \\ 1 & -x \end{pmatrix} \bigg| x = x_1 i + x_2 j + x_3 k \in \text{Im} \ H \cup \{ \infty \}, \ x^2 \neq \kappa^{-1} \right\} \]

と書け、これは \(\{(x_1, x_2, x_3) \in \mathbb{R}^3 \cup \{ \infty \} | x_1^2 + x_2^2 + x_3^2 \neq -\kappa^{-1} \} \) と同一視される。ここで \(x = x_1 i + x_2 j + x_3 k \in \text{Im} \ H \cup \{ \infty \} \) である。\(\kappa < 0 \) のとき、\(M \)は断面曲率 \(\kappa \) をもつ3次元双曲型空間の2つのコピーになることに注意する。なお、以下の性質にも注目しておくこと:

\(1 - \kappa x^2 \) は \(M \) 内の点に対して決して \(0 \) にはならない。

\(M \) は、光円錐 \(L^4 \) を定義している2次方程式と超平面を定めている線型方程式によって決定されるので、2次曲線と呼ばれる。

我々は \(Q \) をいつでも (2.5) のようにとることで、\(Q \) によって決まる \(M \) を \(M_\kappa \)と表すことにしてしまう。

射影的光円錐 \(PL^4 \) の元

\[\alpha \begin{pmatrix} x & -x^2 \\ 1 & -x \end{pmatrix}, \alpha \in \mathbb{R} \]

が与えられたとき、空間形 \(M_\kappa \) での点を得るために一意的に \(M_\kappa \) へ射影することができるので、ときとして我々は \(\alpha \) を無視したり、あるいは \(\alpha \) を自由に選ぶことができる。
2 対平均曲率一定曲面, ウェイン・ラスマン

\[
X = \frac{2}{1 - \kappa x^2} \cdot \begin{pmatrix} x & -x^2 \\ 1 & -x \end{pmatrix} \in M_\kappa \text{における接空間} \ T_X M_\kappa \text{は, } a \in \text{Im} \ H \text{に対して,}
\]

\[
T_X M_\kappa = \left\{ T_a = \frac{2}{(1 - \kappa x^2)^2} \cdot \begin{pmatrix} a + \kappa x a & -xa - ax \\ \kappa(xa + ax) & -a - \kappa xa \end{pmatrix} \right\}
\]

で与えられる。\(X = X(t) = \frac{2}{1 - \kappa x(t)^2} \cdot \begin{pmatrix} x(t) & -x(t)^2 \\ 1 & -x(t) \end{pmatrix} \in M_\kappa \) を実変数 \(t \)のなめらかな曲線とし, \(t \) についての微分を表すとすると,

\[
X' = T_x
\]

である。計算により

(2.6) \[
\langle T_a, T_b \rangle = -\frac{4}{(1 - \kappa x^2)^2} \text{Re}(ab),
\]

\[
||T_a|| = 1 \iff |a| = \frac{1}{2} |1 - \kappa x^2|
\]

がわかる。また,

(2.7) \[
X'' = T_{2\kappa xx' + x''} \cdot \frac{4(x')^2}{(1 - \kappa x^2)^2} \cdot \begin{pmatrix} \kappa x & -1 \\ \kappa & -\kappa x \end{pmatrix}
\]

もわかる。\(X'' \) は一般には \(T_X M_\kappa \) に含まれないことによる注意が必要である。

(2.6) から次の補題がどうか。

補題 2.5 (2.5) の \(Q \) によって定められた \(M \) は一定平面曲率 \(\kappa \) をもつ。

さまざまな \(\kappa \) に対する (2.5) における \(Q \) の選択によって、いろいろな \(M \) が
deriver するわけであるが、それらはすべて共形的であることが (2.6) からわかる。実際、写像 \(M \ni X \to x \in \text{Im} \ H \approx \mathbb{R}^3 \) は \(\kappa \neq 0 \) のとき立体制影である。（図 2.14 を参照。）

2.5.2 空間形内の曲面

空間形 \(M_\kappa \) 内の曲面 \(x \) を考える。そのパラメータ表示を
図 2.13 \(\kappa \) の 3 つの選び方 \((\kappa > 0, \kappa = 0, \kappa < 0)\) に対し、それぞれ \(S^3, \mathbb{R}^3, \mathbb{H}^3\) の 2 つのコピー）が与えられる。

\[
x = x_1(u, v)i + x_2(u, v)j + x_3(u, v)k
\]

としよう。 \((u, v)\) は等温座標。かつ、曲率線座標であると仮定する（すべての CMC 曲面に対してこのような座標がとれる）。このような座標が等温（共形曲率線）座標と呼ぶ。

\(x_1, x_2, x_3\) は、空間形 \(M_\kappa\) とは異なる空間形 \(M_\mu\) 内においても曲面 \(x\) のパラメータ表示を与えることに注意しておく。

\(n\) を \(M_\kappa\) における \(x\) の単位法線ベクトルとする。\(n_0\) は 3 次元ユークリッド空間 \(M_0\) における \(x\) の単位法線ベクトルである。平均曲率が空間形の選び方に依存していることを示すために、空間形 \(M_\kappa\) における曲面 \(X\) の平均曲率を \(H_\kappa\) と呼ぶ。\(H_0\) は 3 次元ユークリッド空間形 \(M_0\) の場合の平均曲率である。

補題 2.6 (2.5) の \(Q\) によって与えられた空間形 \(M_\kappa\) に属する \(x\) の平均曲率 \(H_\kappa\) は、\(\Delta x = \partial_u \partial_u x + \partial_v \partial_v x\) としたとき、

\[
H_\kappa = \frac{1}{4}|x_u|^2 \text{Re}\{\Delta x \cdot n\} - \frac{\kappa}{1 - \kappa x^2}(xn + nx)
\]

\[
= \frac{1}{2}(1 - \kappa x^2)|x_u|^2 \text{Re}\{\Delta x \cdot n_0\} - \kappa(xn_0 + nx_0)
\]

\[
= (1 - \kappa x^2)H_0 - \kappa(xn_0 + nx_0)
\]

となる。もし \(H_\kappa\) が一定ならば \(\partial_u H_\kappa = \partial_v H_\kappa = 0\) であり、これは

\[
(\partial_u H_0)(1 - \kappa x^2) = \kappa \frac{k_2 - k_1}{2} \partial_u(x^2),
\]

となる。
\[(\partial_v H_0) \cdot (1 - \kappa x^2) = \frac{k_1 - k_2}{2} \partial_u (x^2)\]

と同値である。ここで \(k_j \in \mathbb{R}\) は 3 次元ユークリッド空間形 \(M_0\) における曲面の主曲率であり, \(\partial_u n_0 = -k_1 \partial_u x, \partial_v n_0 = -k_2 \partial_v x\) をみたす。

【証明】 \(X\) における曲面の単位法線ベクトルは \(T_n\) で与えられる。ここで \(n = (1 - \kappa x^2)n_0\) であり,

\[
n_0 = \frac{(x_{2u}x_{3v} - x_{3u}x_{2v})i + (x_{3u}x_{1v} - x_{1u}x_{3v})j + (x_{1u}x_{2v} - x_{2u}x_{1v})k}{2\sqrt{(x_{2u}x_{3v} - x_{3u}x_{2v})^2 + (x_{3u}x_{1v} - x_{1u}x_{3v})^2 + (x_{1u}x_{2v} - x_{2u}x_{1v})^2}}
\]

と書ける。ただし, \(x_{ij}\) は \(\frac{\partial^2}{\partial x^i \partial x^j}\) を表し, 他の記号も同様である。曲面の第 1 基本量 \((g_{ij})\) は, \(\langle T_{x_u}, T_{x_v}\rangle = 0 = g_{12} = g_{21}\) と

\[
g_{11} = \langle T_{x_u}, T_{x_u}\rangle = \frac{4|\mathbf{x}_u|^2}{(1 - \kappa x^2)^2} = \frac{4|\mathbf{x}_v|^2}{(1 - \kappa x^2)^2} = \langle T_{x_v}, T_{x_v}\rangle = g_{22}
\]

をみたす。今, (2.7) において, 記号' が \(\partial_u\) あるいは \(\partial_v\) を表すと考え, それを用いると, 次の式を得る。

\[
b_{11} = \langle X_{x_u}^T, T_n\rangle = \langle X_{x_u}, T_n\rangle =
\]

\[
\frac{-4}{(1 - \kappa x^2)^2} \text{Re}\{x_{uu} \cdot n\} + \frac{4\kappa x^2}{(1 - \kappa x^2)^2}(xn + nx),
\]

\[
b_{12} = b_{21} = \langle X_{x_u}, T_n\rangle = \langle X_{x_v}, T_n\rangle = 0,
\]

\[
b_{22} = \langle X_{x_v}^T, T_n\rangle = \langle X_{x_v}, T_n\rangle =
\]

\[
\frac{-4}{(1 - \kappa x^2)^2} \text{Re}\{x_{vv} \cdot n\} + \frac{4\kappa x^2}{(1 - \kappa x^2)^2}(xn + nx).
\]

ただし, ここで上付き記号 ' \(T\) はベクトルの \(T_X M\) への射影を表しているとする。最後に \(H_0 = (k_1 + k_2)/2\) から結論がしたいが。]

注意 トムセンは 1920 年代に, ある空間形内の等温度面のとれるウィルモア曲面 \(x\) すなわち関数 \(\int (H^2 - K)dA\) に関して極小な曲面に対して, ある \(Q \in \mathbb{R}^{4,1}\) が存在して, その \(Q\) が定める空間形の中で \(x\) が極小曲面になることを証明した. （ブラシメのテキスト[2]の第 3 巻を参照）
2.5.3 球面

任意の空間形 M_κ 内において、球面とは、ある定数 $C_0 \in \text{Im}H$ に対して $|x - C_0|$ が一定となる曲面のことである。$\kappa = 0$ の場合、もし球面が半径 r_0 をもつならば、そのとき $r_0H_0 = 1$ となる。したがって、球面はある定数 C_0 について $x = (-1/H_0)n_0 + C_0$ のように表すことができる。このとき、方程式 $H_\kappa = (1 - \kappa x^2)H_0 - \kappa(xn_0 + n_0x)$ から次の公式が導かれる。

\[H_\kappa = H_0 - \frac{\kappa}{4H_0} - H_0\kappa C_0^2. \]

この方程式は、1つの球面の、いろいろな空間形 M_κ 内における平均曲率の間の関係を述べたものに他ならない。

$\mathbb{R}^{4,1}$ の 1 点

\[S = \left(\begin{array}{c} z \\ z_0 \\ z_\infty \\ -z \end{array} \right) \]

が正の長さ

\[||S|| = \sqrt{-z^2 - z_0z_\infty} > 0 \]

をもつとき、S は空間形 M_κ 内の 1 つの球面 \tilde{S} を定める (図 2.14 を見よ):

\[\tilde{S} = \{ Y \in M_\kappa | (Y, S) = 0 \}. \]

$Y \in \tilde{S}$ であることは Y が $S - Y$ を直交することを意味しているので、S から 4 次元光円錐 PL^4 への接円錐を考えたとき、\tilde{S} は次元が 3 のものになる。

今、我々は空間形内の点と球面の双方が 1 つの空間 $\mathbb{R}^{4,1}$ の点としてどのように表されるかという、興味深い性質を見ているのである。こういったことはメビウス幾何学の考え方である。\tilde{S} は S のスカラー倍で不変であり、また、もし S が $z_0 = -z_\infty$ を満たすならば、\tilde{S} は $M_1 = S^3$ における 1 つの大球になることに注意しておく。また、$||S|| = 0$ ならば S は S^3 内の 1 点となり、\tilde{S} は単なる S の実スカラー倍となるので、結局 \tilde{S} は同じ点 S を与えることにも注意してほしい。

S から時間軸 $\{(0, 0, 0, t) | t \in \mathbb{R}\}$ へ水平な線分 ℓ をとる。このとき $m = \mathbb{R}^{4,1}$
図 2.14 左側の図は、球面の \(\mathbb{R}^1 \times \mathbb{R}^1 \) モデルにおける対応が描かれている。中央の図の上側は、\(\tilde{S} \) の包絡面、右側の図においては、\(P_+ \)と\(P_- \)が、それぞれ\(S^3 \)と\(\mathbb{H}^3 \)から\(\mathbb{R}^3 \)への共形写像であり、これは\(S^3, \mathbb{R}^3, \mathbb{H}^3 \)がメビウス同値であることを意味している。

\(\ell \cap L^2 \)は1つの点となり、それは、射影的光円錐\(PL^3 \)の元をとる言うと、空間形\(M_1 = S^3 \)において\(\tilde{S} \)の中心を与える。

補題 2.7 \(\tilde{S}_1 \)と\(\tilde{S}_2 \)をそれぞれ\(S_1, S_2 \)から生成される\(S^3 \)内の2つの交わる球面とし、さらに\(||S_1|| = ||S_2|| = 1 \)を仮定する。\(\alpha \)を\(\tilde{S}_1 \)と\(\tilde{S}_2 \)の交わる角度とすれば、\(\cos \alpha = \pm \langle S_1, S_2 \rangle \)である。ここで右辺の符号は\(S_1 \)と\(S_2 \)の向きによって定まる。

【証明】\(\kappa = 1 \)のとき、任意の\(p \in S^3 = M_1 \)の座標は1に等しい。\(p \in \tilde{S}_1 \cap \tilde{S}_2 \subset M_1 \)とすると、\(x_5(p) = 1 \)。\(S_1 \)と\(S_2 \)を\(x_5(S_1) = x_5(S_2) = 1 \)となるように長さを調節し、\(S_1 - p \)と\(S_2 - p \)はそれぞれ\(\tilde{S}_1 \)と\(\tilde{S}_2 \)の\(p \)における（\(S^3 \)の接空間での）単位法線ベクトルである。よって

\[
\cos \alpha = \frac{\langle S_1 - p, S_2 - p \rangle}{||S_1 - p|| \cdot ||S_2 - p||} \\
= \frac{1}{||S_1 - p|| \cdot ||S_2 - p||} ((S_1, S_2) - \langle S_2, p \rangle - \langle S_1, p \rangle + \langle p, p \rangle) \\
= \frac{1}{||S_1 - p|| \cdot ||S_2 - p||} ((S_1, S_2) - 0 - 0 + 0) = \frac{1}{||S_1|| \cdot ||S_2||} \langle S_1, S_2 \rangle.
\]

\(S_1 \)と\(S_2 \)の長さを\(||S_1|| = ||S_2|| = 1 \)になるように正規化すれば、補題は示される。
2.5 5次元ミンコフスキー空間と曲面論

注意 補題 2.7 は，S が Y ∈ M_n を含む球面 S を与えるとき，\{S + tY \mid t ∈ R\}
が Y における球面の束を与えることを意味している。

補題 2.8 \(\bar{S}\) に関する反転は，写像 \(f : p \rightarrow p - 2(p, S)S\) で与えられる。

【証明】 \(C = \bar{S}\) と垂直に交わる 1 つの円とする。\(p ∈ C\) のとき \(f(p) ∈ C\)
であることを示したい。ある球面 \(\bar{S}_1\) と \(\bar{S}_2\) に対して，\(C = \bar{S}_1 \cap \bar{S}_2\) であることに
注意する。このとき \(\bar{S}_1 \perp \bar{S}, \bar{S}_2 \perp \bar{S}\) であるから，前の補題によって，\(\langle S, S_1 \rangle = \langle S, S_2 \rangle = 0\)。このとき \(p ∈ C\) は \(p ∈ \bar{S}_1 \cap \bar{S}_2\) であることを意味し，\(\langle p, S_1 \rangle = \langle p, S_2 \rangle = 0\) となる。したがって，\(\langle p - (p, S)S, S_1 \rangle = \langle p - (p, S)S, S_2 \rangle = 0\) と
なり，\(f(p) ∈ C\)。

ここでの話題のさらなる説明については，[10] を見てほしい。

補題 2.9 \(\bar{S}\) は \(M_0\) 内で，

\[
\text{平均半径} = \frac{|z_0|}{2||S||}\quad \text{で，中心が} \quad \frac{z}{z_0}
\]

の球面であり，\(M_n\) 内では平均半径 \(H_n\) をもつ球面である。ただし \(H_n\) は式 (2.8)
で与えられる。

【証明】 \(z = z_1i + z_2j + z_3k\) とし，\(κ = 0\) の場合を考える。

\[
Y = 2 \begin{pmatrix} y & -y^2 \\ 1 & -y \end{pmatrix} ∈ \bar{S}
\]

をとると，\(YS + SY = 0\) は

\[
\sum_{j=1}^{3} (z_0y_j - z_j)^2 = ||S||^2
\]

を意味している。よって \(\bar{S}\) は半径 \(2||S||/|z_0|\) の球面である。したがって \(H_0 =
|z_0|/(2||S||)\)。

2.5.4 クリストオーフェル変換

ここでは，読点をもたない曲面 \(x\) のクリストオーフェル変換 \(x^*\) を定義する。クリストオーフェル変換は \(\mathbb{R}^3\) 内のある種の CMC 曲面に対してそれと平行な CMC
曲面を与える。今、x を平均曲率 H_0 と単位法線ベクトル n_0 をもつ \mathbb{R}^3 内の曲面とする。クリストフエル変換 x^* は次の定義をとる変換として定義される：

- x^* は x と同じ領域で定義されている。
- x^* は x と共形的である。
- x と x^* の向きは逆。

このとき、x と x^* の対応する点での曲率方向はそれ自らが自明な平行であることが確かめられる。

この定義は次の定義と同値であることがわかる。さらに、定義の中の積分因子 $
ho$ の存在は等温面の存在と同値である。また、x^* は $dx^* = x^{-1}_u du - x^{-1}_v dv$ をみたしていることがわかるだろう。

定義 2.10 \mathbb{R}^3 内の積点のない曲面 x のクリストフエル変換 x^* は、曲面 x 上のある 0 でない実数値関数 $
ho$ に対して、$dx^* =
ho(dn_0 + H_0 dx)$ をみたすような曲面のことである（ここで x^* は、平行移動と相似変換による違いを除いて一意的に定まる）。

注意 クリストフエル変換は、「双対曲面」と呼ばれることもある。その意味で、クリストフエル変換をとることは「双対化」と呼ばれる。

注意 上の定義において x が積点をもつ長さは許されていない。積点とは何かしらの関係が生じる可能性があるからである。すると、x が球面 (全体的) である場合には、$dn_0 + H_0 dx = 0$ となり、クリストフエル変換は定義できない。

補題 2.11 x の積点でないところでは、クリストフエル変換 x^* が存在することと x が等温曲面がとられることは同値である。

[証明] はじめに、x が等温曲面がとられると仮定して x^* の存在を示す。

x の等温面を u, v をとする。このとき、ある関数 A, B に対して $x_{uv} = Ax_u + Bx_v$ が成り立つ。次に

$$d(x^{-1}_u du - x^{-1}_v dv) = 16g_{11}^{-2}(x_u x_{uv} x_u + x_v x_{uv} x_v) du \wedge dv = 0$$

がいえる。これは,
\[dx^* = x_u^{-1}du - x_v^{-1}dv \]

をみたす \(x^* \) が存在することを示している。また、軸点でないことから \(b_{11} - b_{22} \neq 0 \) なので,

\[dn_0 + H_0 dx = \frac{1}{8}(b_{11} - b_{22})(x_u^{-1}du - x_v^{-1}dv) \]

は、\(x^* \) がクリストプフェル変換であることを示している。

次に、\(x^* \) の存在を仮定したときに \(x \) が双等温座標をもつことを示す。
任意の座標 \((u, v)\) に関して、\(x = x(u, v) \) のコダッチの方程式は

\[
(b_{11})_v - (b_{12})_u = \Gamma^1_{12} b_{11} + (\Gamma^2_{12} - \Gamma^1_{11}) b_{12} - \Gamma^2_{11} b_{22},
\]

\[
(b_{12})_v - (b_{22})_u = \Gamma^1_{22} b_{11} + (\Gamma^2_{22} - \Gamma^1_{21}) b_{12} - \Gamma^2_{21} b_{22}
\]

となる（例えば、[12] の 97 ページ）。ここでクリストプフェル記号は

\[
\Gamma^k_{ij} = \frac{1}{2} \sum_{k=1}^2 g^{hk} (\partial_u g_{ik} + \partial_u g_{jk} - \partial_u g_{kj})
\]

であり、\(u_1 = u, u_2 = v \) としている。\(x \) は軸点をもたないので、\(u \) と \(v \) は \(x \) の曲率線座標であるとしてよい（例えば[23]の付録 B-5 を見よ）。したがって、\(g_{12} = b_{12} = 0 \) でできる。以上のことから,

\[
\Gamma^1_{11} = \partial_u g_{11} \quad \Gamma^2_{12} = \partial_u g_{22} \quad \Gamma^2_{11} = -\frac{\partial_v g_{11}}{2g_{22}}
\]

\[
\Gamma^1_{22} = -\frac{\partial_v g_{22}}{2g_{11}} \quad \Gamma^1_{12} = \Gamma^1_{21} = \frac{\partial_v g_{11}}{2g_{22}} \quad \Gamma^2_{12} = \frac{\partial_u g_{22}}{2g_{11}}
\]

がわかる。主曲率を \(k_j (j = 1, 2) \) と表すことで、コダッチの方程式は

\[
(2.10) \quad 2(k_1)_v = \frac{\partial_u g_{11}}{g_{11}} \cdot (k_2 - k_1), \quad 2(k_2)_u = \frac{\partial_u g_{22}}{g_{22}} \cdot (k_1 - k_2)
\]

と簡易化される。したがって、\(x^* \) が存在するので

\[
\rho dn_0 + \rho H_0 dx = 0
\]

である。よって
\[
\begin{pmatrix}
0 & \frac{b_{11} - b_{22}}{g_{11} - g_{22}} \\
\frac{g_{22} - b_{11}}{g_{11}} & 0
\end{pmatrix}
\begin{pmatrix}
\rho_u \\
\rho_v
\end{pmatrix}
=
ho
\begin{pmatrix}
\frac{b_{11} + b_{22}}{g_{11} + g_{22}} \\
\frac{b_{11} + b_{22}}{g_{11} + g_{22}}
\end{pmatrix}
\]
がわかる。\(\rho_{uv} = \rho_{vu} \)であるから,

\[
\left(\frac{k_2 + k_1}{k_1 - k_2} \right)_u = \left(\frac{k_1 + k_2}{k_2 - k_1} \right)_v
\]
となり、これより

\[
2((k_1)_u + ((k_2)_u)_v) + 2((k_1)_v(k_2 - k_1)_u + (k_2)_u(k_2 - k_1)_v)/(k_2 - k_1)^2 = 0
\]
が成立する。上式にコッチャの方程式 (2.10) を代入することで,

\[
\left(\log \frac{g_{11}}{g_{22}} \right)_{uv} = 0
\]
を得る。とくに,

\[
(f_1(u))^2g_{11} = (f_2(v))^2g_{22}
\]
となるような、それぞれ \(u \) と \(v \) のみに依存する正値関数 \(f_1(u) \) と \(f_2(v) \) が存在する。ここで新たな曲率線座標 \(\hat{u} \) と \(\hat{v} \) について \(u = u(\hat{u}), v = v(\hat{v}) \) と書くことによって、\(\hat{u} \) と \(\hat{v} \) のの第 1 基本形式の成分 \(\hat{g}_{ij}, \hat{b}_{ij} \) に関して、\(\hat{g}_{12} = \hat{b}_{12} = 0, \hat{g}_{11} = (u\hat{u})^2g_{11}, \hat{g}_{22} = (v\hat{v})^2g_{22} \)が成立立つ。\(\hat{u} = f_1(u(\hat{u})) \) と \(\hat{v} = f_2(v(\hat{v})) \)
が成立立つように \(\hat{u} \) と \(\hat{v} \) を選ぶことができるので、このとき \(\hat{g}_{11} = \hat{g}_{22} \) となり、\(\hat{u}, \hat{v} \) は等温座標である。

系 2.12 動点ではないところでは、等温座標がとれる曲面 \(x = x(u, v) \) の 1 つのクリストッフェル変数 \(x^* \) を、\(dx^* = x_u^{-1}du - x_v^{-1}dv \) なると同様にことができる。

\(x \) の他のクリストッフェル変数を \(y^* \) とする。\(dy^* = \rho(dn_0 + H_0dx) \) であるから,

\[
0 = d^2y^* = d\rho \wedge (dn_0 + H_0dx) + \rho \cdot dH_0 \wedge dx
\]
である。このことから、\(\rho_u, \rho_v \) は等温座標 \((u, v) \) に関し,

\[
(2.11) \quad \rho_u = -\frac{g_{11}\partial_u H_0}{g_{11}H_0 - b_{22}} \cdot \rho, \quad \rho_v = -\frac{g_{11}\partial_v H_0}{g_{11}H_0 - b_{11}} \cdot \rho
\]
2.5 5次元ミンコフスキー空間と曲面理論

与えられることがわかる．この方程式の組 (2.11) から，\(\rho \) は，ある1地点において値が決まれば一意に定まることがわかる．したがってその解 \(\rho \) は定数因子によるスカラー倍の違いを除いて一意的である．よって，クリストフフェル変換 \(x^* \) と \(y^* \) は，\(\mathbb{R}^3 \) の相似変換と平行移動によって移り合う．このことから一般性を失うことなく，次のように \(x^* \) の再定義ができる．

定義 2.13 双等温座標 \((u, v) \) をもつ曲面 \(x \) のクリストフフェル変換とは，
\[dx^* = x_u^{-1}du - x_v^{-1}dv \]
となる \(x^* \) のことである (\(\mathbb{R}^3 \) において，平行移動による違いを除いて一意的に定義される)。

注意 以下で述べられるように，定義 2.10 における関数 \(\rho \) は一般的に，加算曲率の逆数の定スカラー倍である．定義 2.13 に関して，クリストフフェル変換のクリストフフェル変換 \((x^*)^* \) は

\[d((x^*)^*) = (x_u^*)^{-1}du - (x_v^*)^{-1}dv = (x_u^{-1})^{-1}du - (x_v^{-1})^{-1}dv = x_u du + x_v dv = dx \]

をみたす．よって \((x^*)^* \) は，定義 2.10 に関して，平行移動と相似変換で元の曲面 \(x \) になるべきである．したがって，適当な長さ調節と平行移動によって，\((x^*)^* = x \) としてよい．また，\(x \) の単位法線ベクトルを \(n \) とするならば，このとき \(x^* \) の単位法線ベクトルは \(-n \) である．

\[dx = d((x^*)^*) = \rho^*(dn_0 + H_0 dx^*) = \rho^*(-dn_0 + H_0^* \rho (dn_0 + H_0 dx)) \]

だから

\[(1 - \rho^* H_0 H_0^*) dx = (H_0^* \rho \rho^* - \rho^*) dn . \]

\(dx \) と \(dn \) は相関でないところで線型（一次）独立なので

\[\rho H_0^* = \rho^* H_0 = 1 \]

がいえる．

注意 曲面 \(x \) が，\(H_0 \) が一定で双等温座標をもつとき，(2.11) 方程式は \(\rho \) が定数であることを示している．したがって，もし \(x^|| = x + H_0^{-1}n_0 \) が平行 CMC 曲面ならば，\(x^* \) と \(x^|| \) は \(\mathbb{R}^3 \) の相似変換と平行移動によって移り合う．よって，前述に述べたように，\(x \) のクリストフフェル変換は，\(x \) に対する平行 CMC 曲面と本質的に同じである．
2.5.5 進んだ話題への注意

以下、若干の注意を述べて、本節を終わりとする。Burstall と Calderbank が示したように、線型保存量という概念を用いることで、CMC 曲面を特徴付けることもできる。彼らの結果は、本質的には、ある空間形内の曲面が CMC であることと、その線型保存量をもつことが同値であるということである。さらに、この線型保存量は、CMC 曲面が球面の一部であるとき、またそのときに限り、定数の保存量となる。また、こういった保存量の考え方を用いて、「special surfaces」と呼ばれる、より一般的な曲面のクラスの研究が展開される。これは古典的な微分幾何学の結果と密接に関連している。

参考文献

constant mean curvature surfaces, Rokko Lecture Series 17 (2005).
2 平均曲率一定曲面, ウェイン・ラスマン

翻訳者: 木ノ下祐輔（神戸大学、理学研究科）