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Our purpose here is to present a definition for discrete constant mean curvature
(CMC) h surfaces1 in any of the three space forms Euclidean 3-space R3, spherical
3-space S3 and hyperbolic 3-space H3. This new definition is equivalent to the
previously known definitions [2] in the case of R3. It also satisfies a Calapso
transformation relation (the Lawson correspondence), suggesting the definition is
also natural for the space form S3, and for CMC surfaces with h ≥ 1 in H3. The
definition is the first one for CMC surfaces with −1 < h < 1 in H3.

To motivate this definition for discrete CMC surfaces, we first consider the case
of smooth surfaces, and we begin by describing the 3-dimensional space forms
using the 5-dimensional Minkowski space R4,1.

Minkowski 5-space. We give a 2 × 2 matrix formulation for Minkowski 5-
space. Let H denote the quaternions and ImH the imaginary quaternions.

R4,1 =
{

X =
(

x x∞
x0 −x

) ∣∣∣∣ x ∈ ImH, x0, x∞ ∈ R
}

with signature (+, +,+, +,−) Minkowski metric 〈X,Y 〉 such that 〈X,Y 〉 · I =
− 1

2 (XY + Y X), I = identity matrix. The 4-dimensional light cone is L4 = {X ∈
R4,1 | ||X||2 = 0}. We can make the 3-dimensional space forms as follows: A space
form M is M = L4 ∩ {X | 〈X, Q〉 = −I} for any nonzero Q ∈ R4,1. It turns out
that M has curvature κ, where Q2 = κ · I, so without loss of generality we can
obtain any space form by choosing

Q =
(

0 1
κ 0

)
, and then M =

{
X =

2
1− κx2

·
(

x −x2

1 −x

)}
,

which is equivalent to {(x1, x2, x3) ∈ R3 ∪ {∞} |x2
1 + x2

2 + x2
3 6= −κ−1}, where

x = x1i + x2j + x3k ∈ Im H. Note that when κ < 0, M becomes two copies of
H3(κ).

Smooth surfaces in space forms. Let

x = x1(u, v)i + x2(u, v)j + x3(u, v)k ≈ X ∈ M

be a surface in M . Assume (u, v) is a conformal curvature-line coordinate system
(every CMC surface can be parametrized this way). First we define the Christoffel
transformation x∗, which for a CMC surface in R3 gives the parallel CMC surface:

Definition. The Christoffel transformation of x is any x∗ (defined in R3 up to
translation) such that dx∗ = x−1

u du− x−1
v dv.

In the next definition, the nonzero real constant c can be chosen freely:
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Definition. For some c ∈ R\{0}}, we set τ = c

(
xdx∗ −xdx∗x
dx∗ −dx∗x

)
. If there exist

smooth Q and Z in R4,1 depending on (u, v) such that

(1) d(Q + λZ) = (Q + λZ)λτ − λτ(Q + λZ)

holds for all λ ∈ R, then we call Q + λZ a linear conserved quantity of x.

Some properties of linear conserved quantities are immediate: Q and Z2 are
constant; Fτ = τF = 0; F ⊥ Z and F ⊥ dZ. Properties like this can be utilized
to prove the following theorem:

Theorem. [1] The surface x is constant mean curvature in a space form M (pro-
duced by Q 6= 0) if and only if there exists (for that Q) a linear conserved quantity
Q + λZ.

Isothermic discrete surfaces and their Christoffel transforms. Consider
a discrete surface fp ∈ Im H, where p is any point in a discrete lattice domain.
Consider one quadrilateral in the lattice with vertices p, q, r, s ordered counter-
clockwise about the quadrilateral. We define the cross ratio of this quadrilateral
as

qpqrs = (fq − fp)(fr − fq)−1(fs − fr)(fp − fs)−1 .

When, for every quadrilateral, we can write the cross ratio as

qpqrs = apq/aps ∈ R
so that the function apq defined on the edges of f satisfies

apq = asr ∈ R and aps = aqr ∈ R ,

then we say that f is isothermic.
We can define the Christoffel transform f∗ of f by

df∗pqdfpq = apq .

We can then prove the following:

Lemma. [2] If f is isothermic, then there exists a discrete surface f∗ satisfying the
above equation for df∗, and f∗ is isothermic with the same cross ratios as f.

Linear conserved quantities. We can now discretize (1) to obtain

(2) (1 + λτpq)(Q + λZ)q = (Q + λZ)p(1 + λτpq) ,

where λ ∈ R and Q,Z ∈ R4,1 are functions on the lattice domain, and

τpq =
(

fpdf∗pq −fpdf∗pqfq
df∗pq −df∗pqfq

)
.

We now come to the goal of this talk:

Definition. If a linear conserved quantity Q+λZ, Q 6= 0, exists for an isothermic
discrete surface f, we say that f is of constant mean curvature in the space form
M determined by Q.
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Equation (2) can be extended to define polynomial conserved quantities.
In the figure, we show discrete CMC surfaces of revolution. The first two curves

are profile curves for discrete nonminimal CMC surfaces of revolution in R3, the
first being unduloidal and the second nodoidal. (For each of these two curves,
the axis of rotation producing the surface is a vertical line drawn to the left of
the curve, and is not shown in the figure.) The third picture shows the profile
curve for a discrete CMC surface of revolution in S3, where S3 is stereographically
projected to R3, and the shown circle is a geodesic of S3 that is also the axis of the
surface – and furthermore, this example has a periodicity that causes it to close
on itself and form a torus. The final three pictures show discrete CMC surfaces of
revolution in H3. The first two, with H > 1 and H = 1 respectively, are shown in
the Poincare model, and the first is unduloidal while the second looks similar to a
smooth embedded catenoid cousin. (For these two curves, the corresponding axis
of revolution is the vertical line between the uppermost and lowermost points of
the circle shown, and this circle lies in the boundary sphere at infinity of H3.)

The last picture is a minimal surface that lies in both copies of M = H3, and
the horizontal plane shown here is the virtual boundary at infinity of two copies
of the halfspace model for H3. This example was not known before, because the
notion of discrete CMC was not defined before in this case.
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