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This article is about using computer algorithms and graphics in the study of constant mean
curvature surfaces. The advantages of using computers in surface theory is clear, as it helps one
to visually see the geometric behavior of the objects of study in a way that is not possible in most
fields of mathematics. But on a more fundamental level it is about turning an infinite dimensional
problem (that a computer can never truly solve) into a finite dimensional one (that is easily solved
with a computer), an idea that applies equally well in a great variety of mathematical fields, and
is in no way unique to surface theory.

Think of a simple first order smooth ordinary differential equation with a given initial condi-
tion. If you cannot write down its solution explicitly, you might think about finding a discrete
approximate solution by using the Euler algorithm or Runga-Kutta algorithm, just to have some
initial idea how the smooth solution behaves. In this case, your interest in the approximate so-
lution is only as a stepping stone for understanding the smooth true solution. We can think of
the equation (i.e. the algorithm) for the discrete approximate solution as a ”finite dimensional”
problem because the full space of objects (a vector space of discrete functions) that can be in-
serted to test for validity in the equation is finite dimensional. Likewise, we can call the smooth
differential equation an ”infinite dimensional” problem, because the objects insertable into the
equation form an infinite dimensional vector space. This is a somewhat unconventional way to
use the expressions ”finite dimensional” and ”infinite dimensional”, but some geometers do use
these expressions in this way in conversations, although generally not in papers they write.

Or you might instead look at a related ordinary difference equation, with little concern that
the resulting discrete solution approximates the smooth solution, and rather be more concerned
that the difference equation maintains some property found in the smooth differential equation
that you deem important. In this case, as your primary interest is the ”finite dimensional”
difference equation situation itself, you might discard the smooth equation altogether, or you
might acknowledge the existence of the smooth equation but regard it only as an incidental
limiting case of the difference equation you care much more about.

Both approaches are of interest, but for clearly different reasons, and are philosophically quite
separate, although both clearly benefit from the existence of computers. Both are now common
in surface theory, though usually involving partial differential equations, not ordinary ones. Re-
garding the second approach, finding discrete analogs of smooth objects has recently become an
important theme in mathematics, appearing in a variety of places in analysis and geometry. So it
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Figure 1: Three minimal surfaces, the catenoid, helicoid and Costa surface, in R
3.

is natural to search for discrete analogs of smooth minimal and constant mean curvature surfaces.
But there is no single definitive way to define these analogs; the definition one chooses depends on
which properties of smooth minimal and constant mean curvature surfaces one wishes to emulate
in the discrete case.

The first approach is used by researchers in surface theory who want to understand smooth
surfaces in cases where they have no other more elegant way to attack a problem. A good example
of this is:

The Costa Surface: A minimal surface M in Euclidean 3-space R3 is a surface so
that for every point p ∈ M , there exists a neighborhood U ⊂ M of p such that U is the
unique surface of least area with respect to its boundary ∂U . Soap films not containing
bounded pockets of air minimize area with respect to their boundaries, and thus are
modelled by minimal surfaces. (The equivalent definition usually used by geometers
is that the principal curvatures have equal absolute value but opposite sign at every
p ∈ M . But we choose the definition above, as it best explains why these surfaces
are called ”minimal”.) The simplest example is a plane in R3, and two other rather
simple examples are: 1) the catenoid, a surface of revolution produced by revolving a
catenary and parametrized by

{(coshu cos v, cosh u sin v, u) ∈ R3 | u ∈ R, v ∈ [0, 2π)} ,

where R denotes the real numbers, and 2) the helicoid, foliated by straight lines and
parametrized by

{(sinh u cos v, sinh u sin v, v) ∈ R3 | u, v ∈ R} .

The famous Weierstrass representation says that all minimal surfaces can be locally
parametrized by pairs of meromorphic functions f , g defined on Riemann surfaces Σ
with local complex coordinates z, by using path integrals:

Re

∫ z

z0

(1 − g2, i + ig2, 2g)fdz , i =
√
−1 .

There had been a long standing conjecture that the only complete embedded minimal
surfaces with finite topology in R3 are the plane and catenoid and helicoid. Then in
1984, Costa [4] found a complete minimal surface homeomorphic to a torus minus three
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Figure 2: Cut-aways of three constant mean curvature surfaces, a Delaunay unduloid, a Delaunay nodoid
and a Wente torus, in R

3. The first two are surfaces of revolution. (Graphics made by Kouichi Shimose.)

points that seemed it might actually be embedded, because it was at least embedded
outside of a compact set in R3. In 1985, Hoffman and Meeks [7] confirmed it is a
counterexample by proving it is embedded, but only after numerics led them to see
that the surface possessed certain lines and planes of symmetry that were useful for the
proof. Though their final proof used no numerics, the numerics helped them to find
it. They were using the first approach, and the ”finite dimensional” approximation
was only a tool that they discarded once it had enlightened them. It is not hard to
see how the numerics can be made, by noting that the Costa surface has a Weierstrass
representation as above with

Σ = {(z, w) ∈ (C ∪ {∞})2 | w2 = z(z2 − 1)} \ {(−1, 0), (1, 0), (∞,∞)} ,

and

g = B/w , f = w/(z2 − 1) ,

where B is the constant

B =

√

2

∫

1

0

(

t

1 − t2

)1/2

dt

/
∫

1

0

dt

t(1 − t2)1/2
.

Examples of this first approach existed even well before the age of computers, as the next
example shows:

The Wente tori: Constant mean curvature (CMC) surfaces can be defined just like
minimal surfaces, except that now there is a volume constraint. A CMC surface M
in R3 is a surface so that for every point p ∈ M , there exists a neighborhood U ⊂ M
of p such that U is the unique surface of least area with respect to its boundary
∂U , amongst the set of all surfaces with the same oriented volume. We say that two
bounded simply-connected surfaces U and Û with ∂U = ∂Û have the same oriented
volume if one can deform U into Û through a family of surfaces that never changes
the boundary and never changes the neighboring volume to each side of the surfaces.
Soap films that do contain bounded pockets of air minimize area with respect to
their boundaries and fixed volumes, and thus are modelled by CMC surfaces. (The
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geometers’ equivalent definition is that the average of the principal curvatures, i.e.
the mean curvature, is constant along M . Now it is the geometers’ definition that
explains why these surfaces are called ”constant mean curvature”.) Simple examples
are the round sphere and round cylinder. Less trivial examples are Delaunay surfaces
of revolution, parametrizable explicitly in terms of the nonconstant periodic Jacobi
elliptic function v(x) satisfying

(v′)2 = −(v2 − 4s2)(v2 − 4t2) , v(0) = 2|t| ,

with s, t ∈ R \ {0}, s 6= t and s + t = 1/2, and the elliptic integral of the third kind

∫ x

0

4st

4st + v2(ρ)
dρ .

Hopf [9] asked whether any compact CMC surface without boundary in R3 must be a
round sphere. (He did not conjecture it, rather he only asked it.) He himself proved it
is true when the surface is simply connected. Alexandrov proved it when the surface is
embedded, using the maximum principle for second-order elliptic differential equations.
However, Wente [15] showed it is false in general, by finding compact nonembedded
CMC surfaces without boundary and of genus 1. These tori can be described in terms
of Jacobi elliptic functions and integrals, like the Delaunay surfaces are.

But in fact Enneper’s student Voretzsch was already studying local pieces of surfaces
that include Wente tori well over 100 years ago. Tables of his data, obviously found
without the aid of a computer, are listed in his thesis [14]. Voretzsch reduced the
problem to a numerical study of elliptic functions by assuming the surface has a family
of planar curvature lines, which is true of the Wente tori (although this was only later
noticed by U. Abresch [1]). He used his data to make a plaster model, which later
disappeared for unknown reasons. Recently a master’s degree student at TU-Berlin,
now using the Mathematica program, checked that Voretzsch’s data was very accurate
[16]. There are presently plans under way at TU-Berlin to reproduce Voretzsch’s
plaster model with a 3D printer.

If Voretzsch had thought to see if his surfaces could close into compact surfaces, Wente
tori might have been known long before Hopf would have even asked his question.

To apply the second approach, on the other hand, one must decide what properties of smooth
CMC surfaces one would like to see preserved in the discrete CMC surfaces, and different choices
of those properties result in genuinely different theories.

One choice, following the definitions given above, is to demand that the discrete CMC surfaces
also locally minimize area with respect to variations of the surface that preserve volume to each
side. For this property, one would choose the discrete surfaces to be triangulated, i.e. as surfaces
made by gluing triangles together along edges, and then consider variations that continuously
move the vertices while preserving the simplicial structure. If any variation that moves just one
interior vertex and that preserves the volume to each side of the surface will never decrease area,
we can say that this discrete surface is of constant mean curvature. A proponent of this approach
is K. Polthier [12], [13], and there exists a very user-friendly and versatile software for finding
these discrete CMC surfaces numerically, the Surface Evolver by K. Brakke.
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software location

Surface Evolver K. Brakke, www.susqu.edu/brakke

Knoppix/Math, www.knoppix-math.org

JavaView K. Polthier, www.javaview.de

CMCLab, Java version Tokyo Metro. Univ., tmugs.math.metro-u.ac.jp

CMCLab, Linux version N. Schmitt, www.gang.umass.edu

Knoppix/Math, www.knoppix-math.org

Table 1: Recommended related freeware.

But another choice of the property to be preserved, now commonly used, is as follows: The
governing equation, i.e. the Gauss equation, when using conformal coordinates, for the local
existence of a CMC surface is the sinh-Gordon equation

∂z̄∂zu + sinh u = 0 ,

where z is a local complex coordinate on a Riemann surface.
To be honest, this is not quite true at umbilic points where the two principle curvatures are

equal, because more generally the Gauss equation is

∂z̄∂zu − 1

2
QQ̄e−u + 2H2eu = 0

for H the constant mean curvature and for some holomorphic function Q = Q(z), and the umbilic
points are where Q is zero. But these umbilic points are merely isolated on any CMC surface other
than the round sphere, and away from those points a conformal coordinate change and homothety
of the surface will transform this equation into the sinh-Gordon equation above. Let us ignore
umbilic points in this introductory article, so then CMC surfaces correspond locally to solutions
of the sinh-Gordon equation.

So we can now obtain discrete CMC surfaces via a discretization of that integrable system
(the sinh-Gordon equation). In this case, the area-minimizing property has been lost, so there
is no reason to think about variations of the surface, and so one can consider the surfaces as a
mesh of planar quadrilaterals (for which one cannot freely move the vertices, as planarity will
then be lost), rather than of triangles. Perhaps the first breakthrough in this field was a paper
by Wunderlich [17]. The TU-Berlin geometry group, under the leadership of A. Bobenko and U.
Pinkall, rediscovered Wunderlich’s results and then developed the field further.

At first, preserving the area-minimizing property for the discrete surfaces might seem prefer-
able to preserving a relationship with integrable systems, as the former property is fundamental
to how the smooth surfaces are defined, while the latter property is something that one later
discovers in their mathematical structure. Without doubt, the first way is important, but there
are good reasons for considering the second way too. The second way, by preserving relations to
integrable systems, preserves much of the interesting underlying mathematical structure [2], [6].
(For example, only the second way gives discrete versions of the Bianchi permutability theorem,
and discrete transformations of Backlund, Darboux or Ribaucour type.)

It is interesting that one cannot have it both ways when discretizing, that is, one cannot
simultaneously preserve the area-minimizing property and the relationships to integrable systems.
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Figure 3: A discrete catenoid found in [3] made via an integrable systems viewpoint. (Discrete catenoids
made via a variational viewpoint can easily be viewed using Polthier’s JavaView software and would
look similar, but in fact would be different.) Then an approximation to a smooth trinoid made with N.
Schmitt’s CMCLab software and a true discrete trinoid found in T. Hoffmann’s thesis [8] are shown.

This can already be seen in the discrete minimal catenoids coming from each way, as these two
types of catenoids really do not coincide.

The integrable systems viewpoint for smooth CMC surfaces itself leads to both approaches for
discretizing. There is a method, called the DPW method after its founders Dorfmeister, Pedit
and Wu [5], that is based on integrable systems methods and produces smooth CMC surfaces (or
more generally harmonic maps into symmetric spaces). Central to the method is an introduction
of a spectral parameter λ lying in the unit circle S1 in the complex plane. In this method one
uses techniques in integrable systems theory, dating back at least to Kričever [10], to construct an
object called an extended frame depending on λ, from which a CMC surface can be constructed.
In fact, any CMC surface can be constructed this way. One is implicitly finding a solution to
the sinh-Gordon equation, but the beauty of the method is that the sinh-Gordon equation itself
is essentially bypassed and the surface is constructed without needing to know anything specific
about that difficult-to-find sinh-Gordon equation solution.

Now one can take either of the two approaches described in this article for discretizing the
DPW method. The first approach is to find discrete approximations to the desired smooth surface.
In this case the smooth surface is doubly an infinite dimensional problem, because you have both
the surface parameter and the spectral parameter. The surface parameter can be discretized in
the usual way, and the spectral parameter λ can be discretized by chopping away all but a finite
number of terms in the Fourier series for the extended frame. What is left is a finite dimensional
problem, and this is exactly what is solved numerically in the CMCLab program by N. Schmitt.
The second approach is to create a discrete formulation of the DPW method that preserves
integrable systems properties. This approach has been taken by T. Hoffman [8].

By the above avenues, and other avenues as well, computers and discrete methods and inte-
grable systems methods have come to play a central role in surface theory.

The DPW method: For those who are interested, we close with a more technical
description of the DPW recipe for constructing any nonminimal CMC surface in R3.
On a Riemann surface Σ with local complex coordinates z, we define a holomorphic

potential as a trace-free matrix-valued λ-dependent 1-form, λ ∈ S1,

ξ =

(∑

∞

j=0
cj(z)λj

∑

∞

j=−1
aj(z)λj

∑

∞

j=0
bj(z)λj −∑

∞

j=0
cj(z)λj

)

dz ,

where the ajdz, bjdz, cjdz are all holomorphic 1-forms defined on Σ, and a−1 is never
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zero. Choose an SL2C-valued solution φ of

dφ = φξ ,

analytic in λ, and write φ = FB (this is Iwasawa splitting) so that F is SU2-valued
for all λ ∈ S1 and B extends holomorphically to {λ ∈ C | |λ| ≤ 1} and B|λ=0 is upper-
triangular. Although φ is holomorphic in z, F and B are only real-analytic in z. We
call F an extended frame because it is represents a framing for a CMC surface at any
λ ∈ S1. Then we insert F into the Sym-Bobenko formula, choosing λ = 1,

f = −2iH−1
[

λ∂λF · F−1
]

λ=1
,

which is of the form

f =
−i

2

(

−x3 x1 + ix2

x1 − ix2 x3

)

,

for real-valued functions x1 = x1(z, z̄), x2 = x2(z, z̄), x3 = x3(z, z̄), and then the theory
behind the DPW method implies that

Σ 3 z 7→ (x1, x2, x3) ∈ R3

becomes a conformal parametrization of a CMC H surface.

Among the simple examples of holomorphic potentials, for the sphere, cylinder and
Delaunay surfaces, respectively, are

ξ = λ−1

(

0 1
0 0

)

dz , Σ = C ,

ξ =
1

4

(

0 λ−1 + 1
1 + λ 0

)

dz , Σ = C \ {0} ,

ξ = ξ =

(

0 sλ−1 + t
sλ + t 0

)

dz

z
, Σ = C \ {0} ,

for s, t ∈ R \ {0, 1/4} and s + t = 1/2.
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Möbius Differential Geometry, Cambridge
University Press, London Math. Society
Lect. Note Series 300 (2003).

[7] D. Hoffman and W. H. Meeks III, A com-
plete embedded minimal surface with genus
one, three ends and finite total curvature,
J. Diff. Geom., 21 (1985), 109–127.

[8] T. Hoffmann, Discrete curves and surfaces,
Ph.D. thesis, TU-Berlin (2000).

[9] H. Hopf, Differential geometry in the large,
Lect. Notes in Math., 1000, Springer,
Berlin (1983).
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