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1 Background

Suppose you are given a simple first order smooth ordinary differential equation with a given
initial condition. If you cannot write down its solution explicitly, you might find a discrete
approximate solution by using the Euler or Runga-Kutta algorithm, just to have some initial
idea how the smooth solution behaves. In this case, your interest in the approximate solution
is only as a stepping stone for understanding the smooth true solution. We can think of the
equation (i.e. the algorithm) for the discrete approximate solution as a finite dimensional
problem because the full space of objects (a vector space of discrete functions) that can be
inserted to test for validity in the equation is finite dimensional. Likewise, we can call the smooth
differential equation an infinite dimensional problem (this might be somewhat unconventional),
because the objects insertable into the equation form an infinite dimensional vector space.

Or you might instead look at a related ordinary difference equation, with little concern that
the resulting discrete solution approximates the smooth solution, and rather be more concerned
that the difference equation maintains some property found in the smooth differential equation
that you deem important. In this case, as your primary interest is the ”finite dimensional”
difference equation situation itself, you might discard the smooth equation altogether, or you
might acknowledge the existence of the smooth equation but regard it only as an incidental
limiting case of the difference equation you care much more about.

Both approaches are of interest, and are now common in surface theory, though usually involv-
ing partial differential equations, not ordinary ones. Discrete analogs of smooth minimal and
constant mean curvature surfaces are being studied. But there is no single definitive way to
define these analogs; the definition one chooses depends on which properties of smooth minimal
and constant mean curvature surfaces one wishes to emulate in the discrete case.

A good example of the first approach is the Costa surface, with the following story: The simplest
example of a minimal surface in R3 is the plane, and two other rather simple examples are: 1)
the catenoid, a surface of revolution produced by revolving a catenary and parametrized by

{(coshu cos v, cosh u sin v, u) ∈ R3 |u ∈ R, v ∈ [0, 2π)} ,

Figure 1: The Costa surface.
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Figure 2: Cut-aways of three constant mean curvature surfaces, a Delaunay unduloid, a Delaunay
nodoid and a Wente torus, in R3. The first two are surfaces of revolution.

where R denotes the real numbers, and 2) the helicoid, foliated by straight lines and parametrized
by

{(sinh u cos v, sinhu sin v, v) ∈ R3 |u, v ∈ R} .

The famous Weierstrass representation says that all minimal surfaces can be locally parametrized
by pairs of meromorphic functions f , g defined on Riemann surfaces Σ with local complex co-
ordinates z, by using path integrals:

Re
∫ z

z0

(1− g2, i + ig2, 2g)fdz , i =
√−1 .

The Costa surface, found in 1984 by Costa [5] is a complete minimal surface homeomorphic to
a torus minus three points. It has the Weierstrass data

Σ = {(z, w) ∈ (C ∪ {∞})2 | w2 = z(z2 − 1)} \ {(−1, 0), (1, 0), (∞,∞)} ,

and
g = B/w , f = w/(z2 − 1) ,

where B is the constant

B =

√
2

∫ 1

0

(
t

1− t2

)1/2

dt

/∫ 1

0

dt

t(1− t2)1/2
.

There had been a long standing conjecture that the only complete embedded minimal surfaces
with finite topology in R3 are the plane and catenoid and helicoid. In 1985, Hoffman and Meeks
[9] confirmed that the Costa surface is a counterexample by proving it is embedded, but only
after numerics led them to see that the surface possessed certain lines and planes of symmetry
that were useful for the proof. Though their final proof used no numerics, the numerics helped
them to find it.

There are also examples of this first approach amongst the constant mean curvature (CMC)
surfaces in R3. Simple examples of these surfaces are the round sphere and round cylinder.
Less trivial examples are Delaunay surfaces of revolution, parametrizable explicitly in terms of
the nonconstant periodic Jacobi elliptic function v(x) satisfying

(v′)2 = −(v2 − 4s2)(v2 − 4t2) , v(0) = 2|t| ,

with s, t ∈ R \ {0}, s 6= t and s + t = 1/2, and the elliptic integral of the third kind
∫ x

0

4st

4st + v2(ρ)
dρ .

Hopf [11] asked whether any compact CMC surface without boundary in R3 must be a round
sphere. He proved it is true when the surface is simply connected. Alexandrov proved it when
the surface is embedded, using the maximum principle for second-order elliptic differential
equations. However, Wente [17] showed it is false in general, by finding compact nonembedded
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CMC surfaces in R3 without boundary and of genus 1. These tori can be described in terms of
Jacobi elliptic functions and integrals, as the Delaunay surfaces are.

As an example of the first approach, Abresch saw from numerical experimentation that one
family of curvature lines on the Wente tori appeared to be planar curves. He then proceeded to
mathematically prove the existence of such CMC tori [1]. After that, Spruck [16] showed that
the tori found by Abresch are exactly the same collection of surfaces as found by Wente.

To apply the second approach, on the other hand, one must decide what properties of smooth
CMC surfaces one would like to see preserved in the discrete CMC surfaces, and different choices
of those properties result in genuinely different theories.

One choice, following the definitions given above, is to demand that the discrete CMC surfaces
also locally minimize area with respect to variations of the surface that preserve volume to
each side. For this, one would choose the discrete surfaces to be triangulated, i.e. as surfaces
made by gluing triangles together along edges, and then consider variations that continuously
move the vertices while preserving the simplicial structure. If any variation that moves just one
interior vertex and preserves the volume to each side of the surface will never decrease area, we
can say that this discrete surface is of constant mean curvature. See works of K. Polthier [14],
[15], and the Surface Evolver by K. Brakke.

But another choice of the property to be preserved, now often used, is as follows: The governing
equation, i.e. the Gauss equation, when using conformal coordinates, for the local existence of
a CMC surface is the sinh-Gordon equation

∂z̄∂zu + sinh u = 0 ,

where z is a local complex coordinate on a Riemann surface. (Let us ignore umbilic points here.
Anyway, these umbilics are isolated on any CMC surface other than the round sphere.)

So we can now obtain discrete CMC surfaces via a discretization of that integrable system (the
sinh-Gordon equation). In this case, the area-minimizing property has been lost, so there is no
reason to think about variations of the surface, and so one can consider the surfaces as a mesh
of planar quadrilaterals (for which one cannot freely move the vertices, as planarity will then
be lost) rather than of triangles. Perhaps the first breakthrough in this field was by Wunderlich
[18], with further developments by the TU-Berlin geometry group.

At first, preserving the area-minimizing property for the discrete surfaces might seem preferable
to preserving a relationship with integrable systems, as the former property is fundamental to
how the smooth surfaces are defined, while the latter property is something that one later
discovers in their mathematical structure. The first way is clearly important, but there are
good reasons for considering the second way too. The second way, by preserving relations to
integrable systems, preserves much of the interesting underlying mathematical structure [2], [8].
(For example, only the second way gives discrete versions of the Bianchi permutability theorem,
and discrete transformations of Backlund, Darboux or Ribaucour type.)

Interestingly, it seems that one cannot simultaneously preserve the area-minimizing property
and the relationships to integrable systems. This can already be seen in the discrete minimal
catenoids coming from each way, as these two types of catenoids really do not coincide.

The integrable systems viewpoint for smooth CMC surfaces itself leads to both approaches
for discretizing. There is a method, called the DPW method after its founders Dorfmeister,
Pedit and Wu [7], that is based on integrable systems methods and produces smooth CMC
surfaces (or more generally harmonic maps into symmetric spaces). Central to the method is
an introduction of a spectral parameter λ lying in the unit circle S1 in the complex plane. In
this method one uses techniques in integrable systems theory, dating back at least to Kričever
[12], to construct an object called an extended frame depending on λ, from which a CMC surface
can be constructed. In fact, any CMC surface can be constructed this way. One is implicitly
finding a solution to the sinh-Gordon equation, but the beauty of the method is that the sinh-
Gordon equation itself is essentially bypassed and the surface is constructed without needing
to know anything specific about that solution.
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Figure 3: Graphics of a smooth trinoid made with N. Schmitt’s CMCLab software.

Figure 4: Discrete surfaces made from a variational viewpoint. Left: a discrete CMC Delaunay surface.
Middle: a discrete triply-periodic Schwarz P minimal surface. Right: a discrete minimal surface similar
to the smooth Costa minimal surface.

Now one can take either of the two approaches described here for discretizing the DPW method.
The first approach is to find discrete approximations to the desired smooth surface. In this
case the smooth surface is doubly an infinite dimensional problem, because you have both the
surface parameter and the spectral parameter. The surface parameter can be discretized in the
usual way, and the spectral parameter λ can be discretized by chopping away all but a finite
number of terms in the Fourier series for the extended frame. What is left is a finite dimensional
problem, and this is exactly what is solved numerically in the CMCLab program by N. Schmitt.
The second approach is to create a discrete formulation of the DPW method that preserves
integrable systems properties. This approach has been taken by T. Hoffman [10].

By the above avenues, and others as well, computers and discrete methods and integrable
systems methods have come to play a central role in surface theory.

We now describe the DPW recipe for constructing any nonminimal CMC surface in R3. On
a Riemann surface Σ with local complex coordinates z, we define a holomorphic potential as a
trace-free matrix-valued λ-dependent 1-form, λ ∈ S1,

ξ =
(∑∞

j=0 cj(z)λj
∑∞

j=−1 aj(z)λj

∑∞
j=0 bj(z)λj −∑∞

j=0 cj(z)λj

)
dz ,

where the ajdz, bjdz, cjdz are all holomorphic 1-forms defined on Σ, and a−1 is never zero.
Choose an SL2C-valued solution φ of

dφ = φξ ,

analytic in λ, and write φ = FB (this is Iwasawa splitting) so that F is SU2-valued for all
λ ∈ S1 and B extends holomorphically to {λ ∈ C | |λ| ≤ 1} and B|λ=0 is upper-triangular.
Although φ is holomorphic in z, F and B are only real-analytic in z. We call F an extended
frame because it is represents a framing for a CMC surface at any λ ∈ S1. Then we insert F
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Figure 5: Smooth and discrete versions of the triply-periodic Fischer-Koch type minimal surface. The
discrete version is made from a variational viewpoint.

into the Sym-Bobenko formula, choosing λ = 1,

f = −2iH−1
[
λ∂λF · F−1

]
λ=1

,

which is of the form

f =
−i

2

( −x3 x1 + ix2

x1 − ix2 x3

)
,

for real-valued functions x1 = x1(z, z̄), x2 = x2(z, z̄), x3 = x3(z, z̄), and then one can prove that

Σ 3 z 7→ (x1, x2, x3) ∈ R3

becomes a conformal parametrization of a CMC H surface.

Among the simple examples of holomorphic potentials, for the sphere, cylinder and Delaunay
surfaces, respectively, are

ξ = λ−1

(
0 1
0 0

)
dz , Σ = C ,

ξ =
1
4

(
0 λ−1 + 1

1 + λ 0

)
dz , Σ = C \ {0} ,

ξ = ξ =
(

0 sλ−1 + t
sλ + t 0

)
dz

z
, Σ = C \ {0} ,

for s, t ∈ R \ {0, 1/4} and s + t = 1/2.

2 A conserved quantities approach to smooth CMC sur-
faces

In the next section we introduce an approach to discrete CMC surfaces coming from joint
work with F. Burstall, U. Hertrich-Jeromin, and S. Santos. But to motivate that discussion,
in this section we first explain a result of Burstall and Calderbank [4] for the case of smooth
CMC surfaces. We begin by describing the 3-dimensional space forms using the 5-dimensional
Minkowski space R4,1.

Minkowski 5-space. We give a 2×2 matrix formulation for Minkowski 5-space. Let H denote
the quaternions and Im H the imaginary quaternions.

R4,1 =
{

X =
(

x x∞
x0 −x

) ∣∣∣∣ x ∈ Im H, x0, x∞ ∈ R

}
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with Minkowski metric 〈X, Y 〉 such that 〈X, Y 〉 ·I = − 1
2 (XY +Y X), I = identity matrix. This

metric has signature (+, +,+, +,−) with respect to the (orthonormal) basis
(

i 0
0 −i

)
,

(
j 0
0 −j

)
,

(
k 0
0 −k

)
,

(
0 1
−1 0

)
,

(
0 1
1 0

)
.

If we set x4 = 1
2 (x∞ − x0), x5 = 1

2 (x∞ + x0), we can write X as

X = x1

(
i 0
0 −i

)
+ x2

(
j 0
0 −j

)
+ x3

(
k 0
0 −k

)
+ x4

(
0 1
−1 0

)
+ x5

(
0 1
1 0

)
,

where x = x1i + x2j + x3k, and then we have the correspondence X ↔ (x1, x2, x3, x4, x5) to
the more usual way

{(x1, x2, x3, x4, x5) ∈ R5 | ||(x1, x2, x3, x4, x5)|| = x2
1 + x2

2 + x2
3 + x2

4 − x2
5}

of denoting R4,1. The 4-dimensional light cone is

L4 = {X ∈ R4,1 | ||X||2 = 0} .

We can make the 3-dimensional space forms as follows: A space form M is M = L4 ∩
{X | 〈X, Q〉 = −I} for any nonzero Q ∈ R4,1. It will turn out that M has curvature κ, where
Q2 = κ · I, so without loss of generality we can obtain any space form by choosing

Q =
(

0 1
κ 0

)
, (1)

and then

M =
{

X =
2

1− κx2
·
(

x −x2

1 −x

)}
,

which is equivalent to {(x1, x2, x3) ∈ R3∪{∞} |x2
1+x2

2+x2
3 6= −κ−1}, where x = x1i+x2j+x3k ∈

ImH. Note that when κ < 0, M becomes two copies of hyperbolic 3-space with sectional
curvature κ.

The tangent space of M at X is

TXM =
{
Ta =

2
(1− κx2)2

·
(

a + κxax −xa− ax
κ(xa + ax) −a− κxax

)}
,

for a ∈ Im H. When X = X(t) ∈ M is a smooth function of a real variable t, and when ′
denotes differentiation with respect to t, we have

X ′ = Tx′ .

A computation gives

〈Ta, Tb〉 =
−4

(1− κx2)2
Re(ab) , (2)

||Ta|| = 1 ⇔ |a| = 1
2 |1− κx2| .

Also,

X ′′ = T 2κ(xx′+x′x)
1−κx2 ·x′+x′′

+
4(x′)2

(1− κx2)2
·
(

κx −1
κ −κx

)
. (3)

Note that generally X ′′ is not contained in TXM .

The following lemma follows from (2).

Lemma 1. The M determined by the Q in (1) has constant sectional curvature κ.
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We see from (2) that the collection of M given by the above choice (1) for Q, for various κ, are
all conformally equivalent (or Moebius equivalent).

Smooth surfaces in space forms. Let

x = x1(u, v)i + x2(u, v)j + x3(u, v)k ≈ X ∈ M

be a surface in M . Assume (u, v) is a conformal curvature-line coordinate system (every CMC
surface can be parametrized this way). We call such coordinates isothermic coordinates.

Note that x1, x2 and x3 can be chosen before the space form M is chosen, and only once M
(and hence κ) is chosen do we know the form of X. In particular, the surface can be defined
before the space form is chosen. Because we will always choose Q as in (1), we will indicate
this by denoting M as Mκ, with the subscript κ.

We let n denote the unit normal vector for x, once Mκ is chosen. n0 denotes the unit normal with
respect to Euclidean 3-space M0, where κ = 0. We sometimes write Hκ for the mean curvature
of the surface x with respect to the space form Mκ, to denote that the mean curvature depends
on the choice of space form. H0 is the mean curvature in the case of Euclidean 3-space M0.

Lemma 2. The mean curvature H = Hκ of x with respect to the space form Mκ given by Q
as in (1), with 4x = ∂u∂ux + ∂v∂vx, is

H = −1
2 |xu|−2 Re{4x · n} − κ

1− κx2
(xn + nx) =

= −1
2 (1− κx2)|xu|−2 Re{4x · n0} − κ(xn0 + n0x) =

(1− κx2)H0 − κ(xn0 + n0x) .

Then H is constant exactly when ∂uH = ∂vH = 0, which is equivalent to

(∂uH0) · (1− κx2) = κk2−k1
2 ∂u(x2) , (∂vH0) · (1− κx2) = κk1−k2

2 ∂v(x2) , (4)

where the kj ∈ R are the principal curvatures with respect to the Euclidean space form M0, i.e.
∂un0 = −k1∂ux and ∂vn0 = −k2∂vx.

Proof. Letting x1u denote d
du (x1), and similarly taking other notations, the unit normal vector

to the surface is Tn, where n = (1− κx2)n0 and

n0 =
1
2
· (x2ux3v − x3ux2v)i + (x3ux1v − x1ux3v)j + (x1ux2v − x2ux1v)k√

(x2ux3v − x3ux2v)2 + (x3ux1v − x1ux3v)2 + (x1ux2v − x2ux1v)2
.

The first fundamental form (gij) satisfies 〈Txu , Txv 〉 = 0 = g12 = g21, and

g11 = 〈Txu , Txu〉 =
4|xu|2

(1− κx2)2
=

4|xv|2
(1− κx2)2

= 〈Txv , Txv 〉 = g22 .

Then using (3), with the symbol ′ denoting either ∂u or ∂v, we have (where the superscript ”T”
denotes the part of a vector tangent to TXM)

b11 = 〈XT
uu, Tn〉 = 〈Xuu, Tn〉 =

−4
(1− κx2)2

Re{xuu · n}+
4κx2

u

(1− κx2)3
(xn + nx) ,

b12 = b21 = 〈XT
uv, Tn〉 = 〈Xuv, Tn〉 = 0 ,

b22 = 〈XT
vv, Tn〉 = 〈Xvv, Tn〉 =

−4
(1− κx2)2

Re{xvv · n}+
4κx2

v

(1− κx2)3
(xn + nx) .

The result follows, using H0 = (k1 + k2)/2.

We now define the Christoffel transformation x∗, which for a CMC surface in R3 gives the
parallel CMC surface. Let x give a surface in R3 with mean curvature H0 and unit normal n0.
The Christoffel transformation x∗ satisfies that
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• x∗ is defined on the same domain as x,

• x∗ has the same conformal structure as x,

• x and x∗ have opposite orientations,

• and x and x∗ have parallel tangent planes at corresponding points.

This definition above turns out to be equivalent to the following definition, and the existence
of the integrating factor ρ below is equivalent to the existence of isothermic coordinates. Then,
once we have x∗, we will see that we can take x∗ so that dx∗ = x−1

u du− x−1
v dv.

Definition 1. A Christoffel transformation x∗ of x in R3 is such that dx∗ = ρ(dn0 + H0dx)
for some real-valued function ρ on the surface x (here x∗ is determined only up to translations
and homotheties).

Lemma 3. x∗ exists if and only if x is isothermic.

Proof. We prove only one direction here. Assume x is isothermic, and take isothermic coordi-
nates u, v for x, so xuv = Axu + Bxv for some A,B. Then

d(x−1
u du− x−1

v dv) = 16g−2
11 (xuxuvxu + xvxuvxv)du ∧ dv = 0 .

This implies that there exists an x∗ such that

dx∗ = x−1
u du− x−1

v dv .

Also,
dn0 + H0dx = 1

8 (b11 − b22)(x−1
u du− x−1

v dv) ,

implying that x∗ is a Christoffel transform.

Corollary 1. Christoffel transformations can be taken as solutions of dx∗ = x−1
u du− x−1

v dv.

As a result of the above corollary, we can now simply take the definition of x∗ as follows:

Definition 2. The Christoffel transformation of x is any x∗ (defined in R3 up to translation)
such that dx∗ = x−1

u du− x−1
v dv.

Lemma 4.
dx∗ =

2
(k1 − k2)|xu|2 (dn0 + H0dx) .

Proof. (
2

(k1 − k2)|xu|2 (dn0 + H0dx)− x−1
u du + x−1

v dv

)
|xu|2 =

=
2

k1 − k2
(−k1xudu− k2xvdv + k1+k2

2 (xudu + xvdv)) + xudu− xvdv = 0 .

The following corollary shows that the Christoffel transform is what it should be when the
ambient space is R3, and this surface is CMC, i.e. it gives the parallel CMC surface.

Corollary 2. If H0 is constant for the surface x in R3, then x∗ is equal to a real constant
times x + H−1

0 n0.

Proof. Because H0 is constant and we have isothermic coordinates, the Q̂ in the Hopf differential
Q̂(d(u + iv))2 is real. Because Q̂ is holomorphic with respect to u + iv, it is therefore a real
constant. So

Q̂ = 〈n0, xuu − xvv〉 = (k1 − k2)|xu|2

is constant. We then apply Lemma 4.
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In the next definition, the nonzero real constant c can be chosen freely, and we are once again
considering general space forms M .

Definition 3. For some c ∈ R \ {0}, we set τ = c

(
xdx∗ −xdx∗x
dx∗ −dx∗x

)
. If there exist smooth Q

and Z in R4,1 depending on (u, v) such that

d(Q + λZ) = (Q + λZ)λτ − λτ(Q + λZ) (5)

holds for all λ ∈ R, then we call Q + λZ a linear conserved quantity of x.

Some properties of linear conserved quantities are immediate. For example, Q and Z2 are
constant, Xτ = τX = 0, X ⊥ Z and X ⊥ dZ. We now show these properties:

Lemma 5. Q is constant.

Proof. Set λ = 0 in the conserved quantity equation (5).

Lemma 6. Xτ = τX = 0.

Proof.

Xτ =
2c

1− κx2

(
x
1

) (
1 −x

)(
x
1

)
dx∗

(
1 −x

)
= 0 ,

since (
1 −x

)(
x
1

)
= 0 .

Similarly one can show τF = 0.

Lemma 7. If Q + λZ is a linear conserved quantity, then Z2 is constant.

Proof. First note that d(Z2) = Z · dZ + dZ ·Z = Z(Qτ − τQ) + (Qτ − τQ)Z = (QZ + ZQ)τ −
τ(QZ + ZQ), since Zτ = τZ. Because QZ + ZQ is real, we have d(Z2) = 0.

Lemma 8. X is perpendicular to both Z and dZ.

Proof. XZ + ZX is a real multiple of the identity, and is zero because τ(XZ + ZX) = τZX =
ZτX = 0. Thus, X ⊥ Z. Next, X ·dZ +dZ ·X = X(Qτ −τQ)+(Qτ −τQ)X = XQτ −τQX =
(−QX − I)τ − τ(−XQ− I) = −τ + τ = 0. Thus X ⊥ dZ.

Properties like these will be utilized to prove the following theorem:

Theorem 1. [4] The surface x is constant mean curvature in a space form M (produced by
Q 6= 0) if and only if there exists (for that Q) a linear conserved quantity Q + λZ.

Furthermore, when x is not totally umbilic, then Z is unique with positive norm. In fact, in the
following proof we can see that Z is uniquely determined by the mean curvature and normal
vector, so Z represents the central sphere congruence.

Proof. In the case that x is part of a sphere, then dx∗ = 0, so τ = 0, and so we can take Z = 0.
So we now assume x is not totally umbilic.

Assume that x has a linear conserved quantity. We can take Q as in (1), and denote the
components of Z by

Z =
(

z z∞
z0 −z

)
.

The above lemmas tell us that XZ + ZX = 0 and X ⊥ dZ, which, respectively, imply

xz − x2z0 + zx + z∞ = 0 and x dz − x2dz0 + dz x + dz∞ = 0 .
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Figure 6: caption here.
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Differentiating the first of these two equations, and then applying the second one, we have

dx · z − (xdx + dx · x)z0 + zdx = 0 ,

which implies
z = z0 · x + h · n0

for some real-valued function h. Then

x(z0x + hn0)− x2z0 + (z0x + hn0)x + z∞ = hxn0 + z0x
2 + hn0x + z∞ = 0 ,

so
z∞ = −h(xn0 + n0x)− z0x

2 .

Thus

Z = z0

(
x −x2

1 −x

)
+ h

(
n0 −n0x− xn0

0 −n0

)
.

Because Z2 is constant,

(z0x + hn0)2 − z0h(xn0 + n0x)− z2
0x2 = −h2

is constant, and so h is constant, and then also |Z| is constant and nonnegative. A direct
computation, using n0 dx∗ + dx∗ n0 = 0, now shows that Zτ = τZ, so the condition Zτ = τZ
coming from Equation (5) provides no extra information. The relation dZ = Qτ − τQ from (5)
gives that

dz0 = cκ(x · dx∗ + dx∗ · x) and dz0 · x + z0dx + hdn0 = c(dx∗ + κxdx∗x) .

These two equations tell us that

h =
2c(1− κx2)
x2

u(k2 − k1)
, (6)

which we know to be constant, and that

z0 = 1
2h(k2 + k1) = h ·H0 . (7)

Equations (6) and (7) tell us that (4) holds, and so Hκ is constant. One direction of the theorem
now follows.

To prove the other direction, assume that x is a CMC surface with isothermic coordinate
z = u + iv, then the Hopf differential is a constant multiple of dz2, so

b11 − b22 =
4x2

u(k2 − k1)
1− κx2

is constant, and so

h =
2c(1− κx2)
x2

u(k2 − k1)
, c ∈ R \ {0} ,

is also constant. Take Q as in (1), and then take

Z = hH0

(
x −x2

1 −x

)
+ h

(
n0 −xn0 − n0x
0 −n0

)
.

Then set the candidate for the conserved quantity to be P = Q + λZ, where dx∗ = x−1
u du −

x−1
v dv, and τ is as in Definition 3. Then a computation gives dP +λτP −Pλτ = 0, by Equation

(4).

We now explain the conserved quantity equation in terms of the Calapso transformation, in
order to motivate a definition used in the discrete setting.
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Definition 4. Let x be a surface with isothermic coordinates. A Calapso transformation T ∈
Mob(3) is a solution of

T−1dT = λτ .

Then the transformation x → Tx is a Calapso transformation. (We can also call it a T-
transform or ”conformal deformation”.)

The Calapso transformation is classical, and was studied by Calapso, Bianchi and Cartan. It
preserves the conformal structure and is thus of interest in Moebius geometry. However, in the
case that the starting surface is CMC, it is the same as the Lawson correspondence, which is
quite important in the differential geometry of CMC surfaces.

Lemma 9. If x is isothermic, then the Calapso transform exists.

Proof. The system

T−1Tu = λU , U =
(

x
1

)
x−1

u

(
1 −x

)
,

T−1Tv = λV , V = −
(

x
1

)
x−1

v

(
1 −x

)

has a solution if and only if UV −V U +Vu−Uv = 0, and this equation holds precisely because
of the conditions for isothermicness, that is

x2
u = x2

v , xuxv + xvxu = 0 , xuv = Axu + Bxv

for some functions A,B.

Now if we set P = Q + λZ, then

dP + λτP − Pλτ = 0

if and only if dP + T−1dT · P − P · T−1dT = 0 if and only if

d(TPT−1) = 0

if and only if TPT−1 is constant. It is this last condition of TPT−1 being constant that we will
use to define discrete CMC surfaces, just as it defines smooth CMC surfaces, by Theorem 1.

Darboux transformations. For smooth surfaces, a Darboux transform is one such that

• there exists an envelope of spheres between the original surface and the transform,

• the envelope (i.e. the transform) preserves curvature lines, and

• the transform preserves conformality.

3 A conserved quantities approach to discrete CMC sur-
faces

Our purpose in this section is to present a definition for discrete constant mean curvature
(CMC) H surfaces in any of the three space forms Euclidean 3-space R3, spherical 3-space
S3 and hyperbolic 3-space H3. This new definition is equivalent to the previously known
definitions [2] in the case of R3. It also satisfies a Calapso transformation relation (the Lawson
correspondence), suggesting the definition is also natural for the space form S3, and for CMC
surfaces with H ≥ 1 in H3. The definition is the first one for CMC surfaces with −1 < H < 1
in H3.

Isothermic discrete surfaces and their Christoffel transforms. Consider a discrete
surface fp ∈ ImH ≈ R3, where p is any point in a discrete lattice domain (locally always
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Figure 7: Discrete profile curves for discrete CMC surfaces of revolution. The meanings of these
graphics are explained in Example 1.

a subdomain of Z2). Consider one quadrilateral in the lattice with vertices p, q, r, s (for
example the points (m,n), (m + 1, n), (m + 1, n + 1), (m,n + 1) for some m,n ∈ Z) ordered
counterclockwise about the quadrilateral. We define the cross ratio of this quadrilateral as

qpqrs = (fq − fp)(fr − fq)−1(fs − fr)(fp − fs)−1 .

When, for every quadrilateral, we can write the cross ratio as

qpqrs = apq/aps ∈ R

so that the function apq defined on the edges of f satisfies

apq = asr ∈ R and aps = aqr ∈ R ,

then we say that f is isothermic. Note that the apq are symmetric, i.e. apq = aqp for any
adjacent p and q.

Remark 1. When considering a smooth surface x(u, v) in R3 and defining

Q = (x(u + ε, v − ε)− x(u− ε, v − ε))(x(u + ε, v + ε)− x(u + ε, v − ε))−1 ×

(x(u− ε, v + ε)− x(u + ε, v + ε))(x(u− ε, v − ε)− x(u− ε, v + ε))−1 ,

Bobenko and Pinkall [3] proved that

Q = −I +O(ε)

if and only if x is conformal, and
Q = −I +O(ε2)

if and only if x is isothermic. This leads to the following definition for discrete isothermic
surfaces in the narrow sense: f is discrete isothermic if

(fq − fp)(fr − fq)−1(fs − fr)(fp − fs)−1 = −I

for all quadrilaterals. However, with this definition, transformations, such as the Calapso trans-
form, of isothermic surfaces will not remain isothermic. Hence the broader definition given
above has been taken up.

When f is isothermic, we can define the Christoffel transform f∗ of f by

df∗pqdfpq = apq .

We can then prove the following:

Lemma 10. [2] f is isothermic if and only if there exists a discrete surface f∗ satisfying the
above equation for df∗, and f∗ is isothermic with the same cross ratios as f.
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Calapso transformations. Like in the smooth case, we can define Calapso transformations
in the discrete case. For adjacent vertices p, q, we define T by

Tq = Tp(1 + λτpq) , τpq = c

(
fp
1

)
(f∗q − f∗p)

(
1 −fq

)
.

Lemma 11. If f is discrete isothermic, then T exists.

Linear conserved quantities. We can now discretize (5) to obtain

(1 + λτpq)(Q + λZ)q = (Q + λZ)p(1 + λτpq) , (8)

where λ ∈ R and Q, Z ∈ R4,1 are functions on the lattice domain.

We can derive this discretization as follows: We say that f is CMC if if there exists a P = Q+λZ
so that TPT−1 is constant, just like in the smooth case. This is equivalent to

TqPqT
−1
q = TpPpT

−1
p

for all adjacent vertices p, q, which is equivalent to

(1 + λτpq)Pq = Pp(1 + λτpq) ,

which becomes Equation (8) above.

We now come to our goal:

Definition 5. If a linear conserved quantity Q + λZ, Q 6= 0, exists for an isothermic discrete
surface f, we say that f is of constant mean curvature in the space form M determined by Q.

Remark 2. One can see, in the case that M = R3, that the above definition is equivalent
to the definition found by Bobenko and Pinkall [2]: f is CMC if |fp − f∗p|2 is constant, and
then it is the constant H−2

0 . Also, the property of being discrete CMC is preserved by Calapso
transformations, so the definition here is the right one for the space form M1 = S3, and also
for the space form M−1 = H3 when the mean curvature H−1 has absolute value at least 1.

Furthermore, we can define the constant mean curvature of f to be the lower left entry of Z,
and the normal vector of f to be the upper left entry of Z. Note that here the mean curvature
and the normal vector will be unique if Z is.

Looking at the coefficients in front of the λk in Equation (8) for k = 0, 1, 2, we immediately
have the following lemma:

Lemma 12. Equation (8) is equivalent to dQ = 0 and dZpq = Qpτpq−τpqQq and τpqZq = Zpτpq.

Example 1. In the last figure, we show discrete CMC surfaces of revolution. The first two
curves are profile curves for discrete nonminimal CMC surfaces of revolution in R3, the first
being unduloidal and the second nodoidal. (For each of these two curves, the axis of rotation
producing the surface is a vertical line drawn to the left of the curve, and is not shown in the
figure.) The third picture shows the profile curve for a discrete CMC surface of revolution in
S3, where S3 is stereographically projected to R3, and the shown circle is a geodesic of S3 that
is also the axis of the surface – and furthermore, this example has a periodicity that causes
it to close on itself and form a torus. The final three pictures show discrete CMC surfaces of
revolution in H3. The first two, with H > 1 and H = 1 respectively, are shown in the Poincare
model, and the first is unduloidal while the second looks similar to a smooth embedded catenoid
cousin. (For these two curves, the corresponding axis of revolution is the vertical line between
the uppermost and lowermost points of the circle shown, and this circle lies in the boundary
sphere at infinity of H3.) The last picture is a minimal surface that lies in both copies of
M−1 = H3∪H3, and the horizontal plane shown here is the virtual boundary at infinity of two
copies of the halfspace model for H3. This example was not known before, because the notion
of discrete CMC was not defined before in this case.
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Darboux transformations. The Darboux transforms of discrete surfaces have similar en-
veloping properties to the case of smooth surfaces. In the discrete case, the eight vertices of
two corresponding quadrilaterals (one on the original surface and the corresponding one on the
Darboux transform) all lie in one sphere.

Polynomial conserved quantities. Equation (8) can be extended to define surfaces with
polynomial conserved quantities, as follows:

(1 + λτpq)(Q + λP1 + λ2P2 + ... + λn−1Pn−1 + λnZ)q = (9)

= (Q + λP1 + λ2P2 + ... + λn−1Pn−1 + λnZ)p(1 + λτpq) .
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