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Abstract.

A geometric formulation of Lax pairs for the elliptic

Painlevé equation is presented.

[Ref: arXiv:0811.1796]



Aim.

The Lax formulation of the Painlevé equation is impor-
tant problem. For discrete cases, it has been studied by
Jimbo-Sakai, Boalch, Arinkin-Borodin, Rains ---. EXxplicit
construction of the Lax pair is, however, a very difficult
problem in particular for the elliptic case. We will develop a

geometric method to construct the Lax equations explicitly.

Plan.

1. Differential Painlevé equations
2. Discrete Painlevé equations

3. Examples of the Lax equations
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. Lax formalism of elliptic Painlevé equations (New)



1. Differential Painlevé equations

We will review the geometric aspects of the classical

Painlevé equation Pg.



The sixth Painlevé equation P:
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Hamiltonian form:
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Homogeneous coordinates (x : vy : z):

Z y(z — x)
3 P —
z—x Tz

q:

The curve H = u becomes the cubic pencil:

f

F(z,y,z) + pG(z,y,2) =0,

F=—(t—1)y%z 4+ a3(t — 1)yz2 — agtz?y + as(ayg + an)z?z

tey? 4+ (a1 + 2ao + a3z — ast + aqt)zyz,

G=t(t—1)xz(z —x).







Intersections of ' =0 and G = O:

(O .0 1)7 (17_0'27 1)7 (17070)7
(O,CL3,1), (1,—&1—0,2,1), (170’470)7

and
((t— Ve :1:te —agte?), (1,e,%)

Vanishing condition at these 9 points = H = u curves.

(autonomous case)

This gives a geometric characterization of H.

[Kajiwara-Masuda-Noumi-Ohta-Y, FE 48 (2005) 147-160]



Space of initial conditions [Okamoto]:
9 points blown-up of P2\ {divisors Dgl)}.

-




2. Discrete Painlevé equations

We will recall the discrete Painlevé equations and their

geometric formulation.



The second order discrete Painlevé equations [H.Sakai].
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(Mul.) g-Painlevé equations:

(1) (1) 1 1 1 1 1
L i )

f

J

(Ell.) Elliptic Painlevé equation:
Cubic curve passing through 9 points on P2,

Curve of degree (2,2) passing through 8 points on P! x P1,
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g-P,1 equation: [Jimbo-Sakai(96)]

1 (fagaaivbi) = (fagaa"wb’l,)a
. (g—0b1)(g —b2)
= = ba)g—ba) ™™
g — (f —a1)(f —a2)
(f —a3)(f —aq)
(a;la G:Q, CL'3, af.4) . (qala qaz, az, a4

b1, bo, bz, ba | \ gbi, gba, b3, ba
a3za4b1bo

aijaobzbg

b3b4,

)
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Dgl)-symmetry, Agl)-configuration.

f

(f)g):(()?bl/Q)a (O7b2/Q)7 (OO,b3), (OO,b4),
(alao)a (CIQ,O), (CL3,00), (CL4,00).

g — OO ® ®
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Elliptic Painlevé equation (Eél)—symmetry) on P! x pl

Example. P = Ty>(P)

Parameters FPq,..

passing through Pq,..., Pg,

., Pg: On the fixed curve Cp of degree (2,2)

-

-

Pr+Po+---4+P3=0, Pi+P=P+DP,

PZ:PZ7

(i £ 1,2).

)

Dependent variable P: On the moving curve C of degree
(2,2) passing through P»,..., Pg, P,

f

PP+ P=P,+ P
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Explicit form of the equation :

f:Fl(fag) g:Gl(f7g)
Fo(f,9) Go(f.9)

N J
where A\Fy + puF1 = 0 [or A\Gg + nGq1 = 0] is the pencil of
rational curves of degree (5,4) [or (4,5)] with base points at

(Pl,PQ,...,Pg) of multiplicity (0,4,2,2,...,2).
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3. Examples of the Lax equations

Examples of Lax equations for Py, q-Pyi, q—Eél) and their

geometry are discussed.
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Lax pair for Pyr: [R.Fuchs(1907)]

/

02y | (1—&4  l1—a3  1—ap 1 >8y

922 2 z—1 z—t z—q/0z
, {az(a1 +a2)  t(E-1)H | q(g—1)p }y —5
U o2(z—=1) 2(z—D(z—1)  2(z—1)(z—q) !

Oy  z(z—1)(q—1t)0y |, zp(q—1)(q—1) —0
ot ' t(t—1)(g—2)0z " t(t—1)(z—q)

N

Monodromy preserving deformation on P\ {0, 1,¢, 00}
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The Lax pair for ¢-P; [Jimbo-Sakai(96)]

-

(a1 — z)(ar — 2) CoZ c32
T, — (c c12 i
{ ayaz(z — f) (Coterzt T+ T op)
araz(z —qaz)(z —qas), . 1
| 1 = 0,
b3baq?(z — qf) }y
{agT: — arap + 2z = NT~ y = 0.
Where y = y(2), Tzy = y(qz), Ty = y(z) and
_ 0102 1 1 o 1 1 1
0= =5y Tk = gl Ty,
o (J—a)(f ~a2) _ (f—a3)(f —a4)g
2 — 3 C3 — .
qfg b3b4 f

18




Other cases? Experiments using Padé approach.

f(z) — M)

fundamentgl solution is {N(z), f(z)D(z)}.

Appropriate input function f(z) gives Lax equations.

> differential (or difference) equations whose

(1/c1,e2/a2)j _ Pn(g7)
(1/ag,a1/c1);  Qn(g™7)’

. U (Z)z L (Z>z
Pnl2) = Z A "(qazz);’ Onlz) = Z b “(qe12)i

(=0,1,...,m+n)

\

J

A version of Padé interpolation with prescribed poles and

zeros [Zhedanov-Spridonov].



— Lax pair for q-Eél)-PainIevé equation:

e ™

{K1(T: = 1) + Ko+ K3(T; 1 - D}y =0,

{ClTaz + Co + C3(Tz_1 - 1)}?;/ = 0.
K1 = (1 —2)(c2 — apqz)(1 — c1¢"T12) (1 — ang™T12) (2 — f),
Ko = z(1—¢™)(1 - a2q)(O + Oz + Oz?),
K3 = (1 —apz)(a; — c12)(1 — agqz) (1 — ¢™ 1) (g2 — f),
C1 = O(a1 — c2)(1 — aq)(c2 — apqz) (1 — axg™t12)(z — f),
Co = (1 = a2¢2)(O + Oz + Oz?),
C3 = apq(l — cpq™)(1 — az)(a1 — c12)(1 — ¢™T"2) (1 — angz).

Where () are some rational functions in f, g variables.

20



T he coefficients () are complicated functions of f, g

~ The coefficient H is a complicated function of p,q
Recall that H has a geometric characterization.

Question:
Can we characterize these coefficients (O (or the Lax

equation itself) by some geometric conditions?
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T he coefficients () are complicated functions of f, g

~ The coefficient H is a complicated function of p,q
Recall that H has a geometric characterization.

Question:
Can we characterize these coefficients (O (or the Lax

equation itself) by some geometric condition?

Yes!
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P\ case: The Lax equation

Oy + Oy +OQy=0

IS characterized as the nodal curve of degree 4 in P2 passing
through the 94342 points:

(0:0:1), (1:—-an:1), (1:0:0),
(O:a3z:1), (1:—a1—ao:1), (1:a4:0),
D1 2 s
((t —1)e:1:te —apte >(€3:O),
((z —1)e:1:ze+ z52) (30’ ?

( 1 Y (z4¢) 1 )
z+e ylz+¢e) z4e—1/(e2=0)
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q-P\1 case: The Lax equation

(O +0+ 01 Hy =0

is characterized as the degree (3,2) curve in P! x P! passing
through the 84242 points:

(O,bl/Q),(O,bQ/Q),(OO,b3>,(OO,b4),

(&1,0),(&2,0),(&3,00),(&4,00), o) o

(z,00), (2/q,0), !

araz y(z)\ [z ara2y(z/q) o«
<Z’ 1q2y(qZ))’ (57 1q2 y(z) )
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q—Eél) case: The Lax equation

{Or:+ 0+ 01y =0

is characterized as the degree (3,2) curve passing through
8+2+42 points on P! x P1:

o — ai a1an
(q m nvo)v (—70)7 (O,CLQ), (07 )7
1 -1 a =
_ 2
(ua _)7 u —q 17 a’2qm Clqna R
U C2
1
(qzv 0)7 <_7 Z))
Z
and
t 1 —
(u, Gu,), y(u,) _ ( a2u)Gu U=z, qz.

y(u/q,t)  ax(l —uGy)’
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q—Eél) Lax curves:
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Experiments using the Padé approach,

— similar structure for q-Eél), q-Eél).

Taking a hint from these, one can formulate the general Lax

equations including the elliptic case.
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4. Lax formalism of elliptic Painlevé equation

Lax equations for the elliptic Painlevé equation are

described explicitly in terms of the point configurations.
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e Cp: p22(f,g) = 0: Elliptic curve on P! x P1L.

e P, = (fz,92): Parametrization of Cy. z € C/I' is the
Jacobian parameter which plays the role of the independent

variable of the Lax equation.

o P,=(fi,9;) =Py, (¢4 =1,...,8): 8 points on Cp.
8
6= > u; (#0).

i=1
e Involution: P = (f,g) <« P* = (f,g*) on Cp.

e We will consider the time evolution T' = T75 such that

T(ui) =u1—9, T(up)=uzx+6, T(w)=u (7#1,2).

29



'Definition. The Lax equations
L1 ={OT: + O+ OT; t}y =0,
Ly ={OT+ O+ OT; t}y =0,
are defined as the curves on Pl x Pl of degree (3,2) and
passing through the following 11(+4+1) points:
L1 : Pl,...,Pg,Pz,(P;_5), Qz, Q._s,
Lot Po,...,Pg, Py —uy Pr_s, (P2), Q2,Q, s,
where
Q: f=/f: (9—9)y(z) =(g—92)y(z+9),
Q.5 ' f=1F s (9—9.5)y(z—0) = (9—9;_5)y(2),
Qx 1 f=fa (9—92)y(z) = (9 —95)Ty(2).
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From equations L1 = 0, Lo = 0, one can derive other 3-term

equations L3 =0,:--,Lg = O:

e | L6 N
Yy y Y Yy Y Yy
Ly Ls
Lo L3
Yy y Y Yy Y Yy
L4
\_ )

The last one Lg is the 3 term equation for y = T'y:

Le={OT:+ O+ O}y =0,
which should be compared with L1 = 0.

31




The equation Lg is too huge (of degree (7,6)). However,

by analysing its geometric characterization, we can prove

Theorem(Compatibility). The equation Lg = 0 is equiv-

alent to the time evolution T'(L1) = 0.

This means that the huge equation Lg = 0 shrinks down to

L1 = 0, when it is written in terms of f,g.

The proof of the Theorem is based on some classical (an-

tique) algebraic geometry of plane curves. (arXiv:0811.1796)
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Concluding Remark.

e It is known that the geometry (the Okamoto space) deter-
mines the Painlevé equation itself (Takano’'s theory). Sakai
showed that this is also true for discrete cases. Now, we can

say that the geometry knows also the Lax equations.

e [ he Lax equation has been a source of various non-trivial
results for the Painlevé equations. Since our result is con-
crete enough, it may serve for further study. It will be inter-
esting if we can say anything about the solutions y or (f, g)

from the geometry.

Thank you.
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