
Design and Implementation of OpenXM

client server model and common

mathematical object format

(OpenXM-RFC 100, proposed standard)

— Open message eXchange protocol for

Mathematics

Masayuki Noro, Nobuki Takayama∗

November 20, 1997 — November 17, 2000,
August 27, 2001, January 20, 2002 (minor change),

See changeLog about changes after this date.

ChangeLog
2004-3-8: We add a new stackmacine command SM executeFunctionWithOptionalArgument.
2005-3-4: Added a description about a byte order negotiation to send floating
point numbers. CMO 64BIT MACHINE DOUBLE

∗Department of Mathematics, Kobe University,http://www.math.kobe-u.ac.jp/̃ taka

1

Contents

1 Introduction 3

2 CMO Primitive object 4

3 A formal expression of CMO 5

4 Communication model of OpenXM 8
4.1 OX Messages . 9

4.1.1 Expressions of OX messages (Lisp like) 9
4.1.2 Expression of OX messages (XML) 10

4.2 Standard encoding of OXexpressions and an implementation by
TCP/IP sockets . 10

5 OX stack machine 12
5.1 Server stack machine . 12

5.1.1 Operators in the group SMobject/Primitive 12
5.1.2 MathCap . 15
5.1.3 Examples . 16
5.1.4 Operators in the group SMobject/Basic 17

6 Projects in work in progress 19
6.1 OX DATA with Length . 19
6.2 Local extension on server stack machines 20
6.3 Implementation of other protocols such as MathLink and Open-

Math . 20
6.4 Common operations on stack machines 20

7 Session Management 20
7.1 Control server . 20
7.2 New OpenXM control servers . 21
7.3 OpenXM reset protocol . 21
7.4 Control message (SMObject/TCPIP/Control) 21
7.5 Notification from servers . 23

8 How to start a session on TCP/IP 23
8.1 Standard I/O on OX servers . 23
8.2 Launcher . 23
8.3 Negotiation of the byte order . 24
8.4 An example of launcher : ox . 24
8.5 Example of using OX servers . 25

9 String expression of objects 25

2

10 CMOexpressions for numbers and polynomials 25
10.1 Indeterminate and Tree . 26
10.2 Zero . 29
10.3 Integer ZZ . 29
10.4 Distributed polynomial Dpolynomial 30
10.5 Recursive polynomials . 30
10.6 CPU dependent double . 31

11 OX Local Data 33

12 CMO ERROR2 33

13 Registering a new CMO 33
13.1 Requirement for a new CMO . 33
13.2 How to join in the OpenXM project 33

14 OX servers as a C library 34

3

Draft for protocol version 1.1.3.
1.1.3 is encoded as 001001003 in mathcap.

1 Introduction

OpenXM is a free, or Open Source, infrastructure for mathematical software
systems. It provides methods and protocols for interactive distributed compu-
tation and for integrating mathematical software systems. OpenXM package is
a set of software systems that support OpenXM protocols. It is currently a col-
lection of software systems Risa/Asir [3], Kan/sm1 [7], PHC pack [8] , GNUPLOT,
Mathematica interface, and OpenMath/XML [4] translator.

We have been profited from increasing number of mathematical software
systems. These are usually “expert” systems in one area of mathematics such
as ideals, groups, numbers, polytopes, and so on. They have their own interfaces
and data formats, which are fine for intensive users of these systems. However, a
unified system will be more convenient for users who want to explore a new area
of mathematics with these software systems or users who need these systems
only occasionally. It is also wonderful for developpers to have various software
components that can be used from the target system.

OpenXM provides not only data representation and communication proto-
cols but also programming guidelines to develop cooperative applications. One
will be able to concentrate on developing mathematical algorithms with such
guidelines. Our design goals are (1) simpleness, (2) extensibility, (3) easiness of
implementation, (4) practicality, and (5) robustness.

We believe that an open integrated system is a future of mathematical soft-
ware systems. However, it might be a dream without realizability. We want to
build a prototype of such an open system by using existing standards, technolo-
gies and several mathematical software systems. We want to see how far we can
go with this approach.

It is not an obvious problem to consider how mathematical objects are repre-
sented and communicated. It may be similar to trying to create new mathemat-
ical symbols. We have the decimal notation to represent numbers, the symbol
dx to represent a differential, and −→ to represent a mapping. One should
imagine how we are benefited from these notations.

In OpenXM, communication is an exchange of messages. The messages
are classified into three types: DATA, COMMAND, and SPECIAL. They are
called OX (OpenXM) messages. Among the three types, OX data messages
wrap mathematical data. We use standards of mathematical data formats such
as OpenMath and MP as well as our own data format CMO (Common Mathe-
matical Object format). Servers, which provide services to other processes, are
stack machines. The stack machine is called the OX stack machine. Existing
mathematical software systems are wrapped with this stack machine. OX stack
machines work in the asynchronous mode like X servers. OpenXM servers try
to be as quiet as possible. OpenXM server does not send messages to the client

4

unless it is requested to send them.
Our stackmachine architecutre can be used as the lowest level layer to imple-

ment other protocols. Emulating RPC or constructing a web server like MCP
[9] on our asynchronous OX stack machines are possible.

Our datatype definition is compliant to XML architecture. OX messages can
be defined by DTD and can be expressed by XML. We call it OpenXM/XML.

A system xxx complient to the OpenXM protocol is called open xxx. For ex-
ample Asir complient to the OpenXM protocol is called open Asir, and kan/sm1
complient to the OpenXM protocol is called open sm1.

2 CMO Primitive object

Objects in CMO (Common Mathematical Object format) group Primitive are
primitive data such as int, string. All OpenXM compliant systems should
implement all data types in the group Primitive. In this section, as an intro-
duction, we will introduce CMObject (Common Mathematical Object) of the
group Primitive without using the Backus-Nauer form.

The canonical name of this group is CMObject/Primitive. In the sequel,
int32 means the signed 32 bit integer expressed by two’s complement (internal
expressions of int of the language C usually use this expression). byte means
8 bit data.

In our encoding of the CMO’s for TCP/IP, any CMObject consists of a tag
and a body:
cmo tag cmo body

cmo tag should be given by a positive int32.
The following is a list of tags of CMObject/Primitive. @../SSkan/plugin/cmotag.h

#define LARGEID 0x7f000000 /* 2130706432 */
#define CMO_ERROR2 (LARGEID+2)
#define CMO_NULL 1
#define CMO_INT32 2
#define CMO_DATUM 3
#define CMO_STRING 4
#define CMO_MATHCAP 5
#define CMO_LIST 17

We will explain each object format. Servers and clients do not need to im-
plement all CMO’s. However, CMO ERROR2, CMO NULL, CMO INT32, CMO STRING,
CMO MATHCAP, CMO LIST are primitive data and all servers and clients have to
implement them.

CMObject Error2 is of the form
int32 CMO ERROR2 CMObject ob

It is an object used when a server makes an error. CMObject ob carries error
informations. The instance ob is a list and, in case of a stream connection like

5

TCP/IP, the first element must be the serial number of the OX message that
caused the error. The serial number is given by the data type Integer32.
Remark: For a historical reason the CMO tag of the error object is named
CMO ERROR2. In the next version of OpenXM specification we may rename it
CMO ERROR.

CMObject Null has the format
int32 CMO NULL

32 bit integer n is called Integer32 as a CMObject and has the format
int32 CMO INT32 int32 n

A byte array of the length n is called Datum as a CMObject and has the
format
int32 CMO DATUM int32 n byte data[0] byte data[1]

· · · byte data[n-1]

String of n bytes is called Cstring as CMObject and has the format
int32 CMO STRING int32 n byte data[0] byte data[1]

· · · byte data[n-1]

CMObject Mathcap has the format
int32 CMO MATHCAP CMObject ob

ob is a list of which length is more than or equal to three. The first element
is a list of OpenXM protocol version number in Integer32, the server name in
Cstring, the server version and CPU type in Cstring, and extra informations.
The second element is a list of SM tags in Integer 32. The third element is a
list of data type tags which the server or the client can understand. The details
will be explained in the section on mathcap 5.1.2.

A list of the length m has the form
int32 CMO LIST int32 m CMObject ob[0] · · · CMObject ob[m− 1]

3 A formal expression of CMO

In the previous section, we have explained the format of CMO’s in the Primitive
group. In this section, we will introduce CMOexpression which is like the bracket
expression of Lisp. We again explain a standard encoding method of CMO,
which we have already explained in the previous section, but the explanation is
more formal.

Let us define CMOexpression by the extended BNF expression. Symbols in
the type writer fonts mean terminals. “:” means a definition. “|” means ”or”.
{ X } is a repetition of X of more than or equal to 0 times. [x] stands for X or
nothing. By using this notation, CMOexpression is defined as follows.

6

CMOexpression : (cmo tag { expression})
expression : CMOexpression

| int32
| string
| byte

Terminal int32 is signed 32 bit integer. Terminal string is a byte array
which usually expresses a string. Terminal byte is 8 bit data.

The comma (,) may be used to separate each element in CMOexpressions.
cmo tag is a constant that starts with CMO .

Let us describe CMO’s in the Primitive group. In order to explain the
meaning of objects, we may also put variable names to CMOexpressions. The
start of comments are denoted by “—”.

By using this notation, let us define formally CMObjects in the group Prim-
itive.

Group CMObject/Primitive requires nothing.
Error2, Null, Integer32, Datum, Cstring, Mathcap, List ∈ CMObject/Primitive.
Document of CMObject/Primitive is at http://www.math.kobe-u.ac.jp/OpenXM
(in English and Japanese)

Error2 : (CMO ERROR2, CMObject ob)
Null : (CMO NULL)

Integer32 : (CMO INT32, int32 n)
Datum : (CMO DATUM, int32 n, byte data[0], . . . , byte data[n-1])
Cstring : (CMO STRING, int32 n, string s)

Mathcap : (CMO MATHCAP, CMObject ob)
List : (CMO LIST, int32 m, CMObject ob[0], . . ., CMObject ob[m-1])

— m is the length of the list.

In the definition of “Cstring”, if we decompose “string s” into bytes, then
“Cstring” should be defined as

Cstring : (CMO STRING, int32 n, byte s[0], . . . , byte s[n-1])

“Group CMObject/Primitive requires nothing” means that there is no super
group to define CMO’s in the group Primitive. “Error2, Null, Integer32, Da-
tum, Cstring, Mathcap, List ∈ CMObject/Primitive” means that Error2, Null,
Integer32, Datum, Cstring are members of the group CMObject/Primitive.

Let us see examples. 32 bit integer 1234 is expressed as

7

(CMO INT32, 1234)

The string “Hello” is expressed as

(CMO STRING, 5, ”Hello”)

CMO’s are expressed by XML like Open Math ([4]). See example below.

<cmo>
<cmo_int32>

<int32> 1234 </int32>
</cmo_int32>

<cmo_string>
<int32 for="length"> 5 </int32>
<string> "Hello" </string>

</cmo_string>
</cmo>

cmo string may be expressed as follows.

<cmo>
<cmo_string>

<int32 for="length"> 5 </int32>
<byte> ’H’ </byte> <byte> ’e’ </byte> <byte> ’l’ </byte>
<byte> ’l’ </byte> <byte> ’o’ </byte>

</cmo_string>
</cmo>

In this case, the DTD for cmo string is as follows;
<!ELEMENT cmo_string (int32, byte*)>

Let us explain the standard encoding method. All int32 data are encoded
into network byte order 32 bit integers and byte data are encoded as it is.

When we are using a high speed network, the translation from the internal
expression of 32 bit integers to network byte order may become a bottle neck.
There are experimental data which presents that 90 percents of the transmission
time are used for the translation to the network byte order to send CMO ZZ of
size 12M bytes. We used a 100Mbps network. In a later section 8.3, we will
discuss a protocol to avoid the translation.

The translation between the standard encoding and CMOexpression is easy.
For example,

int32 CMO INT32 int32 1234

is the encoding of the CMOexpression

(CMO INT32, 1234)

8

(Experimental) CMO and OX packets are complient to XML specification
[10]. In order to encode “Attribute” in XML in our binary format, we have a tag:

#define CMO_ATTRIBUTE_LIST (LARGEID+3)

For example, the attibute font="Times-Roman" is encoded as

(CMO_ATTRIBUTE (CMO_LIST
(CMO_LIST (CMO_STRING,"font") (CMO_STRING, "Times-Roman"))))

All tags except this special CMO tag CMO ATTRIBUTE LIST are XML tags in
the CMO/XML expression.

CMO/XML attributes such as comment, for are not encoded in the CMO
binary expression.

4 Communication model of OpenXM

In our model of computation, mathematical processes proceed a computation
by exchanging messages. Each process is a stack machine, which is called an OX
stack machine. The following methods are possible to realize communications
between mathematical processes.

1. Communication by files.

2. Linking as a subroutine library.

3. TCP/IP streams.

4. Remote Procedure call.

5. JAVA RMI.

6. Multi-thread.

7. PVM library.

8. MPI library.

In OpenXM communication means exchange of messages between processes.
A message has the following structure:

destination origin
extension ox message tag message body

We call it an OX message (OpenXM message object). OX message is the top
level message object. The OX messages are classified into three types: DATA,
COMMAND, and SPECIAL. They are distinguished by ox message tag. The
name of an ox message tag begins with OX . Typical OX message tags are

9

OX COMMAND followed by SMobject and OX DATA followed by CMObject. Each
message object also has its tag. For SMobject, the name of a tag begins with SM .
For CMObject, the name of a tag begins with CMO . An SMobject represents
a stack machine command and categorized into several groups such as SMob-
ject/Primitive, SMobject/Basic. The details of SMobjects will be explained
in Section 5. We have already explained the Primitive CMObjects. We will
describe the Basic CMObjects in Section 10.

4.1 OX Messages

In OpenXM, each process may have a hybrid interface; it may accept and ex-
ecute not only stack machine commands, but also its original command se-
quences. We call such a process an OX stack machine. Here we introduce
OXexpression and SMexpression to express OX messages and SM objects re-
spectively.

4.1.1 Expressions of OX messages (Lisp like)

OXexpression : (OX tag [expression])
expression : SMexpression

| CMOexpression
SMexpression : (SM tag {CMOexpression})

A comma ‘,’ may be used to separate elements in an expression. OX tag is a
constant which denotes an OX message tag. SM tag is a constant which denotes
an SM command tag. If a sender AAA or a receiver BBB has to be specified,
’From AAA’ or ’To BBB’ is written before the OXexpression.

For example the following expression means a request to push a CMO string
“Hello”.

(OX DATA, (CMO STRING, 5, ”Hello”))

The following expression means a request to execute a local function “hoge”.

(OX DATA, (CMO STRING, 4, ”hoge”))

(OX COMMAND, SM executeStringByLocalParser)

In our standard encoding method, each tag is expressed as a 32 bit (4 bytes)
integer with the network byte order.

10

4.1.2 Expression of OX messages (XML)

OX messages can be expressed by XML. The following is an example.

<ox>
<ox_data>

<ox_serial> <int32> 0 </int32> </ox_serial>
<cmo> <cmo_string>

<int32 for="length"> 5 </int32>
<string> "Hello" </string>

</cmo_string>
</cmo>

</ox_data>
<ox_command>

<ox_serial> <int32> 1 </int32> </ox_serial>
<sm_popCMO/>

</ox_command>
</ox>

4.2 Standard encoding of OXexpressions and an imple-
mentation by TCP/IP sockets

The logical structure of OX messages are independent of implementations of
communication. The OXexpression represents the logical structure. Here we
explain an outline of the standard encoding scheme of OXexpression. This
encoding scheme is used to implement OpenXM protocols on TCP/IP sockets.
In addition, we also explain the control messages to control stack machines.

As the socket connection is peer to peer, destination and origin are omit-
ted. The extension field is placed after the message tag field. The extension
field consists of the serial number for OX message, which is int32. The serial
number is used to identify an OX message which caused an error on a server. In
the following we regard the extension as a component of the message tag field
and omit the extension field. Thus OX messages are represented as follows.

ox message tag message body

More precisely it has the following representation.

ox message tag, serial number message body

As ox message tag the following are provided.
@plugin/oxMessageTag.h

#define OX_COMMAND 513
#define OX_DATA 514

#define OX_DATA_WITH_LENGTH 521
#define OX_DATA_OPENMATH_XML 523

11

#define OX_DATA_OPENMATH_BINARY 524
#define OX_DATA_MP 525

#define OX_SYNC_BALL 515
#define OX_NOTIFY 516

Two streams are provided for communication between a client and a server.
One is the stream to exchange data and to send stack machine commands. The
other is the stream to control stack machines. Messages on the latter stream
are called control messages and results of control messages. The sample server
implements the above two streams by using two ports on TCP/IP.

The stack machine command message has the following forms:

OX COMMAND int32 function id
message tag message body

, (OX COMMAND, (SM *))

CMO data message has the following form:
OX DATA CMO data

message tag message body , (OX DATA, CMObject data)

The control message has the following form:
OX COMMAND int32 function id , (OX COMMAND,(SM control *))

The control message is used to interrupt a computation, to invoke debugging
threads, or to exit form the debugging mode.

The result of a control message has the following form:
OX DATA CMO INT32 int32 data , (OX DATA, Integer32 n)

int32 function id is the value of a stack machine command. SM tags
in SMobject/Primitive and SMobject/Basic and corresponding values are as
follows.

@plugin/oxFunctionId.h

#define SM_popSerializedLocalObject 258
#define SM_popCMO 262
#define SM_popString 263

#define SM_mathcap 264
#define SM_pops 265
#define SM_setName 266
#define SM_evalName 267
#define SM_executeStringByLocalParser 268
#define SM_executeFunction 269
#define SM_beginBlock 270
#define SM_endBlock 271
#define SM_shutdown 272
#define SM_setMathCap 273
#define SM_executeStringByLocalParserInBatchMode 274

12

#define SM_getsp 275
#define SM_dupErrors 276

#define SM_control_kill 1024
#define SM_control_reset_connection 1030

For example

(OX COMMAND, SM pops)

is encoded as follows.

int32 513 int32 265

The details of the operators are described in Section 5. Names of these
constants may be represented by abbreviated forms.

5 OX stack machine

In this section we describe the OX stack machine operators. In the descriptions
OX messages are represented by th standard encoding scheme on TCP/IP sock-
ets. In principle, an OX stack machine never sends data to the output stream
unless it receives SM pop* commands. Note that the programming style should
be different from that for event-driven programming.

5.1 Server stack machine

oxserver00.c is implemented as a sample server. If you want to implement
you own server, write the following functions and use them instead of those in
nullstackmachine.c.

5.1.1 Operators in the group SMobject/Primitive

Any OX stack machine has at least one stack.

Object xxx_OperandStack[SIZE];

Here Object may be local to the system xxx wrapped by the stack machine.
That is, the server may translate CMObjects into its local objects and push
them onto the stack. It is preferable that the composition of such a translation
and its inverse is equal to the identity map. The translation scheme is called
the phrase book of the server and it should be documented for each stack ma-
chine. In OpenXM, any message is private to a connection. In future we will
provide a content dictionary (CD; see OpenMath [4]) for basic specifications of
CMObjects.

In the following, xxx_ may be omitted if no confusion occurs. As the
names of functions and tags are long, one may use abbreviated names. Message
packets are represented as follows.

13

Each field is shown as data type data . For example int32 OX DATA de-
notes a number OX DATA which is represented by a 32 bit integer with the net-
work byte order. If a field is displayed by italic characters, it should be defined
elsewhere or its meaning should be clear. For example String commandName
denotes a local object commandName whose data type is String. Note that an
object on the stack may have a local data type even if it is represented as CMO.

Any server stack machine has to implement the following operations. For
each operation we show the states of the stack before and after the operation.
In the figures the rightmost object corresponds to the top of the stack. Only
the modified part of the stack are shown.

1. Any server should accept CMObjects in the group CMObject/Primitive.
The server pushes such data onto the stack. The following examples show
the states of the stack after receiving CMO NULL or CMO String respectively.

Request: int32 OX DATA int32 CMO NULL

Stack after the request: NULL

Output: none.

Request:
int32 OX DATA int32 CMO String int32 size byte s1 · · · byte ssize

Stack after the request: String s

Output: none.

If the server fails to receive a CMO data,
int32 OX DATA int32 CMO ERROR2 CMObject ob

is pushed onto the stack. Currently ob is a list
[Integer32 OX serial number, Integer32 error code, CMObject optional information]

2. SM_mathcap

It requests a server to push the mathcap of the server. The mathcap is
similar to the termcap. One can know the server type and the capability
of the server from the mathcap.

@plugin/mathcap.h)

Request: int32 OX COMMAND int32 SM mathcap

Stack after the request: int32 OX DATA Mathcap mathCapOb

Output: none.

3. SM_setMathcap

It requests a server to register the peer’s mathcap m in the server. The
server can avoid to send OX messages unknown to its peer.

@plugin/mathcap.h)

14

Stack before the request: Mathcap m

Request:
int32 OX DATA Mathcap m

int32 OX COMMAND int32 SM setMathcap

Output: none.

Remark: In general the exchange of mathcaps is triggered by a client.
A client sends SM mathcap to a server and obtains the server’s mathcap.
Then the client registers the mathcap. Finally the client sends its own
mathcap by SM setMathcap and the server registers it.

4. SM_executeStringByLocalParser

It requests a server to pop a character string s, to parse it by the local
parser of the stack machine, and to interpret by the local interpreter. If
the execution produces a Output, it is pushed onto OperandStack. If an
error has occurred, Error2 Object is pushed onto the stack. OpenXM does
not provide standard function names. If this operation and SM popString
is implemented, the stack machine is ready to be used as an OX server.

Stack before the request:
String commandString

Request: int32 OX COMMAND int32 SM executeStringByLocalParser

Output: none.

Remark: Before this request, one has to push String commandString onto
the stack. It is done by sending the following OX data message.

int32 OX DATA int32 CMO string size and the string commandString

5. SM_executeStringByLocalParserInBatchMode

This is the same request as SM executeStringByLocalParser except that
it does not modify the stack. It pushes an Error2 Object if an error has
occurred.

6. SM_popString

It requests a server to pop an object from OperandStack, to convert it
into a character string according to the output format of the local system,
and to send the character string via TCP/IP stream. (char *)NULL is
returned when the stack is empty. The returned string is sent as a CMO
string data. CMO ERROR2 should be returned if an error has occurred.

Stack before the request: Object

Request: int32 OX COMMAND int32 SM popString

Output: int32 OX DATA int32 CMO STRING size and the string s

7. SM_getsp

It requests a server to push the current stack pointer onto the stack. The
stack pointer is represented by a non-negative integer. Its initial value is
0 and a push operation increments the stack pointer by 1.

15

Stack before the request: Object

Request: int32 OX COMMAND int32 SM getsp

Stack after the request: int32 OX DATA int32 CMO INT32 stack pointer value

Output: none.

8. SM_dupErrors

It requests a server to push a list object containing all error objects on
the stack.

Request: int32 OX COMMAND int32 SM dupErrors

Stack after the request: int32 OX DATA CMObject a list of errors

Output: none.

9. SM_pushCMOtag

It requests a server to push the CMO tag of the top object on the server
stack. The tag is pushed as CMO INT32. The top object remains on the
stack. If there is no way to translate the object into CMO, push an error
object.

Request: int32 OX COMMAND int32 SM pushCMOtag

Stack after the request: int32 OX DATA CMO INT32 tag

Output: none.

5.1.2 MathCap

Example: ox sm1 returns the following data as its mathcap.

Class.mathcap
[[199909080 , $Ox_system=ox_sm1.plain$, $Version=2.990911$,

$HOSTTYPE=i386$] ,
[262 , 263 , 264 , 265 , 266 , 268 , 269 , 272 , 273 , 275 , 276] ,
[[514] , [2130706434 , 1 , 2 , 4 , 5 , 17 , 19 , 20 , 22 , 23 , 24 ,

25 , 26 , 30 , 31 , 60 , 61 , 27 , 33 , 40 , 34]]]

A mathcap has three components. The first one, which is also a list, contains
informations to identify the version number of the OpenXM protocol, the system
and hosts on which the application runs. In the above example, Ox system
denotes the system name. HOSTTYPE represents the OS type and taken from
$HOSTTYPE enviroment variable. The second component consists of avaiable SM
commands. The third component is a list of pairs. Each pair consists of an
OX message tag and the list of available message tags. Again in the above
example, 514 is the value of OX DATA and it indicates that the server accepts
CMO (without size information) as mathematical data messages. In this case
the subsequent list represents available CMO tags.
OpenXM/XML expression of the example above:

16

<cmo_mathcap>
<cmo_list for="mathcap">

<cmo_list>
<int32 for="length"> 4 </int32>
<cmo_int32 for="Protocol version"> 001001003 </cmo_int32>
<cmo_string for="system name"> Ox_system=ox_sm1.plain </cmo_string>
<cmo_string for="system version"> Version=2.990911 </cmo_string>
<cmo_string for="hosttype"> HOSTTYPE=i386 </cmo_string>

</cmo_list>

<cmo_list for="Available SM tags">
<int32 for="length"> 11 </int32>
<cmo_int32> 262 </cmo_int32>
<cmo_int32> 263 </cmo_int32>
...

</cmo_list>

<cmo_list for="Available OX_DATA tags">
<int32 for="length"> 2 </int32>
<cmo_list for="OX_DATA tag">

<int32 for="length"> 1 </int32>
<cmo_int32 comment="OX_DATA"> 514 </cmo_int32>

</cmo_list>
<cmo_list for="Available CMO tags">

<int32 for="length"> 21 </int32>
<cmo_int32 comment="CMO_ERROR2"> 2130706434 </cmo_int32>
<cmo_int32 comment="CMO_NULL"> 1 </cmo_int32>
....

</cmo_list>

</cmo_list>
</cmo_list>

</cmo_mathcap>

5.1.3 Examples

Example: We show examples of message body. Serial numbers are omitted.

1. executeStringByLocalParser("12345 ;");

is converted into the following packet. Each number denotes one byte in
hexadecimal representation. (yy) in xx(yy) represents the corresponding
ASCII code.

0 0 2 2 0 0 0 4 0 0 0 7
31(1) 32(2) 33(3) 34(4) 35(5) 20 3b(;)

17

0 0 2 1 0 0 1 c

Each data has the following meaning.

0 0 2 2 (OX_DATA) 0 0 0 4 (CMO_STRING)
0 0 0 7 (size)
31(1) 32(2) 33(3) 34(4) 35(5) 20 3b(;) (data)
0 0 2 1 (OX_COMMAND)
0 0 1 c (SM_executeStringByLocalParser)

This is expressed by OXexpression as follows.

(OX DATA, (CMO STRING, 7, ”12345 ;”))

(OX COMMAND, (SM executeStringByLocalParser))

2. A message which requests SM popString:

0 0 2 1 (OX_COMMAND)
0 0 1 7 (SM_popString)

In OXexpression it is represented as (OX COMMAND, (SM popString)).

The server returns the following reply message:

0 0 2 2 (OX_DATA)
0 0 0 4 (CMO_STRING) 0 0 0 5 (size)
31(1) 32(2) 33(3) 34(4) 35(5)

In OXexpression it is represented as (OX DATA, (CMO STRING, 7, ”12345
;”)).

5.1.4 Operators in the group SMobject/Basic

1. SM_pops

It requests a server to pop n and to discard elements obj1, obj2, . . ., objn
from the stack.

Stack before the request:
obj1 obj2 · · · objn Integer32 n

Request: int32 OX COMMAND int32 SM pops

Output: none.

18

2. int SM_setName

It requests a server to pop name, to pop obj, and to bind obj to a variable
name in the current name space of the server. If an error has occurred
CMO ERROR2 is pushed onto the stack.

Stack before the request: obj String name

Request: int32 OX COMMAND int32 SM setName

Output: none.

3. SM_evalName

It requests a server to pop name and to evaluate a variable name in the
current name space. The Output of the evaluation OutputObj is pushed to
the stack. If an error has occurred CMO ERROR2 is pushed onto the stack.

Stack before the request: String name

Request: int32 OX COMMAND int32 SM evalName

Stack after the request: OutputObj

Output: none.

4. SM_executeFunction

It requests a server to pop s as a function name, to pop n as the number
of arguments and to execute a local function s with n arguments popped
from the stack. If an error has occurred CMO ERROR2 is pushed to the stack.

Stack before the request:
objn · · · obj1 INT32 n String s

Request: int32 OX COMMAND int32 SM executeFunction

Stack after the request: The Output of the execution.

Output: none.

5. SM_popSerializedLocalObject

It requests a sever to pop an object, to convert it into a serialized form
according to a local serialization scheme, and to send it to the stream
as an OX message. An OX message tag corresponding to the local data
format must be sent prior to the serialized data itself. This operation is
used mainly on homogeneous distributed systems.

6. SM_popCMO

It requests a server to pop an object from the stack, to convert it into a
serialized form according to the standard CMO encoding scheme, and to
send it to the stream with the OX DATA header.

Request: int32 OX COMMAND int32 OX popCMO

Output: int32 OX DATA Serialized CMO

19

7. SM_executeFunctionWithOptionalArgument

It requests a server to pop s as a function name, to pop an optional
argument opt, to pop n as the number of arguments and to execute a
local function s with n arguments popped from the stack. If an error
has occurred CMO ERROR2 is pushed to the stack. opt is a list of lists of a
keyword and a value. Keywords are strings.

Stack before the request:
objn · · · obj1 INT32 n Obj opt String s

Request: int32 OX COMMAND int32 SM executeFunctionWithOptionalArgument

Stack after the request: The Output of the execution.

Output: none.

Example of opt : (("p", 13),("vars",("x","y")))

[Added in 2004-3-8]

6 Projects in work in progress

6.1 OX DATA with Length

OX DATA WITH LENGTH is the OX tag for OX data message with a digital sig-
nature. It is followed by the serial number, CMO, an end mark and a digital
signature. This type of OX data message is called secured OX DATA.

#define OX_SECURED_DATA 521

int32 OX DATA WITH LENGTH int32 serial int32 size CMObject o tail
If size is equal to -1, then it is ignored.
tail is defined as follows.

int32 CMO START SIGNATURE int32 size signature
Here size is the length of signature. signature is a digital signature of CMO

data by a Hash function and is used to detect invalid serialized objects. If size
of Tail is equal to 0, then it has no digital signature.

Currently there are four modes of communicating data.

1. Only OX DATA is used with checking by mathcap.

2. Only OX SECURED DATA is used.

3. Both OX DATA and OX SECURED DATA can be used.

4. Only OX DATA is used without checking by mathcap.

Suppose that the mathcap handling is incomplete and an application has
received unknown CMObject. In mode 1, the application cannot detect the end
of the CMObject and it will not be able to understand the subsequent messages.
In mode 2, the application can detect the end of the unknown CMObject from

20

the size information. However, in mode 2, additional cost is required on the
sender to compute the total length of CMObjects.

Note that the exchange of mathcaps are not necessary at the start of a
session. Any server should be implemented so that it can change the communi-
cation mode dynamically, say, from 4 to 1.

6.2 Local extension on server stack machines

#define CMO_PRIVATE 0x7fff0000 /* 2147418112 */

0x10000 ID’s beginning from CMO PRIVATE = OX PRIVATE = SM PRIVATE are
reserved for private use. They can be used to represent OX tags, CMObjects,
SMobjects which are not authorized yet.

6.3 Implementation of other protocols such as MathLink
and OpenMath

If we provide a library or a server for protocol conversion between CMO and
“foreign” protocols such as MathLink or OpenMath, a client conforming to such
protocols can communicate with Asir or kan/sm1 without knowing their internal
structures.

6.4 Common operations on stack machines

Fundamental operations such as add, sub, mul should be executed on any server
by SM executeFunction. Control structures on stack machines such as if and
for are also being considered.

7 Session Management

7.1 Control server

In OpenXM we adopted the following simple and robust method to control
servers.

An OpenXM server has logically two I/O channels: one for exchanging data
for computations and the other for controlling computations. The control chan-
nel is used to send commands to control execution on the nserver. The sample
server (oxmain.c) processes such control messages on another process. We call
such a process a control server. In contrast, we call a server for computation
an engine. As the control server and the engine runs on the same machine,
it is easy to send a signal from the control server. A control server is also an
OpenXM stack machine and it accepts SM control * commands to send signals
to a server or to terminate a server.

21

7.2 New OpenXM control servers

See OpenXM RFC 101 Draft. http://www.math.kobe-u.ac.jp/OpenXM/OpenXM-
RFC.html.

7.3 OpenXM reset protocol

A client can send a signal to an engine by using the control channel at any time.
However, I/O operations are usually buffered, which may cause troubles. To
reset an engine safely the following are required.

1. Any OX message must be a synchronized object in the sense of Java.

2. After restarting an engine, a request from a client must correctly corre-
sponds to the response from the engine.

SM control reset connection is a stack machine command to initiate a
safe resetting of an engine. The control server sends SIGUSR1 to the engine if
it receives SM control reset connection from the client. Under the OpenXM
reset protocol, an engine and a client act as follows.

Client side

1. After sending SM control reset connection to the control server, the
client enters the resetting state. It discards all OX messages from the
engine until it receives OX SYNC BALL.

2. After receiving OX SYNC BALL the client sends OX SYNC BALL to the engine
and returns to the usual state.

Engine side

1. After receiving SIGUSR1 from the control server, the engine enters the re-
setting state. The engine sends OX SYNC BALL to the client. The operation
does not block because the client is now in the resetting state.

2. The engine discards all OX messages from the engine until it receives
OX SYNC BALL. After receiving OX SYNC BALL the engine returns to the
usual state.

Figure 1 illustrates the flow of data. OX SYNC BALL is a special OX message
and is used to mark the end of data remaining in the I/O streams. After reading
it, it is assured that each stream is empty and that the subsequent request from
a client correctly corresponds to the response from the engine.

7.4 Control message (SMObject/TCPIP/Control)

1. SM_control_reset_connection

It requests a control server to send SIGUSR1 to the engine. The control
server should immediately reply an acknowledgment to the client.

22

OX_SYNC_BALL

discardmessage2 message1

discard data1 data2 data3

discardmessage2

<empty>

<empty>

<empty> OX_SYNC_BALL

OX_SYNC_BALL

OX_SYNC_BALL

Client Buffered I/O streams Engine

<resetting state>

<resetting state usual state>

<resetting state>

<resetting state>

<usual state> <resetting state usual state>

Figure 1: OpenXM reset procedure

Request: int32 OX COMMAND int32 SM control reset connection

Result: int32 OX DATA CMO INT32 result

2. SM_control_kill

It requests a control server to terminate the engine and the control server
itself. All files and streams should be closed before the termination of
servers.

Request: int32 OX COMMAND int32 SM control kill
Result: none.

Example: (serial numbers are omitted.)

0 0 2 01 (OX_COMMAND)
0 0 4 06 (SM_control_reset_connection)

Reply to the reset request

0 0 2 02 (OX_DATA)
0 0 0 2 (CMO_INT32)
0 0 0 0 (0)

OX SYNC BALL are exchanged on the data channel for synchronization.

0 0 2 03 (OX_SYNC_BALL)

23

7.5 Notification from servers

OpenXM servers try to be as quiet as possible. For example, engine errors of
a server are only put on the engine stack and the engine does not send error
packets unless the client sends the message pop cmo.

OpenXM provides a method to notify events. Control server may send
OX NOTIFY header and an OX DATA packet. This transmission may be prohibited
by mathcap.

Let us explain how to use OX NOTIFY by an example. The ox plot server of
asir has a quit button. If the quit button is pressed, the canvas dissappears,
but the engine does not terminate. If the client sends drawing messages without
the canvas, then the engine pushes error packets “canvas does not exist” on the
engine stack. If the engine wants to notify the error to the client immediately,
the OX NOTIFY message should be used.

Let us note that only the control process is allowed to send OX NOTIFY.
Therefore, the engine must ask the control server to send OX NOTIFY. Methods
to ask the control process from the engine depends on operating system. In case
of unix, one method is the use of a file; for instance, if the engine touches the
file /tmp/.ox notify.pid, then the control server sends the OX NOTIFY header
and the OX DATA packet of cmo null. Here, pid is the process id of the engine.
Engines and control processes may use a shared memory or a signal instead of
the file /tmp/.ox notify.pid.

8 How to start a session on TCP/IP

8.1 Standard I/O on OX servers

In order to make it easy to implement servers, one can assume that any server
has two opened socket descriptors 3 and 4, which are for input from a client
and for output to a client respectively. That is, servers do not have to do
socket operations to establish connections. However servers are responsible for
buffering data to exchange OX messages efficiently. Note that associating a
buffered stream with a descriptor can be done by fdopen().

8.2 Launcher

Though there need several socket operations to establish a connection over
TCP/IP, servers do not have any functionality for connection establishment.
An application called launcher is provided to start servers and to establish con-
nections as follows.

1. A launcher is invoked from a client. When the launcher is invoked, the
client informs the launcher of a port number for TCP/IP connection and
the name of a server.

2. The launcher and the client establish a connection with the specified port
number. One time password may be used to prevent launcher spoofing.

24

3. The launcher creates a process and establishes a connection to the client.
Then the launcher arranges for the newly created descriptors to be 3 and
4, and executes the specified server.

After finishing the above task as a launcher, the launcher process acts as a
control server and controls the server process created by itself.

8.3 Negotiation of the byte order

A client and a server exchange one byte data soon after the communication has
started as follows.

• The server writes one byte representing the preferable byte order to the
client, then waits for one byte to come from the client.

• After reading the byte, the client writes one byte representing the prefer-
able byte order to the server.

The one byte data is 0, 1 or 0xFF. 0 means that one wants to use the network
byte order to send 16 or 32bit quantities. 1 means that one wants to use the
little endian order. 0xFF means that one wants to use the big endian order.
On each side, if the preference coincides with each other then the byte order is
used. Otherwise the network byte order is used.

If a system implements only the network byte order, then it is sufficient
to send always 0. However unnecessary byte order conversion may add large
overhead and it is often a bottle-neck on fast networks.

In order to send and receive 64 bit machine double (floating point number)
and 128 bit machine double, we use the same byte order. In other words, we cast
double64 * to int32 * and send the array of 4 bytes by the same method with
sending int32. As to examples, see the section on CMO 64BIT MACHINE DOUBLE.

#define OX_BYTE_NETWORK_BYTE_ORDER 0
#define OX_BYTE_LITTLE_ENDIAN 1
#define OX_BYTE_BIG_ENDIAN 0xff

8.4 An example of launcher : ox

ox, included in OpenXM/src/kxx, is a launcher to invoke an engine. After in-
voking an engine, it acts as a control server. By default ox requires a one time
password. To skip it, use -insecure option. A one time password is a null-
terminated byte sequence and a client informs both a control server and an
engine of byte sequences as one time passwords.

ox is created from oxmain.c and kan96xx/plugin/oxmisc.c. In ox
oxTellMyByteOrder() executes the exchange of the byte order information. In
a client it is done in oxSetByteOrder().

One time passwords should be sent via secure communication channels. Note
that in the current implementation of ox, one time passwords are visible to all

25

users logging in machines on which the server and the client run, assuming that
there is no evil person among the users. One may use ssh with -f option when
one wants to send a one time password securely to a remote machine.

The following example shows invocation of an ox sm1 server and the com-
munication establishment on sm1. In this example ox on the host dc1 is invoked
from sm1 on the host yama.

yama% sm1

sm1>(ox.sm1) run ;

ox.sm1, --- open sm1 protocol module 10/1,1999 (C) N.Takayama. oxhelp for help

sm1>[(dc1.math.kobe-u.ac.jp) (taka)] sm1connectr-ssh /ox.ccc set ;

Hello from open. serverName is yama.math.kobe-u.ac.jp and portnumber is 0

Done the initialization. port =1024

Hello from open. serverName is yama.math.kobe-u.ac.jp and portnumber is 0

Done the initialization. port =1025

[4 , 1025 , 3 , 1024]

Executing the command : ssh -f dc1.math.kobe-u.ac.jp -l taka

"/home/taka/OpenXM/bin/oxlog /usr/X11R6/bin/xterm -icon

-e /home/taka/OpenXM/bin/ox -reverse -ox /home/taka/OpenXM/bin/ox_sm1

-host yama.math.kobe-u.ac.jp -data 1025 -control 1024 -pass 518158401 "

[

taka@dc1.math.kobe-u.ac.jp’s password:

Trying to accept... Accepted.

Trying to accept... Accepted.

Control port 1024 : Connected.

Stream port 1025 : Connected.

Byte order for control process is network byte order.

Byte order for engine process is network byte order.

8.5 Example of using OX servers

An sample C source code to use ox servers by TCP/IP can be found in OpenXM/doc/oxlib/test1-tcp.c.

9 String expression of objects

Objects may be serialized as a string. The string expression of an object of the
system xxx is accepted as a string expression for the OX xxx server.

10 CMOexpressions for numbers and polyno-
mials

@../SSkan/plugin/cmotag.h

#define CMO_MONOMIAL32 19
#define CMO_ZZ 20
#define CMO_QQ 21
#define CMO_ZERO 22
#define CMO_DMS_GENERIC 24

26

#define CMO_DMS_OF_N_VARIABLES 25
#define CMO_RING_BY_NAME 26
#define CMO_DISTRIBUTED_POLYNOMIAL 31
#define CMO_RATIONAL 34

#define CMO_INDETERMINATE 60
#define CMO_TREE 61
#define CMO_LAMBDA 62 /* for function definition */

In the sequel, we will explain on the groups CMObject/Basic, CMObject/Tree
and CMObject/DistributedPolynomial.
The program bconv at OpenXM/src/ox toolkit translates CMO expressions
into binary formats. It is convinient to understand the binary formats explained
in this section.
Example:

bash$./bconv
> (CMO_ZZ,123123);
00 00 00 14 00 00 00 01 00 01 e0 f3

Group CMObject/Basic requires CMObject/Primitive.
ZZ, QQ, Zero, Rational, Indeterminate ∈ CMObject/Basic.

Zero : (CMO ZERO)
— Universal zero

ZZ : (CMO ZZ, int32 f, byte a[1], . . . , byte a[|m|])
: — bignum. The meaning of a[i] will be explained later.

QQ : (CMO QQ, int32 m, byte a[1], . . . , byte a[|m|], int32 n, byte b[1], . . . , byteb[|n|])
— Rational number a/b.

Rational : (CMO RATIONAL, CMObject a, CMObject b)
— Rational expression a/b.

Indeterminate : (CMO INDETERMINATE, Cstring v)
— Variable name v .

The name of a variable should be expressed by using Indeterminate. v
may be any sequence of bytes, but each system has its own restrictions on the
names of variables. Indeterminates of CMO and internal variable names must
be translated in one-to-one correspondence.

10.1 Indeterminate and Tree

Group CMObject/Tree requires CMObject/Basic.
Tree, Lambda ∈ CMObject/Tree.

27

Tree : (CMO TREE, Cstring name, List attributes, List leaves)
— “name” is the name of the node of the tree.
— Attributes may be a null list. If it is not null, it is a list of
— key and value pairs.

Lambda : (CMO LAMBDA, List args, T reebody)
— a function with the arguments body.

In many computer algebra systems, mathematical expressions are usually
expressed in terms of a tree structure. For example, sin(x + e) is expressed
as (sin, (plus, x, e)) as a tree. Tree may be expressed by putting the ex-
pression between SM beginBlock and SM endBlock, which are stack machine
commands for delayed evaluation. (cf. { , } in PostScript). However it makes
the implementation of stack machines complicated. It is desirable that CMOb-
ject is independent of OX stack machine. Therefore we introduce an OpenMath
like tree representation for CMO Tree object. This method allows us to im-
plement tree structure easily on individual OpenXM systems. Note that CMO
Tree corresponds to Symbol and Application in OpenMath.

Lambda is used to define functions. The notion “lambda” is borrowed from
the language Lisp.
Example: the expression of sin(x + e).

(CMO_TREE, (CMO_STRING, "sin"),
(CMO_LIST,[size=]1,(CMO_LIST,[size=]2,(CMO_STRING, "cdname"),

(CMO_STRING,"basic")))
(CMO_LIST,[size=]1,

(CMO_TREE, (CMO_STRING, "plus"), (CMO_STRING, "basic"),
(CMO_LIST,[size=]2, (CMO_INDETERMINATE,"x"),

(CMO_TREE,(CMO_STRING, "e"), the base of natural logarithms
(CMO_LIST,[size=]1,(CMO_LIST,[size=]2,(CMO_STRING, "cdname"),

(CMO_STRING,"basic")))
))

)
)

Elements of the leave may be any objects including polynomials.
Example:

sm1> [(plus) [[(cdname) (basic)]] [(123).. (345)..]] [(class) (tree)] dc ::
Class.tree [$plus$, [[$cdname$, $basic$]], [123 , 345]]

Example:

asir
[753] taka_cmo100_xml_form(quote(sin(x+1)));

28

<cmo_tree> <cmo_string>"sin"</cmo_string>
<cmo_list><cmo_int32 for="length">1</cmo_int32>

<cmo_list><cmo_int32 for="length">2</cmo_int32>
<cmo_string>"cdname"</cmo_string>
<cmo_string>"basic"</cmo_string>

</cmo_list> </cmo_list>
<cmo_tree> <cmo_string>"plus"</cmo_string>

<cmo_list><cmo_int32 for="length">1</cmo_int32>
<cmo_list><cmo_int32 for="length">2</cmo_int32>
<cmo_string>"cdname"</cmo_string>
<cmo_string>"basic"</cmo_string>

</cmo_list> </cmo_list>
<cmo_indeterminate> <cmo_string>"x"</cmo_string> </cmo_indeterminate>
<cmo_zz>1</cmo_zz>

</cmo_tree></cmo_tree>

Let us define a group for distributed polynomials. In the following, DMS
stands for Distributed Monomial System.

Group CMObject/DistributedPolynomials requires CMObject/Primitive, CMOb-
ject/Basic.
Monomial, Monomial32, Coefficient, Dpolynomial, DringDefinition, Generic DMS
ring, RingByName, DMS of N variables ∈ CMObject/DistributedPolynomials.

Monomial : Monomial32 |Zero
Monomial32 : (CMO MONOMIAL32, int32 n, int32 e[1], . . . , int32 e[n],

Coefficient)
— e[i] is the exponent ei of the monomial xe = xe1

1 · · ·xen
n .

Coefficient : ZZ|Integer32
Dpolynomial : Zero

| (CMO DISTRIBUTED POLYNOMIAL, int32 m,

DringDefinition, [Monomial32|Zero],
{Monomial32})

— m is equal to the number of monomials.
DringDefinition : DMS of N variables

| RingByName
| Generic DMS ring
— definition of the ring of distributed polynomials.

Generic DMS ring : (CMO DMS GENERIC)
RingByName : (CMO RING BY NAME, Cstrings)

— The ring definition referred by the name “s”.

29

DMS of N variables : (CMO DMS OF N VARIABLES,

(CMO LIST, int32m, Integer32 n, Integer32 p
[, Cstring s, List vlist, List wvec, List outord])

— m is the number of elements.
— n is the number of variables, p is the characteristic
— s is the name of the ring, vlist is the list of variables.
— wvec is the weight vector.
— outord is the order of variables to output.

Note that it is possible to define DMS without RingByName and DMS of N
variables.

In the following we describe how the above CMObjects are implemented on
Asir and Kan.

10.2 Zero

Note that CMO has various representations of zero.

10.3 Integer ZZ

#define CMO_ZZ 20

We describe the bignum (multi-precision integer) representation CMO ZZ in
OpenXM. The format is similar to that in GNU MP. (cf. plugin/cmo-gmp.c
in the kan/sm1 distribution). CMO ZZ is defined as follows.

int32 CMO ZZ int32 f int32 b0 · · · int32 bn

f is a 32bit integer. b0, . . . , bn are unsigned 32bit integers. |f | is equal to
n + 1. The sign of f represents that of the above integer to be expressed. As
stated in Section 2, a negative 32bit integer is represented by two’s complement.

In OpenXM the above CMO represents the following integer. (R = 232.)

sgn(f)× (b0R
0 + b1R

1 + · · ·+ bn−1R
n−1 + bnRn).

Example: If we express int32 by the network byte order, a CMO ZZ 14 is
expressed by

(CMO ZZ, 1, 0, 0, 0, e),

The corresponding byte sequence is

00 00 00 14 00 00 00 01 00 00 00 0e

Note that CMO ZZ 0 is expressed by (CMO ZZ, 00,00,00,00).

30

10.4 Distributed polynomial Dpolynomial

We treat polynomial rings and their elements as follows.
Generic DMS ring is an n-variate polynomial ring K[x1, . . . , xn], where K is

a coefficient set. K is unknown in advance and it is determined when coefficients
of an element are received. When a server has received an element in Generic
DMS ring, the server has to translate it into the corresponding local object on
the server. Each server has its own translation scheme. In Asir such an element
are translated into a distributed polynomial. In kan/sm1 things are complicated.
kan/sm1 does not have any class corresponding to Generic DMS ring. kan/sm1
translates a DMS of N variables into an element of the CurrentRing. If the
CurrentRing is n′-variate and n′ < n, then an n-variate polynomial ring is
newly created.

If RingByName (CMO RING BY NAME, yyy) is specified as the second field of
DMS, it requests a sever to use a ring object whose name is yyy as the destination
ring for the translation.

Example: (all numbers are represented in hexadecimal notation)

Z/11Z [6 variables]

(kxx/cmotest.sm1) run

[(x,y) ring_of_polynomials () elimination_order 11] define_ring ;

(3x^2 y). cmo /ff set ;

[(cmoLispLike) 1] extension ;

ff ::

Class.CMO CMO StandardEncoding: size = 52, size/sizeof(int) = 13,

tag=CMO_DISTRIBUTED_POLYNOMIAL

0 0 0 1f 0 0 0 1 0 0 0 18 0 0 0 13 0 0 0 6

0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 2 0 0 0 3

ff omc ::

(CMO_DISTRIBUTED_POLYNOMIAL[1f],[size=]1,(CMO_DMS_GENERIC[18],),

(CMO_MONOMIAL32[13],3*x^2*y),),

3x2y is regarded as an element of a six-variate polynomial ring.

10.5 Recursive polynomials

#define CMO_RECURSIVE_POLYNOMIAL 27
#define CMO_POLYNOMIAL_IN_ONE_VARIABLE 33

Group CMObject/RecursivePolynomial requires CMObject/Primitive, CMOb-
ject/Basic.
Polynomial in 1 variable, Coefficient, Name of the main variable, Recursive Poly-
nomial, Ring definition for recursive polynomials ∈ CMObject/RecursivePolynomial

Polynomial in 1 variable : (CMO POLYNOMIAL IN ONE VARIABLE, int32 m,

31

Name of the main variable ,

{ int32 e, Coefficient })
— m is the number of monomials.
— A pair of e and Coefficient represents a monomial.
— The pairs of e and Coefficient are sorted in the

decreasing order, usually with respect to e.
— e denotes an exponent of a monomial with respect to

the main variable.
Coefficient : ZZ | QQ | integer32 | Polynomial in 1 variable

|Tree |Zero |Dpolynomial
Name of the main variable : int32 v

— v denotes a variable number.
Recursive Polynomial : (CMO RECURSIVE POLYNOMIAL,

RringDefinition,
Polynomial in 1 variable |Coefficient)

RringDefinition : List v
— v is a list of names of indeterminates or trees.
— It is sorted in the decreasing order.

Example:

(CMO_RECURSIEVE_POLYNOMIAL, ("x","y"),
(CMO_POLYNOMIAL_IN_ONE_VARIABLE, 2, 0, <--- "x"

3, (CMO_POLYNOMIAL_IN_ONE_VARIABLE, 2, 1, <--- "y"
5, 1234,
0, 17),

1, (CMO_POLYNOMIAL_IN_ONE_VARIABLE, 2, 1, <--- "y"
10, 1,
5, 31)))

This represents
x3(1234y5 + 17) + x1(y10 + 31y5)

sm1
sm1>(x^2-h). [(class) (recursivePolynomial)] dc /ff set ;
sm1>ff ::
Class.recursivePolynomial h * ((-1)) + (x^2 * (1))

10.6 CPU dependent double

#define CMO_64BIT_MACHINE_DOUBLE 40

32

#define CMO_ARRAY_OF_64BIT_MACHINE_DOUBLE 41
#define CMO_128BIT_MACHINE_DOUBLE 42
#define CMO_ARRAY_OF_128BIT_MACHINE_DOUBLE 43

Group CMObject/MachineDouble requires CMObject/Primitive.
64bit machine double, Array of 64bit machine double 128bit machine double,
Array of 128bit machine double ∈ CMObject/MachineDouble

64bit machine double : (CMO 64BIT MACHINE DOUBLE,
byte s1 , . . . , byte s8)

— s1, . . ., s8 double (64bit).
— Encoding depends on CPU.

Need the byte order negotiation.
Array of 64bit machine double : (CMO ARRAY OF 64BIT MACHINE DOUBLE, int32 m,

byte s1[1] , . . . , byte s8[1], . . . , byte s8[m])
— s*[1], . . . s*[m] are 64bit double’s.
— Encoding depends on CPU.

Need the byte order negotiation.
128bit machine double : (CMO 128BIT MACHINE DOUBLE,

byte s1 , . . . , byte s16)
— s1, . . ., s16 long double (128bit).
— Encoding depends on CPU.

Need the byte order negotiation.
Array of 128bit machine double : (CMO ARRAY OF 128BIT MACHINE DOUBLE, int32 m,

byte s1[1] , . . . , byte s16[1], . . . , byte s16[m])
— s*[1], . . . s*[m] are 128bit long double’s.
— Encoding depends on CPU.

Need the byte order negotiation.

#define CMO_BIGFLOAT 50
#define CMO_IEEE_DOUBLE_FLOAT 51

See IEEE 754 double precision floating-point (64 bit) for the details of float
compliant to the IEEE standard.

The internal expression of 256.100006 in the Intel Pentium is cd 0c 80 43
The internal expression of 256.100006 in the PowerPC (Mac) is 43 80 0c cd
. As you have seen in this example, the orders of the bytes are opposite each

33

other. The byte order is specified by the byte order negotiation protocol when
the engine starts.
Group CMObject/Bigfloat requires CMObject/Primitive, CMObject/Basic.
Bigfloat ∈ CMObject/Bigfloat

Bigfloat : (CMO BIGFLOAT,
ZZ a , ZZ e)

— a× 2e.

11 OX Local Data

Each serialization scheme of object proper to a system is tagged with a number
greater than or equal to

#define OX_LOCAL_OBJECT 0x7fcdef30

There are 0x200000 rooms for such tags. A tag is supplied for each system.

#define OX_LOCAL_OBJECT_ASIR (OX_LOCAL_OBJECT+0)
#define OX_LOCAL_OBJECT_SM1 (OX_LOCAL_OBJECT+1)

12 CMO ERROR2

Error numbers (common to all systems)

#define Broken_cmo 1
#define mathcap_violation 2

13 Registering a new CMO

13.1 Requirement for a new CMO

CMO data types are defined recursively. Thus, if one introduces a new CMO,
then old CMO’s may be also extended.

13.2 How to join in the OpenXM project

You are welcome to add packages to OpenXM. Ask takayama@math.kobe-
u.ac.jp for details. You may introduce new CMO’s if necessary. If you have
defined a new CMO, send

1. the formal definition and an explanation of the CMO,

34

2. an explanation of the behavior of a system xxx for the CMO,

3. URL’s related to the CMO or xxx.

After discussing on the new CMO, we will fix the specification. Then we will
issue the tag for the new CMO and create links to the URL related to the CMO
from the OpenXM home page [5].

14 OX servers as a C library

In some OX servers, one can use the OX server as a C library. The API to the C
library is similar to Asir OX client API such as ox push cmo(), ox pop cmo().

CMO should be converted into the binary encoded form to call these func-
tions.

int xxx_ox_init(int type)

This function initializes the library interface. type specifies the byte order
to send int32 to the OX server xxx. If type is equal to 0, the native byte order
will be used. If type is equal to 1, the network byte order will be used. In case
of error, -1 will be returned.

void xxx_ox_push_cmo(void *cmo)

Push the binary encoded CMO cmo onto the stack of the OX server xxx.

int xxx_ox_pop_cmo(void cmo, int limit)

Pop a binary encoded CMO from the OX server xxx and write it at cmo.
The return value is the size of the CMO in bytes. In case of the stack underflow,
the return value is 0. If the size exceeds the limit, -1 will be returned and the
CMO is not popped and will not be written to cmo.

int xxx_ox_peek_cmo_size()

Return the size of the CMO at the top of the stack.

void xxx_ox_push_cmd(int cmd)

This function sends a stack machine command (OX COMMAND,int32 cmd) to a
server.

void xxx_ox_execute_string(char *s)

This function requests a server to execute a command expressed by a string s.
s should be acceptable by the parser of the server.

Sample source codes to use the library mode interface can be found in
OpenXM/doc/oxlib.

35

References

[1] Gray, S., Kajler, N. and Wang, P. S., Design and Implementation of MP,
a Protocol for Efficient Exchange of Mathematical Expressions, Journal of
Symbolic Computation, 1996.

[2] Linton, S. and Solomon, A., OpenMath, IAMC and GAP, preprint, 1999.

[3] Noro, M. et al., A Computer Algebra System Risa/Asir, 1993, 1995, 2000
ftp://archives.cs.ehime-u.ac.jp/pub/asir2000/

[4] http://www.openmath.org

[5] http://www.math.kobe-u.ac.jp/OpenXM/

[6] Ohara, Takayama, Noro: Introduction to Open Asir , 1999, (in Japanese),
Suushiki-Shyori, Vol 7, No 2, 2–17. (ISBN4-87243-086-7, SEG , Tokyo).

[7] Takayama, N., Kan: A system for computation in algebraic analy-
sis, 1991 version 1, 1994 version 2, the latest version is 2.991106.
ftp://ftp.math.kobe-u.ac.jp/pub/kan

[8] Verschelde, J., PHCpack: A general-purpose solver for polynomial systems
by homotopy continuation. ACM Transaction on Mathematical Softwares,
25(2) 251-276, 1999.

[9] Wang, P., Design and Protocol for Internet Accessible Mathematical Com-
putation. Technical Report ICM-199901-001, ICM/Kent State University,
1999.

[10] XML http://www.w3c.org

Masayuki Noro,
FUJITSU LABORATORIES LTD., Kawasaki, Japan; (by Aug., 2000)

noryo@flab.fujitsu.co.jp

Current Address: Department of Mathematics, Kobe University, Rokko, Kobe, 657-8501, Japan;
noro@math.kobe-u.ac.jp

Nobuki Takayama,
Department of Mathematics, Kobe University, Rokko, Kobe, 657-8501, Japan;

takayama@math.kobe-u.ac.jp

36

