Copyright © Takumu Shoji, Shinichi Tajima. 2007. All rights reserved. Licensed by GPL.
[ << ] | [ < ] | [上] | [ > ] | [ >> ] | [冒頭] | [目次] | [見出し] | [ ? ] |
1 1変数代数的局所コホモロジー類 | ||
Index |
1.1 1変数代数的局所コホモロジー類用のパッケージ taji_alc について | ||
1.2 1変数代数的局所コホモロジー類用の関数 |
[ << ] | [ < ] | [上] | [ > ] | [ >> ] | [冒頭] | [目次] | [見出し] | [ ? ] |
この説明書では 1変数代数的局所コホモロジー類用のパッケージ taji_alc について説明する. 数学的解説や背景については, 解説記事 “1変数代数的局所コホモロジー類用に対する Risa/Asir 用パッケージ taji_alc” (Risa/Asir Journal (2007)) およびその参考文献を参照.
[ << ] | [ < ] | [上] | [ > ] | [ >> ] | [冒頭] | [目次] | [見出し] | [ ? ] |
本セクションの関数を呼び出すには,
import("taji_alc.rr")$
を実行してプログラムをロードする.
[ << ] | [ < ] | [上] | [ > ] | [ >> ] | [冒頭] | [目次] | [見出し] | [ ? ] |
taji_alc.cpfd
:: 有理関数num/denの部分分数分解を求める.
switchが0か1ならば, [[[分子,[分母の因子,重複度]],...],...] なるリスト.
switchが10か11ならば, [[分子,[分母の因子,重複度]],...] なるリスト.
(有理関数の分子の) 多項式
(有理関数の分母の) 多項式
または (有理関数の分母をQ上で既約分解した) [[因子,重複度],...] なるリスト
オプション指定
case 0 : completeな部分分数分解を返す. (分子は有理数係数多項式)
case 1 : completeな部分分数分解を返す. (分子は整数係数化リスト)
case 10 : 分母を冪展開しない部分分数分解を返す. (分子は有理数係数多項式)
case 11 : 分母を冪展開しない部分分数分解を返す. (分子は整数係数化リスト)
default : case 0
[235] taji_alc.cpfd(x^3-x-1,x^4+2*x^3+2*x^2+2*x+1); [[[1/2*x-1,[x^2+1,1]]],[[-1/2,[x+1,2]],[1/2,[x+1,1]]]] [236] taji_alc.cpfd(x^3-x-1,x^4+2*x^3+2*x^2+2*x+1|switch=1); [[[[x-2,2],[x^2+1,1]]],[[[-1,2],[x+1,2]],[[1,2],[x+1,1]]]] [237] taji_alc.cpfd(x^3-x-1,x^4+2*x^3+2*x^2+2*x+1|switch=10); [[1/2*x-1,[x^2+1,1]],[1/2*x,[x+1,2]]] [238] taji_alc.cpfd(x^3-x-1,x^4+2*x^3+2*x^2+2*x+1|switch=11); [[[x-2,2],[x^2+1,1]],[[x,2],[x+1,2]]]
ChangeLog
[ << ] | [ < ] | [上] | [ > ] | [ >> ] | [冒頭] | [目次] | [見出し] | [ ? ] |
taji_alc.snoether
:: 有理関数num/denが定める代数的局所コホモロジー類のネーター作用素を求める.
[[因子,ネーター作用素],...] なるリスト.
ネーター作用素は, 係数を高階の部分から降順に並べたリスト
(有理関数の分子の)多項式
(有理関数の分母の)多項式
または (有理関数の分母をQ上で既約分解した) [[因子,重複度],...] なるリスト.
オプション指定
case 0 : ネーター作用素を [有理数係数多項式,...] なるリストで返す.
case 1 : ネーター作用素を [整数係数化リスト,...] なるリストで返す.
case 10 : ネーター作用素を [[整数係数多項式,...],整数] なるリストで返す.
case 20 : ネーター作用素を [[整数係数化リスト,...],整数] なるリストで返す.
default : case 0
case 10は, ネーター作用素の各係数全体を通分し, その分母部分と階乗の積をリストで分けた表現である. わかりやすいが, 通分値と係数部分とで約分できる部分がある(特に高階の部分に多い)ので, 冗長性をもっている.
case 20は, 階乗の部分で全体をくくり(リストで分け), ネーター作用素の各係数を個別に通分しリスト化する. 階乗の部分と係数部分とで約分できる部分がある(特に低階の部分に多い)ので, 冗長と言えなくもない(case 10よりはまし)が, 数学的な構造が綺麗に見える表現である.
[296] taji_alc.snoether(1,[[x^3-x-1,3]]); [[x^3-x-1,[9/529*x^2-27/1058*x+11/1058,-81/529*x^2-9/529*x+135/529,-49 05/12167*x^2+4563/12167*x+3270/12167]]] [299] taji_alc.snoether(1,[[x^3-x-1,3]]|switch=1); [[x^3-x-1,[[18*x^2-27*x+11,1058],[-81*x^2-9*x+135,529],[-4905*x^2+4563 *x+3270,12167]]]] [297] taji_alc.snoether(1,[[x^3-x-1,3]]|switch=10); [[x^3-x-1,[[414*x^2-621*x+253,-3726*x^2-414*x+6210,-9810*x^2+9126*x+65 40],24334]]] [298] taji_alc.snoether(1,[[x^3-x-1,3]]|switch=20); [[x^3-x-1,[[[18*x^2-27*x+11,529],[-162*x^2-18*x+270,529],[-9810*x^2+91 26*x+6540,12167]],2]]] [241] taji_alc.snoether(x^3+1,x^18-2*x^14+x^10-x^8+2*x^4-1|switch=10); [[x^4+x^3+x^2+x+1,[[-2*x^2-x-2],50]],[x^4-x^3+x^2-x+1,[[-2*x^3+4*x^2-x -2],50]],[x^2+1,[[-x+1,8*x+5],32]],[x+1,[[-6,-39],320]],[x-1,[[2,-24,6 7],320]]]
ChangeLog
[ << ] | [ < ] | [上] | [ > ] | [ >> ] | [冒頭] | [目次] | [見出し] | [ ? ] |
taji_alc.laurent_expansion
:: 有理関数num/denの極におけるローラン展開の主要部の係数を求める.
[[因子,ローラン展開の係数],...] なるリスト.
ローラン展開の係数は, 高位の係数から順に並べたリスト.
(有理関数の分子の)多項式
(有理関数の分母の)多項式
または (有理関数の分母をQ上で既約分解した) [[因子,重複度],...] なるリスト
オプション指定
case 0 : ローラン展開の係数を [有理数係数多項式,...] なるリストで返す.
case 1 : ローラン展開の係数を [整数係数化リスト,...] なるリストで返す.
case 10 : ローラン展開の係数を [[整数係数多項式,...],整数] なるリストで返す.
case 20 : ローラン展開の係数を [[整数係数化リスト,...],整数] なるリストで返す.
default : case 0
[354] taji_alc.laurent_expansion(x,(x-1)^3); [[x-1,[1,1,0]]] [356] taji_alc.laurent_expansion(x^5+x^4+x^3+x^2+x+1,(x^4+1)^3); [[x^4+1,[1/64*x^2+1/64*x,1/16*x^3+1/16*x^2-3/128*x-5/128,-5/128*x^3-1/ 8*x^2-3/16*x]]]
ChangeLog
[ << ] | [ < ] | [上] | [ > ] | [ >> ] | [冒頭] | [目次] | [見出し] | [ ? ] |
taji_alc.residue
:: 有理関数num/denの極における留数を求める.
[[因子,留数],...] なるリスト
(有理関数の分子の) 多項式
(有理関数の分母の) 多項式
または (有理関数の分母をQ上で既約分解した) [[因子,重複度],...] なるリスト
オプション指定
case 0 : 留数を有理数係数多項式で返す.
case 1 : 留数を整数係数化リストで返す.
default : case 0
オプション指定
[因子,...] なるオプションリスト
[219] taji_alc.residue(1,x^4+1); [[x^4+1,-1/4*x]]
この例で言うと, 求めた留数多項式-1/4*xに, x^4+1の(4つある)零点をそれぞれ代入したものが個別の留数値である.
[221] taji_alc.residue(x^8,[[x^3-x-1,3]]); [[x^3-x-1,-2243/12167*x^2+2801/12167*x+5551/12167]] [222] taji_alc.residue(x^2+x,[[x+1,3],[x-1,3],[x^2+3*x-1,2]]); [[x^2+3*x-1,-284/4563*x-311/1521],[x-1,89/432],[x+1,7/432]] [223] taji_alc.residue(x^2+x,[[x+1,3],[x-1,3],[x^2+3*x-1,2]]|switch=1) ; [[x^2+3*x-1,[-284*x-933,4563]],[x-1,[89,432]],[x+1,[7,432]]] [234] taji_alc.residue(x^2+x,[[x+1,3],[x-1,3],[x^2+3*x-1,2]]|switch=1, pole=[x+1]); [[x+1,[7,432]]] [225] taji_alc.residue(x^3+1,x^18-2*x^14+x^10-x^8+2*x^4-1); [[x^4+x^3+x^2+x+1,-1/25*x^2-1/50*x-1/25],[x^4-x^3+x^2-x+1,-1/25*x^3+2/ 25*x^2-1/50*x-1/25],[x^2+1,1/4*x+5/32],[x+1,-39/320],[x-1,67/320]]
ChangeLog
[ << ] | [ < ] | [上] | [ > ] | [ >> ] | [冒頭] | [目次] | [見出し] | [ ? ] |
taji_alc.invpow
:: 剰余体Q[x]/<f>上でのpolyの逆元のm乗を求める.
逆冪
多項式
Q上で既約な多項式
自然数
オプション指定
case 0 : 逆冪を有理数係数多項式で返す.
case 1 : 逆冪を整数係数化リストで返す.
default : case 0
[236] taji_alc.invpow(3*x^2-1,x^3-x-1,1); -6/23*x^2+9/23*x+4/23 [237] taji_alc.invpow(3*x^2-1,x^3-x-1,1|switch=1); [-6*x^2+9*x+4,23] [238] taji_alc.invpow(3*x^2-1,x^3-x-1,30|switch=1); [1857324483*x^2-2100154824*x-477264412,266635235464391245607]
ChangeLog
[ << ] | [ < ] | [上] | [ > ] | [ >> ] | [冒頭] | [目次] | [見出し] | [ ? ] |
taji_alc.rem_formula
:: 多項式f(x)を与えたときの剰余公式を求める.
switch および 説明文を参照
f(x)をQ上で既約分解した [[因子,重複度,零点の記号],...] なるリスト
オプション指定
case 0 : xの冪で整理し, リストで返す.
case 10 : f(x)の冪で整理し, リストで返す. (一因子の場合のみ対応)
case 20 : xの冪で整理し, symbolicな表現で返す.
default : case 0
[r_{f1(x,z1),r_{f2(x,z2)]
なるリストで返される. これは, 剰余公式が
なる形で与えられることを意味している. 各成分のr_{fi(x,zi)は,
[p^(mi-1)(zi)の係数となるxとziの多項式,...,p^(0)(zi)の係数となるxとziの多項式]
なるリストである.
[r_(m-1)(x,z),...,r_0(x,z)]
なるリストで返される. 各成分は, 剰余公式を
のようにf1(x)の冪で展開したときの各係数を意味している. 各成分のr_{i(x,z)は,
[p^(m-1)(z)の係数となるxとzの多項式,...,p^(0)(z)の係数となるxとzの多項式]
なるリストである.
[228] taji_alc.rem_formula([[x^2+1,1,z]]); [[-1/2*z*x+1/2]]
の正しい見方は, x^2+1の零点をa1,a2とおいたときに, zにa1とa2を代入した,
r(x)=(-1/2*a1*x+1/2)+(-1/2*a2*x+1/2) である. しかし出力では, 零点の和の部分を便宜上省略して返す.
[583] taji_alc.rem_formula([[x-1,1,z1],[x-2,1,z2]]); [[-x+2],[x-1]] [584] taji_alc.rem_formula([[x-1,1,z1],[x-2,1,z2]]|switch=20); (-p^(0)(z1)+p^(0)(z2))*x+2*p^(0)(z1)-p^(0)(z2) [587] taji_alc.rem_formula([[x-1,2,z1]]); [[x-1,1]] [588] taji_alc.rem_formula([[x-1,2,z1]]|switch=20); p^(1)(z1)*x-p^(1)(z1)+p^(0)(z1) [494] taji_alc.rem_formula([[x-1,3,z1]]|switch=20); 1/2*p^(2)(z1)*x^2+(-p^(2)(z1)+p^(1)(z1))*x+1/2*p^(2)(z1)-p^(1)(z1)+p^( 0)(z1) [229] taji_alc.rem_formula([[x+1,2,z1],[x^3-x-1,1,z2]]); [[-x^4-x^3+x^2+2*x+1,-2*x^4-3*x^3+2*x^2+5*x+3],[(-1/23*z2^2-10/23*z2+1 6/23)*x^4+(-12/23*z2^2-5/23*z2+31/23)*x^3+(-5/23*z2^2+19/23*z2-12/23)* x^2+(22/23*z2^2+13/23*z2-53/23)*x+16/23*z2^2-1/23*z2-26/23]] [230] taji_alc.rem_formula([[x+1,2,z1],[x^3-x-1,1,z2]]|switch=20); (-1/23*p^(0)(z2)*z2^2-10/23*p^(0)(z2)*z2-2*p^(0)(z1)+16/23*p^(0)(z2)-p ^(1)(z1))*x^4+(-12/23*p^(0)(z2)*z2^2-5/23*p^(0)(z2)*z2-3*p^(0)(z1)+31/ 23*p^(0)(z2)-p^(1)(z1))*x^3+(-5/23*p^(0)(z2)*z2^2+19/23*p^(0)(z2)*z2+2 *p^(0)(z1)-12/23*p^(0)(z2)+p^(1)(z1))*x^2+(22/23*p^(0)(z2)*z2^2+13/23* p^(0)(z2)*z2+5*p^(0)(z1)-53/23*p^(0)(z2)+2*p^(1)(z1))*x+16/23*p^(0)(z2 )*z2^2-1/23*p^(0)(z2)*z2+3*p^(0)(z1)-26/23*p^(0)(z2)+p^(1)(z1) [231] taji_alc.rem_formula([[x^3-x-1,2,z]]|switch=10); [[[(3/23*z^2-4/23)*x^2+(-1/23*z+3/23)*x-4/23*z^2+3/23*z+4/23,(162/529* z^2-174/529*z-108/529)*x^2+(-105/529*z^2+54/529*z+70/529)*x-108/529*z^ 2+116/529*z+72/529],[(-6/23*z^2+9/23*z+4/23)*x^2+(9/23*z^2-2/23*z-6/23 )*x+4/23*z^2-6/23*z+5/23]]]
ChangeLog
[ << ] | [ < ] | [上] | [ > ] | [ >> ] | [冒頭] | [目次] | [見出し] | [ ? ] |
taji_alc.solve_ode_cp
:: 有理数係数の線形常微分方程式のコーシー問題
の解を求める.
ただし, Pはn階の有理数係数の線形常微分作用素, f(z)は指数多項式とする.
2通りの表現がある.
・表現1 (コーシーデータで整理した形)
コーシー問題の一般解u(z)は,
なる線形結合の形で与えられる. をコーシー問題の基本解, をコーシー問題の特殊解といい,
[u_0(z),...,u_(n-1)(z),v(z)]
なるリストで返す. 基本解と特殊解は, 指数多項式リストである.
・表現2 (指数関数で整理した形)
dataにコーシーデータを与えると, コーシー問題の一般解u(z)の のところにデータを代入し, それを指数関数で整理し直した指数多項式リストを返す.
多項式 (Pの特性多項式)
または (Pの特性多項式をQ上で既約分解した) [[因子,重複度],...] なるリスト
不定元 (関数の独立変数)
斉次形のとき0, 非斉次形のときf(z)の指数多項式リスト.
オプション指定
case 0 : 指数多項式リストの2番目の成分を有理数係数多項式で返す.
case 1 : 指数多項式リストの2番目の成分を整数係数化リストで返す.
default : case 0
オプション指定
コーシーデータを [c_0,...,c_(n-1)] の順に並べたリスト.
[287] taji_alc.solve_ode_cp(x*(x-3)^2,z,0); [[[x-3,0],[x,1]],[[x-3,-z+2/3],[x,-2/3]],[[x-3,1/3*z-1/9],[x,1/9]]] [289] taji_alc.solve_ode_cp((x^3-x-1)^2,z,0|switch=1); [[[x^3-x-1,[(92*z+200)*x^2+(-69*z-254)*x-92*z+43,529]]],[[x^3-x-1,[(92 *z+420)*x^2+(-46*z-216)*x-161*z-280,529]]],[[x^3-x-1,[(-69*z-195)*x^2+ (23*z+327)*x+23*z+130,529]]],[[x^3-x-1,[(-161*z-270)*x^2+(69*z+290)*x+ 184*z+180,529]]],[[x^3-x-1,[-105*x^2+(-23*z+54)*x+69*z+70,529]]],[[x^3 -x-1,[(69*z+162)*x^2-174*x-92*z-108,529]]]] [277] taji_alc.solve_ode_cp(x^2-4,z,0); [[[x+2,1/2],[x-2,1/2]],[[x+2,-1/4],[x-2,1/4]]] [278] taji_alc.solve_ode_cp(x^2-4,z,0|data=[1,-1]); [[x+2,3/4],[x-2,1/4]] [279] taji_alc.solve_ode_cp(x^2-4,z,0|data=[c0,c1]); [[x+2,1/2*c0-1/4*c1],[x-2,1/2*c0+1/4*c1]]
ChangeLog
[ << ] | [ < ] | [上] | [ > ] | [ >> ] | [冒頭] | [目次] | [見出し] | [ ? ] |
taji_alc.solve_ode_cp_ps
:: 有理数係数の線形常微分方程式のコーシー問題
の特殊解を求める.
ただし, 非斉次形のみを対象としているので, とする.
指数多項式リスト
多項式 (Pの特性多項式)
または (Pの特性多項式をQ上で既約分解した) [[因子,重複度],...] なるリスト
不定元 (関数の独立変数)
f(z)の指数多項式リスト
オプション指定
case 0 : 指数多項式リストの2番目の成分を有理数係数多項式で返す.
case 1 : 指数多項式リストの2番目の成分を整数係数化リストで返す.
default : case 0
オプション指定
case 0 : コーシー問題の特殊解を返す.
case 1 : 簡単な形の特殊解を返す.
default : case 0
[345] taji_alc.solve_ode_cp_ps((x-2)*(x+3),z,[[x-1,1]]); [[x+3,1/20],[x-1,-1/4],[x-2,1/5]] [346] taji_alc.solve_ode_cp_ps((x-2)*(x+3),z,[[x-1,1]]|switch2=1); [[x-1,-1/4]] [347] taji_alc.solve_ode_cp_ps((x-2)*(x+3),z,[[x-2,1]]); [[x+3,1/25],[x-2,1/5*z-1/25]] [348] taji_alc.solve_ode_cp_ps((x-2)*(x+3),z,[[x-2,1]]|switch2=1); [[x-2,1/5*z-1/25]] [349] taji_alc.solve_ode_cp_ps((x-2)*(x+3),z,[[x+1,1],[x-2,1]]|switch2 =1); [[x+1,-1/6],[x-2,1/5*z+2/75]] [350] taji_alc.solve_ode_cp_ps((x^3-x-1)*(x-3)^2,z,[[x-3,2],[x-1,3*z^2 +1]]); [[x-1,[-6*z^2-36*z-119,8]],[x^3-x-1,[42291*x^2+55504*x+32313,12167]],[ x-3,[4232*z^2-4278*z-4295,97336]]]
ChangeLog
[ << ] | [ < ] | [上] | [ > ] | [ >> ] | [冒頭] | [目次] | [見出し] | [ ? ] |
taji_alc.fbt
:: 有理関数num/denが定める代数的局所コホモロジー類のフーリエ・ボレル変換を行う.
[指数多項式リスト,...] なるリスト
(有理関数の分子の) 多項式
(有理関数の分母の) 多項式
または (有理関数の分母をQ上で既約分解した) [[因子,重複度],...] なるリスト
不定元 (像の独立変数)
オプション指定
case 0 : 指数多項式リストの2番目の成分を有理数係数多項式で返す.
case 1 : 指数多項式リストの2番目の成分を整数係数化リストで返す.
default : case 0
[235] taji_alc.fbt(1,(x^3-x-1)^3,z); [[x^3-x-1,(9/529*z^2-81/529*z-4905/12167)*x^2+(-27/1058*z^2-9/529*z+45 63/12167)*x+11/1058*z^2+135/529*z+3270/12167]]
ChangeLog
[ << ] | [ < ] | [上] | [ > ] | [ >> ] | [冒頭] | [目次] | [見出し] | [ ? ] |
taji_alc.invfbt
:: 指数多項式の逆フーリエ・ボレル変換を行う.
有理関数
指数多項式リスト
不定元 (指数多項式の独立変数)
オプション指定
case 0 : 有理関数で返す.
case 1 : 有理関数を[分子,分母をQ上で既約分解したリスト]なるリストで返す.
default : case 0
[8] taji_alc.invfbt([[x^3-x-1,2*x^2*z^2+x*z+1],[x^2+1,z*x+z^2]],z|swit ch=1); [3*x^14+14*x^12+39*x^11+33*x^10+179*x^9+206*x^8+350*x^7+223*x^6+126*x^ 5+176*x^4+107*x^3+101*x^2+15*x-4,[[x^2+1,3],[x^3-x-1,3]]] [9] taji_alc.fbt(3*x^14+14*x^12+39*x^11+33*x^10+179*x^9+206*x^8+350*x^ 7+223*x^6+126*x^5+176*x^4+107*x^3+101*x^2+15*x-4,[[x^2+1,3],[x^3-x-1,3 ]],z); [[x^3-x-1,2*z^2*x^2+z*x+1],[x^2+1,z*x+z^2]]
ChangeLog
[ << ] | [ < ] | [上] | [ > ] | [ >> ] | [冒頭] | [目次] | [見出し] | [ ? ] |
移動: | T |
---|
移動: | T |
---|
[冒頭] | [目次] | [見出し] | [ ? ] |
[冒頭] | [目次] | [見出し] | [ ? ] |
[冒頭] | [目次] | [見出し] | [ ? ] |
この文書は3月 16, 2025にtexi2html 5.0を用いて生成されました。
ナビゲーションパネル中のボタンには以下の意味があります。
ボタン | 名称 | 移動先 | 1.2.3項からの移動先 |
---|---|---|---|
[ << ] | FastBack | Beginning of this chapter or previous chapter | 1 |
[ < ] | Back | Previous section in reading order | 1.2.2 |
[上] | Up | Up section | 1.2 |
[ > ] | Forward | Next section in reading order | 1.2.4 |
[ >> ] | FastForward | Next chapter | 2 |
[冒頭] | 冒頭 | Cover (top) of document | |
[目次] | 目次 | Table of contents | |
[見出し] | 見出し | 見出し | |
[ ? ] | About | About (help) |
例では、以下に示す構造を持つ文書の1.2.3項を現在位置に仮定しています。
この文書は3月 16, 2025にtexi2html 5.0を用いて生成されました。