Chapter 1: Introduction

1 Introduction

1.1 Organization of the Manual

This manual is organized as follows.

1. Introduction
 Organization of the Manual, notation and how to get Risa/Asir

2. Risa/Asir
 Summary of Asir, Installation

3. Types
 Types in Asir

4. Asir user language
 Description of Asir user language

5. Debugger
 Description of the debugger of Asir user language

6. Built-in function
 Detailed description of various built-in functions

7. Distributed computation
 Description of functions for distributed computation

8. Groebner bases
 Description of functions and operations for Groebner basis computation

9. Algebraic numbers
 Description of functions and operations for algebraic numbers

10. Finite fields
 Description of functions and operations on finite fields

11. Appendix
 Syntax in detail, description of sample files, interfaces for input from keyboard, changes, references

1.2 Notation

In this manual, we shall use several notations, which is described here

- The name of a function is written in a typewriter type
 \texttt{gcd()}, \texttt{gr()}

- For the description of a function, its argument is written in a slanted type.
 \texttt{int, poly}

- A file name is written in a ‘typewriter type with single quotes’
 ‘dbxinit’, ‘asir_plot’

- An example is indented and written in a typewriter type.
 \begin{verbatim}
 [0] 1;
 1
 [1] quit;
 \end{verbatim}
• References are made by a typewriter type bracketed by [].
 [Boehm, Weiser]
• Arguments (actual parameters) of a function are optional when they are bracketed by []’s. The repeatable items (including non-existence of the item) are bracketed by []∗’s.
 setprec([n]), diff(rat[, varn]*)
• The prompt from the shell (csh) is denoted, as it is, by %. The prompt, however, is denoted by #, when you are assumed to be working as the root, for example, at the installation.
 % cat afo
 afo
 bfo
 % su
 Password:XXXX
 # cp asir /usr/local/bin
 # exit
 %
• The rational integer ring is denoted by \(\mathbb{Z} \), the rational number field by \(\mathbb{Q} \), the real number field by \(\mathbb{R} \), and the complex number field by \(\mathbb{C} \).

1.3 How to get Risa/Asir

Risa/Asir is available via http from
 http://www.math.kobe-u.ac.jp/Asir
2 Risa/Asir

2.1 Risa and Asir

Risa is the name of whole libraries of a computer algebra system which is under development at FUJITSU LABORATORIES LIMITED. The structure of Risa is as follows.

- **The basic algebraic engine**
 This is the part which performs basic algebraic operations, such as arithmetic operations, to algebraic objects, e.g., numbers and polynomials, which are already converted into internal forms. It exists, like ‘libc.a’ of UNIX, as a library of ordinary UNIX system. The algebraic engine is written mainly in C language and partly in assembler. It serves as the basic operation part of Asir, a standard language interface of Risa.

- **Memory Manager**
 Risa employs, as its memory management component (the memory manager), a free software distributed by Boehm (gc-6.1alpha5). It is proposed by [Boehm,Weiser], and developed by Boehm and his colleagues. The memory manager has a memory allocator which automatically reclaims garbages, i.e., allocated but unused memories, and refreshes them for further use. The algebraic engine gets all its necessary memories through the memory manager.

- **Asir**
 Asir is a standard language interface of Risa’s algebraic engine. It is one of the possible language interfaces, because one can develop one’s own language interface easily on Risa system. Asir is an example of such language interfaces. Asir has very similar syntax and semantics as C language. Furthermore, it has a debugger that provide a subset of commands of dbx, a widely used debugger of C language.

2.2 Features of Asir

As mentioned in the previous section, Asir is a standard language interface for Risa’s algebraic engine. Usually, it is provided as an executable file named asir. Main features supported for the current version of Asir is as follows.

- A C-like programming language
- Arithmetic operations (addition, subtraction, multiplication and division) on numbers, polynomials and rational expressions
- Operations on vectors and matrices
- List processing operations at the minimum
- Several Built-in functions (factorization, GCD computation, Groebner basis computation etc.)
- Useful user defined functions(e.g., factorization over algebraic number fields)
- A dbx-like debugger
- Plotting of implicit functions
- Numerical evaluation of mathematical expressions including elementary transcendental functions at arbitrary precision. This feature is in force only if PARI system (see Section 6.1.14 [pari], page 41).
• Distributed computation over UNIX

2.3 Installation

Any questions and any comments on this manual are welcome by e-mails to the following address.

noro@math.kobe-u.ac.jp

2.3.1 UNIX binary version

A file ‘asir.tgz’ suitable for the target machine/architecture is required. After getting it, you have to unpack it by gzip. First of all, determine a directory where binaries and library files are installed. We call the directory the library directory. The following installs the files in ‘/usr/local/lib/asir’.

```
# gzip -dc asir.tgz | ( cd /usr/local/lib; tar xf - )
```

In this case you don’t have to set any environment variable.

You can install them elsewhere.

```
% gzip -dc asir.tgz | ( cd $HOME; tar xf - )
```

In this case you have to set the name of the library directory to the environment variable ASIR_LIBDIR.

```
% setenv ASIR_LIBDIR $HOME/asir
```

Asir itself is in the library directory. It will be convenient to create a symbolic link to it from ‘/usr/local/bin’ or the user’s search path.

```
# ln -s /usr/local/lib/asir/asir /usr/local/bin/asir
```

Then you can start ‘asir’.

```
% /usr/local/bin/asir
This is Risa/Asir, Version 20000821.
Copyright (C) FUJITSU LABORATORIES LIMITED.
1994-2000. All rights reserved.
[0]
```

2.3.2 UNIX source code version

First of all you have to determine the install directory. In the install directory, the following subdirectories are put:

- bin
 executables of PARI and Asir
- lib
 library files of PARI and Asir
- include
 header files of PARI

These subdirectories are created automatically if they does not exist. If you can be a root, it is recommended to set the install directory to ‘/usr/local’. In the following the directory is denoted by TARGETDIR.

Then, install PARI library. After getting ‘pari.tgz’, unpack and install it as follows:
% gzip -dc pari.tgz | tar xvf -
% cd pari
% ./Configure --prefix=TARGETDIR
% make all
% su
make install
make install-lib-sta

While executing 'make install', the procedure may stop due to some error. Then try the following:

% cd Oxxx
% make lib-sta
% su
make install-lib-sta
make install-include
exit
%

In the above example, xxx denotes the name of the target operating system. Although GP is not built, the library necessary for building asir2000 will be generated.

After getting ‘asir2000.tgz’, unpack it and install necessary files as follows.

% gzip -dc asir.tgz | tar xf -
% cd asir2000
% ./configure --prefix=TARGETDIR --with-pari --enable-plot
% make
% su
make install
make install-lib
make install-doc
exit

2.3.3 Windows version

The installers are ‘asirwin32.msi’ (32bit version) and ‘asirwin64.msi’ (64bit version). These installers set the installed folder to the environmental variable ‘ASIR_ROOTDIR’. (If you install Risa/Asir by the zip version, you need to set the environmental variable ‘ASIR_ROOTDIR’ by hand. You also need to unlock the security block before unzipping. The zip version is for developers.) Double click the “asirgui” on the desktop, then the asir starts. To use a unified environment with text editors, follow the instruction in ‘%ASIR_ROOTDIR%\share\editor’. If the folder name to which you install asir or your home folder name contain non-ascii characters, some functions of asir may not work properly. For example, in the Japense locale, names which may cause troubles can be checked by “damemoji checker”.

2.4 Command line options

Command-line options for the command ‘asir’ are as follows.
-heap number
In Risa/Asir, 4KB is used as an unit, called block, for memory allocation. By default, 16 blocks (64KB) are allocated initially. This value can be changed by giving an option -heap a number parameter in unit block. Size of the heap area is obtained by a Built-in function heap(), the result of which is a number in Bytes.

-adj number
Heap area will be stretched by the memory manager, if the size of reclaimed memories is less than 1/number of currently allocated heap area. The default value for number is 3. If you do not prefer to stretch heap area by some reason, perhaps by restriction of available memories, but if prefer to resort to reclaiming garbages as far as possible, then a large value should be chosen for number, e.g., 8.

-norc
When this option is specified, Asir does not read the initial file `$HOME/.asirrc`.

-quiet

-f file
Instead of the standard input, file is used as the input. Upon an error, the execution immediately terminates.

-paristack number
This option specifies the private memory size for PARI (see Section 6.1.14 [pari], page 41). The unit is Bytes. By default, it is set to 1 MB.

-maxheap number
This option sets an upper limit of the heap size. The unit is Bytes. Note that the size is already limited by the value of datasize displayed by the command limit on UNIX.

2.5 Environment variable
There exist several environment variables concerning with an execution of Asir. On UNIX, an environment variable is set from shells, or in rc files of shells. On Windows, it can be set from [Editing environmetal variables].

- ASIR_LIBDIR
 This environmental variable is obsolete.

- ASIR_CONTRIB_DIR
 This environmental variable is obsolete.

- ASIRLOADPATH
 This environment specifies directories which contains files to be loaded by Asir command load(). Directories are separated by a ‘:’ on UNIX, a ‘;’ on Windows respectively. The search order is from the left to the right. After searching out all directories in ASIRLOADPATH, or in case of no specification at all, the library directory will be searched. The library directories of the unix version are `$OpenXM_HOME/lib/asir-contrib`, `$OpenXM_HOME/lib/asir`, `/usr/local/lib/asir-contrib`, `/usr/local/lib/asir`. When ‘OpenXM_HOME’ is not set, the library directories of the Windows version are `%ASIR_ROOTDIR%/lib\asir-contrib`,
When ‘$OpenXM_HOME’ is set, the library directories are same with the unix version. In the Windows version, the private folder ‘%APPDATA%\OpenXM\lib\asir-contrib’ is also set to the library folders. In the unix version, there is no default private library folder. In the OpenXM/unix version, ‘$OpenXM_tmp/OpenXM/lib/asir-contrib’ is added to the ‘ASIRLOADPATH’ by a script in ‘OpenXM/rc’. See also asir_contrib_update. See which, ctrl("loadpath"), asir2000/parse/load.c.

HOME

If Asir is invoked without -norc, ‘$HOME/.asirrc’, if exists, is executed. If HOME is not set, nothing is done on UNIX. On Windows, ‘.asirrc’ in Asir root directory is executed if it exists.

2.6 Starting and Terminating an Asir session

Run Asir, then the copyright notice and the first prompt will appear on your screen, and a new Asir session will be started.

```
[0]
```

When initialization file ‘$HOME/.asirrc’ exists, Asir interpreter executes it at first taking it as a program file written in Asir.

The prompt indicates the sequential number of your input commands to Asir. The session will terminate when you input end; or quit; to Asir. Input commands are evaluated statement by statement. A statement normally ends with its terminator ‘;’ or ‘$’. (There are some exceptions. See, syntax of Asir.) The result will be displayed when the command, i.e. statement, is terminated by a ‘;’, and will not when terminated by a ‘$’.

```
% asir
[0] A;
0
[1] A=(x+y)^5;
x^5+5*y*x^4+10*y^2*x^3+10*y^3*x^2+5*y^4*x+y^5
[2] A;
x^5+5*y*x^4+10*y^2*x^3+10*y^3*x^2+5*y^4*x+y^5
[3] a=(x+y)^5;
evalpv : invalid assignment
return to toplevel
[3] a;
a
[4] fctr(A);
[[1,1],[x+y,5]]
[5] quit;
%
```

In the above example, names A, a, x and y are used to identify mathematical and programming objects. There, the name A denotes a program variable (some times called simply as a program variable.) while the other names, a, x and y, denote mathematical objects, that is, indeterminates. In general, program variables have names which begin with capital letters, while names of indeterminates begin with small letters. As you can see in the example, program variables are used to hold and keep objects, such as numbers and expressions,
as their values, just like variables in C programming language. Whereas, indeterminates cannot have values so that assignment to indeterminates are illegal. If one wants to get a result by substituting a value for an indeterminate in an expression, it is achieved by the function subst as the value of the function.

2.7 Interruption

To interrupt the Asir execution, input an interrupt character from the keyboard. A C-c is usually used for it. (Notice: C-x on Windows and DOS.)

\[(x+y)^{1000}; \]
\[C-c \text{ interrupt } ?(q/t/c/d/u/w/?) \]

Here, the meaning of options are as follows.

- **q**: Terminates Asir session. (Confirmation requested.)
- **t**: Returns to toplevel. (Confirmation requested.)
- **c**: Resumes to continue the execution.
- **d**: Enters debugging mode at the next statement of the Asir program, if Asir has been executing a program loaded from a file. Note that it will sometimes take a long time before entering debugging mode when Asir is executing basic functions in the algebraic engine, (e.g., arithmetic operation, factorization etc.) Detailed description about the debugger will be given in Chapter 5 [Debugger], page 31.
- **u**: After executing a function registered by register_handler() (see Section 7.5.6 (ox_reset ox_intr register_handler], page 108), returns to toplevel. A confirmation is prompted.
- **w**: Displays the calling sequence up to the interruption.
- **?**: Show a brief description of options.

2.8 Error handling

When arguments with illegal types are given to a built-in function, an error will be detected and the execution will be quit. In many cases, when an error is detected in a built-in function, Asir automatically enters debugging mode before coming back to toplevel. At that time, one can examine the state of the program, for example, inspect argument values just before the error occurred. Messages reported there are various depending on cases. They are reported after the internal function name. The internal function name sometimes differs from the built-in function name that is specified by the user program.

In the execution of internal functions, errors may happen by various reasons. The UNIX version of Asir will report those errors as one of the following internal error’s, and enters debugging mode just like normal errors.

SEGV

BUS ERROR

Some of the built-in functions transmit their arguments to internal operation routines without strict type-checking. In such cases, one of these two errors will
be reported when an access violation caused by an illegal pointer or a NULL pointer is detected.

BROKEN PIPE

In the process communication, this error will be reported if a process attempts to read from or to write onto the partner process when the stream to the partner process does not already exist, (e.g., terminated process.)

For UNIX version, even in such a case, the process itself does not terminate because such an error can be caught by `signal()` and recovered. To remove this weak point, complete type checking of all arguments are indispensable at the entry of a built-in function, which requires an enormous amount of re-making efforts.

2.9 Referencing results and special numbers

An `@` used for an escape character; rules currently in force are as follows.

`@n` The evaluated result of `n`-th input command
`@@` The evaluated result of the last command
`@i` The unit of imaginary number, square root of -1.
`@pi` The number pi, the ratio of a circumference of the circle and its diameter.
`@e` Napier’s number, the base of natural logarithm.
`@` A generator of GF(2 \(^m\)), a finite field of characteristic 2, over GF(2). It is a root of an irreducible univariate polynomial over GF(2) which is set as the defining polynomial of GF(2 \(^m\)).

`@>`, `@<`, `@>=`, `@<=`, `@==`, `@&&`, `@||`
First order logical operators. They are used in quantifier elimination.

```
[0] fctr(x^10-1);
[[1,1], [x-1,1], [x+1,1], [x^4+x^3+x^2+x+1,1], [x^4-x^3+x^2-x+1,1]]
[1] @@[3];
[x^4+x^3+x^2+x+1,1]
[2] eval(sin(@pi/2));
1.000000000000000000000000000000000000000000000000000000000
[3] eval(log(@e),20);
0.99999999999999999999999999998
[4] @@[4][0];
x^4-x^3+x^2-x+1
[5] (1+@i)^5;
(-4-4*@i)
[6] eval(exp(@pi*@i));
-1.000000000000000000000000000000000000000000000000000000000
[7] (@+1)^9;
(@^9+@^8+@+1)
```

As you can see in the above example, results of toplevel computation can be referred to by `@` convention. This is convenient for users, while it sometimes imposes a heavy burden to
the garbage collector. It may happen that GC time will rapidly increase after computing a very large expression at the toplevel. In such cases \texttt{delete_history()} (see Section 6.14.15 \texttt{[delete_history]}, page 98) takes effect.
3 Data types

3.1 Types in Asir

In Asir, various objects described according to the syntax of Asir are translated to intermediate forms and by Asir interpreter further translated into internal forms with the help of basic algebraic engine. Such an object in an internal form has one of the following types listed below. In the list, the number coincides with the value returned by the built-in function type(). Each example shows possible forms of inputs for Asir’s prompt.

0 0
As a matter of fact, no object exists that has 0 as its identification number. The number 0 is implemented as a null (0) pointer of C language. For convenience’s sake, a 0 is returned for the input type(0).

1 number
1 2/3 14.5 3+2*@i
Numbers have sub-types. See Section 3.2 [Types of numbers], page 14.

2 polynomial (but not a number)
x afo (2.3*x+y)^10
Every polynomial is maintained internally in its full expanded form, represented as a nested univariate polynomial, according to the current variable ordering, arranged by the descending order of exponents. (See Section 8.1 [Distributed polynomial], page 119.) In the representation, the indeterminate (or variable), appearing in the polynomial, with maximum ordering is called the main variable. Moreover, we call the coefficient of the maximum degree term of the polynomial with respect to the main variable the leading coefficient.

3 rational expression (not a polynomial)
(x+1)/(y^2-y-x) x/x
Note that in Risa/Asir a rational expression is not simplified by reducing the common divisors unless red() is called explicitly, even if it is possible. This is because the GCD computation of polynomials is a considerably heavy operation. You have to be careful enough in operating rational expressions.

4 list
[] [1,2,[3,4],[x,y]]
Lists are all read-only object. A null list is specified by []. There are operations for lists: car(), cdr(), cons() etc. And further more, element referencing by indexing is available. Indexing is done by putting [index]'s after a program variable as many as are required. For example,

[0] L = [[1,2,3],[4,[5,6]],7]$
[1] L[1][1];
[5,6]
Notice that for lists, matrices and vectors, the index begins with number 0. Also notice that referencing list elements is done by following pointers from
the first element. Therefore, it sometimes takes much more time to perform referencing operations on a large list than on a vectors or a matrices with the same size.

5 vector

newvect(3) newvect(2,[a,1])

Vector objects are created only by explicit execution of newvect() command. The first example above creates a null vector object with 3 elements. The other example creates a vector object with 2 elements which is initialized such that its 0-th element is a and 1st element is 1. The second argument for newvect is used to initialize elements of the newly created vector. A list with size smaller or equal to the first argument will be accepted. Elements of the initializing list is used from the left to the right. If the list is too short to specify all the vector elements, the unspecified elements are filled with as many 0’s as are required. Any vector element is designated by indexing, e.g., [index]. Asir allows any type, including vector, matrix and list, for each respective element of a vector. As a matter of course, arrays with arbitrary dimensions can be represented by vectors, because each element of a vector can be a vector or matrix itself. An element designator of a vector can be a left value of assignment statement. This implies that an element designator is treated just like a simple program variable. Note that an assignment to the element designator of a vector has effect on the whole value of that vector.

[0] A3 = newvect(3);
[0 0 0]
[1] for (I=0;I<3;I++)A3[I] = newvect(3);
[2] for (I=0;I<3;I++)for(J=0;J<3;J++)A3[I][J]=newvect(3);
[[[0 0 0] [0 0 0] [0 0 0]]
[[0 0 0] [0 0 0] [0 0 0]]
[[0 0 0] [0 0 0] [0 0 0]]]
[4] A3[0];
[[0 0 0] [0 0 0] [0 0 0]]
[5] A3[0][0];
[0 0 0]

6 matrix

newmat(2,2) newmat(2,3,[[x,y],[z]])

Like vector objects, matrix objects are also created only by explicit execution of newmat() command. Initialization of the matrix elements are done in a similar manner with that of the vector elements except that the elements are specified by a list of lists. Each element, again a list, is used to initialize each row; if the list is too short to specify all the row elements, unspecified elements are filled with as many 0’s as are required. Like vectors, any matrix element is designated by indexing, e.g., [index][index]. Asir also allows any type, including vector, matrix and list, for each respective element of a matrix. An element designator of a matrix can also be a left value of assignment statement. This implies that an element designator is treated just like a simple program variable. Note that an assignment to the element designator of a matrix has effect on the whole
value of that matrix. Note also that every row, (not column,) of a matrix can be extracted and referred to as a vector.

```plaintext
[0] M = newmat(2, 3);
[ 0 0 0 ]
[ 0 0 0 ]
[1] M[1];
[ 0 0 0 ]
[2] type(@@);
5
```

7 string

"" "afo"

Strings are used mainly for naming files. It is also used for giving comments of the results. Operator symbol + denote the concatenation operation of two strings.

```plaintext
[0] "afo" + "take";
afotake
```

8 structure

`newstruct(afo)`

The type structure is a simplified version of that in C language. It is defined as a fixed length array and each entry of the array is accessed by its name. A name is associated with each structure.

9 distributed polynomial

`2*<<0,1,2,3>>-3*<<1,2,3,4>>`

This is the short for ‘Distributed representation of polynomials.’ This type is specially devised for computation of Groebner bases. Though for ordinary users this type may never be needed, it is provided as a distinguished type that user can operate by Asir. This is because the Groebner basis package provided with Risa/Asir is written in the Asir user language. For details See Chapter 8 [Groebner basis computation], page 119.

10 32bit unsigned integer

11 error object

These are special objects used for OpenXM.

12 matrix over GF(2)

This is used for basis conversion in finite fields of characteristic 2.

13 MATHCAP object

This object is used to express available functionalities for Open XM.

14 first order formula

This expresses a first order formula used in quantifier elimination.
15 matrix over GF(p)

A matrix over a small finite field.

16 byte array

An array of unsigned bytes.

-1 VOID object

The object with the object identifier -1 indicates that a return value of a function is void.

3.2 Types of numbers

0 rational number

Rational numbers are implemented by arbitrary precision integers (bignum). A rational number is always expressed by a fraction of lowest terms.

1 double precision floating point number (double float)

The numbers of this type are numbers provided by the computer hardware. By default, when Asir is started, floating point numbers in an ordinary form are transformed into numbers of this type. However, they will be transformed into bigfloat numbers when the switch `bigfloat` is turned on (enabled) by `ctrl()` command.

```
[0] 1.2;
1.2
[1] 1.2e-1000;
0
[2] ctrl("bigfloat",1);
1
[3] 1.2e-1000;
1.20000000000000000513 E-1000
```

A rational number shall be converted automatically into a double float number before the operation with another double float number and the result shall be computed as a double float number.

2 algebraic number

See Chapter 9 [Algebraic numbers], page 153.

3 bigfloat

The bigfloat numbers of Asir is realized by PARI library. A bigfloat number of PARI has an arbitrary precision mantissa part. However, its exponent part admits only an integer with a single word precision. Floating point operations will be performed all in bigfloat after activating the bigfloat switch by `ctrl()` command. The default precision is about 9 digits, which can be specified by `setprec()` command.

```
[0] ctrl("bigfloat",1);
1
```
Function `eval()` evaluates numerically its argument as far as possible. Notice that the integer given for the argument of `setprec()` does not guarantee the accuracy of the result, but it indicates the representation size of numbers with which internal operations of PARI are performed. (See Section 6.1.13 [eval deval], page 40, Section 6.1.14 [pari], page 41.)

complex number

A complex number of Risa/Asir is a number with the form \(a + b \cdot i \), where \(i \) is the unit of imaginary number, and \(a \) and \(b \) are either a rational number, double float number or bigfloat number, respectively. The real part and the imaginary part of a complex number can be taken out by `real()` and `imag()` respectively.

element of a small finite prime field

Here a small finite field means that its characteristic is less than \(2^{27} \). At present small finite fields are used mainly for groebner basis computation, and elements in such finite fields can be extracted by taking coefficients of distributed polynomials whose coefficients are in finite fields. Such an element itself does not have any information about the field to which the element belongs, and field operations are executed by using a prime \(p \) which is set by `setmod()`.

element of large finite prime field

This type expresses an element of a finite prime field whose characteristic is an arbitrary prime. An object of this type is obtained by applying `simp_ff` to an integer.

element of a finite field of characteristic 2

This type expresses an element of a finite field of characteristic 2. Let \(F \) be a finite field of characteristic 2. If \([F:GF(2)] = n\), then \(F \) is expressed as \(F = GF(2)[t]/(f(t)) \), where \(f(t) \) is an irreducible polynomial over GF(2) of degree \(n \). As an element \(g \) of GF(2)[t] can be expressed by a bit string, An element \(g \mod f \) in \(F \) can be expressed by two bit strings representing \(g \) and \(f \) respectively.

Several methods to input an element of \(F \) are provided.

- \(@ \)

 \(@ \) represents \(t \mod f \) in \(F = GF(2)[t]/(f(t)) \). By using \(@ \) one can input an element of \(F \). For example \(@^10+@+1 \) represents an element of \(F \).

- `ptogf2n`

 `ptogf2n` converts a univariate polynomial into an element of \(F \).

- `ntogf2n`

 As a bit string, a non-negative integer can be regarded as an element of \(F \). Note that one can input a non-negative integer in decimal, hexadecimal (0x prefix) and binary (0b prefix) formats.
micellaneous

• simp_ff is available if one wants to convert the whole coefficients of a polynomial.

8 element of a finite field of characteristic p^n

A finite field of order p^n, where p is an arbitrary prime and n is a positive integer, is set by setmod_ff by specifying its characteristic p and an irreducible polynomial of degree n over GF(p). An element of this field is represented by a polynomial over GF(p) modulo m(x).

9 element of a finite field of characteristic p^n (small order)

A finite field of order p^n, where p^n must be less than 2^{29} and n must be equal to 1 if p is greater or equal to 2^{14}, is set by setmod_ff by specifying its characteristic p the extension degree n. If p is less than 2^{14}, each non-zero element of this field is a power of a fixed element, which is a generator of the multiplicative group of the field, and it is represented by its exponent. Otherwise, each element is represented by the reduce modulo p. This specification is useful for treating both cases in a single program.

10 element of a finite field which is an algebraic extension of a small finite field of characteristic p^n

An extension field K of the small finite field F of order p^n is set by setmod_ff by specifying its characteristic p the extension degree n and $m=[K:F]$. An irreducible polynomial of degree m over K is automatically generated and used as the defining polynomial of the generator of the extension K/F. The generator is denoted by ϖ.

11 algebraic number represented by a distributed polynomial

See Chapter 9 [Algebraic numbers], page 153.

Finite fields other than small finite prime fields are set by setmod_ff. Elements of finite fields do not have informations about the modulus. Upon an arithmetic operation, if one of the operands is a rational number, it is automatically converted into an element of the finite field currently set and the operation is done in the finite field.

3.3 Types of indeterminates

An algebraic object is recognized as an indeterminate when it can be a (so-called) variable in polynomials. An ordinary indeterminate is usually denoted by a string that start with a small alphabetical letter followed by an arbitrary number of alphabetical letters, digits or ‘_’. In addition to such ordinary indeterminates, there are other kinds of indeterminates in a wider sense in Asir. Such indeterminates in the wider sense have type polynomial, and further are classified into sub-types of the type indeterminate.

0 ordinary indeterminate

An object of this sub-type is denoted by a string that start with a small alphabetical letter followed by an arbitrary number of alphabetical letters, digits or ‘_’. This kind of indeterminates are most commonly used for variables of polynomials.
undetermined coefficient

The function uc() creates an indeterminate which is denoted by a string that begins with ‘_’. Such an indeterminate cannot be directly input by its name. Other properties are the same as those of ordinary indeterminate. Therefore, it has a property that it cannot cause collision with the name of ordinary indeterminates input by the user. And this property is conveniently used to create undetermined coefficients dynamically by programs.

\[U = \text{uc}(); \]
\[\text{vtype}(U); \]

function form

A function call to a built-in function or to an user defined function is usually evaluated by Asir and retained in a proper internal form. Some expressions, however, will remain in the same form after evaluation. For example, \(\sin(x) \) and \(\cos(x+1) \) will remain as if they were not evaluated. These (unevaluated) forms are called ‘function forms’ and are treated as if they are indeterminates in a wider sense. Also, special forms such as \(\pi \) the ratio of circumference and diameter, and \(e \) Napier’s number, will be treated as ‘function forms.’

\[V = \sin(x); \]
\[\text{vtype}(V); \]

functor

A function call (or a function form) has a form \(\text{fname}(\text{args}) \). Here, \(\text{fname} \) alone is called a \textbf{functor}. There are several kinds of \textit{functors}: built-in functor, user defined functor and functor for the elementary functions. A functor alone is treated as an indeterminate in a wider sense.

\[\text{vtype}(\sin); \]
4 User language Asir

Asir provides many built-in functions, which perform algebraic computations, e.g., factorization and GCD computation, file I/O, extract a part of an algebraic expression, etc. In practice, you will often encounter a specific problem for which Asir does not provide a direct solution. For such cases, you have to write a program in a certain user language. The user language for Asir is also called Asir. In the following, we describe the Syntax and then show how to write a user program by several examples.

4.1 Syntax — Difference from C language

The syntax of Asir is based on C language. Main differences are as follows. In this section, a variable does not mean an indeterminate, but a program variable which is written by a string which begins with a capital alphabetical letter in Asir.

- No types for variables.
 As is already mentioned, any object in Asir has their respective types. A program variable, however, is type-less, that is, any typed object can be assigned to it.

```plaintext
[0] A = 1;
[1] type(A); 1
[2] A = [1,2,3];
[3] type(A); 4
```

- Variables, together with formal parameters, in a function (procedure) are all local to the function by default.
 Variables can be global at the top level, if they are declared with the key word `extern`. Thus, the scope rule of Asir is very simple. There are only two types of variables: global variables and local variables. A name that is input to the Asir’s prompt at the top level is denotes a global variable commonly accessed at the top level. In a function (procedure) the following rules are applied.

1. If a variable is declared as global by an `extern` statement in a function, the variable used in that function denotes a global variable at the top level. Furthermore, if a variable in a function is preceded by an `extern` declaration outside the function but in a file where the function is defined, all the appearance of that variable in the same file denote commonly a global variable at the top level.

2. A variable in a function is local to that function, if it is not declared as global by an `extern` declaration.

```plaintext
% cat afo
def afo() { return A;}
extern A$
def bfo() { return A;}
end$
% asir
[0] load("afo")$
```
Chapter 4: User language Asir

1
[6] afo();
0
[7] bfo();
1

- Program variables and algebraic indeterminates are distinguished in Asir.
The names of program variables must begin with a capital letter; while the names of
indeterminates and functions must begin with a small letter.
This is an unique point that differs from almost all other existing computer algebra
systems. The distinction between program variables and indeterminates is adopted to
avoid the possible and usual confusion that may arise in a situation where a name is
used as an indeterminate but, as it was, the name has been already assigned some
value. To use different type of letters, capital and small, was a matter of syntactical
convention like Prolog, but it is convenient to distinguish variables and indeterminates
in a program.

- No switch statements, and goto statements.
 Lack of goto statement makes it rather bothering to exit from within multiple loops.

- Comma expressions are allowed only in A, B and C of the constructs for $(A;B;C)$ or
 while(A).
 This limitation came from adopting lists as legal data objects for Asir.

The above are limitations; extensions are listed as follows.

- Arithmetic for rational expressions can be done in the same manner as is done for
 numbers in C language.

- Lists are available for data objects.
 Lists are conveniently used to represent a certain collection of objects. Use of lists
 enables to write programs more easily, shorter and more comprehensible than use of
 structure like C programs.

- Options can be specified in calling user defined functions.
 See Section 4.2.12 [option], page 27.

4.2 Writing user defined functions

4.2.1 User defined functions

To define functions by an user himself, `def' statement must be used. Syntactical errors are
detected in the parsing phase of Asir, and notified with an indication of where Asir found
the error. If a function with the same name is already defined (regardless to its arity,) the
new definition will override the old one, and the user will be told by a message,
afo() redefined.
on the screen when a flag verbose is set to a non-zero value by ctrl(). Recursive definition,
and of course, recursive use of functions are available. A call for an yet undefined function
in a function definition is not detected as an error. An error will be detected at execution
of the call of that yet undefined function.
/* X! */

def f(X) {
 if (!X)
 return 1;
 else
 return X * f(X-1);
}

/* \binom{i}{j} (0 \leq i \leq N, 0 \leq j \leq i) */

def c(N)
{
 A = newvect(N+1); A[0] = B = newvect(1); B[0] = 1;
 for (K = 1; K <= N; K++)
 A[K] = B = newvect(K+1); B[0] = B[K] = 1;
 for (P = A[K-1], J = 1; J < K; J++)
 B[J] = P[J-1] + P[J];
 return A;
}

/* A + B */

def add(A,B)
"add two numbers."
{
 return A+B;
}

In the second example, \text{c}(N) returns a vector, say \text{A}, of length N+1. \text{A}[I] is a vector of length I+1, and each element is again a vector which contains $\binom{i}{j}$ as its elements.

References

Section 6.14.4 [help], page 92.

In the following, the manner of writing \texttt{Asir} programs is exhibited for those who have no experience in writing C programs.

4.2.2 variables and indeterminates

variables (program variables)

A program variable is a string that begins with a capital alphabetical letter followed by any numbers of alphabetical letters, digits and ‘_’.

A program variable is thought of a box (a carrier) which can contain \texttt{Asir} objects of various types. The content is called the ‘value’ of that variable. When an expression in a program is to be evaluated, the variable appearing in
the expression is first replaced by its value and then the expression is evaluated to some value and stored in the memory. Thus, no program variable appears in objects in the internal form. All the program variables are initialized to the value 0.

```
[0] X^2+X+1;
 1
[1] X=2;
 2
[2] X^2+X+1;
 7
```

indeterminates

An indeterminate is a string that begins with a small alphabetical letter followed by any numbers of alphabetical letters, digits and '_'.

An indeterminate is a transcendental element, so-called variable, which is used to construct polynomial rings. An indeterminate cannot have any value. No assignment is allowed to it.

```
[3] X=x;
 x
[4] X^2+X+1;
 x^2+x+1
[5] A='Dx'*(x-1)+x*y-y;
 (y+Dx)*x-y-Dx
[6] function foo(x,y);
[7] B=foo(x,y)*x^2-1;
 foo(x,y)*x^2-1
```

4.2.3 parameters and arguments

```python
def sum(N) {
    for ( I = 1, S = 0; I <= N; I++ )
        S += I;
    return S;
}
```

This is an example definition of a function that sums up integers from 1 to \(N \). The \(N \) in `sum(N)` is called the (formal) parameter of `sum(N)`. The example shows a function of the single argument. In general, any number of parameters can be specified by separating by commas (','). A (formal) parameter accepts a value given as an argument (or an actual parameter) at a function call of the function. Since the value of the argument is given to the formal parameter, any modification to the parameter does not usually affect the argument (or actual parameter). However, there are a few exceptions: vector arguments and matrix arguments.

Let \(A \) be a program variable and assigned to a vector value \([a, b]\). If \(A \) is given as an actual parameter to a formal parameter, say \(V \), of a function, then an assignment in the function to the vector element designator \(V[1] \), say \(V[1]=c; \), causes modification of the actual parameter \(A \) resulting \(A \) to have an altered value \([a, c]\). Thus, if a vector is given to a formal parameter of a function, then its element (and subsequently the vector itself) in the calling side is modified through modification of the formal parameter by a vector
element designator in the called function. The same applies to a matrix argument. Note that, even in such case where a vector (or a matrix) is given to a formal parameter, the assignment to the whole parameter itself has only a local effect within the function.

```python
def clear_vector(M) {
    /* M is expected to be a vector */
    L = size(M)[0];
    for ( I = 0; I < L; I++ )
        M[I] = 0;
}
```

This function will clear off the vector given as its argument to the formal parameter \(M \) and return a 0 vector.

Passing a vector as an argument to a function enables returning multiple results by packing each result in a vector element. Another alternative to return multiple results is to use a list. Which to use depends on cases.

4.2.4 comments

The text enclosed by ‘/*’ and ‘*/’ (containing ‘/*’ and ‘*/’) is treated as a comment and has no effect to the program execution as in C programs.

```python
/*
 * This is a comment.
 */
```

A comment can span to several lines, but it cannot be nested. Only the first ‘/*’ is effective no matter how many ‘/*’s in the subsequent text exist, and the comment terminates at the first ‘*/’.

In order to comment out a program part that may contain comments in it, use the pair, `#if 0` and `#endif`. (See Section 4.2.11 [preprocessor], page 26.)

```python
#if 0
def bfo(X) {
    /* empty */
}
#endif
```

4.2.5 statements

An user function of Asir is defined in the following form.

```python
def name(parameter, parameter,...,parameter) {
    statement
    statement
    ...
    statement
}
```

As you can see, the statement is a fundamental element of the function. Therefore, in order to write a program, you have to learn what the statement is. The simplest statement is the simple statement. One example is an expression with a terminator (‘;’ or ‘$’).
\[S = \text{sum}(N); \]

A `return` statement and `break` statement are also primitives to construct `statements`.

As you can see the syntactic definition of `if` statement and `for` statement, each of their bodies consists of a single `statement`. Usually, you need several statements in such a body. To solve this contradictory requirement, you may use the `compound statement`. A `compound statement` is a sequence of `statement`'s enclosed by a left brace `{` and a right brace `}`. Thus, you can use multiple statement as if it were a single statement.

```asir
if ( I == 0 ) {
    J = 1;
    K = 2;
    L = 3;
}
```

No terminator symbol is necessary after `}`, because `{` statement sequence `}` already forms a statement, and it satisfies the syntactical requirement of the `if` statement.

4.2.6 return statement

There are two forms of `return` statement.

```asir
return expression;
return;
```

Both forms are used for exiting from a function. The former returns the value of the expression as a function value. The function value of the latter is not defined.

4.2.7 if statement

There are two forms of `if` statement.

```asir
if ( expression ) if ( expression )
    statement and statement
else
    statement
```

The interpretation of these forms are obvious. However, be careful when another `if` statement comes at the place for `statement`. Let us examine the following example.

```asir
if ( expression1 )
    if ( expression2 ) statement1
else
    statement2
```

One might guess `statement2` after `else` corresponds with the first `if (expression1)` by its appearance of indentation. But, as a matter of fact, the `Asir` parser decides that it correspond with the second `if (expression2)`. Ambiguity due to such two kinds of forms of `if` statement is thus solved by introducing a rule that a `statement` preceded by an `else` matches to the nearest preceding `if`.

Therefore, rearrangement of the above example for improving readability according to the actual interpretation gives the following.

```asir
if ( expression1 ) {
    if ( expression2 ) statement1 else statement2
```
On the other hand, in order to reflect the indentation, it must be written as the following.

```java
if ( expression1 ) {
    if ( expression2 ) statement1
} else
    statement2
```

When `if` is used in the top level, the `if` expression should be terminated with `$` or `;`. If there is no terminator, the next expression will be skipped to be evaluated.

4.2.8 loop, break, return, continue

There are three kinds of statements for loops (repetitions): the `while` statement, the `for` statement, and the `do` statement.

- **while statement**
 It has the following form.

  ```java
  while ( expression ) statement
  ```

 This statement specifies that `statement` is repeatedly evaluated as far as the `expression` evaluates to a non-zero value. If the expression 1 is given to the `expression`, it forms an infinite loop.

- **for statement**
 It has the following form.

  ```java
  for ( expr list-1; expr; expr list-2 ) statement
  ```

 This is equivalent to the program

  ```java
  expr list-1 (transformed into a sequence of simple statement)
  while ( expr ) {
    statement
    expr list-2 (transformed into a sequence of simple statement)
  }
  ```

- **do statement**

  ```java
  do {
    statement
  } while ( expression )
  ```

 This statement differs from `while` statement by the location of the termination condition: This statement first execute the `statement` and then check the condition, whereas `while` statement does it in the reverse order.

As means for exiting from loops, there are `break` statement and `return` statement. The `continue` statement allows to move the control to a certain point of the loop.

- **break**
 The `break` statement is used to exit the inner most loop.

- **return**
 The `return` statement is usually used to exit from a function call and it is also effective in a loop.
• continue
The continue statement is used to move the control to the end point of the loop body. For example, the last expression list will be evaluated in a for statement, and the termination condition will be evaluated in a while statement.

4.2.9 structure definition

A structure data type is a fixed length array and each component of the array is accessed by its name. Each type of structure is distinguished by its name. A structure data type is declared by struct statement. A structure object is generated by a builtin function newstruct. Each member of a structure is accessed by an operator ->. If a member of a structure is again a structure, then the specification by -> can be nested.

```
[1] struct rat {num,denom};
0
[2] A = newstruct(rat);
{0,0}
1
2
[5] A;
{1,2}
[6] struct_type(A);
1
```

References
Section 6.7.1 [newstruct], page 72, Section 6.7.3 [struct_type], page 75

4.2.10 various expressions

Major elements to construct expressions are the following:

• addition, subtraction, multiplication, division, exponentiation
The exponentiation is denoted by ‘^’. (This differs from C language.) Division denoted by ‘/’ is used to operate in a field, for example, 2/3 results in a rational number 2/3. For integer division and polynomial division, both including remainder operation, built-in functions are provided.
```
x+1 A^2*B*afo X/3
```

• programming variables with indices
An element of a vector, a matrix or a list can be referred to by indexing. Note that the indices begin with number 0. When the referred element is again a vector, a matrix or a list, repeated indexing is also effective.
```
V[0] M[1][2]
```

• comparison operation
There are comparison operations ‘==’ for equivalence, ‘!=' for non-equivalence, ‘>’, ‘<’, ‘>=’, and ‘<=’ for larger or smaller. The results of these operations are either value 1 for the truth, or 0 for the false.
• logical expression
 There are two binary logical operations ‘&&’ for logical ‘conjunction’ (and), ‘||’ for logical ‘disjunction’ (or), and one unary logical operation ‘!’ for logical ‘negation’ (not). The results of these operations are either value 1 for the truth, and 0 for the false.

• assignment
 Value assignment of a program variable is usually done by ‘=’. There are special assignments combined with arithmetic operations. (‘+=’, ‘-=’, ‘*=', ‘/=’, ‘^=’)

 \[A = 2 \quad A *= 3 \quad \text{(the same as} \quad A = A*3; \quad \text{The others are alike.)} \]

• function call
 A function call is also an expression.

• ‘++’, ‘--’
 These operators are attached to or before a program variable, and denote special operations and values.

 \[A++ \quad \text{the expression value is the previous value of} \quad A, \quad \text{and} \quad A = A+1 \]
 \[A-- \quad \text{the expression value is the previous value of} \quad A, \quad \text{and} \quad A = A-1 \]
 \[++A \quad A = A+1, \quad \text{and the value is the one after increment of} \quad A \]
 \[--A \quad A = A-1, \quad \text{and the value is the one after decrement of} \quad A \]

4.2.11 preprocessor

The Asir user language imitates C language. A typical features of C language include macro expansion and file inclusion by the preprocessor cpp. Also, Asir read in user program files through cpp. This enables Asir user to use #include, #define, #if etc. in his programs.

• #include
 Include files are searched within the same directory as the file containing #include so that no arguments are passed to cpp.

• #define
 This can be used just as in C language.

• #if
 This is conveniently used to comment out a large part of a user program that may contain comments by /* and */, because such comments cannot be nested.

The following are the macro definitions in ‘defs.h’.

```c
#define ZERO 0
#define NUM 1
#define POLY 2
#define RAT 3
#define LIST 4
#define VECT 5
#define MAT 6
#define STR 7
#define N_Q 0
#define N_R 1
#define N_A 2
#define N_B 3
#define N_C 4
#define V_IND 0
```
#define V_UC 1
#define V_PF 2
#define V_SR 3
#define isnum(a) (type(a)==NUM)
#define ispoly(a) (type(a)==POLY)
#define israt(a) (type(a)==RAT)
#define islist(a) (type(a)==LIST)
#define isvect(a) (type(a)==VECT)
#define ismat(a) (type(a)==MAT)
#define isstr(a) (type(a)==STR)
#define FIRST(L) (car(L))
#define SECOND(L) (car(cdr(L)))
#define THIRD(L) (car(cdr(cdr(L))))
#define FOURTH(L) (car(cdr(cdr(cdr(L)))))
#define DEG(a) deg(a,var(a))
#define LCOEF(a) coef(a,deg(a,var(a)))
#define LTERM(a) coef(a,deg(a,var(a)))*var(a)^deg(a,var(a))
#define TT(a) car(car(a))
#define TS(a) car(cdr(car(a)))
#define MAX(a,b) ((a)>(b)?(a):(b))

Since we are utilizing the C preprocessor, it cannot properly preprocess expressions with $\$. For example, even if LIST is defined, LIST in the expression LIST$ is not replaced. Add a blank before $\$, i.e., write as LIST $\$ to make the proprocessor replace it properly.

4.2.12 option

If a user defined function is declared with N arguments, then the function is callable with N arguments only.

[0] def factor(A) { return fctr(A); }
[1] factor(x^5-1,3);
evalf : argument mismatch in factor()
return to toplevel

A function with indefinite number of arguments can be realized by using a list or an array as its argument. Another method is available as follows:

% cat factor
def factor(F)
{
 Mod = getopt(mod);
 ModType = type(Mod);
 if (ModType == 1) /* 'mod' is not specified. */
 return fctr(F);
 else if (ModType == 0) /* 'mod' is a number */
 return modfctr(F,Mod);
}
[0] load("factor")$
[1] factor(x^5-1);
[[1,1],[x-1,1],[x^4+x^3+x^2+x+1,1]]
[2] factor(x^5-1|mod=11);
In the second call of \texttt{factor()}, \texttt{|mod=11} is placed after the argument x^5-1, which appears in the declaration of \texttt{factor()}. This means that the value 11 is assigned to the keyword \texttt{mod} when the function is executed. The value can be retrieved by \texttt{getopt(mod)}. We call such machinery \textit{option}. If the option for \texttt{mod} is not specified, \texttt{getopt(mod)} returns an object whose type is -1. By this feature, one can describe the behaviour of the function when the option is not specified by \texttt{if} statements. After ‘|’ one can append any number of options separated by ‘,’.

\begin{verbatim}
xxx(1,2,x^2-1,[1,2,3]|proc=1,index=5);
\end{verbatim}

Optimal arguments may be given as a list with the key word \texttt{option_list} as \texttt{option_list=\{"key1",value1","key2",value2",...\}}. It is equivalent to pass the optional arguments as \texttt{key1=value1, key2=value2, ...}.

\begin{verbatim}
dp_gr_main([x^2+y^2-1,x*y-1]|option_list=\{"v",[x,y],"order",[[x,5,y,1]]\});
\end{verbatim}

Since \texttt{getopt()} returns an option list, the optional argument \texttt{option_list=}... is useful when we call functions with optional arguments from a function with optional arguments to pass the all optional parameters.

\begin{verbatim}
% cat foo.rr
def foo(F)
{
 OPTS=getopt();
 return factor(F|option_list=OPTS);
}
\end{verbatim}

\begin{verbatim}
load("foo.rr")
foo(x^5-1|mod=11);
[[1,1],[x+6,1],[x+2,1],[x+10,1],[x+7,1],[x+8,1]]
\end{verbatim}

\subsection{module}

Function names and variables in a library may be encapsulated by module. Let us see an example of using module

\begin{verbatim}
module stack;

static Sp $ Sp = 0$
static Ssize$ Ssize = 100$
static Stack $ Stack = newvect(Ssize)$
localf push $ def push(A) {
 if (Sp >= Ssize) {print("Warning: Stack overflow\nDiscard the top"); pop();}
 Stack[Sp] = A;
 Sp++;
}
localf pop $ def pop() {
\end{verbatim}
local A;
if (Sp <= 0) {print("Stack underflow"); return 0;}
Sp--;
A = Stack[Sp];
return A;
}
endmodule;

def demo() {
 stack.push(1);
 stack.push(2);
 print(stack.pop());
 print(stack.pop());
}

Module is encapsulated by the sentences `module` module name and `endmodule`. A variable of a module is declared with the key word `static`. The static variables cannot be referred nor changed out of the module, but it can be referred and changed in any functions in the module. The `static` variables must be declared before the definitions of functions, because the one-path parser of Asir automatically assume variables as local variables if there is no declaration for them. A global variable which can be referred and changed in or out of the module is declared with the key word `extern`.

Any function defined in a module must be declared forward with the keyword `localf`. In the example above, `push` and `pop` are declared. This declaration is necessary.

A function `functionName` defined in a module `moduleName` can be called by the expression `moduleName.functionName(arg1, arg2, ...)` out of the module. Inside the module, `moduleName` is not necessary. In the example below, the functions `push` and `pop` defined in the module `stack` are called out of the module.

```
stack.push(2);
print( stack.pop() );
2
```

Any function name defined in a module is local. In other words, the same function name may be used out of the module to define a different function.

The module structure of Asir is introduced to develop large libraries. In order to load libraries on demand, the command `module_definedp` will be useful. The below is an example of demand loading.

```
if (!module_definedp("stack")) load("stack.rr") $
```

It is not necessary to declare local variables in Asir. As you see in the example of the stack module, we may declare local variables by the key word `local`. Once this key word is used, Asir requires to declare all the variables. In order to avoid some troubles to develop a large libraries, it is recommended to use `local` declarations.

When we need to call a function in a module before the module is defined, we must make a prototype declaration as the example below.

```
/* Prototype declaration of the module stack */
module stack;
localf push $
localf pop $
```
def demo() {
 print("----------------");
 stack.push(1);
 print(stack.pop());
 print("----------------");
}

module stack;
 /* The body of the module stack */
endmodule;

In order to call functions defined in the top level from the inside of a module, we use :: as in the example below.

def afo() {
 S = "afo, afo";
 return S;
}
module abc;
localf foo,afo $

def foo() {
 G = ::afo();
 return G;
}
def afo() {
 return "afo, afo in abc";
}
endmodule;
end$

[1200] abc.foo();
afo, afo
[1201] abc.afo();
afo, afo in abc

References
 Section 6.12.1 [module_list], page 88, Section 6.12.2 [module_definedp], page 88, Section 6.12.3 [remove_module], page 88.
5 Debugger

5.1 What is Debugger

A debugger dbx is available for C programs on Sun, VAX etc. In dbx, one can use commands such as setting break-point on a source line, stepwise execution, inspecting a variable’s value etc. Asir provides such a dbx-like debugger. In addition to such commands, we adopted several useful commands from gdb. In order to enter the debug-mode, type debug; at the top level of Asir.

Asir also enters the debug-mode by the following means or in the following situations.

• When it reaches a break point while executing a program.
• When the ‘d’ option is selected at an interruption.
• When it detects errors while executing a program.

In this case, to continue the execution of the program is impossible. But because it reports the statement in the user defined function that caused the error, then enters the debug-mode, user can inspect the values of variables at the error state. This helps to analyze the error and debug the program.

• When built-in function error() is called.

5.2 Debugger commands

Only indispensable commands of dbx are supported in the current version. Generally, the effect of a command is the same as that of dbx. There are, however, slight differences: Commands step and next execute the next statement, but not the next line; therefore, if there are multiple statements in one line, one should issue such commands several times to proceed the next line. The debugger reads in ‘.dbxinit’, which allows the same aliases as is used in dbx.

step
Execute the next statement; if the next statement contains a function call, then enters the function.

next
Execute the next statement.

finish
Enter the debug-mode again after finishing the execution of the current function. This is useful when an unnecessary step has been executed.

cont
quit
Exits from the debug-mode and continues execution.

up [n]
Move up the call stack one level. Move up the call stack n levels if n is specified.

down [n]
Move down the call stack one level. Move down the call stack n levels if n is specified.

frame [n]
Print the current stack frame with no argument. n specifies the stack frame number to be selected. Here the stack frame number is a number at the top of lines displayed by executing where.
list [startline]

list function
Displays ten lines in a source file from startline, the current line if the startline is not specified, or from the top line of current target function.

print expr
Displays expr.

func function
Set the target function to function.

stop at sourceline [if cond]
stop in function
Set a break-point at the sourceline-th line of the source file, or at the top of the target function. Break-points are removed whenever the relevant function is redefined. When if statements are repeatedly encountered, Asir enters debug-mode only when the corresponding cond parts are evaluated to a non-zero value.

trace expr at sourceline [if cond]
trace expr in function
These are similar to stop. trace simply displays the value of expr and without entering the debug-mode.

delete n
Remove the break point specified by a number n, which can be known by the status command.

status
Displays a list of the break-points.

where
Displays the calling sequence of functions from the top level through the current level.

alias alias command
Create an alias alias for command

The debugger command print can take almost all expressions as its argument. The ordinary usage is to print the values of (programming) variables. However, the following usage is worth to remember.

- **overwriting the variable**
 One might sometimes wish to continue the execution with several values of variables modified. For such an purpose, take the following procedure.

 (debug) print A
 A = 2
 (debug) print A=1
 A=1 = 1
 (debug) print A
 A = 1

- **function call**
 A function call is also an expression, therefore, it can appear at the argument place of print.

 (debug) print length(List)
 length(List) = 14
In this example, the length of the list assigned to the variable List is examined by a function length().

(debug) print ctrl("cputime",1)
ctrl("cputime",1) = 1

This example shows such a usage where measuring CPU time is activated from within the debug-mode, even if one might have forgotten to specify the activation of CPU time measurement.

It is also useful to save intermediate results to files from within the debug-mode by the built-in function bsave() when one is forced to quit the computation by any reason.

(debug) print bsave(A,"savefile")
bsave(A,"savefile") = 1

Note that continuation of the parent function will be impossible if an error will occur in the function call from within the debug-mode.

5.3 Execution example of debugger

Here, the usage of the Debugger is explained by showing an example for debugging a program which computes the integer factorial by a recursive definition.

% asir
[0] load("fac")$
[3] debug$
(debug) list factorial
1 def factorial(X) {
2 if (!X)
3 return 1;
4 else
5 return X * factorial(X - 1);
6 }$
[7] end$
(debug) stop at 5 <-- setting a break point
(0) stop at "/fac":5
(debug) quit <-- leaving the debug-mode
[4] factorial(6); <-- call for factorial(6)
stopped in factorial at line 5 in file "/fac"
5 return X * factorial(X - 1);
(debug) where
factorial(), line 5 in "/fac" <-- display the calling sequence
up to this break point
(debug) print X <-- Display the value of X
X = 6
(debug) step <-- step execution
(enters function)
stopped in factorial at line 2 in file "/fac"
2 if (!X)
(debug) where
factorial(), line 2 in "/fac"
factorial(), line 5 in "/fac"
(debug) print X
X = 5
(debug) delete 0 <-- delete the break point 0
(debug) cont <-- continue execution
720 <-- result = 6!
[5] quit;

5.4 Sample file of initialization file for Debugger

As is previously mentioned, Asir reads in the file `~/.dbxinit` at its invocation. This file is originally used to define various initializing commands for dbx debugger, but Asir recognizes only alias lines. For example, by the setting

```
% cat ~/.dbxinit
alias n next
alias c cont
alias p print
alias s step
alias d delete
alias r run
alias l list
alias q quit
```

one can use short aliases, e.g., p, c etc., for frequently used commands such as print, cont etc. One can create new aliases in the debug-mode during an execution.

```
lex_hensel(La,[a,b,c],0,[a,b,c],0);
stopped in gennf at line 226 in file "/home/usr3/noro/asir/gr"
226 N = length(V); Len = length(G); dp Ord(O); PS = newvect(Len);
(debug) p V
V = [a,b,c]
(debug) c
...
```
6 Built-in Function

6.1 Numbers

6.1.1 idiv, irem

\[\text{idiv}(i1, i2) \quad : \text{Integer quotient of } i1 \text{ divided by } i2. \]
\[\text{irem}(i1, i2) \quad : \text{Integer remainder of } i1 \text{ divided by } i2. \]
\[\text{return} \quad \text{integer} \]
\[i1 \quad \text{integer} \]
\[i2 \quad \text{integer} \]

- Integer quotient and remainder of \(i1 \) divided by \(i2 \).
- \(i2 \) must not be 0.
- If the dividend is negative, the results are obtained by changing the sign of the results for absolute values of the dividend.
- One can use \(i1 \% i2 \) for replacement of \text{irem()}\ which only differs in the point that the result is always normalized to non-negative values.
- Use \text{sdiv()}, \text{srem()}\ for polynomial quotient.

\[0]\ idiv(100,7); \quad 14
\[0]\ idiv(-100,7); \quad -14
\[1]\ irem(100,7); \quad 2
\[1]\ irem(-100,7); \quad -2

References
Section 6.3.8 [\text{sdiv sdivm srem sremm sqr sqrm}], page 49, Section 6.3.10 [\%], page 51.

6.1.2 fac

\[\text{fac}(i) \quad : \text{The factorial of } i. \]
\[\text{return} \quad \text{integer} \]
\[i \quad \text{integer} \]

- The factorial of \(i \).
- Returns 0 if the argument \(i \) is negative.

\[0]\ fac(50); \quad 30414093201713378043612608166064768844377641568960512000000000000
6.1.3 igcd, igcdcntl

igcd(i1, i2)
:: The integer greatest common divisor of i1 and i2.

igcdcntl([i])
:: Selects an algorithm for integer GCD.

return integer

• Function igcd() returns the integer greatest common divisor of the given two integers.
• An error will result if the argument is not an integer; the result is not valid even if one is returned.
• Use gcd(), gcdz() for polynomial GCD.
• Various method of integer GCD computation are implemented and they can be selected by igcdcntl.

0 Euclid algorithm (default)
1 binary GCD
2 bmod GCD
3 accelerated integer GCD

2, 3 are due to [Weber].

In most cases 3 is the fastest, but there are exceptions.

[0] A=random(10^4)$
[1] B=random(10^4)$
[2] C=random(10^4)$
[5] cputime(1)$
[6] igcd(D,E)$
0.6sec + gc : 1.93sec(2.531sec)
[7] igcdcntl(1)$
[8] igcd(D,E)$
0.27sec(0.2635sec)
[9] igcdcntl(2)$
[10] igcd(D,E)$
0.19sec(0.1928sec)
[12] igcd(D,E)$
0.08sec(0.08023sec)

References
Section 6.3.20 [gcd gcdz], page 57.
6.1.4 ilcm

ilcm(i1,i2)
:: The integer least common multiple of i1 and i2.

return integer
i1 i2 integer

- This function computes the integer least common multiple of i1, i2.
- If one of argument is equal to 0, the return 0.

References
Section 6.1.3 [igcd igcdcntl], page 36, Section 6.1.10 [mt_save mt_load], page 39.

6.1.5 isqrt

isqrt(n) :: The integer square root of n.

return non-negative integer
n non-negative integer

6.1.6 inv

inv(i,m) :: the inverse (reciprocal) of i modulo m.

return integer
i m integer

- This function computes an integer such that \(ia \equiv 1 \mod (m) \).
- The integer i and m must be mutually prime. However, inv() does not check it.

[71] igcd(1234,4321);
1
[72] inv(1234,4321);
3239
[73] irem(3239*1234,4321);
1

References
Section 6.1.3 [igcd igcdcntl], page 36.

6.1.7 prime, lprime

prime(index)
lprime(index)
:: Returns a prime number.

return integer
index integer
• The two functions, prime() and lprime(), returns an element stored in the system table of prime numbers. Here, index is a non-negative integer and be used as an index for the prime tables. The function prime() can return one of 1900 primes up to 16381 indexed so that the smaller one has smaller index. The function lprime() can return one of 999 primes which are 8 digit sized and indexed so that the larger one has the smaller index. The two function always returns 0 for other indices.

• For more general function for prime generation, there is a PARI function

\[
\text{pari(nextprime, number)}
\]

\[
\text{prime(0)}; 2 \\
\text{prime(1228)}; 9973 \\
\text{lprime(0)}; 99999989 \\
\text{lprime(999)}; 0
\]

References

Section 6.1.14 [pari], page 41.

6.1.8 random

random([seed])

seed

return non-negative integer

• Generates a random number which is a non-negative integer less than \(2^{32}\).

• If a non zero argument is specified, then after setting it as a random seed, a random number is generated.

• As the default seed is fixed, the sequence of the random numbers is always the same if a seed is not set.

• The algorithm is Mersenne Twister (http://www.math.keio.ac.jp/matsumoto/mt.html) by M. Matsumoto and T. Nishimura. The implementation is done also by themselves.

• The period of the random number sequence is \(2^{19937}-1\).

• One can save the state of the random number generator with mt_save. By loading the state file with mt_load, one can trace a single random number sequence across multiple sessions.

References

Section 6.1.9 [lrandom], page 38, Section 6.1.10 [mt_save mt_load], page 39.

6.1.9 lrandom

lrandom(bit)

:: Generates a long random number.

bit
Chapter 6: Built-in Function

return integer

- Generates a non-negative integer of at most bit bits.
- The result is a concatenation of outputs of random.

References

Section 6.1.8 [random], page 38, Section 6.1.10 [mt_save mt_load], page 39.

6.1.10 mt_save, mt_load

mt_save(fname)
:: Saves the state of the random number generator.

mt_load(fname)
:: Loads a saved state of the random number generator.

return 0 or 1

fname string

- One can save the state of the random number generator with mt_save. By loading the state file with mt_load, one can trace a single random number sequence across multiple Asir sessions.

[340] random();
3510405877
[341] mt_save("/tmp/mt_state");
1
[342] random();
4290933890
[343] quit;
% asir
This is Asir, Version 991108.
Copyright (C) FUJITSU LABORATORIES LIMITED.
3 March 1994. All rights reserved.
[340] mt_load("/tmp/mt_state");
1
[341] random();
4290933890

References

Section 6.1.8 [random], page 38, Section 6.1.9 [lrandom], page 38.

6.1.11 nm, dn

nm(rat) :: Numerator of rat.

dn(rat) :: Denominator of rat.

return integer or polynomial

rat rational number or rational expression

- Numerator and denominator of a given rational expression.
• For a rational number, they return its numerator and denominator, respectively. For a rational expression whose numerator and denominator may contain rational numbers, they do not separate those rational coefficients to numerators and denominators.

• For a rational number, the denominator is always kept positive, and the sign is contained in the numerator.

• Risa/Asir does not cancel the common divisors unless otherwise explicitly specified by the user. Therefore, \texttt{nm()} and \texttt{dn()} return the numerator and the denominator as it is, respectively.

\begin{verbatim}
[2] [nm(-43/8),dn(-43/8)];
[-43,8]
[3] dn((x*z)/(x*y));
y*x
[3] dn(red((x*z)/(x*y)));
y
\end{verbatim}

References
Section 6.3.21 \texttt{red}, page 58.

6.1.12 \texttt{conj, real, imag}

\texttt{real(comp)}
:: Real part of \texttt{comp}.

\texttt{imag(comp)}
:: Imaginary part of \texttt{comp}.

\texttt{conj(comp)}
:: Complex conjugate of \texttt{comp}.

\texttt{return comp}
:: complex number

• Basic operations for complex numbers.

• These functions works also for polynomials with complex coefficients.

\begin{verbatim}
[111] A=(2+@i)^3;
(2+11*@i)
[112] [real(A),imag(A),conj(A)];
[2,11,(2-11*@i)]
\end{verbatim}

6.1.13 \texttt{eval, deval}

\texttt{eval(obj[,prec])}
\texttt{deval(obj)}
:: Evaluate \texttt{obj} numerically.

\texttt{return}
:: number or expression

\texttt{obj}
:: general expression

\texttt{prec}
:: integer

• Evaluates the value of the functions contained in \texttt{obj} as far as possible.
• **deval** returns double float. Rational numbers remain unchanged in results from **eval**.

• In **eval** the computation is done by **PARI**. (See Section 6.1.14 [pari], page 41.) In **deval** the computation is done by the C math library.

• **deval** cannot handle complex numbers.

• When **prec** is specified, computation will be performed with a precision of about **prec**-digits. If **prec** is not specified, computation is performed with the precision set currently. (See Section 6.1.15 [setprec], page 42.)

• Currently available numerical functions are listed below. Note they are only a small part of whole **PARI** functions.

  ```
  sin, cos, tan,
  asin, acos, atan,
  sinh, cosh, tanh, asinh, acosh, atanh,
  exp, log, pow(a,b) (a^b)
  ```

• Symbols for special values are as the followings. Note that @i cannot be handled by **deval**.

  ```
  @i       unit of imaginary number
  @pi      the number pi, the ratio of circumference to diameter
  @e       Napier’s number (exp(1))
  ```

 [118] eval(exp(@pi*@i));
 -1.00
 [119] eval(2^(1/2));
 1.4142135623730950487663788073031
 [120] eval(sin(@pi/3));
 0.8660254037844386664674620506632
 [121] eval(sin(@pi/3)-3^(1/2)/2,50);
 -2.78791084448179148471 E-58
 [122] eval(1/2);
 1/2
 [123] deval(sin(1)^2+cos(1)^2); 1

References

Section 6.14.1 [ctrl], page 90, Section 6.1.15 [setprec], page 42, Section 6.1.14 [pari], page 41.

6.1.14 pari

```pari(func,arg,prec)
:: Call PARI function func.
return Depends on func.
func Function name of PARI.
arg Arguments of func.
prec integer
```
This command connects Asir to PARI system so that several functions of PARI can be conveniently used from Risa/Asir.

PARI [Batut et al.] is developed at Bordeaux University, and distributed as a free software. Though it has a certain facility to computer algebra, its major target is the operation of numbers (bignum, bigfloat) related to the number theory. It facilitates various function evaluations as well as arithmetic operations at a remarkable speed. It can also be used from other external programs as a library. It provides a language interface named ‘gp’ to its library, which enables a user to use PARI as a calculator which runs on UNIX. The current version is 2.0.17beta. It can be obtained by several ftp sites. (For example, ftp://megrez.ceremab.u-bordeaux.fr/pub/pari.)

The last argument (optional) int specifies the precision in digits for bigfloat operation. If the precision is not explicitly specified, operation will be performed with the precision set by setprec().

Currently available functions of PARI system are as follows. Note these are only a part of functions in PARI system. For details of individual functions, refer to the PARI manual. (Some of them can be seen in the following example.)

abs, adj, arg, bigomega, binary, ceil, centerlift, cf, classno, classno2, conj, content, denom, det, det2, detr, dilog, disc, discf, divisors, eigen, eintg1, erfc, eta, floor, frac, galois, galoisconj, gamh, gamma, hclassno, hermite, hess, imag, image, image2, indexrank, indsort, initalg, isfund, isprime, ispsp, isqrt, issqfree, issquare, jacobi, jell, ker, keri, kerint, kerintg1, kerint2, kerr, length, lexsort, lift, lindep, lli, llig1, llig2, llgen, llgram, llgramg1, llgraml, llgramr, llgramrkerim, llgramkerimagen, llin, llikkerim, llikkerimagen, lllrat, lngamma, logagm, mat, matrixqz2, matrixqz3, matsize, modreverse, mu, nextprime, norm, norml2, numdiv, numer, omega, order, ordred, phi, pnqn, polred, polred2, primroot, psi, quadgen, quadpoly, real, recip, redcomp, redreal, regula, reorder, reverse, rhoreal, roots, rootslong, round, sigma, signat, simplify, smalldiscf, smallfact, smallpolred, smallpolred2, smith, smith2, sort, sgr, sqred, sqrt, supplement, trace, trans, trunc, type, unit, vec, wf, wf2, zeta

Asir currently uses only a very small subset of PARI. We will improve Asir so that it can provide more functions of PARI.

/* Eigen vectors of a numerical matrix */
[0] pari(eigen,newmat(2,2,[[1,1],[1,2]]));
[-1.61803398874989484826990 0.61803398874989484826990]
[1 1]

/* Roots of a polynomial */
[1] pari(roots,t^2-2);
[-1.41421356237309504876 1.41421356237309504876]

References
Section 6.1.15 [setprec], page 42.

6.1.15 setprec

setprec([n])

:: Sets the precision for bigfloat operations to n digits.
return integer

n integer

- When an argument is given, it sets the precision for \texttt{bigfloat} operations to \(n \) digits. The return value is always the previous precision in digits regardless of the existence of an argument.

- \texttt{Bigfloat} operations are done by \texttt{PARI}. (See Section 6.1.14 [\texttt{pari}], page 41.)

- This is effective for computations in \texttt{bigfloat}. Refer to \texttt{ctrl()} for turning on the \texttt{‘bigfloat’} flag.’

- There is no upper limit for precision digits. It sets the precision to some digits around the specified precision. Therefore, it is safe to specify a larger value.

\begin{verbatim}
[1] setprec(); 9
[2] setprec(100); 9
[3] setprec(100); 96
\end{verbatim}

Section 6.14.1 [\texttt{ctrl}], page 90, Section 6.1.13 [\texttt{eval deval}], page 40, Section 6.1.14 [\texttt{pari}], page 41.

6.1.16 setmod

desmod([p])

:: Sets the ground field to GF(p).

return integer

n prime less than \(2^{27} \)

- Sets the ground field to GF(p) and returns the value \(p \).

- A member of a finite field does not have any information about the field and the arithmetic operations over GF(p) are applied with \(p \) set at the time.

- As for large finite fields, see Chapter 10 [Finite fields], page 166.

\begin{verbatim}
[0] A=dp_mod(dp_ptod(2*x,[x]),3,[]);
(2)<<1>
[1] A+A;
addmi : invalid modulus
return to toplevel
[1] setmod(3);
3
[2] A+A;
(1)<<1>
\end{verbatim}

References
Section 8.10.13 [\texttt{dp_mod dp_rat}], page 139, Section 3.2 [Types of numbers], page 14.
6.1.17 ntoint32, int32ton

ntoint32(n)

int32ton($int32$)

:: Type-conversion between a non-negative integer and an unsigned 32bit integer.

return unsigned 32bit integer or non-negative integer

n non-negative integer less than 2^{32}

$int32$ unsigned 32bit integer

- These functions do conversions between non-negative integers (the type id 1) and unsigned 32bit integers (the type id 10).
- An unsigned 32bit integer is a fundamental construct of *OpenXM* and one often has to send an integer to a server as an unsigned 32bit integer. These functions are used in such a case.

References

Chapter 7 [Distributed computation], page 100, Section 3.2 [Types of numbers], page 14.

6.2 Bit operations

6.2.1 iand, ior, ixor

iand($i1$, $i2$)

:: bitwise and

ior($i1$, $i2$)

:: bitwise or

ixor($i1$, $i2$)

:: bitwise xor

return integer

$i1$ $i2$ integer

- The absolute value of the argument is regarded as a bit string.
- The sign of the argument is ignored and a non-negative integer is returned.

[0] ctrl(“hex”,1);
0x1
[1] iand(0xaaaaaaaaaaaaa,0x2984723234812312312);
0x4622224802202202
[2] ior(0xa0a0a0a0a0a0a0a0,0xb0c0b0b0b0b0b);
0xabacabababababababab
[3] ixor(0xfffffffffff,0x234234234234);
0x2cbdcbdcbdcb

References

Section 6.2.2 [ishift], page 45.
6.2.2 ishift

ishift(i,count)
:: bit shift
return integer

i count integer

- The absolute value of i is regarded as a bit string.
- The sign of i is ignored and a non-negative integer is returned.
- If count is positive, then i is shifted to the right. If count is negative, then i is shifted to the left.

[0] ctrl("hex",1);
0x1
[1] ishift(0x1000000,12);
0x1000
[2] ishift(0x1000,-12);
0x1000000
[3] ixor(0x1248,ishift(1,-16)-1);

6.3 operations with polynomials and rational expressions

6.3.1 var

var(rat) :: Main variable (indeterminate) of rat.
return indeterminate

rat rational expression

- See Section 3.1 [Types in Asir], page 11 for main variable.
- Indeterminates (variables) are ordered by default as follows.

x, y, z, u, v, w, p, q, r, s, t, a, b, c, d, e, f, g, h, i, j, k, l, m, n, o. The other variables will be ordered after the above noted variables so that the first comer will be ordered prior to the followers.

[0] var(x^2+y^2+a^2);
x
[1] var(a*b*c*d*e);
a
[2] var(3/abc+2*xy/efg);
abc

References
Section 6.2.1 [iand ior ixor], page 44.

Section 6.3.7 [ord], page 48, Section 6.3.2 [vars], page 46.
6.3.2 vars

\texttt{vars(obj)} :: A list of variables (indeterminates) in an expression \texttt{obj}.

\texttt{return list}

\texttt{obj} arbitrary

- Returns a list of variables (indeterminates) contained in a given expression.
- Lists variables according to the variable ordering.

\begin{itemize}
\item
\begin{verbatim}
[0] vars(x^2+y^2+a^2);
[x,y,a]
[1] vars(3/abc+2*xy/efg);
[abc,xy,efg]
[2] vars([x,y,z]);
[x,y,z]
\end{verbatim}
\end{itemize}

References
Section 6.3.1 \texttt{[var]}, page 45, Section 6.3.3 \texttt{[uc]}, page 46, Section 6.3.7 \texttt{[ord]}, page 48.

6.3.3 uc

\texttt{uc()} :: Create a new indeterminate for an undermined coefficient.

\texttt{return indeterminate with its vtype 1.}

- At every evaluation of command \texttt{uc()}, a new indeterminate in the sequence of indeterminates \texttt{_0}, \texttt{_1}, \texttt{_2}, \ldots is created successively.
- Indeterminates created by \texttt{uc()} cannot be input on the keyboard. By this property, you are free, no matter how many indeterminates you will create dynamically by a program, from collision of created names with indeterminates input from the keyboard or from program files.
- Functions, \texttt{rtostr()} and \texttt{strtov()}, are used to create ordinary indeterminates (indeterminates having 0 for their vtype).
- Kernel sub-type of indeterminates created by \texttt{uc()} is 1. (vtype(uc())=1)

\begin{itemize}
\item
\begin{verbatim}
[0] A=uc();
_0
[1] B=uc();
_1
[2] (uc()+uc())^2;
_2^2+2*_3*_2+_3^2
[3] (A+B)^2;
_0^2+2*_1*_0+_1^2
\end{verbatim}
\end{itemize}

References
Section 6.8.3 \texttt{[vtype]}, page 77, Section 6.10.1 \texttt{[rtostr]}, page 78, Section 6.10.2 \texttt{[strtov]}, page 79.
6.3.4 coef

\texttt{coef(\textit{poly}, \textit{deg [, var]})}

:: The coefficient of a polynomial \textit{poly} at degree \textit{deg} with respect to the variable \textit{var} (main variable if unspecified).

\textit{return} \quad \text{polynomial}

\textit{poly} \quad \text{polynomial}

\textit{var} \quad \text{indeterminate}

\textit{deg} \quad \text{non-negative integer}

- The coefficient of a polynomial \textit{poly} at degree \textit{deg} with respect to the variable \textit{var}.
- The default value for \textit{var} is the main variable, i.e., \texttt{var(\textit{poly})}.
- For multi-variate polynomials, access to coefficients depends on the specified indeterminates. For example, taking \textit{coef} for the main variable is much faster than for other variables.

\begin{verbatim}
[0] A = (x+y+z)^3;
x^3+(3*y+3*z)*x^2+(3*y^2+6*z*y+3*z^2)*x+y^3+3*z*y^2+3*z^2*y+z^3
[1] coef(A,1,y);
3*x^2+6*z*x+3*z^2
[2] coef(A,0);
y^3+3*z*y^2+3*z^2*y+z^3
\end{verbatim}

References
Section 6.3.1 \[\texttt{var}\], page 45, Section 6.3.5 \[\texttt{deg mindeg}\], page 47.

6.3.5 deg, mindeg

\texttt{deg(\textit{poly}, \textit{var})}

:: The degree of a polynomial \textit{poly} with respect to variable.

\texttt{mindeg(\textit{poly}, \textit{var})}

:: The least exponent of the terms with non-zero coefficients in a polynomial \textit{poly} with respect to the variable \textit{var}. In this manual, this quantity is sometimes referred to the minimum degree of a polynomial for short.

\textit{return} \quad \text{non-negative integer}

\textit{poly} \quad \text{polynomial}

\textit{var} \quad \text{indeterminate}

- The least exponent of the terms with non-zero coefficients in a polynomial \textit{poly} with respect to the variable \textit{var}. In this manual, this quantity is sometimes referred to the minimum degree of a polynomial for short.
- Variable \textit{var} must be specified.

\begin{verbatim}
[0] deg((x+y+z)^10,x);
10
[1] deg((x+y+z)^10,w);
0
[75] mindeg(x^2+3*x*y,x);
1
\end{verbatim}
6.3.6 nmono

nmono(rat) :: Number of monomials in rational expression rat.

return non-negative integer

rat rational expression

- Number of monomials with non-zero number coefficients in the full expanded form of the given polynomial.
- For a rational expression, the sum of the numbers of monomials of the numerator and denominator.
- A function form is regarded as a single indeterminate no matter how complex arguments it has.

```latex
[0] nmono((x+y)^10);
11
[1] nmono((x+y)^10/(x+z)^10);
22
[2] nmono(sin((x+y)^10));
1
```

References Section 6.8.3 [vtype], page 77.

6.3.7 ord

ord([varlist]) :: It sets the ordering of indeterminates (variables).

return list of indeterminates

varlist list of indeterminates

- When an argument is given, this function rearranges the ordering of variables (indeterminates) so that the indeterminates in the argument varlist precede and the other indeterminates follow in the system’s variable ordering. Regardless of the existence of an argument, it always returns the final variable ordering.
- Note that no change will be made to the variable ordering of internal forms of objects which already exists in the system, no matter what reordering you specify. Therefore, the reordering should be limited to the time just after starting Asir, or to the time when one has decided himself to start a totally new computation which has no relation with the previous results. Note that unexpected results may be obtained from operations between objects which are created under different variable ordering.

```latex
[0] ord();
[x,y,z,u,v,w,p,q,r,s,t,a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,_x,_y,_z,_u,_v,_w,_p,_q,_r,_s,_t,_a,_b,_c,_d,_e,_f,_g,_h,_i,_j,_k,_l,_m,_n,_o,exp(_x),(_x)^(_y),log(_x),(_x)^(_y-1),cos(_x),sin(_x),tan(_x),(-_x^2+1)^(-1/2),cosh(_x),sinh(_x),tanh(_x),(_x^2+1)^(-1/2),(_x^2-1)^(-1/2)]
[1] ord([dx,dy,dz,a,b,c]);
```
Chapter 6: Built-in Function

[dx,dy,dz,a,b,c,x,y,z,u,v,w,p,q,r,s,t,d,e,f,g,h,i,j,k,l,m,n,o,_,x,_,y,_,z,_,u,_,v,_,w,_,p,_,q,_,r,_,s,_,t,_,a,_,b,_,c,_,d,_,e,_,f,_,g,_,h,_,i,_,j,_,k,_,l,_,m,_,n,_,o,_,exp(_x),(_x)**(_y),log(_x),(_x)**(_y-1),cos(_x),sin(_x),tan(_x),(-_x^2+1)**(-1/2),cosh(_x),sinh(_x),tanh(_x),(_x^2+1)**(-1/2),(_x^2-1)**(-1/2)]

6.3.8 sdiv, sdvm, srem, sremm, sqr, sqrm

sdiv(poly1,poly2[,v])
sdvm(poly1,poly2,mod[,v])

:: Quotient of poly1 divided by poly2 provided that the division can be performed within polynomial arithmetic over the rationals.

srem(poly1,poly2[,v])
sremm(poly1,poly2,mod[,v])

:: Remainder of poly1 divided by poly2 provided that the division can be performed within polynomial arithmetic over the rationals.

sqr(poly1,poly2[,v])
sqrm(poly1,poly2,mod[,v])

:: Quotient and remainder of poly1 divided by poly2 provided that the division can be performed within polynomial arithmetic over the rationals.

return sdiv(), sdvm(), srem(), sremm(): polynomial
sqr(), sqrm(): a list [quotient,remainder]

poly1 poly2
polynomial
v indeterminate
mod prime

- Regarding poly1 as an uni-variate polynomial in the main variable of poly2, i.e. var(poly2) (v if specified), sdiv() and srem() compute the polynomial quotient and remainder of poly1 divided by poly2.
- sdvm(), sremm(), sqrm() execute the same operation over GF(mod).
- Division operation of polynomials is performed by the following steps: (1) obtain the quotient of leading coefficients; let it be Q; (2) remove the leading term of poly1 by subtracting, from poly1, the product of Q with some powers of main variable and poly2; obtain a new poly1; (3) repeat the above step until the degree of poly1 become smaller than that of poly2. For fulfillment, by operating in polynomials, of this procedure, the divisions at step (1) in every repetition must be an exact division of polynomials. This is the true meaning of what we say “division can be performed within polynomial arithmetic over the rationals.”
- There are typical cases where the division is possible: leading coefficient of poly2 is a rational number; poly2 is a factor of poly1.
- Use sqr() to get both the quotient and remainder at once.
- Use idiv(), irem() for integer quotient.
- For remainder operation on all integer coefficients, use %.
Chapter 6: Built-in Function

[0] sdiv((x+y+z)^3,x^2+y+a);
 x+3*y+3*z
[1] srem((x+y+z)^2,x^2+y+a);
 2*y+2*z)*x+y^2+(2*z-1)*y+z^2-a
[2] X=(x+y+z)*(x-y-z)^2;
 x^3+(-y-z)*x^2+(-y^2-2*z*y-2*z^2)*x+y^3+3*z*y^2+3*z^2*y+z^3
[3] Y=(x+y+z)^2*(x-y-z);
 x^3+(-y-z)*x^2+(-y^2-2*z*y-2*z^2)*x+y^3-3*z*y^2-3*z^2*y-z^3
[4] G=gcd(X,Y);
 x^2-y^2-2*z*y-z^2
[5] sqr(X,G);
 [x-y-z,0]
[6] sqr(Y,G);
 [x+y+z,0]
[7] sdiv(y*x^3+x+1,y*x+1);
 divsp: cannot happen
 return to toplevel

References
Section 6.1.1 [idiv irem], page 35, Section 6.3.10 [%], page 51.

6.3.9 tdiv

tdiv(poly1,poly2)
:: Tests whether poly2 divides poly1.

return Quotient if poly2 divides poly1, 0 otherwise.

poly1 poly2
 polynomial

 • Tests whether poly2 divides poly1 in polynomial ring.

 • One application of this function: Consider the case where a polynomial is certainly an irreducible factor of the other polynomial, but the multiplicity of the factor is unknown. Application of tdiv() to the polynomials repeatedly yields the multiplicity.

[11] Y=(x+y+z)^5*(x-y-z)^3;
 x^8+(2*y+2*z)*x^7+(-2*y^2-4*z*y-2*z^2)*x^6
 +(-6*y^3-18*z*y^2-26*z^2*y-2*z^3)*x^5
 +(6*y^4+30*z*y^3+60*z^2*y^2+70*z^3*y+21*z^4*y+6*z^5)*x^4
 +(2*y^5+12*z*y^4+30*z^2*y^3+40*z^3*y^2+30*z^4*y+12*z^5*y+6*z^6)*x^3
 +(-2*y^6+12*z*y^5+30*z^2*y^4+40*z^3*y^3+30*z^4*y^2+12*z^5*y+6*z^6)*x^2
 +(144*y^7-144*z*y^6+42*z^2*y^5-70*z^3*y^4+70*z^4*y^3-42*z^5*y^2
 -144*z^6*y^2-z^7)*x-y^7-8*z*y^6-28*z^2*y^5-56*z^3*y^4-70*z^4*y^3
 -56*z^5*y^2-28*z^6*y^1-8*z^7*y-z^8
[12] for(I=0,F=x+y+z,T=Y; T=tdiv(T,F); I++);
[13] I;
 5

References
Section 6.3.8 [sdiv sddivm srem sremm sqr sqrm], page 49.
6.3.10 \(\%\)

\(poly \% m\) :: integer remainder to all integer coefficients of the polynomial.

return integer or polynomial

\(poly\) integer or polynomial with integer coefficients

\(m\) integer

- Returns a polynomial whose coefficients are remainders of the coefficients of the input polynomial divided by \(m\).
- The resulting coefficients are all normalized to non-negative integers.
- An integer is allowed for \(poly\). This can be used for an alternative for \(irem()\) except that the result is normalized to a non-negative integer.
- Coefficients of \(poly\) and \(m\) must all be integers, though the type checking is not done.

```
[0] (x+2)^5 % 3;
x^5+x^4+x^3+2*x^2+2*x+2
[1] (x-2)^5 % 3;
x^5+2*x^4+x^3+x^2+2*x+1
[2] (-5) % 4;
3
[3] irem(-5,4);
-1
```

References

Section 6.1.1 \([idiv irem]\), page 35.

6.3.11 subst, psubst

subst(rat[, varn, ratn]*)

psubst(rat[, var, rat]*)

:: Substitute ratn for varn in expression rat. \((n=1,2,\ldots)\) Substitution will be done successively from left to right if arguments are repeated.

return rational expression

\(rat\) ratn rational expression

\(var\) indeterminate

- Substitutes rational expressions for specified kernels in a rational expression.
- \(subst(r,v1,r1,v2,r2,\ldots)\) has the same effect as \(subst(subst(r,v1,r1),v2,r2,\ldots)\).
- Note that repeated substitution is done from left to right successively. You may get different result by changing the specification order.
- Ordinary \(subst()\) performs substitution at all levels of a scalar algebraic expression creeping into arguments of function forms recursively. Function \(psubst()\) regards such a function form as an independent indeterminate, and does not attempt to apply substitution to its arguments. (The name comes after Partial SUBSTITution.)
• Since Asir does not reduce common divisors of a rational expression automatically, substitution of a rational expression to an expression may cause unexpected increase of computation time. Thus, it is often necessary to write a special function to meet the individual problem so that the denominator and the numerator do not become too large.

• The same applies to substitution by rational numbers.

\[
\text{subst}(x^3-3*y*x^2+3*y^2*x-y^3,y,2); \\
x^3-6*x^2+12*x-8 \\
\text{subst}(00,x,-1); \\
-27 \\
\text{subst}(x^3-3*y*x^2+3*y^2*x-y^3,y,2,x,-1); \\
-27 \\
\text{subst}(x*y^3,x,y,y,x); \\
x^4 \\
\text{subst}(x*y^3,y,x,x,y); \\
y^4 \\
\text{subst}(x*y^3,x,t,y,x,t,y); \\
y*x^3 \\
\text{subst}(x*sin(x),x,t); \\
sin(t)*t \\
\text{psubst}(x*sin(x),x,t); \\
sin(x)*t
\]

6.3.12 diff

diff(rat[,varn] *)

\text{diff(rat, varlist)}

:: Differentiate \text{rat} successively by \text{var}'s for the first form, or by variables in \text{varlist} for the second form.

\text{return} \quad \text{expression}

\text{rat} \quad \text{rational expression which contains elementary functions.}

\text{varn} \quad \text{indeterminate}

\text{varlist} \quad \text{list of indeterminates}

• Differentiate \text{rat} successively by \text{var}'s for the first form, or by variables in \text{varlist} for the second form.

• differentiation is performed by the specified indeterminates (variables) from left to right. \text{diff(rat.x,y)} is the same as \text{diff(diff(rat.x),y)}.

\[
\text{[0]} \quad \text{diff}((x+2*y)^2,x); \\
2*x+4*y \\
\text{[1]} \quad \text{diff}((x+2*y)^2,x,y); \\
4 \\
\text{[2]} \quad \text{diff}(x/sin(log(x)+1),x); \\
(sin(log(x)+1)-cos(log(x)+1))/(sin(log(x)+1)^2) \\
\text{[3]} \quad \text{diff}(sin(x),[x,x,x,x]); \\
sin(x)
\]
6.3.13 ediff

ediff(poly[, varn]*)
ediff(poly, varlist)
:: Differentiate poly successively by Euler operators of var’s for the first form,
or by Euler operators of variables in varlist for the second form.

return polynomial
poly polynomial
varn indeterminate
varlist list of indeterminates

- Differentiation is performed by the specified indeterminates (variables) from left to right. ediff(poly,x,y) is the same as ediff(ediff(poly,x),y).

[0] ediff((x+2*y)^2,x);
 2*x^2+4*y*x
[1] ediff((x+2*y)^2,x,y);
 4*y*x

6.3.14 res

res(var,poly1,poly2[, mod])
:: Resultant of poly1 and poly2 with respect to var.

return polynomial
var indeterminate
poly1 poly2 polynomial
mod prime

- Resultant of two polynomials poly1 and poly2 with respect to var.
- The sub-resultant algorithm is used to compute the resultant.
- The computation is done over GF(mod) if mod is specified.

[0] res(t,(t^3+1)*x+1,(t^3+1)*y+t);
 -x^3-x^2-y^3

6.3.15 fctr, sqfr

fctr(poly)
:: Factorize polynomial poly over the rationals.

sqfr(poly)
:: Gets a square-free factorization of polynomial poly.

return list
poly polynomial with rational coefficients
• Factorizes polynomial \(poly \) over the rationals. \texttt{fctr()} for irreducible factorization; \texttt{sqfr()} for square-free factorization.

• The result is represented by a list, whose elements are a pair represented as
\[[\text{num},1],[\text{factor},\text{multiplicity}],...].\]

• Products of all \texttt{factor^multiplicity} and \texttt{num} is equal to \(poly \).

• The number \texttt{num} is determined so that \((poly/num)\) is an integral polynomial and its content (GCD of all coefficients) is 1. (See Section 6.3.18 \texttt{[ptozp]}, page 56.)

\[\begin{align*}
0 & \texttt{fctr(x^10-1);} \\
1 & \texttt{[[1,1],[x-1,1],[x+1,1],[x^4+x^3+x^2+x+1,1],[x^4-x^3-x^2-x+1,1]]} \\
1 & \texttt{fctr(x^3+y^3+(z/3)^3-x*y*z);} \\
1 & \texttt{[[1/27,1],[9*x^2+(-9*y-3*z)*x+9*y^2-3*z*y+z^2,1],[3*x^3*y+z,1]]} \\
2 & \texttt{A=(a+b+c+d)^2;} \\
2 & \texttt{a^2+(2*b+2*c+2*d)*a+b^2+(2*c+2*d)*b+c^2+2*d*c+d^2} \\
3 & \texttt{fctr(A);} \\
3 & \texttt{[[1,1],[a+b+c+d,2]]} \\
4 & \texttt{A=(x+1)*(x^2-y^2)^2;} \\
4 & \texttt{x^5+x^4-2*y^2*x^3-2*y^2*x^2+y^4*x+y^4} \\
5 & \texttt{sqfr(A);} \\
5 & \texttt{[[1,1],[x+1,1],[-x^2+y^2,2]]} \\
6 & \texttt{fctr(A);} \\
6 & \texttt{[[1,1],[x+1,1],[-x-y,2],[x-y,2]]}
\end{align*}\]

References
Section 6.3.16 \texttt{[ufctrhint]}, page 54.

\textbf{6.3.16 ufctrhint}

\texttt{ufctrhint(poly,hint)}

\texttt{:: Factorizes uni-variate polynomial poly over the rational number field when the degrees of its factors are known to be some integer multiples of hint.}

\texttt{return list}

\texttt{poly} \quad \text{uni-variate polynomial with rational coefficients}

\texttt{hint} \quad \text{non-negative integer}

• By any reason, if the degree of all the irreducible factors of \(poly \) is known to be some multiples of \(hint \), factors can be computed more efficiently by the knowledge than \texttt{fctr()}.

• When \(hint \) is 1, \texttt{ufctrhint()} is the same as \texttt{fctr()} for uni-variate polynomials. An typical application where \texttt{ufctrhint()} is effective: Consider the case where \(poly \) is a norm (Chapter 9 \texttt{[Algebraic numbers]}, page 153) of a certain polynomial over an extension field with its extension degree \(d \), and it is square free; Then, every irreducible factor has a degree that is a multiple of \(d \).

\[\begin{align*}
10 & \texttt{A=t^9-15*t^6-87*t^3-125;} \\
10 & \texttt{t^9-15*t^6-87*t^3-125} \\
10 & \texttt{0msec} \\
11 & \texttt{N=res(t,subst(A,t,x-2*t),A)}; \\
\end{align*}\]
-x^81+1215*x^78-567405*x^75+139519665*x^72-19360343142*x^69
+1720634125410*x^66-88249977024390*x^63+4856095669551930*x^60
+1999385245240571421*x^57-15579689952590251515*x^54
+159567967531741971462865*x^51
...
+14039568872035397355526123612661444550569875*x^6
+10122324287343155430042768923500799484375*x^3
+139262743444407310133459021182733314453125
980msec + gc : 250msec
[12] sqfr(N);
[[[-1,1],[x^81-1215*x^78+567405*x^75-139519665*x^72+19360343142*x^69
-1720634125410*x^66+88249977024390*x^63+4856095669551930*x^60
-1999385245240571421*x^57+15579689952590251515*x^54
...]

-10122324287343155430042768923500799484375*x^3
-139262743444407310133459021182733314453125,1]]
20msec
[13] fctr(N);
[[[-1,1],[x^9-405*x^6-63423*x^3-2460375,1],
[x^18-486*x^15+98739*x^12-9316620*x^9+4945468531*x^6-12368049246*x^3
+296607516309,1],
[x^18-324*x^15+44469*x^12-1180980*x^9+427455711*x^6+2793253896*x^3
+31524548679,1],
[x^18-10773*x^12+2784051*x^6+307546875,1]]
167.050sec + gc : 1.890sec
[14] ufctrhint(N,9);
[[[-1,1],[x^9-405*x^6-63423*x^3-2460375,1],
[x^18-486*x^15+98739*x^12-9316620*x^9+4945468531*x^6-12368049246*x^3
+296607516309,1],
[x^18-324*x^15+44469*x^12-1180980*x^9+427455711*x^6+2793253896*x^3
+31524548679,1],
[x^18-10773*x^12+2784051*x^6+307546875,1]]
119.340sec + gc : 1.300sec

References
Section 6.3.15 [fctr sqfr], page 53.

6.3.17 modfctr

modfctr(poly, mod)
:: Factorizer over small finite fields
return list
poly Polynomial with integer coefficients
mod non-negative integer

- This function factorizes a polynomial poly over the finite prime field of characteristic mod, where mod must be smaller than 2^29.
- The result is represented by a list, whose elements are a pair represented as [[num,1],[factor, multiplicity],[...]].
• Products of all factor\textsuperscript{multiplicity} and num is equal to poly.
• To factorize polynomials over large finite fields, use fctr_ff (see Chapter 10 [Finite fields], page 166, Section 10.5.16 [fctr_ff], page 176).

\[0\] modfctr(x^10+x^2+1,2147483647);
\[[1,1],[x+1513477736,1],[x+2055628767,1],[x+91854880,1],[x+634005911,1],[x+1513477735,1],[x+634005912,1],[x^4+1759639395*x^2+2045307031,1]]

\[1\] modfctr(2*x^6+(y^2+z*y)*x^4+2*z*y^3*x^2+(2*z^2*y^2+z^3*y)*x+z^4,3);
\[[2,1],[2*x^3+z*y*x+z^2,1],[2*x^3+y^2*x+2*z^2,1]]

References
Section 6.3.15 [fctr sqfr], page 53.

6.3.18 ptozp

ptozp(poly)
:: Converts a polynomial poly with rational coefficients into an integral polynomial such that GCD of all its coefficients is 1.

return polynomial
poly polynomial
• Converts the given polynomial by multiplying some rational number into an integral polynomial such that GCD of all its coefficients is 1.
• In general, operations on polynomials can be performed faster for integer coefficients than for rational number coefficients. Therefore, this function is conveniently used to improve efficiency.
• Function red does not convert rational coefficients of the numerator. You cannot obtain an integral polynomial by direct use of the function nm(). The function nm() returns the numerator of its argument, and a polynomial with rational coefficients is the numerator of itself and will be returned as it is.
• When the option factor is set, the return value is a list [g,c]. Here, c is a rational number, g is an integral polynomial and poly = c\ast g holds.

\[0\] ptozp(2*x+5/3);
6*x+5
\[1\] nm(2*x+5/3);
2*x+5/3

References
Section 6.1.11 [nm dn], page 39.

6.3.19 prim, cont

prim(poly[,v])
:: Primitive part of poly.
cont(poly[,v])
:: Content of poly.
return poly
 polynomial over the rationals
v
 indeterminate

- The primitive part and the content of a polynomial poly with respect to its main
 variable (v if specified).

[0] E=(y-z)*(x+y)*(x-z)*(2*x-y);
(2*y-2*z)*x^3+(y^2-3*z*y+2*z^2)*x^2+(-y^3+z^2*y)*x+z*y^3-z^2*y^2
[1] prim(E);
2*x^3+(y-2*z)*x^2+(-y^2-z*y)*x+z*y^2
[2] cont(E);
y-z
[3] prim(E,z);
(y-z)*x-z*y+z^2

References
Section 6.3.1 [var], page 45, Section 6.3.7 [ord], page 48.

6.3.20 gcd, gcdz

gcd(poly1,poly2[,mod])
gcdz(poly1,poly2)
 :: The polynomial greatest common divisor of poly1 and poly2.

poly1 poly2
 polynomial
mod
 prime

- Functions gcd() and gcdz() return the greatest common divisor (GCD) of the given
two polynomials.
- Function gcd() returns an integral polynomial GCD over the rational number field.
The coefficients are normalized such that their GCD is 1. It returns 1 in case that the
given polynomials are mutually prime.
- Function gcdz() works for arguments of integral polynomials, and returns a polynomial
GCD over the integer ring, that is, it returns gcd() multiplied by the contents of all
coefficients of the two input polynomials.
- gcd() computes the GCD over GF(mod) if mod is specified.
- Polynomial GCD is computed by an improved algorithm based on Extended Zassenhaus
algorithm.
- GCD over a finite field is computed by PRS algorithm and it may not be efficient for
large inputs and co-prime inputs.

[0] gcd(12*(x^2+2*x+1)^2,18*(x^2+(y+1)*x+y)^3);
x^3+3*x^2+3*x+1
[1] gcdz(12*(x^2+2*x+1)^2,18*(x^2+(y+1)*x+y)^3);
6*x^3+18*x^2+18*x+6
[2] gcd((x+y)*(x-y)^2,(x+y)^2*(x-y));
\[x^2 - y^2 \]

\[\gcd((x+y)*(x-y)^2,(x+y)^2*(x-y),2); \]
\[x^3+y^2+x^2y+xy^3 \]

References

Section 6.1.3 [igcd igcdnt1], page 36.

6.3.21 red

red(rat) :: Reduced form of rat by canceling common divisors.

return rational expression

rat rational expression

- **Asir** automatically performs cancellation of common divisors of rational numbers. But, without an explicit command, it does not cancel common polynomial divisors of rational expressions. (Reduction of rational expressions to a common denominator will be always done.) Use command `red()` to perform this cancellation.

- Cancel the common divisors of the numerator and the denominator of a rational expression `rat` by computing their GCD.

- The denominator polynomial of the result is an integral polynomial which has no common divisors in its coefficients, while the numerator may have rational coefficients.

- Since GCD computation is a very hard operation, it is desirable to detect and remove by any means common divisors as far as possible. Furthermore, a call to this function after swelling of the denominator and the numerator shall usually take a very long time. Therefore, often, to some extent, reduction of common divisors is inevitable for operations of rational expressions.

\[0 \] \((x^3-1)/(x-1); \)
\((x^3-1)/(x-1) \)
\[1 \] \(\text{red}((x^3-1)/(x-1)); \)
\(x^2+x+1 \)

\[2 \] \(\text{red}((x^3+y^3+z^3-3*x*y*z)/(x+y+z)); \)
\(x^2+(-y-z)*x+y^2-z*y+z^2 \)

\[3 \] \(\text{red}((3*x*y)/(12*x^2+21*y^3*x)); \)
\((y)/(4*x+7*y^3) \)

\[4 \] \(\text{red}((3/4*x^2+5/6*x)/(2*y*x+4/3*x)); \)
\((9/8*x+5/4)/(3*y+2) \)

References

Section 6.1.11 [nm dn], page 39, Section 6.3.20 [gcd gcdz], page 57, Section 6.3.18 [ptozp], page 56.

6.4 Univariate polynomials

6.4.1 umul, umul_ff, usquare, usquare_ff, utmul, utmul_ff

`umul(p1,p2)`

`umul_ff(p1,p2)` :: Fast multiplication of univariate polynomials
usquare(p_1)
usquare_ff(p_1)
:: Fast squaring of a univariate polynomial

utmul(p_1, p_2, d)
utmul_ff(p_1, p_2, d)
:: Fast multiplication of univariate polynomials with truncation

\text{return} \quad \text{univariate polynomial}
p_1 p_2 \quad \text{univariate polynomial}
d \quad \text{non-negative integer}

- These functions compute products of univariate polynomials by selecting an appropriate algorithm depending on the degrees of inputs.
- \text{umul()}, \text{usquare()}, \text{utmul()} compute products over the integers. Coefficients in GF(p) are regarded as non-negative integers less than p.
- \text{umul_ff()}, \text{usquare_ff()}, \text{utmul_ff()} compute products over a finite field. However, if some of the coefficients of the inputs are integral, the result may be an integral polynomial. So if one wants to assure that the result is a polynomial over the finite field, apply \text{simp_ff()} to the inputs.
- \text{umul_ff()}, \text{usquare_ff()}, \text{utmul_ff()} cannot take polynomials over GF(2^n) as their inputs.
- \text{umul()}, \text{umul_ff()} produce p_1*p_2. \text{usquare()}, \text{usquare_ff()} produce p_1^2. \text{utmul()}, \text{utmul_ff()} produce $p_1*p_2 \mod v^{(d+1)}$, where v is the variable of p_1, p_2.
- If the degrees of the inputs are less than or equal to the value returned by \text{set_upkara()} (\text{set_uptkara()} for \text{utmul}, \text{utmul_ff}), usual pencil and paper method is used. If the degrees of the inputs are less than or equal to the value returned by \text{set_upfft()}, Karatsuba algorithm is used. If the degrees of the inputs exceed it, a combination of FFT and Chinese remainder theorem is used. First of all sufficiently many primes m_i within 1 machine word are prepared. Then $p_1*p_2 \mod m_i$ is computed by FFT for each m_i. Finally they are combined by Chinese remainder theorem. The functions over finite fields use an improvement by V. Shoup [Shoup].

\text{[176]} \text{load("fff")}$\$
\text{[177]} \text{cputime(1)}$
0\text{sec}(1.407e-05\text{sec})
\text{[178]} \text{setmod_ff(2^160-47);}
1461501637330902918203684832716283019655932542929
0\text{sec}(0.00028\text{sec})
\text{[179]} \text{A=randpoly_ff(100,x)$}
0\text{sec}(0.001422\text{sec})
\text{[180]} \text{B=randpoly_ff(100,x)$}
0\text{sec}(0.00107\text{sec})
\text{[181]} \text{for(I=0;I<100;I++)A*B;}
7.77\text{sec} + \text{gc : 8.38sec(16.15sec)}
\text{[182]} \text{for(I=0;I<100;I++)umul(A,B);}
2.24\text{sec} + \text{gc : 1.52sec(3.767sec)}
\text{[183]} \text{for(I=0;I<100;I++)utmul_ff(A,B);}
Chapter 6: Built-in Function

1.42sec + gc : 0.24sec(1.653sec)
[184] for(I=0;I<100;I++) usquare_ff(A);
1.08sec + gc : 0.21sec(1.297sec)
[185] for(I=0;I<100;I++) utmul_ff(A,B,100);
1.2sec + gc : 0.17sec(1.366sec)
[186] deg(utmul_ff(A,B,100),x);
100

References
Section 6.4.3 [set_upkara set_uptkara set_upfft], page 60, Section 6.4.2
[kmul ksquare ktmul], page 60.

6.4.2 kmul, ksquare, ktmul

kmul(p1,p2)
:: Fast multiplication of univariate polynomials

ksquare(p1)
:: Fast squaring of a univariate polynomial

ktmul(p1,p2,d)
:: Fast multiplication of univariate polynomials with truncation

return univariate polynomial
p1 p2 univariate polynomial
d non-negative integer

These functions compute products of univariate polynomials by Karatsuba algorithm.

• These functions do not apply FFT for large degree inputs.
• These functions can compute products over GF(2^n).

[0] load("code/fff");
1
[34] setmod_ff(defpoly_mod2(160));
x^160+x^5+x^3+x^2+1
[35] A=randpoly_ff(100,x)$
[36] B=randpoly_ff(100,x)$
[37] umul(A,B)$
umul : invalid argument
return to toplevel
[37] kmul(A,B)$

6.4.3 set_upkara, set_uptkara, set_upfft

set_upkara([threshold])
set_uptkara([threshold])
set_upfft([threshold])
:: Set thresholds in the selection of an algorithm from \(N^2, \) Karatsuba, FFT
algorithms for univariate polynomial multiplication.

return value currently set
threshold non-negative integer

- These functions set thresholds in the selection of an algorithm from \(N^2 \), Karatsuba, FFT algorithms for univariate polynomial multiplication.
- Products of univariate polynomials are computed by \(N^2 \), Karatsuba, FFT algorithms. The algorithm selection is done according to the degrees of input polynomials and the thresholds.
- See the description of each function for details.

References
Section 6.4.2 \([\text{kmul \ ksquare \ ktmul}]\), page 60, Section 6.4.1 \([\text{umul \ umul_ff \ usquare \ usquare_ff \ utmul \ utmul_ff}]\), page 58.

6.4.4 utrunc, udecomp, ureverse

utrunc\((p,d)\)
udecomp\((p,d)\)
ureverse\((p)\)

:: Operations on polynomials

return univariate polynomial or list of univariate polynomials

\(p \) univariate polynomial
\(d \) non-negative integer

- Let \(x \) be the variable of \(p \). Then \(p \) can be decomposed as \(p = p1 \cdot x^{(d+1)} + p2 \), where the degree of \(p1 \) is less than or equal to \(d \). Under the decomposition, utrunc() returns \(p1 \) and udecomp() returns \([p1,p2] \).
- Let \(e \) be the degree of \(p \) and \(p[i] \) the coefficient of \(p \) at degree \(i \). Then ureverse() returns \(p[e] \cdot p[e-1] \cdot x \cdot ... \)

\[\begin{align*}
132 & \text{ utrunc}((x+1)^{10},5) ; \\
252 \cdot x^5 + 210 \cdot x^4 + 120 \cdot x^3 + 45 \cdot x^2 + 10 \cdot x + 1 \\
& \text{udecomp}((x+1)^{10},5) ; \\
& [252 \cdot x^5 + 210 \cdot x^4 + 120 \cdot x^3 + 45 \cdot x^2 + 10 \cdot x + 1, x^4 + 10 \cdot x^3 + 45 \cdot x^2 + 120 \cdot x + 210] \\
& \text{ureverse}(3 \cdot x^3 + x^2 + 2 \cdot x) ; \\
& 2 \cdot x^2 + x + 3
\end{align*} \]

References
Section 6.4.6 \([\text{udiv \ urem \ urembymul \ urembymul_precomp \ ugcd}]\), page 62.

6.4.5 uinv_as_power_series, ureverse_inv_as_power_series

uinv_as_power_series\((p,d)\)
ureverse_inv_as_power_series\((p,d)\)

:: Computes the truncated inverse as a power series.

return univariate polynomial

\(p \) univariate polynomial
\(d \) non-negative integer
• For a polynomial \(p \) with a non-zero constant term, \(\text{uinv_as_power_series}(p, d) \) computes a polynomial \(r \) whose degree is at most \(d \) such that \(p*r = 1 \mod x^{(d+1)} \), where \(x \) is the variable of \(p \).

• Let \(e \) be the degree of \(p \). \(\text{ureverse_inv_as_power_series}(p, d) \) computes \(\text{uinv_as_power_series}(p1, d) \) for \(p1=\text{ureverse}(p, e) \).

• The output of \(\text{ureverse_inv_as_power_series()} \) can be used as the input of \(\text{urembymul_precomp()} \).

\[
\begin{align*}
[123] \quad & \text{A}=(x+1)^5; \\
& x^5+5x^4+10x^3+10x^2+5x+1 \\
[124] \quad & \text{uinv_as_power_series}(A, 5); \\
& -126x^5+70x^4-35x^3+15x^2-5x+1 \\
[126] \quad & \text{A}\cdot R; \\
& -126x^{10}-560x^9+945x^8-720x^7-210x^6+1 \\
[127] \quad & \text{A}=x^{10}+x^9; \\
& x^{10}+x^9 \\
[128] \quad & \text{R}=\text{ureverse_inv_as_power_series}(A, 5); \\
& -x^5+5x^4+3x^3+2-x+1 \\
[129] \quad & \text{ureverse}(A)\cdot R; \\
& -x^6+1
\end{align*}
\]

References

Section 6.4.4 [utrunc udecomp ureverse], page 61, Section 6.4.6 [udiv urem urembymul urembymul_precomp ugcd], page 62.

6.4.6 udiv, urem, urembymul, urembymul_precomp, ugcd

\(\text{udiv}(p1,p2) \)

\(\text{urem}(p1,p2) \)

\(\text{urembymul}(p1,p2) \)

\(\text{urembymul_precomp}(p1,p2,inv) \)

\(\text{ugcd}(p1,p2) \)

:: Division and GCD for univariate polynomials.

\(\text{return univariate polynomial} \)

\(p1 \ p2 \ inv \ \text{univariate polynomial} \)

• For univariate polynomials \(p1 \) and \(p2 \), there exist polynomials \(q \) and \(r \) such that \(p1=q*p2+r \) and the degree of \(r \) is less than that of \(p2 \). Then \(udiv \) returns \(q \), \(urem \) and \(urembymul \) return \(r \). \(ugcd \) returns the polynomial GCD of \(p1 \) and \(p2 \). These functions are specially tuned up for dense univariate polynomials. In \(urembymul \) the division by \(p2 \) is replaced with the inverse computation of \(p2 \) as a power series and two polynomial multiplications. It speeds up the computation when the degrees of inputs are large.

• \(\text{urembymul_precomp} \) is efficient when one repeats divisions by a fixed polynomial. One has to compute the third argument by \(\text{ureverse_inv_as_power_series()} \).

\[
\begin{align*}
[177] \quad & \text{setmod_ff}(2^{160}-47); \\
& 1461501637330902918203684832716283019655932542929
\end{align*}
\]
Chapter 6: Built-in Function

[178] A=randpoly_ff(200,x)$
[179] B=randpoly_ff(101,x)$
[180] cputime(1)$
0sec(1.597e-05sec)
[181] srem(A,B)$
0.15sec + gc : 0.15sec(0.3035sec)
[182] urem(A,B)$
0.11sec + gc : 0.12sec(0.2347sec)
[183] urembymul(A,B)$
0.08sec + gc : 0.09sec(0.1651sec)
[184] R=ureverse_inv_as_power_series(B,101)$
0.04sec + gc : 0.03sec(0.063sec)
[185] urembymul_precomp(A,B,R)$
0.03sec(0.02501sec)

References
Section 6.4.5 [uinv_as_power_series ureverse_inv_as_power_series], page 61.

6.5 Lists

6.5.1 car, cdr, cons, append, reverse, length

car(list) :: The first element of the given non-null list list.
cdr(list) :: A list obtained by removing the first element of the given non-null list list.
cons(obj,list) :: A list obtained by adding an element obj to the top of the given list list.
append(list1,list2) :: A list obtained by adding all elements in the list list2 according to the order as it is to the last element in the list list1.
reverse(list) :: reversed list of list.
length(list|vect) :: Number of elements in a list list and a vector vect.

return car() : arbitrary, cdr(), cons(), append(), reverse() : list, length() : non-negative integer

list list1 list2

obj arbitrary

• A list is written in Asir as [obj1,obj2,...]. Here, obj1 is the first element.
• Function car() outputs the first element of a non-null list. For a null list, the result should be undefined. In the current implementation, however, it outputs a null list. This treatment for a null list may subject to change in future, and users are suggested not to use the tentative treatment for a null list for serious programming.
• Function \texttt{cdr()} outputs a list obtained by removing the first element from the input non-null list. For a null list, the result should be undefined. In the current implementation, however, it outputs a null list. This treatment for a null list may subject to change in future, and users are suggested not to use the tentative treatment for a null list for serious programming.

• Function \texttt{cons()} composes a new list from the input list \textit{list} and an arbitrary object \textit{obj} by adding \textit{obj} to the top of \textit{list}.

• Function \texttt{append()} composes a new list, which has all elements of \textit{list1} in the same ordering followed by all elements of \textit{list2} in the same ordering.

• Function \texttt{reverse()} returns a reversed list of \textit{list}.

• Function \texttt{length()} returns a non-negative integer which is the number of elements in the input list \textit{list} and the input vector \textit{vect}. Note that function \texttt{size} should be used for counting elements of \textit{matrix}.

• Lists are read-only objects in \texttt{Asir}. There elements cannot be modified.

• The \textit{n}-th element in a list can be referred to by applying the function \texttt{cdr()} \textit{n} times repeatedly and \texttt{cdr()} at last. A more convenient way to access to the \textit{n}-th element is the use of bracket notation, that is, to attach an index [\textit{n}] like vectors and matrices. The system, however, follow the \textit{n} pointers to access the desired element. Subsequently, much time is spent for an element located far from the top of the list.

• Function \texttt{cdr()} does not create a new cell (a memory quantity). Function \texttt{append()}, as a matter of fact, repeats \texttt{cons()} for as many as the length of \textit{list1} the first argument. Subsequently, \texttt{append()} consumes much memory space if its first argument is long. Similar argument applies to function \texttt{reverse()}.

\begin{verbatim}
[0] L = [[1,2,3],4,[5,6]]
[[1,2,3],4,[5,6]]
[1] car(L);
[1,2,3]
[2] cdr(L);
[4,[5,6]]
[3] cons(x*y,L);
[y*x,[1,2,3],4,[5,6]]
[4] append([a,b,c],[d]);
[a,b,c,d]
[5] reverse([a,b,c,d]);
[d,c,b,a]
[6] length(L);
3
[7] length(ltov(L));
3
[8] L[2][0];
5
\end{verbatim}

6.6 Arrays

6.6.1 newvect, vector, vect
newvect(len[,list])
vector(len[,list])
:: Creates a new vector object with its length len.

vect([elements])
:: Creates a new vector object by elements.
return vector
len non-negative integer
list list

Elements: elements of the vector
- vect creates a new vector object by its elements.
- vector is an alias of newvect.
- newvect creates a new vector object with its length len and its elements all cleared
to value 0. If the second argument, a list, is given, the vector is initialized by the list
elements. Elements are used from the first through the last. If the list is short for
initializing the full vector, 0’s are filled in the remaining vector elements.
- Elements are indexed from 0 through len-1. Note that the first element has not index
1.
- List and vector are different types in Asir. Lists are conveniently used for representing
many data objects whose size varies dynamically as computation proceeds. By its
flexible expressive power, it is also conveniently used to describe initial values for other
structured objects as you see for vectors. Access for an element of a list is performed
by following pointers to next elements. By this, access costs for list elements differ
for each element. In contrast to lists, vector elements can be accessed in a same time,
because they are accessed by computing displacements from the top memory location
of the vector object.

No distinction of column vectors and row vectors in Asir. If a matrix is applied to a
vector from left, the vector shall be taken as a column vector, and if from right it shall
be taken as a row vector.

The length (or size or dimension) of a vector is given by function size().

When a vector is passed to a function as its argument (actual parameter), the vector
element can be modified in that function.

A vector is displayed in a similar format as for a list. Note, however, there is a distinc-
tion: Elements of a vector are separated simply by a ‘blank space’, while those of a list
by a ‘comma.’

[0] A=newvect(5);
[0 0 0 0 0]
[1] A=newvect(5,[1,2,3,4,[5,6]]);
 [1 2 3 4 [5,6]]
[2] A[0];
 1
 [5,6]
[4] size(A);
[5]
[5] length(A);
 5
[6] vect(1,2,3,4,[5,6]);
 [1 2 3 4 [5,6]]
[7] def afo(V) { V[0] = x; }
[8] afo(A)$
[9] A;
 [x 2 3 4 [5,6]]

References
 Section 6.6.5 [newmat matrix], page 67, Section 6.6.7 [size], page 69, Section 6.6.2 [ltov], page 66, Section 6.6.3 [vtol], page 66.

6.6.2 ltov

ltov(list) :: Converts a list into a vector.

return vector

list list
 • Converts a list list into a vector of same length. See also newvect().

[3] A=[1,2,3];
[4] ltov(A);
[1 2 3]

References
 Section 6.6.1 [newvect vector vect], page 64, Section 6.6.3 [vtol], page 66.

6.6.3 vtol

vtol(vector)
 :: Converts a vector into a list.

return list

vector vector
 • Converts a vector vect of length n into a list [vect[0],...,vect[n-1]].
 • A conversion from a list to a vector is done by newvect().

[3] A=newvect(3,[1,2,3]);
[1 2 3]
[4] vtol(A);
[1,2,3]
6.6.4 newbytearray

newbytearray(len, [listorstring])
:: Creates a new byte array.

return byte array

len non-negative integer

listorstring

list or string

- This function generates a byte array. The specification is similar to that of newvect.
- The initial value can be specified by a character string.
- One can access elements of a byte array just as an array.

```
[182] A=newbytearray(3);
|00 00 00|

[183] A=newbytearray(3,[1,2,3]);
|01 02 03|

[184] A=newbytearray(3,"abc");
|61 62 63|

[185] A[0];
97

123

[187] A;
|61 7b 63|
```

References
Section 6.6.1 [newvect vector vect], page 64, Section 6.6.2 [ltov], page 66.

6.6.5 newmat, matrix

newmat(row, col [[[[a, b, . . .], [c, d, . . .]], . . .]])

matrix(row, col [[[[a, b, . . .], [c, d, . . .]], . . .]])
:: Creates a new matrix with row rows and col columns.

return matrix

row col non-negative integer

a b c d arbitrary

- matrix is an alias of newmat.
- If the third argument, a list, is given, the newly created matrix is initialized so that each element of the list (again a list) initializes each of the rows of the matrix. Elements are used from the first through the last. If the list is short, 0’s are filled in the remaining matrix elements. If no third argument is given all the elements are cleared to 0.
- The size of a matrix is given by function size().
Let \(M \) be a program variable assigned to a matrix. Then, \(M[I] \) denotes a (row) vector which corresponds with the I-th row of the matrix. Note that the vector shares its element with the original matrix. Subsequently, if an element of the vector is modified, then the corresponding matrix element is also modified.

When a matrix is passed to a function as its argument (actual parameter), the matrix element can be modified within that function.

```plaintext
[0] A = newmat(3,3,[[1,1,1],[x,y],[x^2]]);
  [ 1 1 1 ]
  [ x y 0 ]
  [ x^2 0 0 ]
[1] det(A);
   -y*x^2
[2] size(A);
   [3,3]
  [ x y 0 ]
getarray : Out of range
return to toplevel
```

References
Section 6.6.1 [newvect vector vect], page 64, Section 6.6.7 [size], page 69,
Section 6.6.8 [det nd_det invmat], page 69.

6.6.6 mat, matr, matc

```plaintext
mat(vector[,...])
matr(vector[,...])
  :: Creates a new matrix by list of row vectors.
matc(vector[,...])
  :: Creates a new matrix by list of column vectors.
return  matrix
vector  array or list

* mat is an alias of matr.
* Each vector has same length. Elements are used from the first through the last. If the list is short, 0's are filled in the remaining matrix elements.

[0] matr([[1,2,3],[4,5,6],[7,8]]);
  [ 1 2 3 ]
  [ 4 5 6 ]
  [ 7 8 0 ]
[1] matc([[1,2,3],[4,5,6],[7,8]]);
  [ 1 4 7 ]
  [ 2 5 8 ]
  [ 3 6 0 ]
```

References
Section 6.6.5 [newmat matrix], page 67
6.6.7 size

\text{size}(\text{vect}|\text{mat})
\quad:: \text{A list containing the number of elements of the given vector, [size of vect], or a list containing row size and column size of the given matrix, [row size of mat, column size of mat].}

\text{return} \quad \text{list}
\text{vect} \quad \text{vector}
\text{mat} \quad \text{matrix}

\begin{itemize}
 \item Return a list consisting of the dimension of the vector vect, or a list consisting of the row size and column size of the matrix matrix.
 \item Use \text{length()} for the size of list, and \text{nmono()} for the number of monomials with non-zero coefficients in a rational expression.
\end{itemize}

\begin{verbatim}
[0] A = newvect(4);
[0 0 0 0]
[1] size(A);
[4]
[2] length(A);
4
[3] B = newmat(2,3,[[1,2,3],[4,5,6]]);
[1 2 3]
[4 5 6]
[4] size(B);
[2,3]
\end{verbatim}

References

Section 6.5.1 [\text{car cdr cons append reverse length}], page 63, Section 6.3.6 [\text{nmono}], page 48.

6.6.8 det, nd_det, invmat

\text{det(mat[, mod])}
\text{nd_det(mat[, mod])}
\quad:: \text{Determinant of mat.}

\text{invmat(mat)}
\quad:: \text{Inverse matrix of mat.}

\text{return} \quad \text{det: expression, invmat: list}
\text{mat} \quad \text{matrix}
\text{mod} \quad \text{prime}

\begin{itemize}
 \item \text{det} and \text{nd_det} compute the determinant of matrix mat. \text{invmat} computes the inverse matrix of matrix mat. \text{invmat} returns a list [\text{num,den}], where \text{num} is a matrix and \text{num/den} represents the inverse matrix.
 \item The computation is done over GF(mod) if mod is specified.
\end{itemize}
• The fraction free Gaussian algorithm is employed. For matrices with multi-variate polynomial entries, minor expansion algorithm sometimes is more efficient than the fraction free Gaussian algorithm.

• \textit{nd_det} can be used for computing the determinant of a matrix with polynomial entries over the rationals or finite fields. The algorithm is an improved version of the fraction free Gaussian algorithm and it computes the determinant faster than \textit{det}.

\begin{verbatim}
[91] A=newmat(5,5)
[92] V=[x,y,z,u,v];
[93] for(I=0;I<5;I++)for(J=0,B=A[I],W=V[I];J<5;J++)B[J]=W^J;
[94] A;
[1 x^2 x^3 x^4]
[1 y^2 y^3 y^4]
[1 z^2 z^3 z^4]
[1 u^2 u^3 u^4]
[1 v^2 v^3 v^4]
[95] fctr(det(A));
[[1,1],[u-v,1],[-z+v,1],[-y+u,1],[-z+y,1],
[-z+u,1],[-y+z,1],[-y+u,1],
[-y+z,1],[-y+v,1],[-x+u,1],
[-x+z,1],[-x+v,1],[-x+y,1]]
[96] A = newmat(3,3)
[97] for(I=0;I<3;I++)for(J=0,B=A[I],W=V[I];J<3;J++)B[J]=W^J;
[98] A;
[1 x x^2]
[1 y y^2]
[1 z z^2]
[99] invmat(A);
[[-z*y^2+z^2*y z*x^2-z^2*x -y*x^2+y^2*x]
[y^2-z^2 -x^2+z^2 x^2-y^2]
[-y+z x-z -x+y]]
[100] A*B[0];
[(-y+z)*x^2+(y^2-z^2)*x-z*y^2+z^2*y 0 0]
[0 (-y+z)*x^2+(y^2-z^2)*x-z*y^2+z^2*y 0]
[0 0 (-y+z)*x^2+(y^2-z^2)*x-z*y^2+z^2*y]
[101] map(red,A*B[0]/B[1]);
[1 0 0]
[0 1 0]
[0 0 1]
\end{verbatim}

References
Section 6.6.5 [newmat matrix], page 67.

6.6.9 \textbf{qsort}

\texttt{qsort(array[, func])}

:: Sorts an array \textit{array}.

\texttt{return} \hspace{1em} \textit{array} (The same as the input; Only the elements are exchanged.)

\texttt{array} \hspace{1em} \textit{array}

\texttt{func} \hspace{1em} \textit{function for comparison}
This function sorts an array by quick sort.

- If `func` is not specified, the built-in comparison function is used and the array is sorted in increasing order.
- If a function of two arguments `func` which returns 0, 1, or -1 is provided, then an ordering is determined so that `A<B` if `func(A,B)` holds, and the array is sorted in increasing order with respect to the ordering.
- The returned array is the same as the input. Only the elements are exchanged.

```plaintext
[0] qsort(newvect(10,[1,4,6,7,3,2,9,6,0,-1]));
[ -1 0 1 2 3 4 6 6 7 9 ]
[1] def rev(A,B) { return A>B?-1:(A<B?1:0); }
[2] qsort(newvect(10,[1,4,6,7,3,2,9,6,0,-1]),rev);
[ 9 7 6 6 4 3 2 1 0 -1 ]
```

References

Section 6.3.7 [ord], page 48, Section 6.3.2 [vars], page 46.

6.6.10 rowx, rowm, rowa, colx, colm, cola

- `rowx(matrix,i,j)`
 :: Exchanges the `i`-th and `j`-th rows.

- `rowm(matrix,i,c)`
 :: Multiplies the `i`-th row by `c`.

- `rowa(matrix,i,c)`
 :: Appends `c` times the `j`-th row to the `j`-th row.

- `colx(matrix,i,j)`
 :: Exchanges the `i`-th and `j`-th columns.

- `colm(matrix,i,c)`
 :: Multiplies the `i`-th column by `c`.

- `cola(matrix,i,c)`
 :: Appends `c` times the `j`-th column to the `j`-th column.

```plaintext
return matrix
i, j integers
c coefficient
```

- These operations are destructive for the matrix.

```plaintext
[0] A=newmat(3,3,[[1,2,3],[4,5,6],[7,8,9]]);
[ 1 2 3 ]
[ 4 5 6 ]
[ 7 8 9 ]
[1] rowx(A,1,2)$
[2] A;
[ 1 2 3 ]
[ 7 8 9 ]
[ 4 5 6 ]
```
Chapter 6: Built-in Function

[3] rowm(A,2,x);
[1 2 3]
[7 8 9]
[4*x 5*x 6*x]
[4] rowa(A,0,1,z);
[7*z+1 8*z+2 9*z+3]
[7 8 9]
[4*x 5*x 6*x]

References
Section 6.6.5 [newmat matrix], page 67

6.7 Structures

6.7.1 newstruct

newstruct(name)
:: Creates a new structure object whose name is name.

return structure

name string

• This function creates a new structure object whose name is name.
• A structure named name should be defined in advance.
• Each member of a structure is specified by its name using the operator ->. If the specified member is also an structure, the specification by -> can be nested.

[0] struct list {h,t};
0
[1] A=newstruct(list);
{0,0}
[2] A->t = newstruct(list);
{0,0}
{0,{0,0}}
[4] A->h = 1;
1
[5] A->t->h = 2;
2
[6] A->t->t = 3;
3
[7] A;
{1,{2,3}}

References
Section 6.7.2 [arfreg], page 72, Section 4.2.9 [structure definition], page 25

6.7.2 arfreg
arfreg(name, add, sub, mul, div, pwr, chsgn, comp)
:: Registers a set of fundamental operations for a type of structure.
return 1
name string
add sub mul div pwr chsgn comp
user defined functions
- This function registers a set of fundamental operations for a type of structure whose name is name.
- The specification of each function is as follows.
 add(A,B) A+B
 sub(A,B) A-B
 mul(A,B) A*B
 div(A,B) A/B
 pwr(A,B) A^B
 chsgn(A) -A
 comp(A,B) 1,0,-1 according to the result of a comparison between A and B.

% cat test
struct a {id, body} $

def add(A,B)
{
 C = newstruct(a);
 C->id = A->id; C->body = A->body+B->body;
 return C;
}
def sub(A,B)
{
 C = newstruct(a);
 C->id = A->id; C->body = A->body-B->body;
 return C;
}
def mul(A,B)
{
 C = newstruct(a);
 C->id = A->id; C->body = A->body*B->body;
 return C;
}
def div(A,B)
{
C = newstruct(a);
C->id = A->id; C->body = A->body/B->body;
return C;
}

def pwr(A,B)
{
 C = newstruct(a);
 C->id = A->id; C->body = A->body^B;
 return C;
}

def chsgn(A)
{
 C = newstruct(a);
 C->id = A->id; C->body = -A->body;
 return C;
}

def comp(A,B)
{
 if (A->body > B->body)
 return 1;
 else if (A->body < B->body)
 return -1;
 else
 return 0;
}

arfreg("a",add,sub,mul,div,pwr,chsgn,comp)$
end$
%
This is Risa/Asir, Version 20000908.
Copyright (C) FUJITSU LABORATORIES LIMITED.
1994-2000. All rights reserved.
[0] load("./test")$
[11] A=newstruct(a);
 {0,0}
[12] B=newstruct(a);
 {0,0}
 3
[14] B->body = 4;
 4
 {0,12}

References
 Section 6.7.1 [newstruct], page 72, Section 4.2.9 [structure definition], page 25
6.7.3 struct_type

struct_type(name|object)
:: Get an identity number of the structure of object and name.

return an integer
name string
object a structure

- struct_type() returns an identity number of the structure or -1 (if an error occurs).

[10] struct list {h,t};
0
[11] A=newstruct(list);
{0,0}
[12] struct_type(A);
3
[13] struct_type("list");
3

References
Section 6.7.1 [newstruct], page 72, Section 4.2.9 [structure definition], page 25

6.8 Types

6.8.1 type

type(obj) :: Returns an integer which identifies the type of the object obj in question.

return integer
obj arbitrary

- Current assignment of integers for object types is listed below.

0 number
1 polynomial (not number)
2 rational expression (not polynomial)
3 list
4 vector
5 matrix
6 string
7 structure
8 distributed polynomial
10 32bit unsigned integer
11 error object
12 matrix over GF(2)
13 MATHCAP object
14 first order formula

-1 VOID object

• For further classification of number, use ntype(). For further classification of variable, use vtype().

References
Section 6.8.2 [ntype], page 76, Section 6.8.3 [vtype], page 77.

6.8.2 ntype

ntype(num)
:: Classifier of type num. Returns a sub-type number, an integer, for obj.

return integer

obj number

• Sub-types for type number are listed below.
 0 rational number
 1 floating double (double precision floating point number)
 2 algebraic number over rational number field
 3 arbitrary precision floating point number (bigfloat)
 4 complex number
 5 element of a finite field
 6 element of a large finite prime field
 7 element of a finite field of characteristic 2

• When arithmetic operations for numbers are performed, type coercion will be taken if their number sub-types are different so that the object having smaller sub-type number will be transformed to match the other object, except for algebraic numbers.

• A number object created by newalg(x^2+1) and the unit of imaginary number @i have different number sub-types, and it is treated independently.

• See Chapter 9 [Algebraic numbers], page 153 for algebraic numbers.

[0] [10/37, ntype(10/37)];
[10/37, 0]
[1] [10.0/37.0, ntype(10.0/37.0)];
[0.27027, 1]
[2] [newalg(x^2+1)+1, ntype(newalg(x^2+1)+1)];
[([#0+1], 2]
[3] [eval(sin(@pi/6)), ntype(eval(sin(@pi/6)))];

\[0.49999999999999999991,3\]
\[4\] \[\text{\texttt{\$i+1,ntype(\$i+1)}}\];
\[[1+1*\$i\text{,}4\]

References

Section 6.8.1 \[\text{\texttt{\texttt{type}}}\], page 75.

6.8.3 \texttt{vtype}

\texttt{vtype(var)}

:: Type of indeterminates \texttt{var}.

\texttt{return} integer

\texttt{var} indeterminate

- Classify indeterminates into sub-types by giving an integer value as follows. For details See Section 3.3 \[\text{\texttt{[Types of indeterminates]}}\], page 16.

0 \hspace{1cm} ordinary indeterminate, which can be directly typed in on a keyboard (a,b,x,afo,bfo,...,etc.)

1 \hspace{1cm} Special indeterminate, created by \texttt{uc()} (_0, _1, _2, ... etc.)

2 \hspace{1cm} function form (sin(x), log(a+1), acosh(1), @pi, @e, ... etc.)

3 \hspace{1cm} functor (built-in functor name, user defined functor, functor for the elementary functions) : sin, log, ... etc)

- Note: An input ‘a();’ will cause an error, but it changes the system database for identifiers. After this error, you will find ‘vtype(a)’ will result 3. (Identifier a is registered as a user defined functor).

- Usually @pi and @e are treated as indeterminates, whereas they are treated as numbers within functions \texttt{eval()} and \texttt{pari()}.

References

Section 6.8.1 \[\text{\texttt{\texttt{type}}}\], page 75, Section 6.8.2 \[\text{\texttt{ntype}}}\], page 76, Section 6.3.3 \[\text{\texttt{uc}], page 46.

6.9 Operations on functions

6.9.1 \texttt{call}

\texttt{call(name, args)}

:: Call the function \texttt{name} with \texttt{args}.

\texttt{return} a return value of \texttt{name().}

\texttt{name} indefinite (function name)

\texttt{args} a list of arguments

- See Section 6.8.3 \[\text{\texttt{vtype}}, page 77 for function form.
Chapter 6: Built-in Function

[0] A=igcd;
igcd
[1] call(A,[4,6]);
2
[2] (*A)(4,6);
2
References
Section 6.8.3 [vtype], page 77.

6.9.2 functor, args, funargs

functor(func)
:: Functor of function form func.

args(func)
:: List of arguments of function form func.

funargs(func)
:: cons(functor(func),args(func)).

return functor() : indeterminate, args(), funargs() : list

func function form

• See Section 6.8.3 [vtype], page 77 for function form.
• Extract the functor and the arguments of function form func.
• Assign a program variable, say F, to the functor obtained by functor(). Then, you can type (*F)(x) (, or (*F)(x,y,...) depending on the arity,) to input a function form with argument x.

[0] functor(sin(x));
sin
[0] args(sin(x));
[x]
[0] funargs(sin(3*cos(y)));[sin,3*cos(y)]

for (L=[sin,cos,tan];L!=[];L=cdr(L)) {A=car(L);
print(eval((*A)(@pi/3)));
}
0.86602540349122136831
0.5000000002
1.7320508058

References
Section 6.8.3 [vtype], page 77.

6.10 Strings

6.10.1 rtostr

rtostr(obj)
:: Convert obj into a string.
Chapter 6: Built-in Function 79

return string

obj arbitrary

- Convert an arbitrary object *obj* into a string.
- This function is convenient to create variables with numbered (or indexed) names by converting integers into strings and appending them to some name strings.
- Use `strtov()` for inverse conversion from string to indeterminate.

```
[0] A=afo;
afo
[1] type(A);
2
[2] B=rtostr(A);
afo
[3] type(B);
7
[4] B+"1";
afo1
```

References

Section 6.10.2 [strtov], page 79, Section 6.8.1 [type], page 75.

6.10.2 strtov

strtov(str)

:: Convert a string *str* into an indeterminate.

return indeterminate

str string which is valid to constitute an indeterminate.

- Convert a string that is valid for an indeterminate into an indeterminate which have *str* as its print name.
- The valid string for an indeterminate is such a string that begins with a small alphabetical letter possibly followed by any string composed of alphabetical letters, digits or a symbol ‘_’.
- Use the command to create indeterminates dynamically in programs.

```
[0] A="afo";
afo
[1] for (I=0;I<3;I++) {B=strtov(A+rtostr(I)); print([B,type(B)]);}  
[afo0,2]
[afo1,2]
[afo2,2]
```

References

Section 6.10.1 [rtostr], page 78, Section 6.8.1 [type], page 75, Section 6.3.3 [uc], page 46.

6.10.3 eval_str
eval_str(str)
 :: Evaluates a string str.
return object
str string which can be accepted by Asir parser
• This function evaluates a string which can be accepted by Asir parser and returns the result.
• The input string should represent an expression.
• This function is the inversion function of rtostr().
 [0] eval_str("1+2");
 3
 [1] fctr(eval_str(rtostr((x+y)^10)));
 [[1,1],[x+y,10]]

References
Section 6.10.1 [rtostr], page 78

6.10.4 strtoascii, asciitostr

strtoascii(str)
 :: Converts a string into a sequence of ASCII codes.

asciitostr(list)
 :: Converts a sequence of ASCII codes into a string.
return strtoascii():list; asciitostr():string
str string
list list containing positive integers less than 256.
• strtoascii() converts a string into a list of integers which is a representation of the string by the ASCII code.
• asciitostr() is the inverse of asciitostr().
 [0] strtoascii("abcxyz");
 [97,98,99,120,121,122]
 [1] asciitostr(@);
 abcxyz
 [2] asciitostr([256]);
 asciitostr : argument out of range
 return to toplevel

6.10.5 str_len, str_chr, sub_str

str_len(str)
 :: Returns the length of a string.
str_chr(str,start,c)
 :: Returns the position of the first occurrence of a character in a string.
sub_str(str,start,end)
 :: Returns a substring of a string.
return str_len(), str_chr():integer; sub_str():string

str c string

start end non-negative integer

- str_len() returns the length of a string.
- str_chr() scans a string str from the start-th character and returns the position of the first occurrence of the first character of a string c. Note that the top of a string is the 0-th character. It returns -1 if the character does not appear.
- sub_str() generates a substring of str containing characters from the start-th one to the end-th one.

```
[185] Line="123 456 (x+y)^3";
123 456 (x+y)^3
[186] Sp1 = str_chr(Line,0," ");
3
[187] D0 = eval_str(sub_str(Line,0,Sp1-1));
123
[188] Sp2 = str_chr(Line,Sp1+1," ");
7
[189] D1 = eval_str(sub_str(Line,Sp1+1,Sp2-1));
456
[190] C = eval_str(sub_str(Line,Sp2+1,str_len(Line)-1));
x^3+3*y*x^2+3*y^2*x+y^3
```

6.11 Inputs and Outputs

6.11.1 end, quit

end, quit :: Close the currently reading file. At the top level, terminate the Asir session.

- These two functions take no arguments. These functions can be called without a ‘()’. Either function close the current input file. This means the termination of the Asir session at the top level.
- An input file will be automatically closed if it is read to its end. However, if no end$ is written at the last of the input file, the control will be returned to the top level and Asir will be waiting for an input without any prompting. Thus, in order to avoid confusion, putting a end$ at the last line of the input file is strongly recommended.

```
[6] quit;
```

References

Section 6.11.2 [load], page 81.

6.11.2 load

load("filename") :: Reads a program file filename.
return (110)

filename file (path) name

- See Chapter 4 [User language Asir], page 18 for practical programming. Since text files are read through cpp, the user can use, as in C programs, #include and #define in Asir program source codes. The cpp which is installed to the system with a C compiler is used in the Unix version. The mcpp http://mcpp.sourceforge.net is used in the Windows version. Note that the length of a line has a limit for an input mcpp. The OpenXM/bin/ox_cpp is used in the unix/OpenXM version (including cfep/asir for MacOS X). This is the cpp distributed with the Portable C compiler http://pcc.ludd.ltu.se.

- It returns 1 if the designated file exists, 0 otherwise.

- If the filename begins with ‘/’, it is understood as an absolute path name; with ‘.’, relative path name from current directory; otherwise, the file is searched first from directories assigned to an environmental variable ASIRLOADPATH, then if the search ends up in failure, the standard library directory (or directories assigned to ASIR_LIBDIR) shall be searched. On Windows, get_rootdir()/lib is searched if ASIR_LIBDIR is not set.

- We recommend to write an end command at the last line of your program. If not, Asir will not give you a prompt after it will have executed load command. (Escape with an interrupt character (Section 2.7 [Interruption], page 8), if you have lost yourself.) Even in such a situation, Asir itself is still ready to read keyboard inputs as usual. It is, however, embarrassing and may cause other errors. Therefore, to put an end$ at the last line is desirable. (Command end; will work as well, but it also returns and displays verbose.)

- On Windows one has to use ‘/’ as the separator of directory names.

References
Section 6.11.1 [end quit], page 81, Section 6.11.3 [which], page 82, Section 6.14.16 [get_rootdir], page 98.

6.11.3 which

which("filename")
:: This returns the path name for the filename which load() will read.

return path name

filename filename (path name) or 0

- This function searches directory trees according to the same procedure as load() will do. Then, returns a string, the path name to the file if the named file exists; 0 unless otherwise.

- For details of searching procedure, refer to the description about load().

- On Windows one has to use ‘/’ as the separator of directory names.

[0] which("gr");
./gb/gr
[1] which("/usr/local/lib/gr");
0
[2] which("/usr/local/lib/asir/gr");
/usr/local/lib/asir/gr

References
Section 6.11.2 [load], page 81.

6.11.4 output

output(['"filename"'])

:: Writes the return values and prompt onto file filename.

return 1

filename filename

- Standard output stream of Asir is redirected to the specified file. While Asir is writing its outputs onto a file, no outputs, except for keyboard inputs and some of error messages, are written onto the standard output. (You cannot see the result on the display.)
- To direct the Asir outputs to the standard output, issue the command without argument, i.e., output().
- If the specified file already exists, new outputs will be added to the tail of the file. If not, a file is newly created and the outputs will be written onto the file.
- When file name is specified without double quotes (""), or when protected file is specified, an error occurs and the system returns to the top level.
- If you want to write inputs from the keyboard onto the file as well as Asir outputs, put command ctrl("echo",1), and then redirect the standard output to your desired file.
- Contents which are written onto the standard error output, CPU time etc., are not written onto the file.
- Reading and writing algebraic expressions which contain neither functional forms nor unknown coefficients (vtype() References) are performed more efficiently, with respect to both time and space, by bload() and bsave().
- On Windows one has to use ‘/’ as the separator of directory names.

[83] output("afo");
[84] fctr(x^2-y^2);
[85] output("afo");
[86] output();
[87] quit;
% cat afo
1
[84] [[[1,1],[x+y,1],[x-y,1]]
[85] afo
0
[86]

References
Section 6.14.1 [ctrl], page 90, Section 6.11.5 [bsave bload], page 84.
6.11.5 bsave, bload

bsave(obj,"filename")
:: This function writes obj onto filename in binary form.

bload("filename")
:: This function reads an expression from filename in binary form.

return bsave() : 1, bload() : the expression read

obj arbitrary expression which does not contain neither function forms nor unknown coefficients.

filename filename

- Function bsave() writes an object onto a file in its internal form (not exact internal form but very similar). Function bload() read the expression from files which is written by bsave(). Current implementation support arbitrary expressions, including lists, arrays (i.e., vectors and matrices), except for function forms and unknown coefficients (vtype() References.)

- The parser is activated to retrieve expressions written by output() , whereas internal forms are directly reconstructed by bload() from the bsave()’ed object in the file. The latter is much more efficient with respect to both time and space.

- It may happen that the variable ordering at reading is changed from that at writing. In such a case, the variable ordering in the internal expression is automatically rearranged according to the current variable ordering.

- On Windows one has to use ‘/’ as the separator of directory names.

[0] A=(x+y+z+u+v+w)^20$
[1] bsave(A,"afo");
1
[2] B = bload("afo");$
1
[4] X=(x+y)^2;
x^2+2*y*x+y^2$
[5] bsave(X,"afo");$
[6] quit;
% asir
[0] ord([y,x])$
[1] bload("afo");
y^2+2*x*y+x^2

References
Section 6.11.4 [output], page 83.

6.11.6 bload27

bload27("filename")
:: Reads bsaved file created by older version of Asir.

return expression read
filename filename

- In older versions an arbitrary precision integer is represented as an array of 27bit integers. In the current version it is represented as an array of 32bit integers. By this incompatibility the bsaved file created by older versions cannot be read in the current version by \texttt{bload}. \texttt{bload27} is used to read such files.

- On Windows one has to use ‘/’ as the separator of directory names.

References
Section 6.11.5 \texttt{[bsave bload]}, page 84.

\subsection{6.11.7 print}

\texttt{print(obj [,nl])}
\begin{itemize}
\item Displays (or outputs) \texttt{obj}.
\end{itemize}
\begin{itemize}
\item return \begin{itemize}
\item 0
\end{itemize}
\end{itemize}
\begin{itemize}
\item obj arbitrary
\end{itemize}
\begin{itemize}
\item \texttt{nl} flag (arbitrary)
\end{itemize}

- Displays (or outputs) \texttt{obj}.

- It normally adds linefeed code to cause the cursor moving to the next line. If 0 or 2 is given as the second argument, it does not add a linefeed. If the second argument is 0, the output is simply written in the buffer. If the second argument is 2, the output is flushed.

- The return value of this function is 0. If command \texttt{print(rat);} is performed at the top level, first the value of \texttt{rat} will be printed, followed by a linefeed, followed by a 0 which is the value of the function and followed by a linefeed and the next prompt. (If the command is terminated by a ‘$’, e.g., \texttt{print(rat)$}, The last 0 will not be printed.

- Formatted outputs are not currently supported. If one wishes to output multiple objects by a single \texttt{print()} command, use list like \texttt{[obj1,...]}, which is not so beautiful, but convenient to minimize programming efforts.

\begin{verbatim}
[8] def cat(L) { while (L != []) { print(car(L),0); L = cdr(L);} print(""); }
[9] cat([xyz,123,"gahaha"])$
xyz123gahaha
\end{verbatim}

\subsection{6.11.8 access}

\texttt{access(file)}
\begin{itemize}
\item testing an existence of \texttt{file}.
\end{itemize}
\begin{itemize}
\item return \begin{itemize}
\item (1|0)
\end{itemize}
\end{itemize}
\begin{itemize}
\item file filename
\end{itemize}
6.11.9 remove_file

remove_file(file)
:: Delete an file file.

return 1

file filename

6.11.10 open_file, close_file, get_line, get_byte, put_byte, purge_stdin

open_file("filename", ["mode"])
:: Opens filename for reading.

close_file(num)
:: Closes the file indicated by a descriptor num.

def get_line([num])
:: Reads a line from the file indicated by a descriptor num.

def get_byte(num)
:: Reads a byte from the file indicated by a descriptor num.

def put_byte(num, c)
:: Writes a byte c to the file indicated by a descriptor num.

def purge_stdin()
:: Clears the buffer for the standard input.

return open_file() : integer (file id); close_file() : 1; get_line() : string; get_byte(), put_byte() : integer

filename file (path) name

mode string

num non-negative integer (file descriptor)

• open_file() opens a file. If mode is not specified, a file is opened for reading. If mode is specified, it is used as the mode specification for C standard I/O function fopen(). For example "w" requests that the file is truncated to zero length or created for writing. "a" requests that the file is opened for writing or created if it does not exist. The stream pointer is set at the end of the file. If successful, it returns a non-negative integer as the file descriptor. Otherwise the system error function is called. Unnecessary files should be closed by close_file(). If the special file name unix://stdin or unix://stdout or unix://stderr is given, it returns the file descriptor for the standard input or the standard output or the standard error stream respectively. The mode argument is ignored in this case.

• get_line() reads a line from an opened file and returns the line as a string. If no argument is supplied, it reads a line from the standard input.

• get_byte() reads a byte from an opened file and returns the it as an integer.

• put_byte() writes a byte from an opened file and returns the the byte as an integer.
A `get_line()` call after reading the end of file returns an integer 0.

Strings can be converted into internal forms with string manipulation functions such as `sub_str()`, `eval_str()`.

`purge_stdin()` clears the buffer for the standard input. When a function receives a character string from `get_line()`, this function should be called in advance in order to avoid an incorrect behavior which is caused by the characters already exists in the buffer.

```c
[185] Id = open_file("test");
  0
[186] get_line(Id);
  12345

[187] get_line(Id);
  67890

[188] get_line(Id);
  0
[189] type(00);
  0
[190] close_file(Id);
  1
[191] open_file("test");
  1
[192] get_line(1);
  12345

[193] get_byte(1);
  54 /* the ASCII code of '6' */
[194] get_line(1);
  7890 /* the rest of the last line */
[195] def test() { return get_line(); }
[196] def test1() { purge_stdin(); return get_line(); }
[197] test();
    /* a remaining newline character has been read */
    /* returns immediately */
[198] test1();
  123; /* input from a keyboard */
  123; /* returned value */
```

References

Section 6.10.3 [eval_str], page 79, Section 6.10.5 [strlen chr sub_str], page 80.

6.12 Operations for modules
6.12.1 module_list

module_list()
 :: Get the list of loaded modules.
return The list of loaded modules.
module_list();
[gr, primdec, bfct, sm1, gnuplot, tigers, phc]

References
See Section 4.2.13 [module], page 28.

6.12.2 module_definedp

module_definedp(name)
 :: Testing an existense of the module name.
return (1|0)
name a module name
 • If the module name exists, then module_definedp returns 1. otherwise 0.
module_definedp("gr");
1

References
Section 6.12.1 [module_list], page 88, See Section 4.2.13 [module], page 28.

6.12.3 remove_module

remove_module(name)
 :: Remove the module name.
return (1|0)
name a module name
 •
remove_module("gr");
1

References
See Section 4.2.13 [module], page 28.

6.13 Numerical functions

6.13.1 dacos, dasin, datan, dcos, dsin, dtan

dacos(num)
 :: Get the value of Arccos of num.
dasin(num)
 :: Get the value of Arcsin of num.
datan(num)
:: Get the value of Arctan of num.

dcos(num)
:: Get the value of cos of num.

dsin(num)
:: Get the value of sin of num.

dtan(num)
:: Get the value of tan of num.

return floating point number

num number

• Compute numerical values of trigonometric functions.
• These functions use the standard mathematical library of C language. So results depend on operating systems and a C compilers.

[0] 4*datan(1);
3.14159

6.13.2 dabs, dexp, dlog, dsqrt

dabs(num)
:: Get the absolute value of num.

dexp(num)
:: Get the value of exponent of num.

dlog(num)
:: Get the value of logarithm of num.

dsqrt(num)
:: Get the value of square root of num.

return floating point number

num number

• Compute numerical values of elementary functions.
• These functions use the standard mathematical library of C language. So results depend on operating systems and a C compilers.

[0] dexp(1);
2.71828

6.13.3 ceil, floor, rint, dceil, dfloor, drint

ceil(num)

dceil(num)
:: Get the ceiling integer of num.

floor(num)

dfloor(num)
:: Get the floor integer of num.
rint(num)
drint(num)
:: Get the round integer of num.
return integer
num number

[0] dceil(1.1);
1

6.14 Miscellaneouses

6.14.1 ctrl

ctrl("switch", [obj])
:: Sets the value of switch.
return value of switch
switch switch name
obj parameter

• This function is used to set or to get the values of switches. The switches are used to control an execution of Asir.
• If obj is not specified, the value of switch is returned.
• If obj is specified, the value of switch is set to obj.
• Switches are specified by strings, namely, enclosed by two double quotes.
• Here are of switches of Asir.

cputime If ‘on’, CPU time and GC time is displayed at every top level evaluation of Asir command; if ‘off’, not displayed. See Section 6.14.6 [cputime tstart tstop], page 94. (The switch is also set by command cputime(1), and reset by cputime(0).)
nez Selection for EZGCD algorithm. It is set to 1 by default. Ordinary users need not change this setting.
echo If ‘on’, inputs from the standard input will be echoed onto the standard output. When executing to load a file, the contents of the file will be written onto the standard output. If ‘off’, the inputs will not be echoed. This command will be useful when used with command output.
bigfloat If ‘on’, floating operations will be done by PARI system with arbitrary precision floating point operations. Default precision is set to 9 digits. To change the precision, use command setprec. If ‘off’, floating operations will be done by Asir’s own floating operation routines with a fixed precision operations of standard floating double.
adj Sets the frequency of garbage collection. A rational number greater than or
equal to 1 can be specified. The default value is 3. If a value closer to 1 is
specified, larger heap is allocated and as a result, the frequency of garbage
collection decreases. See Section 2.4 [Command line options], page 5.

verbose If 'on' a warning messages is displayed when a function is redefined.

quiet_mode
 If 1 is set, the copyright notice has been displayed at boot time.

prompt
 If the value is 0, then prompt is not output. If the value is 1,
 then the standard prompt is output. Asir prompt can be cus-
tomized by giving a C-style format string. Example (for unix asir);
 ctrl("prompt","\033[32m[%d]:= \033[0m")

hex
 If 1 is set, integers are displayed as hexadecimal numbers with prefix 0x.
 if -1 is set, hexadecimal numbers are displayed with ‘|’ inserted at every 8
 hexadecimal digits.

real_digit
 Sets the number of digits used to print a floating double.

double_output
 If set to 1, any floating double is printed in the style ddd.ddd.

fortran_output
 If ‘on’ polynomials are displayed in FORTRAN style. That is, a power is
 represented by ‘**’ instead of ‘^‘. The default value is ‘off.

ox_batch
 If ‘on’, the OpenXM send buffer is flushed only when the buffer is full. If
 ‘off’, the buffer is always flushed at each sending of data or command. The
 default value is ‘off’. See Chapter 7 [Distributed computation], page 100.

ox_check
 If ‘on’ the check by mathcap is done before sending data. The default value
 is ‘on’. See Chapter 7 [Distributed computation], page 100.

ox_exchange_mathcap
 If ‘on’ Asir forces the exchange of mathcaps at the communication startup.
 The default value is ‘on’. See Chapter 7 [Distributed computation],
 page 100.

References
Section 6.14.6 [cputime tstart tstop], page 94, Section 6.11.4 [output],
page 83, Section 6.1.14 [pari], page 41, Section 6.1.15 [setprec], page 42,
Section 6.1.13 [eval deval], page 40.

6.14.2 debug

debug :: Forces to enter into debugging mode.

Function debug is a function with no argument. It can be called without ‘()’.

• In the debug-mode, you are prompted by (debug) and the debugger is ready for com-
mands. Typing in quit (Note! without a semicolon.) brings you to exit the debug-
mode.
• See Chapter 5 [Debugger], page 31 for details.

[1] debug;
(debug) quit
0

6.14.3 error

error(message)
:: Forces Asir to cause an error and enter debugging mode.

message string

• When Asir encounters a serious error such that it finds difficult to continue execution, it, in general, tries to enter debugging mode before it returns to top level. The command error() forces a similar behavior in a user program.

• The argument is a string which will be displayed when error() will be executed.

• You can enter the debug-mode when your program encounters an illegal value for a program variable, if you have written the program so as to call error() upon finding such an error in your program text.

% cat mod3
def mod3(A) {
 if (type(A) >= 2)
 error("invalid argument");
 else
 return A % 3;
}
end$

% asir
[0] load("mod3");
1
[3] mod3(5);
2
[4] mod3(x);
invalid argument
stopped in mod3 at line 3 in file "/mod3"
3
(debug) print A
A = x
(debug) quit
return to toplevel

References
Section 6.14.2 [debug], page 91.

6.14.4 help

help(["function"])
:: Displays the description of function function.
Chapter 6: Built-in Function

return 0

function function name

- If invoked without argument, it displays rough usage of Asir.
- If a function name is given and if there exists a file with the same name in the directory ‘help’ under standard library directory, the file is displayed by a command set to the environmental variable PAGE or else command ‘more’.
- If the LANG environment variable is set and its value begins with "japan" or "ja_JP", then the file in ‘help-ja’ is displayed. If its value does not begin with "japan" or "ja_JP", then the file in ‘help-en’ is displayed.
- On Windows HTML-style help is available from the menu.

6.14.5 time
time() :: Returns a four element list consisting of total CPU time, GC time, the elapsed time and also total memory quantities requested from the start of current Asir session.

return list

- These are commands regarding CPU time and GC time.
- The GC time is the time regarded to spent by the garbage collector, and the CPU time is the time defined by subtracting the GC time from the total time consumed by command Asir. Their unit is ‘second.’
- Command time() returns total CPU time and GC time measured from the start of current Asir session. It also returns the elapsed time. Time unit is ‘second.’ Moreover, it returns total memory quantities in words (usually 4 bytes) which are requested to the memory manager from the beginning of the current session. The return value is a list and the format is [CPU time, GC time, Memory, Elapsed time].
- You can find the CPU time and GC time for some computation by taking the difference of the figure reported by time() at the beginning and the ending of the computation.
- Since arbitrary precision integers are NOT used for counting the total amount of memory request, the number will eventually happen to become meaningless due to integer overflow.
- When cputime switch is active by ctrl() or by cputime(), the execution time will be displayed after every evaluation of top level statement. In a program, however, in order to know the execution time for a sequence of computations, you have to use time() command, for an example.
- On UNIX, if getrusage() is available, time() reports reliable figures. On Windows NT it also gives reliable CPU time. However, on Windows 95/98, the reported time is nothing but the elapsed time of the real world. Therefore, the time elapsed in the debug-mode and the time of waiting for a reply to interruption prompting are added to the elapsed time.

[72] T0=time();
[2.390885,0.484358,46560,9.157768]
[73] G=hgr(katsura(4),[u4,u3,u2,u1,u0],2)$
[74] T1=time();
Chapter 6: Built-in Function

[8.968048, 7.705907, 1514833, 63.359717]
[75] "CPU", T1[0] - T0[0], "GC", T1[1] - T0[1];
[CPU, 6.577163, GC, 7.221549]

References
Section 6.14.6 [cputime tstart tstop], page 94, Section 6.14.8 [currenttime], page 95.

6.14.6 cputime, tstart, tstop

cputime(onoff)
:: Stop displaying cputime if its argument is 0, otherwise start displaying cputime after every top level evaluation of Asir command.
tstart() :: Resets and starts timer for CPU time and GC time.
tstop() :: Stops timer and then displays CPU time GC time elapsed from the last time when timer was started.

return 0

onoff flag (arbitrary)

- Command cputime() with NON-ZERO argument enables Asir to display CPU time and GC time after every evaluation of top level Asir command. The command with argument 0 disables displaying them.
- Command tstart() starts measuring CPU time and GC time without arguments. The parentheses ‘()’ may be omitted.
- Command tstop() stops measuring CPU time and GC time and displays them without arguments. The parentheses ‘()’ may be omitted.
- Command cputime(onoff) has same meaning as ctrl("cputime", onoff).
- Nested use of tstart() and tstop() is not expected. If such an effect is desired, use time().
- On and off states by cputime() have effects only to displaying mode. Time for evaluation of every top level statement is always measured. Therefore, even after a computation has already started, you can let Asir display the timings, whenever you enter the debug-mode and execute cputime(1).

[49] tstart$
[50] fctr(x^10-y^10);
[[1, 1], [x + y, 1], [x^4-y^3+y^2*x^2-y^3*x+y^4, 1], [x-y, 1],
[x^4+y^3+y^2*x^2+y^3*x+y^4, 1]]
[51] tstop$
80msec + gc : 40msec

References
Section 6.14.5 [time], page 93, Section 6.14.8 [currenttime], page 95, Section 6.14.1 [ctrl], page 90.
6.14.7 timer

\texttt{timer(interval, expr, val)}
:: Compute an expression under the interval timer.

\begin{verbatim}
return result
interval interval (second)
expr expression to be computed
val a value to be returned when the timer is expired
\end{verbatim}

- \texttt{timer()} computes an expression under the interval timer. If the computation finishes within the specified interval, it returns the result of the computation. Otherwise it returns the third argument.
- The third argument should be distinguishable from the result on success.

\begin{verbatim}
[0] load("cyclic");
1
[10] timer(10,dp_gr_main(cyclic(7),[c0,c1,c2,c3,c4,c5,c6],1,1,0),0);
interval timer expired (VTALRM)
0
[11]
\end{verbatim}

6.14.8 currenttime

\texttt{currenttime()}
:: Get current time.

\begin{verbatim}
return UNIX time.
\end{verbatim}

- See also time(3) in UNIX manuals.

\begin{verbatim}
[0] currenttime();
1071639228
[1]
\end{verbatim}

6.14.9 sleep

\texttt{sleep(interval)}
:: Suspend computation for an interval.

\begin{verbatim}
return 1
interval interval (micro second)
\end{verbatim}

- See also usleep(3) in UNIX manuals.

\begin{verbatim}
[0] sleep(1000);
1
[1]
\end{verbatim}
6.14.10 heap

heap() :: Heap area size currently in use.

return non-negative integer

- Command heap() returns an integer which is the byte size of current Asir heap area. Heap is a memory area where various data for expressions and user programs of Asir and is managed by the garbage collector. While Asir is running, size of the heap is monotonously non-decreasing against the time elapsed. If it happens to exceed the real memory size, most (real world) time is consumed for swapping between real memory and disk memory.

- For a platform with little real memory, it is recommended to set up Asir configuration tuned for GC functions by \(-adj\) option at the activation of Asir. (See Section 2.4 [Command line options], page 5.)

```
% asir -adj 16
[0] load("fctrdta")$
 0
[97] cputime(1)$
 0msec
[98] heap();
 524288
 0msec
[99] fctr(Wang[8])$
 3.190sec + gc : 3.420sec
[100] heap();
 1118208
 0msec
[101] quit;
% asir
[0] load("fctrdta")$
 0
[97] cputime(1)$
 0msec
[98] heap();
 827392
 0msec
[99] fctr(Wang[8])$
 3.000sec + gc : 1.180sec
[100] heap();
 1626112
 0msec
[101] quit;
```

References

Section 2.4 [Command line options], page 5.

6.14.11 version
version()

:: Version identification number of Asir.

return integer

- Command version() returns the version identification number, an integer of Asir in use.

 [0] version();
 991214

6.14.12 shell

shell(command)

:: Execute shell commands described by a string command.

return integer

command string

Execute shell commands described by a string command by a C function system(). This returns the exit status of shell as its return value.

 [0] shell("ls");

alg da katsura ralg suit
algt defs.h kimura ratint test
alpi edet kimura3 robot texput.log
asir.o fee mfee sasa wang
asir_symtab gr mksym shira wang_data
base gr.h mp snf1 wt
bgk help msubst solve
chou hom p sp
const ifplot proot strum
cyclic is r sugar
0

6.14.13 map

map(function, arg0, arg1, ...)

:: Applies a function to each member of a list or an array.

return an object of the same type as arg0.

function the name of a function

arg0 list, vector or matrix

arg1 ... arbitrary (the rest of arguments)

- Returns an object of the same type as arg0. Each member of the returned object is the return value of a function call where the first argument is the member of arg0 corresponding to the member in the returned object and the rest of the argument are arg1,

- function is a function name itself without "".
• A program variable cannot be used as function.
• If arg0 is neither list nor array this function simply returns the value of function(arg0,arg1,...).

```plaintext
[82] def afo(X) { return X^3; }
[83] map(afo,[1,2,3]);
[1,8,27]
```

6.14.14 flist

flist() :: Returns the list of function names currently defined.

```plaintext
return list of character strings
```

• Returns the list of names of built-in functions and user defined functions currently defined. The return value is a list of character strings.
• The names of built-in functions are followed by those of user defined functions.

```plaintext
[77] flist();
[defpoly,newalg,mainalg,algtorat,rattoalg,getalg,alg,algv,...]
```

6.14.15 delete_history

delete_history([index]) :: Deletes the history.

```plaintext
return 0
index Index of history to be deleted.
```

• Deletes all the histories without an argument.
• Deletes the history with index index if specified.
• A history is an expression which has been obtained by evaluating an input given for a prompt with an index. It can be taken out by @index, which means that the expression survives garbage collections.
• A large history may do harm in the subsequent memory management and deleting the history by delete_history(), after saving it in a file by bsave(), is often effective.

```plaintext
[0] (x+y+z)^100$
[1] @0;
...
[2] delete_history(0);
[3] @0;
0
```

6.14.16 get_rootdir

get_rootdir() :: Gets the name of Asir root directory.

```plaintext
return string
```

• On UNIX it returns the value of an environment variable ASIR_LIBDIR or ‘/usr/local/lib/asir’ if ASIR_LIBDIR is not set.
• On Windows the name of Asir root directory is returned.
• By using relative path names from the value of this function, one can write programs which contain file operations independent of the install directory.

6.14.17 getopt

getopt([key])
:: Returns the value of an option.
return object

• When a user defined function is called, the number of arguments must be equal to that in the declaration of the function. A function with indefinite number of arguments can be realized by using options (see Section 4.2.12 [option], page 27). The value of a specified option is retrieved by getopt.
• If getopt() is called with no argument, then it returns a list [[key1,value1], [key2,value2],...]. In the list, each key is an option which was specified when the function executing getopt was invoked, and value is the value of the option.
• If an option key is specified upon a function call, getopt return the value of the option. If such an option is not specified, the it returns an object of VOID type whose object identifier is -1. By examining the type of the returned value with type(), one knows whether the option is set or not.
• Options are specified as follows:
 xxx(A,B,C,D|x=X,y=Y,z=Z)
 That is, the options are specified by a sequence of key=value seperated by ‘,’ after ‘|’.

References
 Section 4.2.12 [option], page 27, Section 6.8.1 [type], page 75.

6.14.18 getenv

getenv(name)
:: Returns the value of an environment variable.
return name string

• Returns the value of an environment variable name.
 [0] getenv("HOME");
 /home/pcrf/noro
Chapter 7: Distributed computation

7 Distributed computation

7.1 OpenXM

On Asir distributed computations are done under OpenXM (Open message eXchange protocol for Mathematics), which is a protocol for exchanging mainly mathematical objects between processes. See http://www.math.sci.kobe-u.ac.jp/OpenXM/ for the details of OpenXM. In OpenXM a distributed computation is done as follows:

1. A client requests something to a server.
2. The server does works according to the request.
3. The client requests to send data to the server.
4. The server sends the data to the client and the client gets the data.

The server is a stack machine. That is data objects sent by the client are pushed to the stack of the server. If the server gets a command, then the data are popped from the stack and they are used as arguments of a function call.

In OpenXM, the result of a computation done in the server is simply pushed to the stack and the data is not written to the communication stream without requests from the client.

OpenXM protocol consists of two components: CMO (Common Mathematical Object format) which determines a common format of data representations and SM (StackMachine command) which specifies actions on servers. These are wrapped as OX expressions to indicate the sort of data when they are sent.

To execute a distributed computation by OpenXM, one has to invoke OpenXM servers and to establish communications between the client and the servers. ox_launch(), ox_launch_nox(), ox_launch_generic() are prepared for such purposes. Furthermore the following functions are available.

ox_push_cmo()
It requests a server to push an object to the stack of a server.

ox_pop_cmo()
It requests a server to pop an object from the stack of a server.

ox_cmo_rpc()
It requests to execute a function on a server. The result is pushed to the stack of the server.

ox_execute_string()
It requests a server to parse and execute a string by the parser and the evaluator of the server. The result is pushed to the stack of the server.

ox_push_cmd()
It requests a server to execute a command.

ox_get()
It gets an object from a data stream.
Chapter 7: Distributed computation

7.2 Mathcap

A server or a client does not necessarily implement full specifications of OpenXM. If a program sends data unknown to its peer, an unrecoverable error may occur. To avoid such a case OpenXM provides a scheme not to send data unknown to peers. It is realized by exchanging the list of supported CMO and SM. The list is called mathcap. Mathcap is also defined as a CMO and the elements are 32bit integers or strings. The format of mathcap is as follows.

[[version number, server name], SMtaglist, [[OXtag,CMOtaglist], [OXtag,CMOtaglist], ...]]

[OXtag,CMOtaglist] indicates that available object tags for a category of data specified by OXtag. For example 'ox_asir' accepts the local object format used by Asir and the mathcap from 'ox_asir' reflects the fact.

If "ox_check" switch of ctrl is set to 1, the check by a mathcap is done before data is sent. If "ox_check" switch of ctrl is set to 0, the check is not done. By default it is set to 1.

7.3 Stackmachine commands

The stackmachine commands are provided to request a server to execute various operations. They are automatically sent by built-in functions of Asir, but one often has to send them manually. They are represented by 32bit integers. One can send them by calling ox_push_cmd(). Typical stackmachine commands are as follows. SM_xxx=yyy means that SM_xxx is a mnemonic and that yyy is its value.

SM_popSerializedLocalObject=258
An object not necessarily defined as CMO is popped from the stack and is sent to the client. This is available only on 'ox_asir'.

SM_popCMO=262
A CMO object is popped from the stack and is sent to the client.

SM_popString=263
An object is popped from the stack and is sent to the client as a readable string.

SM_mathcap=264
The server’s mathcap is pushed to the stack.

SM_pops=265
Objects are removed from the stack. The number of object to be removed is specified by the object at the top of the stack.

SM_setName=266
A variable name is popped from the stack. Then an object is popped and it is assigned to the variable. This assignment is done by the local language of the server.

SM_evalName=267
A variable name is popped from the stack. Then the value of the variable is pushed to the stack.
A string popped from the stack is parsed and evaluated. The result is pushed to the stack.

SM_executeFunction=269
A function name, the number of arguments and the arguments are popped from the stack. Then the function is executed and the result is pushed to the stack.

SM_beginBlock=270
It indicates the beginning of a block.

SM_endBlock=271
It indicates the end of a block.

SM_shutdown=272
It shuts down communications and terminates servers.

SM_setMathcap=273
It requests a server to register the data at the top of the stack as the client’s mathcap.

SM_getsp=275
The number of objects in the current stack is pushed to the stack.

SM_dupErrors=276
The list of all the error objects in the current stack is pushed to the stack.

SM_nop=300
Nothing is done.

7.4 Debugging

In general, it is difficult to debug distributed computations. ‘ox_asir’ provides several functions for debugging.

7.4.1 Error object

When an error has occurred on an OpenXM server, an error object is pushed to the stack instead of a result of the computation. The error object consists of the serial number of the SM command which caused the error, and an error message.

```
[340] ox_launch();
0
[341] ox_rpc(0,"fctr",1.2*x);
0
[342] ox_pop_cmo(0);
error([8,fctrp : invalid argument])
```

7.4.2 Resetting a server

`ox_reset()` resets a process whose identifier is *number*. After its execution the process is ready for receiving data. This function corresponds to the keyboard interrupt on an usual Asir session. It often happens that a request of a client does not correspond correctly to the
result from a server. It is caused by remaining data on data streams.
\texttt{ox_reset} is effective for such cases.

7.4.3 Pop-up command window for debugging

As a server does not have any standard input device such as a keyboard, it is difficult to debug user programs running on the server.
\texttt{ox_asir} pops up a small command window to input debug commands when an error has occurred during user a program execution or \texttt{ox_rpc(id,"debug")} has been executed. The responses to commands are shown in \texttt{xterm} to display standard outputs from the server. To close the small window, input \texttt{quit}.

7.5 Functions for distributed computation

7.5.1 \texttt{ox_launch}, \texttt{ox_launch_nox}, \texttt{ox_shutdown}

\begin{verbatim}
\texttt{ox_launch([host[,dir],command])}
\texttt{ox_launch_nox([host[,dir],command])}
\end{verbatim}

:: Initialize OpenXM servers.

\begin{verbatim}
\texttt{ox_shutdown(id)}
\end{verbatim}

:: Terminates OpenXM servers.

\begin{verbatim}
return
host integer
\end{verbatim}

dir string or 0

\begin{verbatim}
command
\end{verbatim}

id integer

- Function \texttt{ox_launch()} invokes a process to execute \texttt{command} on a host \texttt{host} and enables \texttt{Asir} to communicate with that process. If the number of arguments is 3, \texttt{‘ox_launch’} in \texttt{dir} is invoked on \texttt{host}. Then \texttt{‘ox_launch’} invokes \texttt{command}. If \texttt{host} is equal to 0, all the commands are invoked on the same machine as the \texttt{Asir} is running. If no arguments are specified, \texttt{host}, \texttt{dir} and \texttt{command} are regarded as 0, the value of \texttt{get_rootdir()} and \texttt{‘ox_asir’} in the same directory respectively.

- If \texttt{host} is equal to 0, then \texttt{dir} can be omitted. In such a case \texttt{dir} is regarded as the value of \texttt{get_rootdir()}.

- If \texttt{command} begins with ‘/’, it is regarded as an absolute pathname. Otherwise it is regarded as a relative pathname from \texttt{dir}.

- On UNIX, \texttt{ox_launch()} invokes \texttt{xterm} to display standard outputs from \texttt{command}. If X11 is not available or one wants to invoke servers without \texttt{xterm}, use \texttt{ox_launch_nox()}, where the outputs of \texttt{command} are redirected to ‘/dev/null’. If the environment variable \texttt{DISPLAY} is not set, \texttt{ox_launch()} and \texttt{ox_launch_nox()} behave identically.

- The returned value is used as the identifier for communication.
• The peers communicating with Asir are not necessarily processes running on the same machine. The communication will be successful even if the byte order is different from those of the peer processes, because the byte order for the communication is determined by a negotiation between a client and a server.

• The following preparations are necessary. Here, Let A be the host on which Asir is running, and B the host on which the peer process will run.

 1. Register the hostname of the host A to the ‘$/.rhosts$’ of the host B. That is, you should be allowed to access the host B from A without supplying a password.

 2. For cases where connection to X is also used, let $xserver$ authorize the relevant hosts. Adding the hosts can be done by command $xhost$.

 3. If an environment variable $ASIR_RSH$ is set, the content of this variable is used as a program to invoke remote servers instead of rsh. For example,

 $% \text{setenv ASIR_RSH } "\text{ssh -f -X -A } "$$

 implies that remote servers are invoked by ‘ssh’ and that X11 forwarding is enabled. See the manual of ‘ssh’ for the detail.

 4. Some command’s consume much stack space. You are recommended to set the stack size to about 16MB large in ‘.cshrc’ for safe. To specify the size, put $\text{limit stacksize 16m}$ for an example.

• When command opens a window on X, it uses the string specified for display; if the specification is omitted, it uses the value set for the environment variable DISPLAY.

• ox_shutdown() terminates OpenXM servers whose identifier is id.

• When Asir is terminated successfully, all I/O streams are automatically closed, and all the processes invoked are also terminated. However, some remote processes may not terminated when Asir is terminated abnormally. If ever Asir is terminated abnormally, you have to kill all the unterminated process invoked by Asir on every remote host. Check by ps command on the remote hosts to see if such processed are alive.

• ‘xterm’ for displaying the outputs from command is invoked with ‘-name ox_term’ option. Thus, by specifying resources for the resource name ‘ox_term’, only the behaviour of the ‘xterm’ can be customized.

 /* iconify on start */
 ox_xterm*iconic:on
 /* activate the scroll bar */
 ox_xterm*scrollBar:on
 /* 1000 lines can be shown by the scrollbar */
 ox_xterm*savelines:1000

[219] ox_launch();
0
[220] ox_rpc(0,"fctr",x^10-y^10);
0
[221] ox_pop_local(0);
[[1,1],[x^4+y*x^3+y^2*x^2+y^3*x+y^4,1],
 [x^4-y*x^3+y^2*x^2-y^3*x+y^4,1],[x-y,1],[x+y,1]]
[222] ox_shutdown(0);
7.5.2 ox_launch_generic

\texttt{ox_launch_generic(\textit{host}, \textit{launch}, \textit{server}, \textit{use_unix}, \textit{use_ssh}, \textit{use_x}, \textit{conn_to_serv})}

:: Initialize OpenXM servers.

\textbf{return} \hspace{1em} \textbf{integer}

\textbf{host} \hspace{1em} \textbf{string or 0}

\textbf{launcher} \hspace{1em} \textbf{server}

\textbf{string}

\textbf{use_unix} \textbf{use_ssh} \textbf{use_x} \textbf{conn_to_serv} \hspace{1em} \textbf{integer}

- \texttt{ox_launch_generic()} invokes a control process \textit{launch} and a server process \textit{server} on \textit{host}. The other arguments are switches for protocol family selection, on/off of the X environment, method of process invocation and selection of connection type.
- If \textit{host} is equal to 0, processes are invoked on the same machine as the \texttt{Asir} is running. In this case UNIX internal protocol is always used.
- If \textit{use_unix} is equal to 1, UNIX internal protocol is used. If \textit{use_unix} is equal to 0, Internet protocol is used.
- If \textit{use_ssh} is equal to 1, ‘\textit{ssh}’ (Secure Shell) is used to invoke processes. If one does not use ‘\textit{ssh-agent}’, a password (passphrase) is required. If ‘\textit{sshd}’ is not running on the target machine, ‘\textit{rsh}’ is used instead. But it will immediately fail if a password is required.
- If \textit{use_x} is equal to 1, it is assumed that X environment is available. In such a case \textit{server} is invoked under ‘\textit{xterm}’ by using the current \texttt{DISPLAY} variable. If \texttt{DISPLAY} is not set, it is invoked without X. Note that the processes will hang up if \texttt{DISPLAY} is incorrectly set.
- If \textit{conn_to_serv} is equal to 1, \texttt{Asir} (client) executes \texttt{bind} and \texttt{listen}, and the invoked processes execute \texttt{connect}. If \textit{conn_to_serv} is equal to 0, \texttt{Asir} (client) the invoked processes execute \texttt{bind} and \texttt{listen}, and the client executes \texttt{connect}.

\begin{verbatim}
[342] LIB=get_rootdir();
/export/home/noro/ca/Kobe/build/OpenXM/lib/asir
[343] ox_launch_generic(0,LIB+"/ox_launch",LIB+"/ox_asir",0,0,0,0);
1
[344] ox_launch_generic(0,LIB+"/ox_launch",LIB+"/ox_asir",1,0,0,0);
2
[345] ox_launch_generic(0,LIB+"/ox_launch",LIB+"/ox_asir",1,1,0,0);
3
[346] ox_launch_generic(0,LIB+"/ox_launch",LIB+"/ox_asir",1,1,1,0);
4
[347] ox_launch_generic(0,LIB+"/ox_launch",LIB+"/ox_asir",1,1,1,1);
\end{verbatim}
generate_port([use_unix])
 :: Generates a port number.

try_bind_listen(port)
 :: Binds and listens on a port.

try_connect(host, port)
 :: Connects to a port.

try_accept(socket, port)
 :: Accepts a connection request.

register_server(control_socket, control_port, server_socket, server_port)
 :: Registers the sockets for which connections are established.

return integer or string for generate_port(), integer for the others

use_unix 0 or 1

host string

port control_port server_port
 integer or string

socket control_socket server_socket
 integer

• These functions are primitives to establish communications between a client and servers.
• generate_port() generates a port name for communication. If the argument is not specified or equal to 0, a port number for Internet domain socket is generated randomly. Otherwise a file name for UNIX domain (host-internal protocol) is generated. Note that it is not assured that the generated port is not in use.
• try_bind_listen() creates a socket according to the protocol family indicated by the given port and executes bind and listen. It returns a socket identifier if it is successful. -1 indicates an error.
• try_connect() tries to connect to a port port on a host host. It returns a socket identifier if it is successful. -1 indicates an error.
• try_accept() accepts a connection request to a socket socket. It returns a new socket identifier if it is successful. -1 indicates an error. In any case socket is automatically closed. port is specified to distinguish the protocol family of socket.
• register_server() registers a pair of a control socket and a server socket. A process identifier indicating the pair is returned. The process identifier is used as an argument of ox functions such as ox_push_cmo().
Servers are invoked by using `shell()`, or manually.

```plaintext
CPort=generate_port();
SPort=generate_port();
CSocket=try_bind_listen(CPort);
SSocket=try_bind_listen(SPort);

/*
    ox_launch is invoked here :
    % ox_launch "127.1" 0 39716 37043 ox_asir "shio:0"
*/

CSocket=try_accept(CSocket,CPort);
SSocket=try_accept(SSocket,SPort);
register_server(CSocket,CPort,SSocket,SPort);
```

7.5.4 'ox_asir'

'ox_asir' provides almost all the functionalities of Asir as an OpenXM server. 'ox_asir' is invoked by ox_launch or ox_launch_nox. If X environment is not available or is not necessary, one can use ox_launch_nox.

```plaintext
[5] ox_launch();

[5] ox_launch_nox("127.0.0.1","/usr/local/lib/asir","/usr/local/lib/asir/ox_asir");

[8] Machines = ["sumire","rokkaku","genkotsu","shinpuku"]; [sumire,rokkaku,genkotsu,shinpuku]
[9] Servers = map(ox_launch,Machines,RemoteLibDir,
    RemoteLibDir+"ox_asir"); [0,1,2,3]
```

References

Section 7.5.1 [ox_launch ox_launch_nox ox_shutdown], page 103, Section 7.5.2 [ox_launch_generic], page 105, Section 6.14.12 [shell], page 97, Section 7.5.7 [ox_push_cmo ox_push_local], page 109

7.5.5 ox_rpc, ox_cmo_rpc, ox_execute_string
ox_rpc(number,"func",arg0,...)
ox_cmo_rpc(number,"func",arg0,...)
ox_execute_string(number,"command",...)

:: Calls a function on an OpenXM server

return 0

number integer (process identifier)

func function name

command string

arg0 ... arbitrary (arguments)

- Calls a function on an OpenXM server whose identifier is number.
- It returns 0 immediately. It does not wait the termination of the function call.
- ox_rpc() can be used when the server is 'ox_asir'. Otherwise ox_cmo_rpc() should be used.
- The result of the function call is put on the stack of the server. It can be received by ox_pop_local() or ox_pop_cmo().
- If the server is not 'ox_asir', only data defined in OpenXM can be sent.
- ox_execute_string requests the server to parse and execute command by the parser and the evaluator of the server. The result is pushed to the stack.

[234] ox_cmo_rpc(0,"dp_ht",dp_ptod((x+y)^10,[x,y]));
0
[235] ox_pop_cmo(0);
(1)<<<10,0>>
[236] ox_execute_string(0,"12345 % 678;");
0
[237] ox_pop_cmo(0);
141

References
Section 7.5.8 [ox_pop_cmo ox_pop_local], page 110

7.5.6 ox_reset, ox_intr, register_handler

ox_reset(number)
:: Resets an OpenXM server

ox_intr(number)
:: Sends SIGINT to an OpenXM server

register_handler(func)
:: Registers a function callable on a keyboard interrupt.

return 1

number integer (process identifier)

func functor or 0
• ox_reset() resets a process whose identifier is number. After its execution the process is ready for receiving data.
• After executing ox_reset(), sending/receiving buffers and stream buffers are assured to be empty.
• Even if a process is running, the execution is safely stopped.
• ox_reset() may be used prior to a distributed computation. It can be also used to interrupt a distributed computation.
• ox_intr() sends SIGINT to a process whose identifier is number. The action of a server against SIGINT is not specified in OpenXM. ‘ox_asir’ immediately enters the debug mode and pops up an window to input debug commands on X window system.
• register_handler() registers a function func(). If u is specified on a keyboard interrupt, func() is executed before returning the toplevel. If ox_reset() calls are included in func(), one can automatically reset OpenXM servers on a keyboard interrupt.
• If func is equal to 0, the setting is reset.

```plaintext
[10] ox_launch();
0
[11] ox_rpc(0,"fctr",x^100-y^100);
0
[12] ox_reset(0); /* usr1 : return to toplevel by SIGUSR1 */
1        /* is displayed on the xterm. */
[340] Procs=[ox_launch(),ox_launch(]);
[0,1]
[341] def reset() { extern Procs; map(ox_reset,Procs);}
[342] map(ox_rpc,Procs,"fctr",x^100-y^100);
[0,0]
[343] register_handler(reset);
1
[344] interrupt ?(q/t/c/d/u/w/?) u
Abort this computation? (y or n) y
Calling the registered exception handler...done.
return to toplevel
```

References
Section 7.5.5 [ox_rpc ox_cmo_rpc ox_execute_string], page 107

7.5.7 ox_push_cmo, ox_push_local

```plaintext
ox_push_cmo(number,obj)
ox_push_local(number,obj)
  :: Sends obj to a process whose identifier is number.
return 0
number   integer(process identifier)
obj      object
  • Sends obj to a process whose identifier is number.
  • ox_push_cmo is used to send data to an OpenXM other than ‘ox_asir’ and ‘ox_plot’.
```
Chapter 7: Distributed computation

- `ox_push_local` is used to send data to `ox_asir` and `ox_plot`.
- The call immediately returns unless the stream buffer is full.

References
Section 7.5.5 [ox_rpc ox_cmo_rpc ox_execute_string], page 107,
Section 7.5.8 [ox_pop_cmo ox_pop_local], page 110

7.5.8 ox_pop_cmo, ox_pop_local

`ox_pop_local(number)`
:: Receives data from a process whose identifier is `number`.

```c
number    received data
```

`number` integer(process identifier)
- Receives data from a process whose identifier is `number`.
- `ox_pop_cmo` can be used to receive data from an OpenXM server other than `ox_asir` and `ox_plot`.
- `ox_pop_local` can be used to receive data from `ox_asir`, `ox_plot`.
- If no data is available, these functions block. To avoid it, send `SM_popCMO (262)` or `SM_popSerializedLocalObject (258)`. Then check the process status by `ox_select`. Finally call `ox_get` for a ready process.

```c
[341] ox_cmo_rpc(0,"fctr",x^2-1);
0
[342] ox_pop_cmo(0);
[[1,1],[x-1,1],[x+1,1]]
[343] ox_cmo_rpc(0,"newvect",3);
0
[344] ox_pop_cmo(0);
error([41,cannot convert to CMO object])
[345] ox_pop_local(0);
[ 0 0 0 ]
```

References
Section 7.5.5 [ox_rpc ox_cmo_rpc ox_execute_string], page 107, Section 7.5.9 [ox_push_cmd ox_sync], page 110, Section 7.5.12 [ox_select], page 112, Section 7.5.10 [ox_get], page 111

7.5.9 ox_push_cmd, ox_sync

`ox_push_cmd(number,command)`
:: Sends a command `command` to a process whose identifier is `number`.

`ox_sync(number)`
:: Sends OX_SYNC_BALL to a process whose identifier is `number`.

```c
return 0
number integer(process identifier)
command integer(command identifier)
```
• Sends a command or \textbf{OX_SYNC_BALL} to a process whose identifier is \textit{number}.

• Data in OpenXM are categorized into three types: \textbf{OX_DATA}, \textbf{OX_COMMAND}, \textbf{OX_SYNC_BALL}. Usually \textbf{OX_COMMAND} and \textbf{OX_SYNC_BALL} are sent implicitly with high level operations, but these functions are prepared to send these data explicitly.

• \textbf{OX_SYNC_BALL} is used on the resetting operation by \texttt{ox_reset}. Usually \textbf{OX_SYNC_BALL} will be ignored by the peer.

\begin{verbatim}
[3] ox_rpc(0,"fctr",x^100-y^100);
0
[4] ox_push_cmd(0,258);
0
[5] ox_select([0]);
[0]
[6] ox_get(0);
[[1,1],[x^2+y^2,1],[x^4-y*x^3+y^2*x^2-y^3*x+y^4,1],...]
\end{verbatim}

References

- Section 7.5.5 \lbrack ox_rpc ox_cmo_rpc ox_execute_string \rbrack, page 107
- Section 7.5.6 \lbrack ox_reset ox_intr register_handler \rbrack, page 108

7.5.10 \texttt{ox_get}

\texttt{ox_get(number)}

:: Receives data form a process whose identifier is \textit{number}.

\texttt{return}

\texttt{number} integer(process identifier)

• Receives data form a process whose identifier is \textit{number}.

• One may use this function with \texttt{ox_push_cmd}.

• \texttt{ox_pop_cmo} and \texttt{ox_pop_local} is realized as combinations of \texttt{ox_push_cmd} and \texttt{ox_get}.

\begin{verbatim}
[11] ox_push_cmo(0,123);
0
[12] ox_push_cmd(0,262); /* 262=OX_popCMO */
0
[13] ox_get(0);
123
\end{verbatim}

References

- Section 7.5.8 \lbrack ox_pop_cmo ox_pop_local \rbrack, page 110
- Section 7.5.9 \lbrack ox_push_cmd ox_sync \rbrack, page 110

7.5.11 \texttt{ox_pops}

\texttt{ox_pops(number [,nitem])}

:: Removes data form the stack of a process whose identifier is \textit{number}.

\texttt{return} \hfill 0
number integer (process identifier)
nitem non-negative integer

- Removes data from the stack of a process whose identifier is number. If nitem is specified, nitem items are removed. If nitem is not specified, 1 item is removed.

```
[69] for(I=1;I<=10;I++) ox_push_cmo(0,I);
[70] ox_pops(0,4);
0
[71] ox_pop_cmo(0);
6
```

References
Section 7.5.8 [ox_pop_cmo ox_pop_local], page 110

7.5.12 ox_select

```
ox_launch();
0
[220] ox_launch();
1
[221] ox_launch();
2
[222] ox_rpc(2,"fctr",x^500-y^500);
0
[223] ox_rpc(1,"fctr",x^100-y^100);
0
[224] ox_rpc(0,"fctr",x^10-y^10);
0
[225] P=[0,1,2];
[0,1,2]
[226] map(ox_push_cmd,P,258);
[0,0,0]
[227] ox_select(P);
[0]
[228] ox_get(0);
```
[[1,1], [x^4+y*x^3+y^2*x^2+y^3*x+y^4,1],
[x^4-y*x^3+y^2*x^2-y^3*x+y^4,1], [x-y,1], [x+y,1]]

References
Section 7.5.8 [ox_pop_cmo ox_pop_local], page 110, Section 7.5.9 [ox_push_cmd ox_sync], page 110, Section 7.5.10 [ox_get], page 111

7.5.13 ox_flush

ox_flush(id)
:: Flushes the sending buffer.

return 1

id process identifier

- By default the batch mode is off and the sending buffer is flushed at every sending operation of data and command.
- The batch mode is set by "ox_batch" switch of "ctrl".
- If one wants to send many pieces of small data, **ctrl("ox_batch",1)** may decrease the overhead of flush operations. Of course, one has to call **ox_flush(id)** at the end of the sending operations.
- Functions such as **ox_pop_cmo** and **ox_pop_local** enter a waiting mode immediately after sending a command. These functions always flush the sending buffer.

```c
[340] ox_launch_nox();
0
[341] cputime(1);
0
7e-05sec + gc : 4.8e-05sec(0.000119sec)
[342] for(I=0;I<10000;I++)ox_push_cmo(0,I);
0.232sec + gc : 0.006821sec(0.6878sec)
[343]ctrl("ox_batch",1);
1
4.5e-05sec(3.302e-05sec)
[344] for(I=0;I<10000;I++)ox_push_cmo(0,I); ox_flush(0);
0.08063sec + gc : 0.06388sec(0.4408sec)
[345] 1
9.6e-05sec(0.01317sec)
```

References
Section 7.5.8 [ox_pop_cmo ox_pop_local], page 110, Section 6.14.1 [ctrl], page 90

7.5.14 ox_get_serverinfo

ox_get_serverinfo([id])
:: Gets server's mathcap and process id.

return list

id process identifier
• If id is specified, the mathcap of the process whose identifier is id is returned.
• If id is not specified, the list of [id, Mathcap] is returned, where id is the identifier of a currently active process, and Mathcap is the mathcap of the process. identifier id is returned.

```
ox_get_serverinfo(0);

[[199909080, Ox_system=ox_sm1.plain, Version=2.991118, HOSTTYPE=FreeBSD],
 [262, 263, 264, 265, 266, 268, 269, 272, 273, 275, 276],
 [[514], [2130706434, 1, 2, 4, 5, 17, 19, 20, 22, 23, 24, 25, 26, 30, 31, 60, 61, 27, 33, 40, 16, 34]]
```

```
ox_get_serverinfo();

[[0, [[199909080, Ox_system=ox_sm1.plain, Version=2.991118, HOSTTYPE=FreeBSD],
 [262, 263, 264, 265, 266, 268, 269, 272, 273, 275, 276],
 [[514], [2130706434, 1, 2, 4, 5, 17, 19, 20, 22, 23, 24, 25, 26, 30, 31, 60, 61, 27, 33, 40, 16, 34]]],
 [1, [[199901160, ox_asir],
 [276, 275, 258, 262, 263, 266, 267, 268, 274, 269, 272, 265, 264, 273, 300, 270, 271],
 [[514, 2144202544],
 [1, 2, 3, 4, 5, 2130706433, 2130706434, 17, 19, 20, 21, 22, 24, 25, 26, 31, 27, 33, 60],
 [0, 1]]]]
```

References

Section 7.2 [Mathcap], page 101.

7.5.15 ifplot, conplot, plot, polarplot, plotover

```
ifplot(func [, geometry] [, xrange] [, yrange] [, id] [, name])
:: Displays real zeros of a bi-variate function.

conplot(func [, geometry] [, xrange] [, yrange] [, zrange] [, id] [, name])
:: Displays real contour lines of a bi-variate function.

plot(func [, geometry] [, xrange] [, id] [, name])
:: Displays the graph of a univariate function.

polarplot(func [, geometry] [, thetarange] [, id] [, name])
:: Displays the graph of a curve given in polar form.

plotover(func, id, number)
Plots on the existing window real zeros of a bivariate function.
```

```
return integer
func polynomial
geometry xrange yrange zrange list
id number integer
name string
```

• Function ifplot() draws a graph of real zeros of a bi-variate function. Function conplot() plots the contour lines for a same argument. Function plot() draws the
graph of a uninivariate function. Function polarplot() draws the graph of a curve given in polar form \(r=f(\theta) \).

- The plotting functions are realized by an OpenXM server. On UNIX it is ‘ox_plot’ in Asir root directory. On Windows ‘engine’ acts as ‘ox_plot’. Of course, it must be activated by ox_launch() ox_launch_nox(). If the identifier of an active ‘ox_plot’ is specified as \(id \), the server is used for drawing pictures. If \(id \) is not specified, an available ‘ox_plot’ server is used if it exists. If no ‘ox_plot’ server is available, then ox_launch_nox() is automatically executed to invoke ‘ox_plot’.

- Argument \(func \) is indispensible. Other arguments are optional. The format of optional arguments and their default values (parenthesized) are listed below.

 - \texttt{geometry} \quad Window size is specified by \([x,y]\) in unit ‘dot.’ \([300,300]\) for UNIX version;
 - \texttt{xrange yrange} \quad Value ranges of the variables are specified by \([v_{\text{min}},v_{\text{max}}]\). \([v,-2,2]\) for each variable.) If this specification is omitted, the indeterminate having the higher order in \(func \) is taken for \(x \) and the one with lower order is taken for \(y \). To change this selection, specify explicitly by \(xrange \) and/or \(yrange \). For an uni-variate function, the specification is mandatory.

 - \texttt{zrange} \quad This specification applies only to conplot(). The format is \([v_{\text{min}},v_{\text{max}}], [step] \). If \(step \) is specified, the height difference of contours is set to \((v_{\text{max}}-v_{\text{min}})/\text{step})\. (\([z,-2,2,16]\).)

 - \texttt{id} \quad This specifies the number of the remote process by which you wish to draw a graph. (The number for the newest active process.)

 - \texttt{name} \quad The name of the window. (Plot.) The created window is titled \texttt{name:n/m} which means the \(m \)-th window of the process with process number \(n \). These numbers are used for plotover().

- The maximum number of the windows that can be created on a process is 128.

- Function plotover() superposes reals zeros of its argument bi-variate function onto the specified window.

- Enlarged plot can be obtained for rectangular area which is specified, on an already existing window with a graph, by dragging cursor with the left button of mouse from the upper-left corner to lower-right corner and then releasing it. Then, a new window is created whose shape is similar to the specified area and whose size is determined so that the largest side of the new window has the same size of the largest side of the original window. If you wish to cancel the action, drag the cursor to any point above or left of the starting point.

This facility is effective when \texttt{precise} button switch is inactive. If \texttt{precise} is selected and active, the area specified by the cursor dragging will be rewritten on the same window. This will be explained later.

- A click of the right button will display the current coordinates of the cursor at the bottom area of the window.

- Place the cursor at any point in the right marker area on a window created by conplot(), and drag the cursor with the middle mutton. Then you will find the contour lines changing their colors depending on the movement of the cursor and the corresponding height level displayed on the upper right corner of the window.
Several operations are available on the window: by button operations for UNIX version, and pull-down menus for Windows version.

quit Destroys (kills) the window. While computing, quit the current computation. If one wants to interrupt the computation, use `ox_reset()`.

wide (toggle)
Will display, on the same window, a new area enlarged by 10 times as large as the current area for both width-direction and height-direction. The current area will be indicated by a rectangle placed at the center. Area specification by dragging the cursor will create a new window with a plot of the graph in the specified area.

precise (toggle)
When selected and active, `ox_plot` redraws the specified area more precisely by integer arithmetic. This mode uses bisection method based on Sturm sequence computation to locate real zeros precisely. More precise plotting can be expected by this technique than by the default plotting technique, at the expense of significant increase of computing time. As you see by above explanation, this function is only effective to polynomials with rational coefficients. (Check how they differ for \((x^2+y^2-1)^2\).)

formula Displays the expression for the graph.

noaxis (toggle)
Erase the coordinates.

- Program `ox_plot` may consume much stack space depending on which machine it is running. You are recommended to set the stack size to about 16MB as large in `.cshrc` for safe. To specify the size, put `limit stacksize 16m` for an example.

- You can customize various resources of a window on `X`, e.g., coloring, shape of buttons etc. The default setting of resources is shown below. For `plot*form*shapeStyle` you can select among `rectangle`, `oval`, `ellipse`, and `roundedRectangle`.

```
plot*background:white
plot*form*shapeStyle:rectangle
plot*form*background:white
plot*form*quit*background:white
plot*form*wide*background:white
plot*form*precise*background:white
plot*form*formula*background:white
plot*form*noaxis*background:white
plot*form*xcoord*background:white
plot*form*ycoord*background:white
plot*form*level*background:white
plot*form*xdone*background:white
plot*form*ydone*background:white
```

References
Section 7.5.1 [ox_launch ox_launch_nox ox_shutdown], page 103,
Section 7.5.6 [ox_reset ox_intr register_handler], page 108
7.5.16 open_canvas, clear_canvas, draw_obj, draw_string

open_canvas(id[, geometry])
:: Opens a canvas, which is a window for drawing objects.

clear_canvas(id, index)
:: Clears a canvas.

draw_obj(id, index, pointorsegment [, color])
:: Draws a point or a line segment on a canvas.

draw_string(id, index, [x, y], string [, color])
:: Draws a character string on a canvas.

return 0

id index color x y
integer

pointorsegment
list

string character string

• These functions are supplied by the OpenXM server ’ox_plot’ (’engine’ on Windows).

• open_canvas opens a canvas, which is a window for drawing objects. One can specify the size of a canvas in pixel by supplying geometry option [x, y]. The default size is [300, 300]. This function pushes an integer value onto the stack of the OpenXM server. The value is used to distinguish the opened canvas and one has to pop and maintain the value by ox_pop_cmo for subsequent calls of draw_obj.

• clear_canvas clears a canvas specified by a server id id and a canvas id index.

• draw_obj draws a point or a line segment on a canvas specified by a server id id and a canvas id index. If pointorsegment is [x, y], it is regarded as a point. If pointorsegment is [x, y, u, v], it is regarded as a line segment which connects [x, y] and [u, v]. If color is specified, color/65536 mod 256, color/256 mod 256, color mod 256 are regarded as the values of Red, Green, Blue (Max. 255) respectively.

• draw_string draws a character string string on a canvas specified by a server id id and a canvas id index. The position of the string is specified by [x, y].

```
[182] Id=ox_launch_nox(0,"ox_plot");
0
[183] open_canvas(Id);
0
[184] Ind=ox_pop_cmo(Id);
0
[185] draw_obj(Id,Ind,[100,100]);
0
[186] draw_obj(Id,Ind,[200,200],0xffff);
0
[187] draw_obj(Id,Ind,[10,10,50,50],0xff00ff);
0
[187] draw_string(Id,Ind,[100,50],"hello",0xffff00);
```
0
[189] clear_canvas(Id,Ind);
0

References
Section 7.5.1 [ox_launch ox_launch_nox ox_shutdown], page 103, Section 7.5.6 [ox_reset ox_intr register_handler], page 108, Section 7.5.8 [ox_pop_cmo ox_pop_local], page 110.
8 Groebner basis computation

8.1 Distributed polynomial

A distributed polynomial is a polynomial with a special internal representation different from the ordinary one.

An ordinary polynomial (having type 2) is internally represented in a format, called recursive representation. In fact, it is represented as an uni-variate polynomial with respect to a fixed variable, called main variable of that polynomial, where the other variables appear in the coefficients which may again polynomials in such variables other than the previous main variable. A polynomial in the coefficients is again represented as an uni-variate polynomial in a certain fixed variable, the main variable. Thus, by this recursive structure of polynomial representation, it is called the ‘recursive representation.’

\[(x + y + z)^2 = 1 \cdot x^2 + (2 \cdot y + (2 \cdot z)) \cdot x + ((2 \cdot z) \cdot y + (1 \cdot z^2))\]

On the other hand, we call a representation the distributed representation of a polynomial, if a polynomial is represented, according to its original meaning, as a sum of monomials, where a monomial is the product of power product of variables and a coefficient. We call a polynomial, represented in such an internal format, a distributed polynomial. (This naming may sounds something strange.)

\[(x + y + z)^2 = 1 \cdot x^2 + 2 \cdot xy + 2 \cdot xz + 1 \cdot y^2 + 2 \cdot yz + 1 \cdot z^2\]

For computation of Groebner basis, efficient operation is expected if polynomials are represented in a distributed representation, because major operations for Groebner basis are performed with respect to monomials. From this view point, we provide the object type distributed polynomial with its object identification number 9, and objects having such a type are available by Asir language.

Here, we provide several definitions for the later description.

term
The power product of variables, i.e., a monomial with coefficient 1. In an Asir session, it is displayed in the form like

<<0,1,2,3,4>>

and also can be input in such a form. This example shows a term in 5 variables. If we assume the 5 variables as a, b, c, d, and e, the term represents \(b \cdot c^2 \cdot d^3 \cdot e^4\) in the ordinary expression.

term order
Terms are ordered according to a total order with the following properties.

1. For all \(t \succ t > 1\).
2. For all \(t, s, u \succ t > s\) implies \(tu > su\).

Such a total order is called a term ordering. A term ordering is specified by a variable ordering (a list of variables) and a type of term ordering (an integer, a list or a matrix).

monomial
The product of a term and a coefficient. In an Asir session, it is displayed in the form like
2*\langle 0,1,2,3,4 \rangle

and also can be input in such a form.

head monomial
head term
head coefficient

Monomials in a distributed polynomial is sorted by a total order. In such representation, we call the monomial that is maximum with respect to the order the head monomial, and its term and coefficient the head term and the head coefficient respectively.

8.2 Reading files

Facilities for computing Groebner bases are \texttt{dp_gr_main()}, \texttt{dp_gr_mod_main()} and \texttt{dp_gr_f_main()}. To call these functions, it is necessary to set several parameters correctly and it is convenient to use a set of interface functions provided in the library file ‘\texttt{gr}’. The facilities will be ready to use after you load the package by \texttt{load()}. The package ‘\texttt{gr}’ is placed in the standard library directory of \texttt{Asir}.

\[0\] \texttt{load("gr")}$

8.3 Fundamental functions

There are many functions and options defined in the package ‘\texttt{gr}’. Usually not so many of them are used. Top level functions for Groebner basis computation are the following three functions.

In the following description, \texttt{plist}, \texttt{vlist}, \texttt{order} and \texttt{p} stand for a list of polynomials, a list of variables (indeterminates), a type of term ordering and a prime less than \(2^{27}\) respectively.

\texttt{gr(plist, vlist, order)}

Function that computes Groebner bases over the rationals. The algorithm is Buchberger algorithm with useless pair elimination criteria by Gebauer-Moeller, sugar strategy and trace-lifting by Traverso. For ordinary computation, this function is used.

\texttt{hgr(plist, vlist, order)}

After homogenizing the input polynomials a candidate of the \texttt{gr} basis is computed by trace-lifting. Then the candidate is dehomogenized and checked whether it is indeed a Groebner basis of the input. Sugar strategy often causes intermediate coefficient swells. It is empirically known that the combination of homogenization and supresses the swells for such cases.

\texttt{gr_mod(plist, vlist, order, p)}

Function that computes Groebner bases over GF\((p)\). The same algorithm as \texttt{gr()} is used.
8.4 Controlling Groebner basis computations

One can control a Groebner basis computation by setting various parameters. These parameters can be set and examined by a built-in function \texttt{dp_gr_flags()}. Without argument it returns the current settings.

\begin{verbatim}
[100] dp_gr_flags();
[Demand,0,NoSugar,0,NoCriB,0,NoGC,0,NoMC,0,NoRA,0,NoGCD,0,Top,0,
ShowMag,1,Print,1,Stat,0,Reverse,0,InterReduce,0,Multiple,0]
[101]
\end{verbatim}

The return value is a list which contains the names of parameters and their values. The meaning of the parameters are as follows. ‘on’ means that the parameter is not zero.

- **NoSugar**: If ‘on’, Buchberger’s normal strategy is used instead of sugar strategy.
- **NoCriB**: If ‘on’, criterion B among the Gebauer-Moeller’s criteria is not applied.
- **NoGC**: If ‘on’, the check that a Groebner basis candidate is indeed a Groebner basis, is not executed.
- **NoMC**: If ‘on’, the check that the resulting polynomials generates the same ideal as the ideal generated by the input, is not executed.
- **NoRA**: If ‘on’, the interreduction, which makes the Groebner basis reduced, is not executed.
- **NoGCD**: If ‘on’, content removals are not executed during a Groebner basis computation over a rational function field.
- **Top**: If ‘on’, Only the head term of the polynomial being reduced is reduced.
- **Reverse**: If ‘on’, the selection strategy of reducer in a normal form computation is such that a newer reducer is used first.
- **Print**: If ‘on’, various informations during a Groebner basis computation is displayed.
- **PrintShort**: If ‘on’ and Print is ‘off’, short information during a Groebner basis computation is displayed.
- **Stat**: If ‘on’, a summary of informations is shown after a Groebner basis computation. Note that the summary is always shown if Print is ‘on’.
- **ShowMag**: If ‘on’ and Print is ‘on’, the sum of bit length of coefficients of a generated basis element, which we call magnitude, is shown after every normal computation. After completing the computation the maximal value among the sums is shown.
- **Content**: If a non-zero rational number, in a normal form computation over the rationals, the integer content of the polynomial being reduced is removed when its magnitude becomes Content times larger than a registered value, which is set to the magnitude of the input polynomial. After each content removal the registered value is set to the magnitude of the resulting polynomial. Content is equal to 1, the simplification is done after every normal form computation. It is empirically known that it is often efficient to set Content to 2 for the case...
where large integers appear during the computation. An integer value can be set by the keyword `Multiple` for backward compatibility.

Demand

If the value (a character string) is a valid directory name, then generated basis elements are put in the directory and are loaded on demand during normal form computations. Each element is saved in the binary form and its name coincides with the index internally used in the computation. These binary files are not removed automatically and one should remove them by hand.

If `Print` is ‘on’, the following informations are shown.

```
[93] gr(cyclic(4),[c0,c1,c2,c3],0)$
mod= 99999999, eval = []
(0)(0)<(0,2,0,0><(2,3),nb=2,nab=5,rp=2,sugar=2,mag=4
(0)(0)<(0,1,2,0><(1,2),nb=3,nab=6,rp=2,sugar=3,mag=4
(0)(0)<(0,1,1,2><(0,1),nb=4,nab=7,rp=3,sugar=4,mag=6
(0)(0)<(0,0,3,2><(5,6),nb=5,nab=8,rp=2,sugar=5,mag=4
(0)(0)<(0,1,0,4><(4,6),nb=6,nab=9,rp=3,sugar=5,mag=4
(0)(0)<(0,0,2,4><(6,8),nb=7,nab=10,rp=4,sugar=6,mag=6
....gb done
reduceall
.........
membercheck
(0,0)(0,0)(0,0)(0,0)
gbcheck total 8 pairs
.........
UP=(0,0)SP=(0,0)SPM=(0,0)NF=(0,0)NFM=(0.010002,0)ZNFM=(0.010002,0)
PZ=(0,0)NP=(0,0)MP=(0,0)RA=(0,0)MC=(0,0)GC=(0,0)T=40,B=0 M=8 F=6
D=12 ZR=5 NZR=6 Max_mag=6
[94]
```

In this example `mod` and `eval` indicate moduli used in trace-lifting. `mod` is a prime and `eval` is a list of integers used for evaluation when the ground field is a field of rational functions.

The following information is shown after every normal form computation.

```
(TNF)(TCONT)HT(INDEX),nb=NB,nab=NAB,rp=RP,sugar=S,mag=M
```

Meaning of each component is as follows.

TNF

CPU time for normal form computation (second)

TCONT

CPU time for content removal (second)

HT

Head term of the generated basis element

INDEX

Pair of indices which corresponds to the reduced S-polynomial
The summary of the informations shown after a Groebner basis computation is as follows. If a component shows timings and it contains two numbers, they are a pair of time for computation and time for garbage collection.

- **NB**: Number of basis elements after removing redundancy
- **NAB**: Number of all the basis elements
- **RP**: Number of remaining pairs
- **S**: Sugar of the generated basis element
- **M**: Magnitude of the generated basis element (shown if `ShowMag` is ‘on’.)

The summary of the informations shown after a Groebner basis computation is as follows. If a component shows timings and it contains two numbers, they are a pair of time for computation and time for garbage collection.

- **UP**: Time to manipulate the list of critical pairs
- **SP**: Time to compute S-polynomials over the rationals
- **SPM**: Time to compute S-polynomials over a finite field
- **NF**: Time to compute normal forms over the rationals
- **NFM**: Time to compute normal forms over a finite field
- **ZNFM**: Time for zero reductions in NFM
- **PZ**: Time to remove integer contets
- **NP**: Time to compute remainders for coefficients of polynomials with coefficients in the rationals
- **MP**: Time to select pairs from which S-polynomials are computed
- **RA**: Time to interreduce the Groebner basis candidate
- **MC**: Time to check that each input polynomial is a member of the ideal generated by the Groebner basis candidate.
GC
Time to check that the Groebner basis candidate is a Groebner basis

T
Number of critical pairs generated

B, M, F, D
Number of critical pairs removed by using each criterion

ZR
Number of S-polynomials reduced to 0

NZR
Number of S-polynomials reduced to non-zero results

Max_mag
Maximal magnitude among all the generated polynomials

8.5 Setting term orderings

A term is internally represented as an integer vector whose components are exponents with respect to variables. A variable list specifies the correspondences between variables and components. A type of term ordering specifies a total order for integer vectors. A type of term ordering is represented by an integer, a list of integer or matrices.

There are following three fundamental types.

0 (DegRevLex; total degree reverse lexicographic ordering)
In general, computation by this ordering shows the fastest speed in most Groebner basis computations. However, for the purpose to solve polynomial equations, this type of ordering is, in general, not so suitable. The Groebner bases obtained by this ordering is used for computing the number of solutions, solving ideal membership problem and seeds for conversion to other Groebner bases under different ordering.

1 (DegLex; total degree lexicographic ordering)
By this type term ordering, Groebner bases are obtained fairly faster than Lex (lexicographic) ordering, too. Alike the DegRevLex ordering, the result, in general, cannot directly be used for solving polynomial equations. It is used, however, in such a way that a Groebner basis is computed in this ordering after homogenization to obtain the final lexicographic Groebner basis.

2 (Lex; lexicographic ordering)
Groebner bases computed by this ordering give the most convenient Groebner bases for solving the polynomial equations. The only and serious shortcoming is the enormously long computation time. It is often observed that the number coefficients of the result becomes very very long integers, especially if the ideal is 0-dimensional. For such a case, it is empirically true for many cases that i.e., computation by gr() and/or hgr() may be quite effective.

By combining these fundamental orderings into a list, one can make various term ordering called elimination orderings.
In this example \(O_i \) indicates 0, 1 or 2 and \(L_i \) indicates the number of variables subject to the corresponding orderings. This specification means the following.

The variable list is separated into sub lists from left to right where the \(i \)-th list contains \(L_i \) members and it corresponds to the ordering of type \(O_i \). The result of a comparison is equal to that for the leftmost different sub components. This type of ordering is called an elimination ordering.

Furthermore one can specify a term ordering by a matrix. Suppose that a real \(n \times m \) matrix \(M \) has the following properties.

1. For all integer vectors \(v \) of length \(m \) \(Mv = 0 \) is equivalent to \(v = 0 \).
2. For all non-negative integer vectors \(v \) the first non-zero component of \(Mv \) is non-negative.

Then we can define a term ordering such that, for two vectors \(t \), \(s \), \(t > s \) means that the first non-zero component of \(M(t - s) \) is non-negative.

Types of term orderings are used as arguments of functions such as \(\text{gr}(\cdot) \). It is also set internally by \(\text{dp}_\text{ord}() \) and is used during executions of various functions.

For concrete definitions of term ordering and more information about Groebner basis, refer to, for example, the book [Becker,Weispfenning].

Note that the variable ordering have strong effects on the computation time as well as the choice of types of term orderings.

\[
[90] \quad B = \{x^{10} - t, x^{8} - z, x^{31} - x^{6} - x - y\}\\
[91] \quad \text{gr}(B, [x,y,z,t], 2);\]
\[
(x^{2} - 2 * y^{7} + (-41 * t^{2} - 13 * t - 1) * y^{2} + (2 * t^{17} - 12 * t^{14} + 30 * t^{11} - 11 - 168 * t^{9} - 40 * t^{8} + 70 * t^{7} + 252 * t^{6} + 30 * t^{5} - 140 * t^{4} - 168 * t^{3} + 2 * t^{2} - 12 * t + 16) * z^{2} * y + (-12 * t^{16} - 72 * t^{13} - 28 * t^{11} - 11 - 180 * t^{10} + 112 * t^{8} + 240 * t^{7} + 28 * t^{6} - 127 * t^{5} - 167 * t^{4} - 55 * t^{3} + 30 * t^{2} + 58 * t^{15}) * z^{4},
(y + t^{2} * z^{2}) * x * y^{7} + (20 * t^{2} + 6 * t + 1) * y^{2} + (-t^{17} + 6 * t^{14} - 12 * t^{12} - 15 * t^{11} + 84 * t^{9} + 20 * t^{8} - 35 * t^{7} + 16 * t^{6} + 15 * t^{5} + 70 * t^{4} + 84 * t^{3} + 2 * t^{2} + 9) * z^{2} * y + (6 * t^{16} - 36 * t^{13} + 14 * t^{11} + 90 * t^{10} - 56 * t^{8} - 120 * t^{7} - 14 * t^{6} + 64 * t^{5} + 84 * t^{4} + 27 * t^{3} - 16 * t^{2} - 30 * t + 7) * z^{4},
(t^{3} - 1) * x * y^{6} + (-6 * t^{13} + 24 * t^{10} - 20 * t^{8} - 36 * t^{7} + 40 * t^{5} - 24 * t^{4} - 6 * t^{3} - 20 * t^{2} - 6 * t - 1) * y + (t^{17} - 6 * t^{14} + 14 * t^{12} + 15 * t^{11} - 11 - 36 * t^{9} - 20 * t^{8} - 5 * t^{7} - 54 * t^{6} + 15 * t^{5} + 10 * t^{4} - 36 * t^{3} - 11 * t^{2} - 5 * t^{2} - 9) * z^{2},
-y^{8} - 8 * t * y^{7} + 3 * 16 * z * 2 * y^{2} + (-8 * t^{16} + 48 * t^{13} - 13 - 56 * t^{11} - 120 * t^{10} + 224 * t^{8} + 160 * t^{7} - 56 * t^{6} - 336 * t^{5} - 112 * t^{4} + 112 * t^{3} + 224 * t^{2} + 24 * t^{2} + 56) * z^{4} * y + (t^{24} - 8 * t^{21} + 20 * t^{19} + 28 * t^{18} + 120 * t^{16} - 56 * t^{15} - 14 * t^{14} + 300 * t^{13} + 13 * 70 * t^{12} + 56 * t^{11} - 400 * t^{10} - 84 * t^{9} + 84 * t^{8} + 268 * t^{7} + 84 * t^{6} - 65 * t^{5} - 63 * t^{4} - 36 * t^{3} + 46 * t^{2} - 12 * t + 11) * z * 2 * t * y^{5} + 5 * z * y^{2} + (-2 * t^{11} + 8 * t^{8} - 20 * t^{6} - 12 * t^{5} + 54 * t^{4} + 3 * 8 * t^{2} - 10 * t^{2} - 20 * z^{3} * y^{8} + 8 * t^{14} + 32 * t^{11} + 48 * t^{8} - 7 - 32 * t^{5} - 6 * t^{4} + 9 * t^{2} - t, z^{2} * y^{3} + (t^{7} - 2 * t^{4} + 3 * t^{2} + 2 * t^{2}) * y + (-2 * t^{6} + 4 * t^{3} + 2 * t^{2} - 2) * z^{2},
2 * t * 2 * y^{4} + 3 * z^{2} * y^{2} + (-2 * t^{5} + 4 * t^{2} - 6) * z^{4} * y + (4 * t^{8} - 7 * 8 * t^{5} + 52 * t^{4} - 4 * 4 * t^{3} + 5 * 5 * t^{2} - 2) * z, z^{3} * y^{2} + 2 * t^{3} * y + (t^{7} - 2 * t^{4} + 2 * t^{2} - t) * z^{2},
-t * z * y^{2} + 2 * t * 2 * z^{2} * y + (t^{6} - 2 * t^{3} - t + 1) * z^{4} + z^{5} - t^{4}\}
[92] \quad \text{gr}(B, [t,z,y,x], 2);\]
\[
[x^{10} - t, x^{8} - z, x^{31} - x^{6} - x - y]
As you see in the above example, the Groebner base under variable ordering \([x, y, z, t]\) has a lot of bases and each base itself is large. Under variable ordering \([t, z, y, x]\), however, \(\mathcal{B}\) itself is already the Groebner basis. Roughly speaking, to obtain a Groebner base under the lexicographic ordering is to express the variables on the left (having higher order) in terms of variables on the right (having lower order). In the example, variables \(t, z,\) and \(y\) are already expressed by variable \(x\), and the above explanation justifies such a drastic experimental results. In practice, however, optimum ordering for variables may not known beforehand, and some heuristic trial may be inevitable.

8.6 Weight

Term orderings introduced in the previous section can be generalized by setting a weight for each variable.

```[0] dp_td(<<1,1,1>>); 3
[1] dp_set_weight([1,2,3])$
[2] dp_td(<<1,1,1>>); 6
```

By default, the total degree of a monomial is equal to the sum of all exponents. This means that the weight for each variable is set to 1. In this example, the weights for the first, the second and the third variable are set to 1, 2 and 3 respectively. Therefore the total degree of \(<<1,1,1>>\) under this weight, which is called the weight of the monomial, is \(1*1+1*2+1*3=6\). By setting weights, different term orderings can be set under a type of term ordering. In some case a polynomial can be made weighted homogeneous by setting an appropriate weight.

A list of weights for all variables is called a weight vector. A weight vector is called a sugar weight vector if its elements are all positive and it is used for computing a weighted total degree of a monomial, because such a weight is used instead of total degree in sugar strategy. On the other hand, a weight vector whose elements are not necessarily positive cannot be set as a sugar weight, but it is useful for generalizing term order. In fact, such a weight vector already appeared in a matrix order. That is, each row of a matrix defining a term order is regarded as a weight vector. A block order is also considered as a refinement of comparison by weight vectors. It compares two terms by using a weight vector whose elements corresponding to variables in a block is 1 and 0 otherwise, then it applies a tie breaker.

A weight vector can be set by using `dp_set_weight()`. However it is more preferable if a weight vector can be set together with other parameters such as a type of term ordering and a variable order. This is realized as follows.

```[64] \quad \quad B=\{x+y+z-6, x*y+z+z*x-11, x*y*z-6\}$
[65] dp_gr_main(B|v=[x,y,z],sugarweight=[3,2,1],order=0);
\quad \quad [z^3-6z^2+11z-6, x+y+z-6, -y^2+(z+6)*y-z^2+6*z-11]
[66] dp_gr_main(B|v=[y,z,x],order=[[1,1,0],[0,1,0],[0,0,1]]);
\quad \quad [x^3-6x^2+11x-6, x*y+z-6, -x^2+(y+6)*x-y^2+6*y-11]
[67] dp_gr_main(B|v=[y,z,x],order=[[x,1,y,2,z,3]]);
\quad \quad [x+y+z-6, x^3-6x^2+11x-6, -x^2+(y+6)*x-y^2+6*y-11]
```
In each example, a term ordering is specified as options. In the first example, a variable order, a sugar weight vector and a type of term ordering are specified by options v, sugarweight and order respectively. In the second example, an option order is used to set a matrix ordering. That is, the specified weight vectors are used from left to right for comparing terms. The third example shows a variant of specifying a weight vector, where each component of a weight vector is specified variable by variable, and unspecified components are set to zero. In this example, a term order is not determined only by the specified weight vector. In such a case a tie breaker by the graded reverse lexicographic ordering is set automatically. This type of a term ordering specification can be applied only to builtin functions such as dp_gr_main(), dp_gr_mod_main(), not to user defined functions such as gr().

8.7 Groebner basis computation with rational function coefficients

Such variables that appear within the input polynomials but not appearing in the input variable list are automatically treated as elements in the coefficient field by top level functions, such as gr().

\[
\begin{align*}
\text{gr} &\left([a*x+b*y-c, d*x+e*y-f], [x,y], 2\right)
\end{align*}
\]

In this example, variables a, b, c, and d are treated as elements in the coefficient field. In this case, a Groebner basis is computed on a bi-variate polynomial ring \(F[x,y]\) over rational function field \(F = Q(a,b,c,d)\). Notice that coefficients are considered as a member in a field. As a consequence, polynomial factors common to the coefficients are removed so that the result, in general, is different from the result that would be obtained when the problem is considered as a computation of Groebner basis over a polynomial ring with rational function coefficients. And note that coefficients of a distributed polynomial are limited to numbers and polynomials because of efficiency.

8.8 Change of ordering

When we compute a lex order Groebner basis, it is often efficient to compute it via Groebner basis with respect to another order such as degree reverse lex order, rather than to compute it directory by gr() etc. If we know that an input is a Groebner basis with respect to an order, we can apply special methods called change of ordering for a Groebner basis computation with respect to another order, without using Buchberger algorithm. The following two functions are ones for change of ordering such that they convert a Groebner basis gbase with respect to the variable order vlist1 and the order type order into a lex Groebner basis with respect to the variable order vlist2.

\[
to lex(gbase, vlist1, order, vlist2)
\]

This function can be used only when gbase is an ideal over the rationals. The input gbase must be a Groebner basis with respect to the variable order vlist1 and the order type order. Moreover the ideal generated by gbase must be zero-dimensional. This computes the lex Groebner basis of gbase by using the modular change of ordering algorithm. The algorithm first computes the lex Groebner basis over a finite field. Then each element in the lex Groebner basis
over the rationals is computed with undetermined coefficient method and linear equation solving by Hensel lifting.

tolex_tl(gbase, vlist1, order, vlist2, homo)

This function computes the lex Groebner basis of gbase. The input gbase must be a Groebner basis with respect to the variable order vlist1 and the order type order. Buchberger algorithm with trace lifting is used to compute the lex Groebner basis, however the Groebner basis check and the ideal membership check can be omitted by using several properties derived from the fact that the input is a Groebner basis. So it is more efficient than simple repetition of Buchberger algorithm. If the input is zero-dimensional, this function inserts automatically a computation of Groebner basis with respect to an elimination order, which makes the whole computation more efficient for many cases. If homo is not equal to 0, homogenization is used in each step.

For zero-dimensional systems, there are several functions to compute the minimal polynomial of a polynomial and or a more compact representation for zeros of the system. They are all defined in `gr`. Refer to the sections for each functions.

8.9 Weyl algebra

So far we have explained Groebner basis computation in commutative polynomial rings. However Groebner basis can be considered in more general non-commutative rings. Weyl algebra is one of such rings and Risa/Asir implements fundamental operations in Weyl algebra and Groebner basis computation in Weyl algebra.

The \(n \) dimensional Weyl algebra over a field \(K = \mathbb{K}<x_1, \ldots, x_n, D_1, \ldots, D_n> \) is a non-commutative algebra which has the following fundamental relations:

\[
\begin{align*}
 x_i x_j - x_j x_i &= 0, \\
 D_i D_j - D_j D_i &= 0, \\
 D_i x_j - x_j D_i &= 0 \quad (i \neq j), \\
 D_i x_i - x_i D_i &= 1
\end{align*}
\]

\(D \) is the ring of differential operators whose coefficients are polynomials in \(\mathbb{K}[x_1, \ldots, x_n] \) and \(D_i \) denotes the differentiation with respect to \(x_i \). According to the commutation relation, elements of \(D \) can be represented as a \(\mathbb{K} \)-linear combination of monomials \(x_1^{i_1} \cdots x_n^{i_n} D_1^{j_1} \cdots D_n^{j_n} \). In Risa/Asir, this type of monomial is represented by \(<<i_1, \ldots, i_n, j_1, \ldots, j_n>> \) as in the case of commutative polynomial. That is, elements of \(D \) are represented by distributed polynomials. Addition and subtraction can be done by \(+, - \), but multiplication is done by calling \texttt{dp_weyl_mul()} because of the non-commutativity of \(D \).

```
[0] A<<1,2,2,1>>;
(1) *<<1,2,2,1>>
[1] B<<2,1,1,2>>;
(1) *<<2,1,1,2>>
(1) *<<3,3,3,3>>
[3] dp_weyl_mul(A,B);
(1) *<<3,3,3,3>> + (1) *<<2,3,2,2>> + (4) *<<2,3,2,2>> + (4) *<<2,2,2,2>>
+ (4) *<<1,3,1,3>> + (2) *<<1,2,1,2>>
```

The following functions are avilable for Groebner basis computation in Weyl algebra: \texttt{dp_weyl_gr_main()}, \texttt{dp_weyl_gr_mod_main()}, \texttt{dp_weyl_gr_f_main()}, \texttt{dp_weyl_f4_main()}.
dp_weyl_f4_mod_main(). Computation of the global b function is implemented as an application.

8.10 Functions for Groebner basis computation

8.10.1 gr, hgr, gr_mod, dgr

gr(plist, vlist, order)
hgr(plist, vlist, order)
gr_mod(plist, vlist, order, p)
dgr(plist, vlist, order, procs)

:: Groebner basis computation

return list

plist vlist procs

list

order number, list or matrix

p prime less than 2^27

• These functions are defined in ‘gr’ in the standard library directory.
• They compute a Groebner basis of a polynomial list plist with respect to the variable order vlist and the order type order. gr() and hgr() compute a Groebner basis over the rationals and gr_mod computes over GF(p).
• Variables not included in vlist are regarded as included in the ground field.
• gr() uses trace-lifting (an improvement by modular computation) and sugar strategy. hgr() uses trace-lifting and a cured sugar strategy by using homogenization.
• dgr() executes gr(), dgr() simultaneously on two processes in a child process list procs and returns the result obtained first. The results returned from both the processes should be equal, but it is not known in advance which method is faster. Therefore this function is useful to reduce the actual elapsed time.
• The CPU time shown after an execution of dgr() indicates that of the master process, and most of the time corresponds to the time for communication.
• When the elements of plist are distributed polynomials, the result is also a list of distributed polynomials. In this case, firstly the elements of plist is sorted by dp_sort and the Groebner basis computation is started. Variables must be given in vlist even in this case (these variables are dummy).

[0] load("gr")$
[64] load("cyclic")$
[74] G=gr(cyclic(5),[c0,c1,c2,c3,c4],2);
[c4^15+122*c4^10-122*c4^5-1,...]
[75] GM=gr_mod(cyclic(5),[c0,c1,c2,c3,c4],2,31991)$
24628*c4^15+29453*c4^10+2538*c4^5+7363
[76] (G[0]*24628-GM[0])%31991;
0
References

Section 8.10.6 [dp_gr_main dp_gr_mod_main dp_gr_f_main dp_weyl_gr_main dp_weyl_gr_mod_main dp_weyl_gr_f_main], page 134, Section 8.10.10 [dp_ord], page 137.

8.10.2 lex_hensel, lex_tl, tolex, tolex_d, tolex_tl

lex_hensel(plist, vlist1, order, vlist2, homo)
lex_tl(plist, vlist1, order, vlist2, homo)

: Groebner basis computation with respect to a lex order by change of ordering

tolex(plist, vlist1, order, vlist2)
tolex_d(plist, vlist1, order, vlist2, procs)
tolex_tl(plist, vlist1, order, vlist2, homo)

:: Groebner basis computation with respect to a lex order by change of ordering, starting from a Groebner basis

return list

plist vlist1 vlist2 procs
list

order number, list or matrix

homo flag

- These functions are defined in 'gr' in the standard library directory.

- `lex_hensel()` and `lex_tl()` first compute a Groebner basis with respect to the variable order `vlist1` and the order type `order`. Then the Groebner basis is converted into a lex order Groebner basis with respect to the variable order `vlist2`.

- `tolex()` and `tolex_tl()` convert a Groebner basis `plist` with respect to the variable order `vlist1` and the order type `order` into a lex order Groebner basis with respect to the variable order `vlist2`. `tolex_d()` does computations of basis elements in `tolex()` in parallel on the processes in a child process list `procs`.

- In `lex_hensel()` and `tolex_hensel()` a lex order Groebner basis is computed as follows. (Refer to [Noro,Yokoyama].)

 1. Compute a Groebner basis $G0$ with respect to `vlist1` and `order`. (Only in `lex_hensel()`.)
 2. Choose a prime which does not divide head coefficients of elements in $G0$ with respect to `vlist1` and `order`. Then compute a lex order Groebner basis Gp over $\text{GF}(p)$ with respect to `vlist2`.
 3. Compute NF, the set of all the normal forms with respect to $G0$ of terms appearing in Gp.
 4. For each element f in Gp, replace coefficients and terms in f with undetermined coefficients and the corresponding polynomials in NF respectively, and generate a system of linear equations Lf by equating the coefficients of terms in the replaced polynomial with 0.
 5. Solve Lf by Hensel lifting, starting from the unique mod p solution.
6. If all the linear equations generated from the elements in G_p could be solved, then the set of solutions corresponds to a lex order Groebner basis. Otherwise redo the whole process with another p.

- In `lex_tl()` and `tolex_tl()` a lex order Groebner basis is computed as follows. (Refer to [Noro, Yokoyama].)
 1. Compute a Groebner basis G_0 with respect to $vlist1$ and $order$. (Only in `lex_tl()`.)
 2. If G_0 is not zero-dimensional, choose a prime which does not divide head coefficients of elements in G_0 with respect to $vlist1$ and $order$. Then compute a candidate of a lex order Groebner basis via trace lifting with p. If it succeeds the candidate is indeed a lex order Groebner basis without any check. Otherwise redo the whole process with another p.
 3. If G_0 is zero-dimensional, starting from G_0, compute a Groebner basis G_1 with respect to an elimination order to eliminate variables other than the last variable in $vlist2$. Then compute a lex order Groebner basis stating from G_1. These computations are done by trace lifting and the selection of a modulus p is the same as in non zero-dimensional cases.

- Computations with rational function coefficients can be done only by `lex_tl()` and `tolex_tl()`.

- If `homo` is not equal to 0, homogenization is used in Buchberger algorithm.

- The CPU time shown after an execution of `tolex_d()` indicates that of the master process, and it does not include the time in child processes.

```
[78] K=katsura(5)$
  30msec + gc : 20msec
[79] V=[u5,u4,u3,u2,u1,u0]$ 0msec
[80] G0=hgr(K,V,2)$
  91.558sec + gc : 15.583sec
[81] G1=lex_hensel(K,V,0,V,0)$
  49.049sec + gc : 9.961sec
[82] G2=lex_tl(K,V,0,V,1)$
  31.186sec + gc : 3.500sec
[83] gb_comp(G0,G1);
    1
  10msec
[84] gb_comp(G0,G2);
    1
```

References

Section 8.10.6 [dp_gr_main dp_gr_mod_main dp_gr_f_main dp_weyl_gr_main dp_weyl_gr_mod_main dp_weyl_gr_f_main], page 134, Section 8.10.10 [dp_ord], page 137, Chapter 7 [Distributed computation], page 100

8.10.3 `lex_hensel_gsl`, `tolex_gsl`, `tolex_gsl_d`
Chapter 8: Groebner basis computation

`lex_hensel_gsl(plist, vlist1, order, vlist2, homo)`

:: Computation of an GSL form ideal basis

`tolex_gsl(plist, vlist1, order, vlist2)`

`tolex_gsl_d(plist, vlist1, order, vlist2, procs)`

:: Computation of an GSL form ideal basis stating from a Groebner basis

`return list plist vlist1 vlist2 procs list order number, list or matrix homo flag`

- `lex_hensel_gsl()` and `lex_hensel()` are variants of `tolex_gsl()` and `tolex()` respectively. The results are Groebner basis or a kind of ideal basis, called GSL form. `tolex_gsl_d()` does basis computations in parallel on child processes specified in `procs`.

- If the input is zero-dimensional and a lex order Groebner basis has the form \([f_0, x_1-f_1, \ldots, x_n-f_n]\) \((f_0, \ldots, f_n\) are univariate polynomials of \(x_0\); SL form), then this these functions return a list such as \([x_1, g_1, d_1], \ldots, [x_n, g_n, d_n], [x_0, f_0, f_0']\) (GSL form). In this list \(g_i\) is a univariate polynomial of \(x_0\) such that \(d_i*f_0'*g_i\) divides \(f_0\) and the roots of the input ideal is \([x_1=g_1/(d_1*f_0'), \ldots, x_n=g_n/(d_n*f_0')]\) for \(x_0\) such that \(f_0(x_0)=0\). If the lex order Groebner basis does not have the above form, these functions return a lex order Groebner basis computed by `tolex()`.

- Though an ideal basis represented as GSL form is not a Groebner basis we can expect that the coefficients are much smaller than those in a Groebner basis and that the computation is efficient. The CPU time shown after an execution of `tolex_gsl_d()` indicates that of the master process, and it does not include the time in child processes.

    ```plaintext
    [103] K=katsura(5)
    [104] V=[u5, u4, u3, u2, u1, u0]
    [105] G0=gr(K, V, 0)
    [106] GSL=tolex_gsl(G0, V, 0, V)
    [107] GSL[0];
    [u1, 8635873421130477667200000000*u0^31-\ldots]
    [108] GSL[1];
    [u2, 10352277157007342793600000000*u0^31-\ldots]
    [109] GSL[5];
    [u0, 117710218761930641246400000000*u0^32-\ldots,
    37667270003817805198848000000*u0^31-\ldots]
    ```

References

Section 8.10.2 [lex_hensel lex_tl tolex tolex_d tolex_tl], page 130, Chapter 7 [Distributed computation], page 100

8.10.4 gr_minipoly, minipoly

`gr_minipoly(plist, vlist, order, poly, v, homo)`

:: Computation of the minimal polynomial of a polynomial modulo an ideal
Chapter 8: Groebner basis computation

\texttt{minipoly}(\textit{plist}, \textit{vlist}, \textit{order}, \textit{poly}, \textit{v})
:: Computation of the minimal polynomial of a polynomial modulo an ideal

\textit{return} \quad \textit{polynomial}
\textit{plist} \quad \textit{vlist} \quad \textit{list}
\textit{order} \quad \textit{number, list or matrix}
\textit{poly} \quad \textit{polynomial}
\textit{v} \quad \textit{indeterminate}

\textit{homo} \quad \textit{flag}

- \texttt{gr\textunderscore minipoly()} begins by computing a Groebner basis. \texttt{minipoly()} regards an input as a Groebner basis with respect to the variable order \textit{vlist} and the order type \textit{order}.
- Let \(K \) be a field. If an ideal \(I \) in \(K[X] \) is zero-dimensional, then, for a polynomial \(p \) in \(K[X] \), the kernel of a homomorphism from \(K[v] \) to \(K[X]/I \) which maps \(f(v) \) to \(f(p) \) mod \(I \) is generated by a polynomial. The generator is called the minimal polynomial of \(p \) modulo \(I \).
- \texttt{gr\textunderscore minipoly()} and \texttt{minipoly()} computes the minimal polynomial of a polynomial \(p \) and returns it as a polynomial of \(v \).
- The minimal polynomial can be computed as an element of a Groebner basis. But if we are only interested in the minimal polynomial, \texttt{minipoly()} and \texttt{gr\textunderscore minipoly()} can compute it more efficiently than methods using Groebner basis computation.
- It is recommended to use a degree reverse lex order as a term order for \texttt{gr\textunderscore minipoly()}.

\begin{verbatim}
[117] G=tolex(G0,V,0,V)$
43.818sec + gc : 11.202sec
[118] GSL=tolex_gsl(G0,V,0,V)$
17.123sec + gc : 2.590sec
[119] MP=minipoly(G0,V,0,u0,z)$
4.370sec + gc : 780msec
\end{verbatim}

References
Section 8.10.2 \{\texttt{lex\textunderscore hensel} \texttt{lex_tl} \texttt{tolex} \texttt{tolex_d} \texttt{tolex_tl}\}, page 130.

8.10.5 \texttt{tolexm, minipolym}

\texttt{tolexm}(\textit{plist}, \textit{vlist1}, \textit{order}, \textit{vlist2}, \textit{mod})
:: Groebner basis computation modulo \textit{mod} by change of ordering.

\texttt{minipolym}(\textit{plist}, \textit{vlist1}, \textit{order}, \textit{poly}, \textit{v}, \textit{mod})
:: Minimal polynomial computation modulo \textit{mod} the same method as

\textit{return} \quad \texttt{tolexm()} : list, \texttt{minipolym()} : polynomial
\textit{plist} \quad \textit{vlist1} \quad \textit{vlist2} \quad \textit{list}
\textit{order} \quad \textit{number, list or matrix}
\textit{mod} \quad \textit{prime}
Chapter 8: Groebner basis computation

- An input plist must be a Groebner basis modulo mod with respect to the variable order vlist1 and the order type order.
- minipolym() executes the same computation as in minipoly.
- tolexm() computes a lex order Groebner basis modulo mod with respect to the variable order vlist2, by using FGLM algorithm.

\[
\begin{align*}
[197] & \text{tolexm}(G0,V,0,V,31991); \\
[8271] & u0^31+10435*u0^30+816*u0^29+26809*u0^28+\ldots, \\
[198] & \text{minipolym}(G0,V,0,u0,z,31991); \\
& z^{32}+11405*z^{31}+20868*z^{30}+21602*z^{29}+\ldots
\end{align*}
\]

References
- Section 8.10.2 [lex_hensel lex_tl tolex tolex_d tolex_tl], page 130, Section 8.10.4 [gr_minipoly minipoly], page 132.

8.10.6 dp_gr_main, dp_gr_mod_main, dp_gr_f_main, dp_weyl_gr_main,
dp_weyl_gr_mod_main, dp_weyl_gr_f_main

- These functions are fundamental built-in functions for Groebner basis computation and gr(), hgr() and gr_mod() are all interfaces to these functions. Functions whose names contain weyl are those for computation in Weyl algebra.
- dp_gr_f_main() and dp_weyl_gr_f_main() are functions for Groebner basis computation over various finite fields. Coefficients of input polynomials must be converted to elements of a finite field currently specified by setmod_ff().
- If homo is not equal to 0, homogenization is applied before entering Buchberger algorithm
- For dp_gr_mod_main(), modular means a computation over GF(modular). For dp_gr_main(), modular has the following mean.
 1. If modular is 1, trace lifting is used. Primes for trace lifting are generated by lprime(), starting from lprime(0), until the computation succeeds.
 2. If modular is an integer greater than 1, the integer is regarded as a prime and trace lifting is executed by using the prime. If the computation fails then 0 is returned.
3. If $modular$ is negative, the above rule is applied for -$modular$ but the Groebner basis check and ideal-membership check are omitted in the last stage of trace lifting.

- $\text{gr}(P,V,0), \text{hgr}(P,V,0)\text{ and } \text{gr}_\text{mod}(P,V,0,M)$ execute $\text{dp_gr_main}(P,V,0,1,0), \text{dp_gr_main}(P,V,1,1,0)$ and $\text{dp_gr_mod_main}(P,V,0,M,0)$ respectively.
- Actual computation is controlled by various parameters set by dp_gr_flags(), other then by homo and modular.

References
Section 8.10.10 [dp_ord], page 137, Section 8.10.9 [dp_gr_flags dp_gr_print], page 136, Section 8.10.1 [gr hgr gr_mod], page 129, Section 10.5.1 [setmod_ff], page 168, Section 8.4 [Controlling Groebner basis computations], page 121

8.10.7 dp_f4_main, dp_f4_mod_main, dp_weyl_f4_main, $\text{dp_weyl_f4_mod_main}$

\begin{verbatim}
\text{dp_f4_main}(plist, vlist, order)
\text{dp_f4_mod_main}(plist, vlist, order)
\text{dp_weyl_f4_main}(plist, vlist, order)
\text{dp_weyl_f4_mod_main}(plist, vlist, order)
\end{verbatim}

:: Groebner basis computation by F4 algorithm (built-in functions)

\begin{verbatim}
return list
plist vlist list
order number, list or matrix
\end{verbatim}

- These functions compute Groebner bases by F4 algorithm.
- F4 is a new generation algorithm for Groebner basis computation invented by J.C. Faugere. The current implementation of dp_f4_main() uses Chinese Remainder theorem and not highly optimized.
- Arguments and actions are the same as those of dp_gr_main(), dp_gr_mod_main(), dp_weyl_gr_main(), $\text{dp_weyl_gr_mod_main()}$, except for lack of the argument for controlling homogenization.

References
Section 8.10.10 [dp_ord], page 137, Section 8.10.9 [dp_gr_flags dp_gr_print], page 136, Section 8.10.1 [gr hgr gr_mod], page 129, Section 10.5.1 [setmod_ff], page 168, Section 8.4 [Controlling Groebner basis computations], page 121

8.10.8 nd_gr, nd_gr_trace, nd_f4, nd_f4_trace, nd_weyl_gr, nd_weyl_gr_trace

\begin{verbatim}
\text{nd_gr}(plist, vlist, p, order)
\text{nd_gr_trace}(plist, vlist, homo, p, order)
\text{nd_f4}(plist, vlist, modular, order)
\text{nd_f4_trace}(plist, vlist, homo, p, order)
\text{nd_weyl_gr}(plist, vlist, p, order)
\text{nd_weyl_gr_trace}(plist, vlist, homo, p, order)
\end{verbatim}

:: Groebner basis computation (built-in functions)
return list
plist vlist list
order number, list or matrix
homo flag

modular flag or prime

• These functions are new implementations for computing Groebner bases.
 • \texttt{nd_gr} executes Buchberger algorithm over the rationals if \(p \) is 0, and that over GF(p) if \(p \) is a prime.
 • \texttt{nd_gr_trace} executes the trace algorithm over the rationals. If \(p \) is 0 or 1, the trace algorithm is executed until it succeeds by using automatically chosen primes. If \(p \) a positive prime, the trace is computed over GF(p). If the trace algorithm fails 0 is returned. If \(p \) is negative, the Groebner basis check and ideal-membership check are omitted. In this case, an automatically chosen prime if \(p \) is 1, otherwise the specified prime is used to compute a Groebner basis candidate. Execution of \texttt{nd_f4_trace} is done as follows: For each total degree, an F4-reduction of S-polynomials over a finite field is done, and S-polynomials which give non-zero basis elements are gathered. Then F4-reduction over Q is done for the gathered S-polynomials. The obtained polynomial set is a Groebner basis candidate and the same check procedure as in the case of \texttt{nd_gr_trace} is done.
 • \texttt{nd_f4} executes F4 algorithm over Q if \texttt{modular} is equal to 0, or over a finite field GF(modular) if \texttt{modular} is a prime number of machine size (\(<2^{29})
 • \texttt{nd_weyl_gr}, \texttt{nd_weyl_gr_trace} are for Weyl algebra computation.
 • Each function cannot handle rational function coefficient cases.
 • In general these functions are more efficient than \texttt{dp_main}, \texttt{dp_mod_main}, especially over finite fields.

\begin{verbatim}
[38] load("cyclic")$
[49] C=cyclic(7)$
[50] V=vars(C)$
[51] cputime(1)$
[52] dp_gr_mod_main(C,V,0,31991,0)$
26.06sec + gc : 0.313sec(26.4sec)
[53] nd_gr(C,V,31991,0)$
ndv_alloc=1477188
5.736sec + gc : 0.1837sec(5.921sec)
[54] dp_f4_mod_main(C,V,31991,0)$
3.51sec + gc : 0.7109sec(4.221sec)
[55] nd_f4(C,V,31991,0)$
1.906sec + gc : 0.126sec(2.032sec)
\end{verbatim}

References
Section 8.10.10 [\texttt{dp_ord}], page 137, Section 8.10.9 [\texttt{dp_flags} \texttt{dp_print}], page 136, Section 8.4 [Controlling Groebner basis computations], page 121

8.10.9 \texttt{dp_flags}, \texttt{dp_print}
dp_gr_flags([list])
dp_gr_print([i])

and showing informations.

return value currently set

list list

i integer

• dp_gr_flags() sets and shows various parameters for Groebner basis computation.
 • If no argument is specified the current settings are returned.
 • Arguments must be specified as a list such as ["Print",1,"NoSugar",1,...]. Names of parameters must be character strings.
 • dp_gr_print() is used to set and show the value of a parameter Print and PrintShort.

 \[
 \begin{array}{ll}
 i=0 & \text{Print}=0, \text{PrintShort}=0 \\
 i=1 & \text{Print}=1, \text{PrintShort}=0 \\
 i=2 & \text{Print}=0, \text{PrintShort}=1 \\
 \end{array}
 \]

This functions is prepared to get quickly the value when a user defined function calling dp_gr_main() etc. uses the value as a flag for showing intermediate informations.

References

Section 8.4 [Controlling Groebner basis computations], page 121

8.10.10 dp_ord

dp_ord([order])

:: Set and show the ordering type.

return ordering type (number, list or matrix)

order number, list or matrix

• If an argument is specified, the function sets the current ordering type to order. If no argument is specified, the function returns the ordering type currently set.
 • There are two types of functions concerning distributed polynomial, functions which take a ordering type and those which don’t take it. The latter ones use the current setting.
 • Functions such as gr(), which need a ordering type as an argument, call dp_ord() internally during the execution. The setting remains after the execution.
 Fundamental arithmetics for distributed polynomial also use the current setting. Therefore, when such arithmetics for distributed polynomials are done, the current setting must coincide with the ordering type which was used upon the creation of the polynomials. It is assumed that such polynomials were generated under the same ordering type.
 • Type of term ordering must be correctly set by this function when functions other than top level functions are called directly.
Chapter 8: Groebner basis computation

8.10.11 dp_ptod

dp_ptod(poly, vlist)
:: Converts an ordinary polynomial into a distributed polynomial.

return distributed polynomial
poly polynomial
vlist list

• According to the variable ordering vlist and current type of term ordering, this function
 converts an ordinary polynomial into a distributed polynomial.

• Indeterminates not included in vlist are regarded to belong to the coefficient field.

8.10.12 dp_dtop

dp_dtop(dpoly, vlist)
:: Converts a distributed polynomial into an ordinary polynomial.

return polynomial
dpoly distributed polynomial
vlist list

• This function converts a distributed polynomial into an ordinary polynomial according
 to a list of indeterminates vlist.

• vlist is such a list that its length coincides with the number of variables of dpoly.

References
Section 8.5 [Setting term orderings], page 124
Section 8.10.12 [dp_dtop], page 138, Section 8.10.10 [dp_ord], page 137.

8.10.11 dp_ptod

dp_ptod(poly, vlist)
:: Converts an ordinary polynomial into a distributed polynomial.

return distributed polynomial
poly polynomial
vlist list

• According to the variable ordering vlist and current type of term ordering, this function
 converts an ordinary polynomial into a distributed polynomial.

• Indeterminates not included in vlist are regarded to belong to the coefficient field.

8.10.12 dp_dtop

dp_dtop(dpoly, vlist)
:: Converts a distributed polynomial into an ordinary polynomial.

return polynomial
dpoly distributed polynomial
vlist list

• This function converts a distributed polynomial into an ordinary polynomial according
 to a list of indeterminates vlist.

• vlist is such a list that its length coincides with the number of variables of dpoly.

References
Section 8.5 [Setting term orderings], page 124
Section 8.10.12 [dp_dtop], page 138, Section 8.10.10 [dp_ord], page 137.
8.10.13 dp_mod, dp_rat

\texttt{dp_mod}(p, mod, subst)
:: Converts a distributed polynomial into one with coefficients in a finite field.

\texttt{dp_rat}(p)
:: Converts a distributed polynomial with coefficients in a finite field into one
with coefficients in the rationals.

\textit{return} distributed polynomial
\textit{p} distributed polynomial
\textit{mod} prime
\textit{subst} list

- \texttt{dp_nf_mod()} and \texttt{dp_true_nf_mod()} require distributed polynomials with coefficients
 in a finite field as arguments. \texttt{dp_mod()} is used to convert distributed polynomials
 with rational number coefficients into appropriate ones. Polynomials with coefficients
 in a finite field cannot be used as inputs of operations with polynomials with rational
 number coefficients. \texttt{dp_rat()} is used for such cases.
- The ground finite field must be set in advance by using \texttt{setmod()}.
- \textit{subst} is such a list as \[
\left[\left[\text{var, value}\right], \ldots\right]\]. This is valid when the ground field of the
 input polynomial is a rational function field. \textit{var}'s are variables in the ground field
 and the list means that \textit{value} is substituted for \textit{var} before converting the coefficients
 into elements of a finite field.

References
Section 8.10.16 [\texttt{dp_nf} \texttt{dp_nf_mod} \texttt{dp_true_nf} \texttt{dp_true_nf_mod}], page 140,
Section 6.3.11 [\texttt{subst} \texttt{psubst}], page 51, Section 6.1.16 [\texttt{setmod}], page 43.

8.10.14 dp_homo, dp_dehomo

\texttt{dp_homo}(dpoly)
:: Homogenize a distributed polynomial

\texttt{dp_dehomo}(dpoly)
:: Dehomogenize a homogenous distributed polynomial

\textit{return} distributed polynomial
\textit{dpoly} distributed polynomial

- \texttt{dp_homo()} makes a copy of \textit{dpoly}, extends the length of the exponent vector of each
term \textit{t} in the copy by 1, and sets the value of the newly appended component to
\texttt{d_deg}(\textit{t}), where \textit{d} is the total degree of \textit{dpoly}.
- \texttt{dp_dehomo()} make a copy of \textit{dpoly} and removes the last component of each terms in
the copy.
- Appropriate term orderings must be set when the results are used as inputs of some
operations.
- These are used internally in \texttt{hgr()} etc.
Chapter 8: Groebner basis computation

[202] \(X = <1,2,3> + 3*<1,2,1>; \)
(1)*<1,2,3>+(3)*<1,2,1>;
[203] dp_homo(X);
(1)*<1,2,3,0>+(3)*<1,2,1,2>;
[204] dp_dehomo(0);
(1)*<1,2,3>+(3)*<1,2,1>;

References
Section 8.10.1 [gr hgr gr_mod], page 129.

8.10.15 dp_ptozp, dp_prim

dp_ptozp(dpoly)
:: Converts a distributed polynomial poly with rational coefficients into an
integral distributed polynomial such that GCD of all its coefficients is 1.

dp_prim(dpoly)
:: Converts a distributed polynomial poly with rational function coefficients
into an integral distributed polynomial such that polynomial GCD of all its
coefficients is 1.

return distributed polynomial
dpoly distributed polynomial

- dp_ptozp() executes the same operation as ptozp() for a distributed polynomial. If
 the coefficients include polynomials, polynomial contents included in the coefficients
 are not removed.
- dp_prim() removes polynomial contents.

[208] X = dp_ptod(3*(x-y)*(y-z)*(z-x),[x]);
(-3*y+3*z)*<<2>>+(3*y^2-3*z^2)*<<1>>+(-3*z*y^2+3*z^2*y)*<<0>>
[209] dp_ptozp(X);
(-y+z)*<<2>>+(y^2-z^2)*<<1>>+(-z*y^2+z^2*y)*<<0>>
[210] dp_prim(X);
(1)*<2>+(z-y)*<<1>>+(z*y)*<<0>>

References
Section 6.3.18 [ptozp], page 56.

8.10.16 dp_nf, dp_nf_mod, dp_true_nf, dp_true_nf_mod

dp_nf(indexlist, dpoly, dpolyarray, fullreduce)
dp_nf_mod(indexlist, dpoly, dpolyarray, fullreduce, mod)
:: Computes the normal form of a distributed polynomial. (The result may be
multiplied by a constant in the ground field.)

dp_true_nf(indexlist, dpoly, dpolyarray, fullreduce)
dp_true_nf_mod(indexlist, dpoly, dpolyarray, fullreduce, mod)
:: Computes the normal form of a distributed polynomial. (The true result is
returned in such a list as [numerator, denominator])

return dp_nf(): distributed polynomial, dp_true_nf(): list
indexlist list
dpoly distributed polynomial
dpolyarray array of distributed polynomial
fullreduce flag
mod prime

- Computes the normal form of a distributed polynomial.
- \texttt{dp_nf_mod()} and \texttt{dp_true_nf_mod()} require distributed polynomials with coefficients in a finite field as arguments.
- The result of \texttt{dp_nf()} may be multiplied by a constant in the ground field in order to make the result integral. The same is true for \texttt{dp_nf_mod()}, but it returns the true normal form if the ground field is a finite field.
- \texttt{dp_true_nf()} and \texttt{dp_true_nf_mod()} return such a list as \([nm, dn]\). Here \(nm\) is a distributed polynomial whose coefficients are integral in the ground field, \(dn\) is an integral element in the ground field and \(nm/dn\) is the true normal form.
- \texttt{dpolyarray} is a vector whose components are distributed polynomials and \texttt{indexlist} is a list of indices which is used for the normal form computation.
- When argument \texttt{fullreduce} has non-zero value, all terms are reduced. When it has value 0, only the head term is reduced.
- As for the polynomials specified by \texttt{indexlist}, one specified by an index placed at the preceding position has priority to be selected.
- In general, the result of the function may be different depending on \texttt{indexlist}. However, the result is unique for Groebner bases.
- These functions are useful when a fixed non-distributed polynomial set is used as a set of reducers to compute normal forms of many polynomials. For single computation \texttt{p_nf} and \texttt{p_true_nf} are sufficient.

```
[0] load("gr")$
[64] load("katsura")$
[69] K=katsura(4)$
[70] dp\_ord(2)$
[71] V=[u0,u1,u2,u3,u4]$
[72] DP1=newvect(length(K),map(dp\_ptod,K,V))$
[73] G=gr(K,V,2)$
[74] DP2=newvect(length(G),map(dp\_ptod,G,V))$
[75] T=dp\_ptod((u0-u1+u2-u3+u4)^2,V)$
[76] dp\_dtop(dp\_nf([0,1,2,3,4],T,DP1,1),V);
   u4^2+(6*u3+2*u2+6*u1-2)*u4+9*u3^2+(6*u2+18*u1-6)*u3+u2^2
   +(6*u1-2)*u2+9*u1^2-2*6*u1+1
[77] dp\_dtop(dp\_nf([4,3,2,1,0],T,DP1,1),V);
  -5*u4^2*(-4*u3-4*u2-4*u1)*u4-u3^2-3*u3-u2^2+(2*u1-1)*u2-2*u1^2-3*u1+1
[78] dp\_dtop(dp\_nf([0,1,2,3,4],T,DP2,1),V);
  -1138079768451657780886122972730785203470970010204714556333530492210
   4567759300057165055600062087150928400876150217079820311439477560587583
   488*u4^15+...
```
dp_dtop(dp_nf([4,3,2,1,0],T,DP2,1),V);
-11380879768451657780886122972730785203470970010204714556333530492210
466775930005716505560620871509284008761510217079820311439477560587583
488*u4^15+...
[78] @78==@79;
1

References
Section 8.10.12 [dp_dtop], page 138, Section 8.10.10 [dp_ord], page 137, Section 8.10.13 [dp_mod dp_rat], page 139, Section 8.10.27 [p_nf p_nf_mod p_true_nf p_true_nf_mod], page 147.

8.10.17 dp_hm, dp_ht, dp hc, dp_rest

dp_hm(dpoly)
:: Gets the head monomial.
dp_ht(dpoly)
:: Gets the head term.
dp_hc(dpoly)
:: Gets the head coefficient.
dp_rest(dpoly)
:: Gets the remainder of the polynomial where the head monomial is removed.
return dp_hm(), dp_ht(), dp_rest() : distributed polynomial dp_hc() : number or polynomial
dpoly distributed polynomial
• These are used to get various parts of a distributed polynomial.
• The next equations hold for a distributed polynomial p.

\[
p = \text{dp}
\]
\[
\text{hm}(p) + \text{dp}
\]
\[
\text{rest}(p)
\]
dp_hm(p) = dp_hc(p) dp_ht(p)
[87] dp_ord(0)$
[88] X=ptozp((a46^2+7/10*a46+7/48)*u3^4-50/27*a46^2-35/27*a46-49/216)$
[89] T=dp_ptod(X,[u3,u4,a46])$
[90] dp_hm(T);
(2160)*<<4,0,2>>
[91] dp_ht(T);
(1)*<<4,0,2>>
[92] dp_hc(T);
2160
[93] dp_rest(T);
(1512)*<<4,0,1>>+(315)*<<4,0,0>>+(-4000)*<<0,0,2>>+(-2800)*<<0,0,1>>
+(490)*<<0,0,0>>

8.10.18 dp_td, dp_sugar

dp_td(dpoly)
:: Gets the total degree of the head term.
\textbf{dp_sugar}(dpoly)

:: Gets the sugar of a polynomial.

\texttt{return} non-negative integer

\texttt{dpoly} distributed polynomial

\texttt{onoff} flag

\begin{itemize}
 \item Function \texttt{dp_td()} returns the total degree of the head term, i.e., the sum of all exponent of variables in that term.
 \item Upon creation of a distributed polynomial, an integer called \texttt{sugar} is associated. This value is the total degree of the virtually homogenized one of the original polynomial.
 \item The quantity \texttt{sugar} is an important guide to determine the selection strategy of critical pairs in Groebner basis computation.
\end{itemize}

\begin{verbatim}
[74] dp_ord(0)
[75] X=<<1,2>>+<<0,1>>$
[76] Y=<<1,2>>+<<1,0>>$
[77] Z=X-Y;
(-1)*<<1,0>>+(1)*<<0,1>>
[78] dp_sugar(T);
3
\end{verbatim}

\section*{8.10.19 dp_lcm}

\texttt{dp_lcm}(dpoly1, dpoly2)

:: Returns the least common multiple of the head terms of the given two polynomials.

\texttt{return} distributed polynomial

\texttt{dpoly1} \texttt{dpoly2}

distributed polynomial

\begin{itemize}
 \item Returns the least common multiple of the head terms of the given two polynomials, where coefficient is always set to 1.
\end{itemize}

\begin{verbatim}
[100] dp_lcm(<<1,2,3,4,5>>,<<5,4,3,2,1>>);
(1)*<<5,4,3,4,5>>
\end{verbatim}

\textbf{References}

Section 8.10.27 \cite{p_nf p_nf_mod p_true_nf p_true_nf_mod}, page 147.

\section*{8.10.20 dp_redble}

\texttt{dp_redble}(dpoly1, dpoly2)

:: Checks whether one head term is divisible by the other head term.

\texttt{return} integer

\texttt{dpoly1} \texttt{dpoly2}

distributed polynomial

\begin{itemize}
 \item Returns 1 if the head term of \texttt{dpoly2} divides the head term of \texttt{dpoly1}; otherwise 0.
\end{itemize}
Chapter 8: Groebner basis computation

- Used for finding candidate terms at reduction of polynomials.

```plaintext
[148] \texttt{C;}
(1)\texttt{**}\texttt{<<1,1,0,0,0>>+(1)\texttt{**}\texttt{<<0,1,1,1,0>>+(1)\texttt{**}\texttt{<<1,1,0,0,1>>+(1)\texttt{**}\texttt{<<1,0,0,1,1>>}
[149] \texttt{T;}
(3)\texttt{**}\texttt{<<2,1,0,0,0>>+(3)\texttt{**}\texttt{<<1,2,0,0,0>>+(1)\texttt{**}\texttt{<<0,3,0,0,0>>+(6)\texttt{**}\texttt{<<1,1,1,0,0>>}
[150] \textbf{for} \quad ( \ ; \texttt{T=dp\_rest(T)) \textbf{print}(\texttt{dp\_redble(T,C))};
```

References

Section 8.10.25 [\texttt{dp_red dp_red_mod}], page 146.

8.10.21 \texttt{dp_subd}

\texttt{dp_subd}(\texttt{dpoly1,dpoly2})

:: Returns the quotient monomial of the head terms.

```plaintext
return \texttt{distributed polynomial}
```

\texttt{dpoly1 dpoly2}

\texttt{distributed polynomial}

- \texttt{Gets dp_ht(dpoly1)/dp_ht(dpoly2). The coefficient of the result is always set to 1.}
- \texttt{Divisibility assumed.}

```plaintext
[162] \texttt{dp\_subd(<<1,2,3,4,5>>,<<1,1,2,3,4>>);}
(1)\texttt{**}\texttt{<<0,1,1,1,1>>}
```

References

Section 8.10.25 [\texttt{dp_red dp_red_mod}], page 146.

8.10.22 \texttt{dp_vtoe, dp_etov}

\texttt{dp_vtoe(vect)}

:: Converts an exponent vector into a term.

\texttt{dp_etov(dpoly)}

:: Convert the head term of a distributed polynomial into an exponent vector.

```plaintext
return \texttt{dp\_vtoe : distributed polynomial, dp\_etov : vector}
```

\texttt{vect vector}

\texttt{dpoly distributed polynomial}

- \texttt{dp_vtoe()} generates a term whose exponent vector is \texttt{vect}.
- \texttt{dp_etov()} generates a vector which is the exponent vector of the head term of \texttt{dpoly}.

```plaintext
[211] \texttt{X=<<1,2,3>>;}
(1)\texttt{**}\texttt{<<1,2,3>>}
[212] \texttt{V=dp\_etov(X);}
[ \ 1 2 3 ]
[213] \texttt{V[2]++$}
[214] \texttt{Y=dp\_vtoe(V);}
(1)\texttt{**}\texttt{<<1,2,4>>}
```
8.10.23 dp_mbase

dp_mbase(dpplist)
:: Computes the monomial basis

return list of distributed polynomial
dpplist list of distributed polynomial

- Assuming that dpplist is a list of distributed polynomials which is a Groebner basis with respect to the current ordering type and that the ideal I generated by dpplist in K[X] is zero-dimensional, this function computes the monomial basis of a finite dimensional K-vector space K[X]/I.

- The number of elements in the monomial basis is equal to the K-dimension of K[X]/I.

\[K = \text{katsura}(5) \]
\[V = [u5, u4, u3, u2, u1, u0] \]
\[G0 = \text{gr}(K, V, 0) \]
\[H = \text{map}(dp_ptod, G0, V) \]
\[\text{map}(dp_ptod, dp_mbase(H), V) \]
\[[u0^5, u4*u0^3, u3*u0^3, u2*u0^3, u1*u0^3, u0^4, u3^2*u0, u2*u3*u0, u1*u3*u0, u1*u2*u0, u1^2*u0, u4*u0^2, u3*u0^2, u2*u0^2, u1*u0^2, u0^3, u3^2, u2*u3, u1*u3, u1*u2, u1^2, u4*u0, u3*u0, u2*u0, u1*u0, u0^2, u4, u3, u2, u1, u0, 1] \]

References
Section 8.10.1 [gr hgr gr_mod], page 129.

8.10.24 dp_mag

dp_mag(p)
:: Computes the sum of bit lengths of coefficients of a distributed polynomial.

return integer
p distributed polynomial

- This function computes the sum of bit lengths of coefficients of a distributed polynomial p. If a coefficient is non integral, the sum of bit lengths of the numerator and the denominator is taken.

- This is a measure of the size of a polynomial. Especially for zero-dimensional system coefficient swells are often serious and the returned value is useful to detect such swells.

- If ShowMag and Print for dp_gr_flags() are on, values of dp_mag() for intermediate basis elements are shown.

\[X = \text{dp_ptod}((x+2*y)^10, [x, y]) \]
\[\text{dp_mag}(X); \]
\[115 \]

References
Section 8.10.9 [dp_gr_flags dp_gr_print], page 136.
8.10.25 dp_red, dp_red_mod

\[\text{dp_red}(\text{dpoly1, dpoly2, dpoly3}) \]
\[\text{dp_red_mod}(\text{dpoly1, dpoly2, dpoly3, mod}) \]
\[
\text{return list } \text{dpoly1 dpoly2 dpoly3} \\
\text{distributed polynomial } \text{vlist} \text{ list} \\
\text{mod prime} \\
\]

- Reduces a distributed polynomial, \(\text{dpoly1} + \text{dpoly2} \), by \(\text{dpoly3} \) for single time.
- An input for \(\text{dp_red_mod()} \) must be converted into a distributed polynomial with coefficients in a finite field.
- This implies that the divisibility of the head term of \(\text{dpoly2} \) by the head term of \(\text{dpoly3} \) is assumed.
- When integral coefficients, computation is so carefully performed that no rational operations appear in the reduction procedure. It is computed for integers \(a \) and \(b \), and a term \(t \) as: \(a(\text{dpoly1} + \text{dpoly2}) - bt \text{dpoly3} \).
- The result is a list \([a \text{dpoly1}, a \text{dpoly2} - bt \text{dpoly3}]\).

\[\text{D=(3)*<<2,1,0,0,0>>+(3)*<<1,2,0,0,0>>+(1)*<<0,3,0,0,0>>}; \]
\[(3)*<<2,1,0,0,0>>+(3)*<<1,2,0,0,0>>+(1)*<<0,3,0,0,0>> \]
\[D\text{red}(D,R,C); \]
\[(6)*<<2,1,0,0,0>>+(6)*<<1,2,0,0,0>>+(2)*<<0,3,0,0,0>>, \\
(-1)*<<0,1,1,1,0>>+(\text{sp})\]

References
Section 8.10.13 [dp_mod dp_rat], page 139.

8.10.26 dp_sp, dp_sp_mod

\[\text{dp_sp}(\text{dpoly1, dpoly2}) \]
\[\text{dp_sp_mod}(\text{dpoly1, dpoly2, mod}) \]
\[
\text{return distributed polynomial } \text{dpoly1 dpoly2} \\
\text{distributed polynomial } \text{mod prime} \\
\]

- This function computes the S-polynomial of \(\text{dpoly1} \) and \(\text{dpoly2} \).
- Inputs of \(\text{dp_sp_mod()} \) must be polynomials with coefficients in a finite field.
Chapter 8: Groebner basis computation

- The result may be multiplied by a constant in the ground field in order to make the result integral.

```
X = dp_ptod(x^2*y+x*y, [x,y]);
(1) * <<2,1>> + (1) * <<1,1>>
```

```
Y = dp_ptod(x*y^2+x*y, [x,y]);
(1) * <<1,2>> + (1) * <<1,1>>
```

```
dp_sp(X,Y);
(-1) * <<2,1>> + (1) * <<1,2>>
```

References
Section 8.10.13 [dp_mod dp_rat], page 139.

8.10.27 p_nf, p_nf_mod, p_true_nf, p_true_nf_mod

```
p_nf(poly, plist, vlist, order)
p_nf_mod(poly, plist, vlist, order, mod)
  :: Computes the normal form of the given polynomial. (The result may be
     multiplied by a constant.)
```

```
p_true_nf(poly, plist, vlist, order)
p_true_nf_mod(poly, plist, vlist, order, mod)
  :: Computes the normal form of the given polynomial. (The result is returned
     as a form of [numerator, denominator])
```

```
return p_nf : polynomial, p_true_nf : list
poly polynomial
plist vlist list
order number, list or matrix
mod prime
```

- Defined in the package ‘gr’.
- Obtains the normal form of a polynomial by a polynomial list.
- These are interfaces to dp_nf(), dp_true_nf(), dp_nf_mod(), dp_true_nf_mod
- The polynomial poly and the polynomials in plist is converted, according to the variable ordering vlist and type of term ordering otype, into their distributed polynomial counterparts and passed to dp_nf().
- dp_nf(), dp_true_nf(), dp_nf_mod() and dp_true_nf_mod() is called with value 1 for fullreduce.
- The result is converted back into an ordinary polynomial.
- As for p_true_nf(), p_true_nf_mod() refer to dp_true_nf() and dp_true_nf_mod().

```
K = katsura(5)$
V = [u5,u4,u3,u2,u1,u0]$
G = hgr(K,V,2)$
p_nf(K[1],G,V,2); 0
L = p_true_nf(K[1]+1,G,V,2);
```
References
Section 8.10.11 [dp_ptod], page 138, Section 8.10.12 [dp_dtop], page 138, Section 8.10.10 [dp_ord], page 137, Section 8.10.16 [dp_nf dp_nf_mod dp_true_nf dp_true_nf_mod], page 140.

8.10.28 p_terms

def p_terms(poly, vlist, order):
 """: Monomials appearing in the given polynomial is collected into a list.
 return list
poly polynomial
vlist list
order number, list or matrix
 • Defined in the package ‘gr’.
 • This returns a list which contains all non-zero monomials in the given polynomial. The monomials are ordered according to the current type of term ordering and vlist.
 • Since polynomials in a Groebner base often have very large coefficients, examining a polynomial as it is may sometimes be difficult to perform. For such a case, this function enables to examine which term really exists.

 [233] G=gr(katsura(5), [u5,u4,u3,u2,u1,u0], 2)
 [234] p_terms(G[0], [u5,u4,u3,u2,u1,u0], 2);
 [u5, u0^31, u0^30, u0^29, u0^28, u0^27, u0^26, u0^25, u0^24, u0^23, u0^22, u0^21, u0^20, u0^19, u0^18, u0^17, u0^16, u0^15, u0^14, u0^13, u0^12, u0^11, u0^10, u0^9, u0^8, u0^7, u0^6, u0^5, u0^4, u0^3, u0^2, u0, 1]

8.10.29 gb_comp

def gb_comp(plist1, plist2):
 """: Checks whether two polynomial lists are equal or not as a set
 return 0 or 1
plist1 plist2
 • This function checks whether plist1 and plist2 are equal or not as a set.
 • For the same input and the same term ordering different functions for Groebner basis computations may produce different outputs as lists. This function compares such lists whether they are equal as a generating set of an ideal.

 [243] C=cyclic(6)
 [244] V=[c0, c1, c2, c3, c4, c5]
 [245] GO=gr(C, V, 0)
 [246] G=tollex(GO, V, 0)
 [247] GG=lex_tl(C, V, 0, V, 0)
 [248] gb_comp(G, GG); 1
8.10.30 katsura, hkatsura, cyclic, hcyclic

katsura(n)

hkatsura(n)

cyclic(n)

hcyclic(n)

:: Generates a polynomial list of standard benchmark.

return list

n integer

- Function katsura() is defined in 'katsura', and function cyclic() in 'cyclic'.
- These functions generate a series of polynomial sets, respectively, which are often used for testing and bench marking: katsura, cyclic and their homogenized versions.
- Polynomial set cyclic is sometimes called by other name: Arnborg, Lazard, and Davenport.

[74] load("katsura")$
[79] load("cyclic")$
[89] katsura(5);
[u0+2*u4+2*u3+2*u2+2*u1+2*u5-1, 2*u4*u0-u4+2*u1*u3+u2^2+2*u5*u1,
2*u3+u0+2*u1*u4-u3+(2*u1+2*u5)*u2, 2*u2*u0+2*u2*u4+(2*u1+2*u5)*u3
-u2*u1^2, 2*u1*u0+(2*u3+2*u5)*u4+2*u2*u3+2*u1*u2-u1,
u0^2-2*u0+2*u4^2+2*u3^2+2*u2^2+2*u1^2+2*u5^2]
[90] hkatsura(5);
[-t+u0+2*u4+2*u3+2*u2+2*u1+2*u5,
-u4*t+2*u4*u0+2*u1*u3+2*u2+2*u5*u1,-u3*t+2*u3*u0+2*u1+u4+(2*u1+2*u5)*u2,
-u2*t+2*u2*u0+2*u2*u4+(2*u1+2*u5)*u3+u1^2,
-u1*t+2*u1*u0+(2*u3+2*u5)*u4+2*u2*u3+2*u1*u2,
-u0*t+u0^2+2*u4^2+2*u3^2+2*u2^2+2*u1^2+2*u5^2]
[91] cyclic(6);
[c5*c4*c3*c2*c1*c0-1,
(((c4+c5)*c3+c5*c4)*c2+c5*c4*c3)*c1+c5*c4*c3*c2*c1,
(((c3+c5)*c2+c5*c4)*c1+c5*c4*c3)*c0+c4*c3*c2+c5*c4*c3*c2,
((c2+c5)*c1+c5*c4)*c0+c3*c2+c4*c3*c2+c5*c4*c3,
(c1+c5)*c0+c2*c1+c3*c2+c4*c3+c5*c4,c0+c1+c2+c3+c4+c5]
[92] hcyclic(6);
[-c^6+c5*c4*c3*c2*c1*c0,
(((c4+c5)*c3+c5*c4)*c2+c5*c4*c3)*c1+c5*c4*c3*c2*c1,
(((c3+c5)*c2+c5*c4)*c1+c5*c4*c3)*c0+c4*c3*c2+c5*c4*c3,c0+c1+c2+c3+c4+c5]

References

Section 8.10.12 [dp_dtop], page 138.

8.10.31 primadec, primedec

primadec(plist, vlist)
primedec(plist, vlist)
 :: Computes decompositions of ideals.

return
plist list of polynomials
vlist list of variables

- Function `primadec()` and `primedec()` are defined in `primdec`.
- `primadec()`, `primedec()` are the function for primary ideal decomposition and prime
decomposition of the radical over the rationals respectively.
- The arguments are a list of polynomials and a list of variables. These functions accept
ideals with rational function coefficients only.
- `primadec` returns the list of pair lists consisting a primary component and its associated
prime.
- `primedec` returns the list of prime components.
- Each component is a Groebner basis and the corresponding term order is indicated by
the global variables `PRIMAORD`, `PRIMEORD` respectively.
- `primadec` implements the primary decomposition algorithm in [Shimoyama, Yokoyama].
- If one only wants to know the prime components of an ideal, then use `primedec` because
`primadec` may need additional costs if an input ideal is not radical.

```
[84] load("primdec")$
[102] primedec([p*q^2+2*y^2+p^2*x+p*q*y,
    q^3*y^4-2*q^3*y^3+q^3*y^2)*x-q^3*y^4+q^3*y^3,
    -q^3*y^4+2*q^3*y^3+(-q^3+p*q^2)*y^2], [p,q,x,y]);
[[y,x],[y,p],[x,q],[q,p],[x-1,q],[(y-1)*x-y,q*y^2-2*q*y-p+q]]
[103] primadec([x,z*y,w*y^2,w^2*y-z^3,y^3], [z,y,x]);
[[[x,z*y,y^2,w^2*y-z^3],[z,y,x]],[[w,x,z*y,z^3,y^3],[w,z,y,x]]]
```

References
Section 6.3.15 [fctr sqfr], page 53, Section 8.5 [Setting term orderings],
page 124.

8.10.32 primedec_mod

`primedec_mod(plist, vlist, ord, mod, strategy)`
 :: Computes decompositions of ideals over small finite fields.

return
plist list of polynomials
vlist list of variables
ord number, list or matrix
mod positive integer
strategy integer

- Function `primedec_mod()` is defined in `primdec_mod` and implements the prime de-
composition algorithm in [Yokoyama].
• \texttt{primedec_mod()} is the function for prime ideal decomposition of the radical of a polynomial ideal over small finite field, and they return a list of prime ideals, which are associated primes of the input ideal.

• \texttt{primedec_mod()} gives the decomposition over GF(mod). The generators of each resulting component consists of integral polynomials.

• Each resulting component is a Groebner basis with respect to a term order specified by \([\text{vlist}, \text{ord}]\).

• If \texttt{strategy} is non zero, then the early termination strategy is tried by computing the intersection of obtained components incrementally. In general, this strategy is useful when the krull dimension of the ideal is high, but it may add some overhead if the dimension is small.

• If you want to see internal information during the computation, execute \texttt{dp_gr_print(2)} in advance.

\begin{verbatim}
[0] load("primdec_mod")$
[246] PP444=[x^8+x^2+t,y^8+y^2+t,z^8+z^2+t]$
[247] primedec_mod(PP444,[x,y,z,t],0,2,1);
[248] [[y+z,x+z,z^8+z^2+t],
 [x+y,y^2+y+z^2+z+1,z^8+z^2+t],
 [y+z+1,x+z+1,z^8+z^2+t],
 [x+z+1,y^2+y+z^2+z+1,z^8+z^2+t],
 [y+z+1,x^2+x+z^2+z+1,z^8+z^2+t],
 [x+y+1,y^2+y+z^2+z+1,z^8+z^2+t],[y+z,x+z+1,z^8+z^2+t]]$
\end{verbatim}

References
Section 6.3.17 [\texttt{modfctr}], page 55, Section 8.10.6 \[\texttt{dp_gr_main} \texttt{dp_gr_mod_main} \texttt{dp_gr_f_main} \texttt{dp_weyl_gr_main} \texttt{dp_weyl_gr_f_main}], page 134, Section 8.5 [\texttt{Setting term orderings}], page 124, Section 8.10.9 \[\texttt{dp_gr_flags} \texttt{dp_gr_print}], page 136.

8.10.33 \texttt{bfunction}, \texttt{bfct}, \texttt{generic_bfct}, \texttt{ann}, \texttt{ann0}

\texttt{bfunction}(f)
\texttt{bfct}(f)
\texttt{generic_bfct}(plist, vlist, dvlist, weight)
:: Computes the global \(b\) function of a polynomial or an ideal

\texttt{ann}(f)
\texttt{ann0}(f) :: Computes the annihilator of a power of polynomial

\texttt{return} \hspace{1cm} \texttt{polynomial} or \texttt{list}
\texttt{f} \hspace{1cm} \texttt{polynomial}
\texttt{plist} \hspace{1cm} \texttt{list of polynomials}
\texttt{vlist dvlist} \hspace{1cm} \texttt{list of variables}

• These functions are defined in ‘\texttt{bfct}’.
• `bfunction(f)` and `bfct(f)` compute the global b-function $b(s)$ of a polynomial f. $b(s)$ is a polynomial of the minimal degree such that there exists $P(x,s)$ in $D[s]$, which is a polynomial ring over Weyl algebra D, and $P(x,s)f^{s+1}=b(s)f^s$ holds.

• `generic_bfct(f, vlist, dvlist, weight)` computes the global b-function of a left ideal I in D generated by $plist$, with respect to $weight$. $vlist$ is the list of x-variables, $vlist$ is the list of corresponding D-variables.

• `bfunction(f)` and `bfct(f)` implement different algorithms and the efficiency depends on inputs.

• `ann(f)` returns the generator set of the annihilator ideal of f^s. `ann(f)` returns a list $[a, list]$, where a is the minimal integral root of the global b-function of f, and $list$ is a list of polynomials obtained by substituting s in `ann(f)` with a.

• See [Saito, Sturmfels, Takayama] for the details.

```plaintext
[0] load("bfct")$
[216] bfunction(x^3+y^3+z^3+x^2*y^2*z^2+x*y*z);
-9*s^5-63*s^4-173*s^3-233*s^2-154*s-40
[217] fctr(@);
[-1,1],[s+2,1],[3*s+4,1],[3*s+5,1],[s+1,2]
[218] F = [4*x^3*dt+y*z*dt+dx,x*z*dt+4*y^3*dt+dy,
   x*y*dt+5*z^4*dt+dz,-x^4-z*y*x-y^4-z^5+t]$
[219] generic_bfct(F,[t,z,y,x],[dt,dz,dy,dx],[1,0,0,0]);
20000*s^10-70000*s^9+101750*s^8-79375*s^7+35768*s^6-9277*s^5
   +1278*s^4-72*s^3
[220] P=x^3-y^2$
[221] ann(P);
[2*dy*x+3*dx*y^2,-3*dx*x-2*dy*y+6*s]
[222] ann0(P);
[-1,[2*dy*x+3*dx*y^2,-3*dx*x-2*dy*y-6]]
```

References

Section 8.9 [Weyl algebra], page 128.
9 Algebraic numbers

9.1 Representation of algebraic numbers

In Asir, algebraic number fields are not defined as independent objects. Instead, individual algebraic numbers are defined by some means. In Asir, an algebraic number field is defined virtually as a number field obtained by adjoining a finite number of algebraic numbers to the rational number field.

A new algebraic number is introduced in Asir in such a way where it is defined as a root of an univariate polynomial whose coefficients include already defined algebraic numbers as well as rational numbers. We shall call such a newly defined algebraic number a root. Also, we call such an univariate polynomial the defining polynomial of that root.

\[A_0 = \text{newalg}(x^2 + 1); \]
\[A_1 = \text{newalg}(x^3 + A_0 \cdot x + A_0); \]
\[\text{[type}(A_0), \text{ntype}(A_0)]; \]

In this example, the algebraic number assigned to \(A_0 \) is defined as a root of a polynomial \(x^2 + 1 \); that of \(A_1 \) is defined as a root of a polynomial \(x^3 + A_0 \cdot x + A_0 \), which you see contains the previously defined root \(A_0 \) in its coefficients.

The argument to \text{newalg}(), i.e., the defining polynomial, must satisfy the following conditions.

1. A defining polynomial must be an univariate polynomial.
2. A defining polynomial is used to simplify expressions containing that algebraic number. The procedure of such simplification is performed by an internal routine similar to the built-in function \text{srem}(), where the defining polynomial is used for the second argument, the divisor. By this reason, the leading coefficient of the defining polynomial must be a rational number (must not be an algebraic number.)
3. Every coefficient of a defining polynomial must be a ‘(multi-variate) polynomial’ in already defined root’s. Here, ‘(multi-variate) polynomial’ means a mathematical concept, not the object type ‘polynomial’ in Asir.
4. A defining polynomial must be irreducible over the field that is obtained by adjoining all root’s contained in its coefficients to the rational number field.

Only the first two conditions (1 and 2) are checked by function \text{newalg}(). Among all, it should be emphasized that no check is done for the irreducibility at all. The reason is that the irreducibility test requires enormously much computation time. You are trusted whether to check it at your own risk.

Once a root has been defined by \text{newalg}() function, it is given the type identifier for a number, and furthermore, the sub-type identifier for an algebraic number. (See Section 6.8.1 [type], page 75. Section 6.8.2 [ntype], page 76.) Also, any rational combination of rational numbers and root’s is an algebraic number.

\[N = (A_0^2 + A_1)/(A_1^2 - A_0 - 1); \]
\[((#1 + #0^2)/(#1^2 - #0 - 1)) \]
As you see it in the example, a root is displayed as \#n. But, you cannot input that root in its immediate output form. You have to refer to a root by a program variable assigned to the root, or to get it by \texttt{alg(n)} function, or by several other indirect means. A strange use of \texttt{newalg()}, with a same argument polynomial (except for the name of its main variable), will yield the old root instead of a new root though it is apparently inefficient.

\begin{verbatim}
[90] alg(0);
(0)
[91] newalg(t^2+1);
(0)
\end{verbatim}

The defining polynomial of a root can be obtained by \texttt{defpoly()} function.

\begin{verbatim}
[96] defpoly(A0);
t#0^2+1
[97] defpoly(A1);
t#1^3+t#0*t#1+t#0
\end{verbatim}

Here, you see a strange expression, \texttt{t#0} and \texttt{t#1}. They are a specially indeterminates generated and maintained by Asir internally. Indeterminate \texttt{t#0} corresponds to root \#0, and \texttt{t#0} to \#1. These indeterminates also cannot be input directly by a user in their immediate forms. You can get them by several ways: by \texttt{var()} function, or \texttt{algv(n)} function.

\begin{verbatim}
[98] var(@);
t#1
[99] algv(0);
t#0
\end{verbatim}

\section*{9.2 Operations over algebraic numbers}

In the previous section, we explained about the representation of algebraic numbers and their defining method. Here, we describe operations on algebraic numbers. Only a few functions are built-in, and almost all functions are provided as user defined functions. The file containing their definitions is \texttt{sp}, and it is placed under the same directory as \texttt{gr} is placed, i.e., the standard library directory of Asir.

\begin{verbatim}
[0] load("gr")$
[1] load("sp")$
\end{verbatim}

Or if you always need them, it is more convenient to include the \texttt{load} commands in \texttt{\$HOME/.asirrc}'.

Like the other numbers, algebraic numbers can get arithmetic operations applied. Simplification, however, by defining polynomials are not automatically performed. It is left to users to simplify their expressions. A fatal error shall result if the denominator expression will be simplified to 0. Therefore, be careful enough when you will create and deal with algebraic numbers which may denominators in their expressions.

Use \texttt{simpalg()} function for simplification of algebraic numbers by defining polynomials.

\begin{verbatim}
[49] T=A0^2+1;
(#0^2+1)
\end{verbatim}
Function `simplalg()` simplifies algebraic numbers which have the same structures as rational expressions in their appearances.

```asir
[39] A0=newalg(x^2+1);
(#0)
[40] T=(A0^2+A0+1)/(A0+3);
((-#0^2+#0+1)/(#0+3))
[41] simplalg(T);
(3/10*#0+1/10)
[42] T=1/(A0^2+1);
(((1)/(#0^2+1))
[43] simplalg(T);
div : division by 0
stopped in invalgp at line 258 in file "/usr/local/lib/asir/sp"
258 return 1/A;
(debug)
```

This example shows an error caused by zero division in the course of program execution of `simplalg()`, which attempted to simplify an algebraic number expression of which the denominator is 0.

Function `simplalg()` also can take a polynomial as its argument and simplifies algebraic numbers in its coefficients.

```asir
[43] simplalg(1/A0*x+1/(A0+1));
(-#0)*x+(-1/2*#0+1/2)
```

Thus, you can operate in polynomials which contain algebraic numbers as you do usually in ordinary polynomials, except for proper simplification by `simplalg()`.

```asir
[83] A0=newalg(x^2+1);
(#0)
[84] A1=newalg(x^3+A0*x+A0);
(#1)
[85] T=(2*A0+A1*A0+A1^2)*x+(1+A1)/(2+A0);
(#1^2+#0*#1+2*#0)*x+((#1+1)/(#0+2))
[86] S=algp2rat(T);
(((t#0+2)*t#1^2+(t#0^2+2*t#0)*t#1+2*t#0+4*t#0)*x+t#1+1)/(t#0+2)
[87] algp2rat(coef(T,1));
t#1^2+t#0*t#1+1+2*t#0
```

As you see by the example, function `algp2rat()` converts `root`'s, `#n`, in polynomials and numbers into its associated indeterminates, `t#n`. As was already mentioned those indeterminates cannot be directly input in their immediate form. The restriction is adopted to avoid the confusion that might happen if the user could input such internally generatable indeterminates.

The associated indeterminate to a `root` is reversely converted into the `root` by `rattoalgp()` function.
Chapter 9: Algebraic numbers

[88] rattoalgp(S, [alg(0)]);
((#0+2)/(#0+2))*$t#1^2+((#0^2+2*#0)/(#0+2))*$x+((1)/(#0+2))*$t#1+(1)/(#0+2))

[89] rattoalgp(S, [alg(0), alg(1)]);
(((#0^3+6*#0^2+12*#0+8)*#1^2+(#0^4+6*#0^3+12*#0^2+8*#0)*#1+
2*#0^4+12*#0^3+24*#0^2+16*#0)/(#0^3+6*#0^2+12*#0+8))*$x+
(((#0+2)*#1+#0+2)/(#0^2+4*#0+4))

[90] rattoalgp(S, [alg(1), alg(0)]);
(((#0+2)*#1^2+(#0^2+2*#0)*#1+2*#0^2+4*#0)/(#0+2))*$x+
((#1+1)/(#0+2))

[91] simpalg(89);
(#1^2+#0*#1+2*#0)*$x+((-1/5*#0+2/5)*#1-1/5*#0+2/5)

[92] simpalg(90);
(#1^2+#0*#1+2*#0)*$x+((-1/5*#0+2/5)*#1-1/5*#0+2/5)

Function `rattoalgp()` takes as the second argument a list consisting of `root`'s that you want to convert, and converts them successively from the left. This example shows that apparent difference of the results due to the order of such conversion will vanish by simplification yielding the same result. Functions `algptorat()` and `rattoalgp()` can be conveniently used for your own simplification.

9.3 Representation of algebraic numbers by distributed polynomials

Simplification of algebraic numbers containing `root` is not done automatically and should be done by users. There is another representation of algebraic numbers, for which the results of fundamental operations are automatically simplified. This representations are designed so that operations are efficiently performed especially when the field is a successive extension and it can be used as a ground field for Groebner basis related functions. Internally an algebraic number of this type is defined as an object called `DAlg`. A `DAlg` is represented as a fraction. The denominator is an integer and the numerator is a distributed polynomial with integral coefficients.

`DAlg` is generated as an element of an algebraic number field set by `set_field()`. There are two methods to generate a `DAlg`. `algtodalg()` converts an algebraic number containing `root` to `DAlg`. `dptodalg()` directly converts a distributed polynomial to `DAlg`.

```plaintext
[0] A=newalg(x^2+1);
(0)
[1] B=newalg(x^3+A*x+A);
(1)
[2] set_field([B,A]);
0
[3] C=algtodalg(A+B);
((1)<<(1,0>>+(1)<<(0,1>>)
[4] C^-5;
((-11)<<(2,1>>+(5)<<(2,0>>+(10)<<(1,1>>+(9)<<(1,0>>+(11)<<(0,1>>
+(-1)<<0,0>>))
[5] 1/C;
((2)<<(2,1>>+(1)<<(2,0>>+(1)<<1,1>>+(2)<<1,0>>+(-3)<<0,1>>
```
In this example $Q(a,b)$ ($a^2+1=0$, $b^3+ab+b=0$) is set as the current ground field, and $(a+b)^5$ and $1/(a+b)$ are simplified in the field. The numerators of the results are printed as distributed polynomials.

9.4 Operations for uni-variate polynomials over an algebraic number field

In the file ‘sp’ are provided functions for uni-variate polynomial factorization and uni-variate polynomial GCD computation over algebraic numbers, and furthermore, as an application of them, functions to compute splitting fields of univariate polynomials.

9.4.1 GCD

Greatest common divisors (GCD) over algebraic number fields are computed by `cr_gcd()` function. This function computes GCD by using modular computation and Chinese remainder theorem and it works for the case where the ground field is a multiple extension.

9.4.2 Square-free factorization and Factorization

For square-free factorization (of uni-variate polynomials over algebraic number fields), we employ the most fundamental algorithm which begins first to compute GCD of a polynomial and its derivative. The function to do this factorization is `asq()`.

Like factorization over the rational number field, the result is presented, commonly to both square-free factorization and factorization, as a list whose elements are pairs (list of two elements) in the form `[factor, multiplicity]` without the constant multiple part.

Here, it should be noticed that the products of all factors of the result may DIFFER from the input polynomial by a constant. The reason is that the factors are normalized so that they have integral leading coefficients for the sake of readability.

This incongruity may happen to square-free factorization and factorization commonly.
The algorithm employed for factorization over algebraic number fields is an improvement of the norm method by Trager. It is especially very effective to factorize a polynomial over a field obtained by adjoining some of its root’s to the base field.

\[[119] \text{af}(T, [A]);
[[x^3-x+(-#4),2], [x^2+(-2*#4-3),2], [x+ (#4+1),1]]\]

The function takes two arguments: The second argument is a list of root’s. Factorization is performed over a field obtained by adjoining the root’s to the rational number field. It is important to keep in mind that the ordering of the root’s must obey a restriction: Last defined should come first. The automatic re-ordering is not done. It should be done by yourself.

The efficiency of factorization via norm depends on the efficiency of the norm computation and univariate factorization over the rationals. Especially the latter often causes combinatorial explosion and the computation will stick in such a case.

\[[120] B=\text{newalg}(x^2-2*A-3);
(\#5)
[121] \text{af}(T, [B,A]);
[[x+(\#5),2], [x^3-x+(-#4),2], [x+(-\#5),2], [x+ (#4+1),1]]\]

9.4.3 Splitting fields

This operation may be somewhat unusual and for specific interest. (Galois Group for example.) Procedurally, however, it is easy to obtain the splitting field of a polynomial by repeated application of algebraic factorization described in the previous section. The function is \text{sp()}.

\[[103] \text{sp}(x^5-2);
[[(x^5-2),2]]\]

Function \text{sp()} takes only one argument. The result is a list of two elements: The first element is a list of linear factors, and the second one is a list whose elements are pairs (list of two elements) in the form [root, algptorat(defining polynomial)]. The second element, a list of pairs of form [root, algptorat(defining polynomial)], corresponds to the root’s which are adjoined to eventually obtain the splitting field. They are listed in the reverse order of adjoining. Each of the defining polynomials in the list is, of course, guaranteed to be irreducible over the field obtained by adjoining all root’s defined before it.

The first element of the result, a list of linear factors, contains all irreducible factors of the input polynomial over the field obtained by adjoining all root’s in the second element of the result. Because such field is the splitting field of the input polynomial, factors in the result are all linear as the consequence.

Similarly to function \text{af()}, the product of all resulting factors may yield a polynomial which differs by a constant.

9.5 Summary of functions for algebraic numbers
9.5.1 newalg

newalg(defpoly)
 :: Creates a new root.
return algebraic number (root)
defpoly polynomial
 • Creates a new root (algebraic number) with its defining polynomial defpoly.
 • For constraints on defpoly, See Section 9.1 [Representation of algebraic numbers], page 153.
 [0] A0=newalg(x^2-2);
 (#0)
Reference
 Section 9.5.2 [defpoly], page 159

9.5.2 defpoly

defpoly(alg)
 :: Returns the defining polynomial of root alg.
return polynomial
alg algebraic number (root)
 • Returns the defining polynomial of root alg.
 • If the argument alg, a root, is #n, then the main variable of its defining polynomial is t^n.
 [1] defpoly(A0);
 t#0^2-2
Reference
 Section 9.5.1 [newalg], page 159, Section 9.5.3 [alg], page 159, Section 9.5.4 [algv], page 160

9.5.3 alg

alg(i) :: Returns a root which correspond to the index i.
return algebraic number (root)
i integer
 • Returns #i, a root.
 • Because #i cannot be input directly, this function provides an alternative way: input alg(i).
 [2] x+#0;
 syntax error
 0
 [3] alg(0);
 (#0)
Reference
 Section 9.5.1 [newalg], page 159, Section 9.5.4 [algv], page 160
9.5.4 \texttt{algv}

\texttt{algv(i)} :: Returns the associated indeterminate with \texttt{alg(i)}.

\texttt{return} \hspace{1cm} \texttt{polynomial}

\texttt{i} \hspace{1cm} \texttt{integer}

- Returns an indeterminate \texttt{t#i}
- Since indeterminate \texttt{t#i} cannot be input directly, it is input by \texttt{algv(i)}.

\begin{verbatim}
[4] \texttt{var(defpoly(A0));}
\texttt{t#0}
[5] \texttt{t#0; syntax error}
0
[6] \texttt{algv(0)};
\texttt{t#0}
\end{verbatim}

Reference
Section 9.5.1 \texttt{[newalg]}, page 159, Section 9.5.2 \texttt{[defpoly]}, page 159, Section 9.5.3 \texttt{[alg]}, page 159

9.5.5 \texttt{simpalg}

\texttt{simpalg(rat)} :: Simplifies algebraic numbers in a rational expression.

\texttt{return} \hspace{1cm} \texttt{rational expression}

\texttt{rat} \hspace{1cm} \texttt{rational expression}

- Defined in the file ‘sp’.
- Simplifies algebraic numbers contained in numbers, polynomials, and rational expressions by the defining polynomials of root’s contained in them.
- If the argument is a number having the denominator, it is rationalized and the result is a polynomial in root’s.
- If the argument is a polynomial, each coefficient is simplified.
- If the argument is a rational expression, its denominator and numerator are simplified as a polynomial.

\begin{verbatim}
[7] simpalg((1+A0)/(1-A0));
simpalg undefined
return to toplevel
[7] load("sp")$
[46] simpalg((1+A0)/(1-A0));
(-2*#0-3)
[47] simpalg((2-A0)/(2+A0)*x^2-1/(3+A0));
(-2*#0+3)*x^2+(1/7*#0-3/7)
[48] simpalg((x+1/(A0-1))/(x-1/(A0+1)));
(x+(#0+1))/(x+(-#0+1))
\end{verbatim}
9.5.6 \texttt{algptorat}

\texttt{algptorat(\textit{poly})}

\begin{verbatim}
:: Substitutes the associated indeterminate for every \texttt{root}

\textit{return} \texttt{polynomial}
\end{verbatim}

\textit{poly} \texttt{polynomial}

- Defined in the file ‘\texttt{sp}’.
- Substitutes the associated indeterminate \texttt{t\#n} for every \texttt{root \#n} in a polynomial.

\begin{verbatim}
[49] \texttt{algptorat((-2*alg(0)+3)*x^2+(1/7*alg(0)-3/7));}
(-2*t\#0+3)*x^2+1/7*t\#0-3/7
\end{verbatim}

Reference
Section 9.5.2 [\texttt{defpoly}], page 159, Section 9.5.4 [\texttt{algv}], page 160

9.5.7 \texttt{rattoalgp}

\texttt{rattoalgp(\textit{poly}, \textit{alglst})}

\begin{verbatim}
:: Substitutes a \texttt{root} for the associated indeterminate with the \texttt{root}.

\textit{return} \texttt{polynomial}
\end{verbatim}

\textit{poly} \texttt{polynomial}
\textit{alglst} \texttt{list}

- Defined in the file ‘\texttt{sp}’.
- The second argument is a list of \texttt{root}’s. Function \texttt{rattoalgp()} substitutes a \texttt{root} for the associated indeterminate of the \texttt{root}.

\begin{verbatim}
[51] \texttt{rattoalgp((-2*algv(0)+3)*x^2+(1/7*algv(0)-3/7),[alg(0)]);}
(-2*#0+3)*x^2+(1/7*#0-3/7)
\end{verbatim}

Reference
Section 9.5.3 [\texttt{alg}], page 159, Section 9.5.4 [\texttt{algv}], page 160

9.5.8 \texttt{cr_gcda}

\texttt{cr_gcda(\textit{poly1}, \textit{poly2})}

\begin{verbatim}
:: GCD of two uni-variate polynomials over an algebraic number field.

\textit{return} \texttt{polynomial}
\end{verbatim}

\textit{poly1} \texttt{polynomial}
\textit{poly2} \texttt{polynomial}

- Defined in the file ‘\texttt{sp}’.
- Finds the GCD of two uni-variate polynomials.

\begin{verbatim}
[76] X=x^6+3*x^5+6*x^4+x^3-3*x^2+12*x+16$
[77] Y=x^6+6*x^5+24*x^4+8*x^3-48*x^2+384*x+1024$
[78] A=newalg(X);
(#0)
[79] \texttt{cr_gcda(X,subst(Y,x,x+A));}
x+(-#0)
\end{verbatim}
Chapter 9: Algebraic numbers

Reference
Section 8.10.1 [gr hgr gr_mod], page 129, Section 9.5.10 [asq af af_noalg], page 162

9.5.9 sp_norm

sp_norm(alg, var, poly, alglist)
:: Norm computation over an algebraic number field.

return polynomial
var The main variable of poly
poly univariate polynomial
alg root
alglist root list

- Defined in the file ‘sp’.
- Computes the norm of poly with respect to alg. Namely, if we write \(K = \mathbb{Q}(\text{alglist} \setminus \{\text{alg}\}) \), The function returns a product of all conjugates of poly, where the conjugate of polynomial poly is a polynomial in which the algebraic number alg is substituted for its conjugate over K.
- The result is a polynomial over K.
- The method of computation depends on the input. Currently direct computation of resultant and Chinese remainder theorem are used but the selection is not necessarily optimal. By setting the global variable USE_RES to 1, the builtin function res() is always used.

\[
\begin{align*}
\text{[0]} & \quad \text{load("sp")}$
\text{[39]} & \quad A0=newalg(x^2+1)$
\text{[40]} & \quad A1=newalg(x^2+A0)$
\text{[41]} & \quad \text{sp_norm(A1,x,x^3+A0*x+A1,[A1,A0]);}
& \quad x^6+(2*#0)*x^4+(#0^2)*x^2+(#0)
\text{[42]} & \quad \text{sp_norm(A0,x,@@,[A0]);}
& \quad x^{12}+2*x^8+5*x^4+1
\end{align*}
\]

Reference
Section 6.3.14 [res], page 53, Section 9.5.10 [asq af af_noalg], page 162

9.5.10 asq, af, af_noalg

asq(poly) :: Square-free factorization of polynomial poly over an algebraic number field.
af(poly, alglist)
af_noalg(poly, defpolylist)
:: Factorization of polynomial poly over an algebraic number field.

return list
poly polynomial
alglist root list
defpolylist
root list of pairs of an indeterminate and a polynomial

- Both defined in the file ‘sp’.
- If the inputs contain no **root**’s, these functions run fast since they invoke functions over the integers. In contrast to this, if the inputs contain **root**’s, they sometimes take a long time, since **cr_gcda()** is invoked.
- Function af() requires the specification of base field, i.e., list of **root**’s for its second argument.
- In the second argument **alglist**, **root** defined last must come first.
- In **af(F,AL)**, **AL** denotes a list of **roots** and it represents an algebraic number field. In **AL=[An,...,A1]** each **Ak** should be defined as a root of a defining polynomial whose coefficients are in **Q(A(k+1),...,An)**.

\[
[1] A1 = \text{newalg}(x^2+1);
\]
\[
[2] A2 = \text{newalg}(x^2+A1);
\]
\[
[3] A3 = \text{newalg}(x^2+2*A2*x+A1);
\]
\[
[4] \text{af}(x^2+A2*x+A1,[A2,A1]);
\]
\[
[[x^2+(#1)*x+(#0),1]]
\]

To call **sp_noalg**, one should replace each algebraic number **ai** in **poly** with an indeterminate **vi**. **defpolylist** is a list \([[vn,dn(vn,...,v1)],...,[v1,d(v1)]\]. In this expression **di(vi,...,v1)** is a defining polynomial of **ai** represented as a multivariate polynomial.

\[
[1] \text{af_noalg}(x^2+a2*x+a1,[[a2,a2^2+a1],[a1,a1^2+1]]);
\]
\[
[[x^2+a2*x+a1,1]]
\]

- The result is a list, as a result of usual factorization, whose elements is of the form [factor, multiplicity]. In the result of **af_noalg**, algebraic numbers in factor are replaced by the indeterminates according to **defpolylist**.
- The product of all factors with multiplicities counted may differ from the input polynomial by a constant.

\[
[98] A = \text{newalg}(t^2-2);
\]
\[
(\#0)
\]
\[
[99] \text{asq}(-x^4+6*x^3+(2*alg(0)-9)*x^2+(-6*alg(0))*x-2);
\]
\[
[[x^2+2*x+(\#0),2]]
\]
\[
[100] \text{af}(-x^2+3*x+alg(0),[alg(0)]);
\]
\[
[[x+(\#0-1),1],[x+(\#0+2),1]]
\]
\[
[101] \text{af_noalg}(-x^2+3*x+a,[a,x^2-2])];
\]
\[
[[x+a-1,1],[x+a+2,1]]
\]

Reference
Section 9.5.8 [cr_gcda], page 161, Section 6.3.15 [fctr sqfr], page 53

9.5.11 sp, sp_noalg

sp(poly)
sp_noalg(poly)
:: Finds the splitting field of polynomial **poly** and splits.

return list
poly polynomial
• Defined in the file `sp`.
• Finds the splitting field of \(poly \), an uni-variate polynomial over with rational coefficients, and splits it into its linear factors over the field.
• The result consists of a two element list: The first element is the list of all linear factors of \(poly \); the second element is a list which represents the successive extension of the field. In the result of \(sp_noalg \) all the algebraic numbers are replaced by the special indeterminate associated with it, that is \(t#i \) for \#i. By this operation the result of \(sp_noalg \) is a list containing only integral polynomials.
• The splitting field is represented as a list of pairs of form \([root, algptorat(defpoly(root))]\). In more detail, the list is interpreted as a representation of successive extension obtained by adjoining \(root \)'s to the rational number field. Adjoining is performed from the right \(root \) to the left.
• \(sp() \) invokes \(sp_norm() \) internally. Computation of norm is done by several methods according to the situation but the algorithm selection is not always optimal and a simple resultant computation is often superior to the other methods. By setting the global variable \(USE_RES \) to 1, the builtin function \(res() \) is always used.

```plaintext
[101] L=sp(x^9-54);
[[x+(-#2),-54*x+(#1^6*#2^4),54*x+(-#1^8*#2^2),
  54*x+(-#1^8*#2^2),-54*x+(-#1^5*#2^5),54*x+(-#1^8*#2^2),
  -54*x+(-#1^7*#2^3-54*#1),54*x+(-#1^7*#2^3),x+(-#1)],
  [[(#2),t#2^6+t#1^3*t#2^3+t#1^6],[(#1),t#1^9-54]]]
[102] for(I=0,M=1;I<9;I++)M*=L[0][I];
[111] M=simpalg(M);
-1338925209984*x^9+72301961339136
[112] ptozp(M);
-x^9+54
```

Reference

Section 9.5.10 [asq af af_noalg], page 162, Section 9.5.2 [defpoly], page 159,
Section 9.5.6 [algptorat], page 161, Section 9.5.9 [sp_norm], page 162.

9.5.12 set_field

```plaintext
set_field(rootlist)
:: Set an algebraic number field as the current ground field.
return 0
```

rootlist A list of root

• \(set_field() \) sets an algebraic number field generated by \(root \) in \(rootlist \) over \(Q \).
• You don’t care about the order of \(root \) in \(rootlist \), because \(root \) are automatically ordered internally.

```plaintext
[0] A=newalg(x^2+1);
(#0)
[1] B=newalg(x^3+A);
(#1)
[2] C=newalg(x^4+B);
(#1)
```
9.5.13 algtodalg, dalgtoalg, dptodalg, dalgtodp

algtodalg(alg)
:: Converts an algebraic number \(\text{alg} \) to a \(\text{DAlg} \).

dalgtoalg(dalg)
:: Converts a \(\text{DAlg} \) \(\text{dalg} \) to an algebraic number.

dptodalg(dp)
:: Converts an algebraic number \(\text{alg} \) to a \(\text{DAlg} \).

dalgtodp(dalg)
:: Converts a \(\text{DAlg} \) \(\text{dalg} \) to an algebraic number.

return An algebraic number, a \(\text{DAlg} \) or a list \([\text{distributed polynomial}, \text{denominator}]\)

alg an algebraic number containing root
dp a distributed polynomial over \(\mathbb{Q} \)

- These functions are converters between \(\text{DAlg} \) and an algebraic number containing root, or a distributed polynomial.
- A ground field to which a \(\text{DAlg} \) belongs must be set by \text{set_field()} in advance.
- \text{dalgtodp()} returns a list containing the numerator (a distributed polynomial) and the denominator (an integer).
- \text{algtodalg()}, \text{dptodalg()} return the simplified result.

Reference

Section 9.5.13 [algtodalg dalgtoalg dptodalg dalgtodp], page 165
10 Finite fields

10.1 Representation of finite fields

On Asir GF(p), GF(2^n), GF(p^n) can be defined, where GF(p) is a finite prime field of characteristic p, GF(2^n) is a finite field of characteristic 2 and GF(p^n) is a finite extension of GF(p). These are all defined by setmod_ff().

```plaintext
[0] P=pari(nextprime,2^50);
1125899906842679
[1] setmod_ff(P);
1125899906842679
[2] field_type_ff();
1
[3] load("fff");
1
[4] F=defpoly_mod2(50);
x^50+x^4+x^3+x^2+1
[5] setmod_ff(F);
x^50+x^4+x^3+x^2+1
[6] field_type_ff();
2
[7] setmod_ff(x^3+x+1,1125899906842679);
[1*x^3+1*x+1,1125899906842679]
[8] field_type_ff();
3
[9] setmod_ff(3,5);
[3,x^5+2*x+1,x]
[10] field_type_ff();
4
```

If p is a positive integer, setmod_ff(p) sets GF(p) as the current base field. If f is a univariate polynomial of degree n, setmod_ff(f) sets GF(2^n) as the current base field. GF(2^n) is represented as an algebraic extension of GF(2) with the defining polynomial f mod 2. Furthermore, finite extensions of prime finite fields can be defined. See Section 3.2 [Types of numbers], page 14. In all cases the primality check of the argument is not done and the caller is responsible for it.

Correctly speaking there is no actual object corresponding to a 'base field'. Setting a base field means that operations on elements of finite fields are done according to the arithmetics of the base field. Thus, if operands of an arithmetic operation are both rational numbers, then the result is also a rational number. However, if one of the operands is in a finite field, then the other is automatically regarded as in the same finite field and the operation is done in the finite field.

A non zero element of a finite field belongs to the number and has object identifier 1. Its number identifier is 6 if the finite field is GF(p), 7 if it is GF(2^n).

There are several methods to input an element of a finite field. An element of GF(p) can be input by simp_ff().
Elements of finite fields are numbers and one can apply field arithmetics to them. \(\varpi \) is a generator of \(GF(2^n) \) over \(GF(2) \). See Section 3.2 [Types of numbers], page 14.

10.2 Univariate polynomials on finite fields

In ‘fff’ square-free factorization, DDF (distinct degree factorization), irreducible factorization and primality check are implemented for univariate polynomials over finite fields.

Factorizers return lists of \([\text{factor}, \text{multiplicity}]\). The factor part is monic and the information on the leading coefficient of the input polynomial is abandoned.

The algorithm used in square-free factorization is the most primitive one.

The irreducible factorization proceeds as follows.

1. DDF
2. Nullspace computation by Berlekamp algorithm
3. Root finding of minimal polynomials of bases of the nullspace
4. Separation of irreducible factors by the roots

10.3 Polynomials on small finite fields

A multivariate polynomial over small finite field set by \(\text{setmod}_{\text{ff}}(p,n) \) can be factorized by using a built-in function \(\text{sffctr}() \). \(\text{modfctr}() \) also factorizes a polynomial over a finite prime field. Internally, \(\text{modfctr}() \) creates a sufficiently large field extension of the specified ground field, and it calls \(\text{sffctr}() \), then it constructs irreducible factors over the ground field from the factors returned by \(\text{sffctr}() \).
10.4 Elliptic curves on finite fields

Several fundamental operations on elliptic curves over finite fields are provided as built-in functions.

An elliptic curve is specified by a vector \([a \ b]\) of length 2, where \(a, b\) are elements of finite fields. If the current base field is a prime field, then \([a \ b]\) represents \(y^2 = x^3 + ax + b\). If the current base field is a finite field of characteristic 2, then \([a \ b]\) represents \(y^2 + xy = x^3 + ax^2 + b\).

Points on an elliptic curve together with the point at infinity forms an additive group. The addition, the subtraction and the additive inverse operation are provided as `ecm_add_ff()`, `ecm_sub_ff()` and `ecm_chsgn_ff()` respectively. Here the representation of points are as follows.

- 0 denotes the point at infinity.
- The other points are represented by vectors \([x \ y \ z]\) of length 3 with non-zero \(z\).

\([x \ y \ z]\) represents a projective coordinate and it corresponds to \([x/z \ y/z]\) in the affine coordinate. To apply the above operations to a point \([x \ y]\), \([x \ y \ 1]\) should be used instead as an argument. The result of an operation is also represented by the projective coordinate. As the third coordinate is not always equal to 1, one has to divide the first and the second coordinate by the third one to obtain the affine coordinate.

10.5 Functions for Finite fields

10.5.1 setmod_ff

\begin{verbatim}
setmod_ff([p|defpoly2])
setmod_ff([defpolyp,p])
setmod_ff([p,n])
\end{verbatim}

:: Sets/Gets the current base fields.

\begin{verbatim}
return number or polynomial
p prime
defpoly2 univariate polynomial irreducible over GF(2)
defpolyp univariate polynomial irreducible over GF(p)
n the extension degree
\end{verbatim}

- If the argument is a non-negative integer \(p\), GF\((p)\) is set as the current base field.
- If the argument is a polynomial `defpoly2`, GF\((2^{\deg(defpoly2 \ mod \ 2)}) = GF(2)[t]/(defpoly2(t) \ mod 2)\) is set as the current base field.
- If the arguments are a polynomial `defpolyp` and a prime \(p\), GF\((p^{\deg(defpolyp)}) = GF(p)[t]/(defpolyp(t))\) is set as the current base field.
- If the arguments are a prime \(p\) and an extension degree \(n\), GF\((p^n)\) is set as the current base field. \(p^n\) must be less than \(2^{29}\) and if \(p\) is greater than or equal to \(2^{14}\), then \(n\) must be less than 1.
- If no argument is specified, the modulus indicating the current base field is returned. If the current base field is $\text{GF}(p)$, p is returned. If it is $\text{GF}(2^n)$, the defining polynomial is returned. If it is $\text{GF}(p^n)$ defined by $\text{setmod_ff}(\text{defpoly}, p)$, $[\text{defpolyp}, p]$ is returned. If it is $\text{GF}(p^n)$ defined by $\text{setmod_ff}(p, n)$, $[p, \text{defpoly}, \text{prim_elem}]$ is returned. Here, defpoly is the defining polynomial of the n-th extension, and prim_elem is the generator of the multiplicative group of $\text{GF}(p^n)$.

- Any irreducible univariate polynomial over $\text{GF}(2)$ is available to set $\text{GF}(2^n)$. However the use of defpoly_mod2() is recommended for efficiency.

```
[174] defpoly_mod2(100);
  x^100+x^15+1
[175] setmod_ff(0);
  x^100+x^15+1
[176] setmod_ff();
  x^100+x^15+1
[177] setmod_ff(x^4+x+1,547);
  [1*x^4+1*x+1,547]
[178] setmod_ff(2,5);
  [2,x^5+x^2+1,x]
```

References
Section 10.5.14 [defpoly_mod2], page 175

10.5.2 field_type_ff

```text
field_type_ff()
:: Type of the current base field.

return integer
```

- Returns the type of the current base field.
- If no field is set, 0 is returned. If $\text{GF}(p)$ is set, 1 is returned. If $\text{GF}(2^n)$ is set, 2 is returned.

```
[0] field_type_ff();
  0
[1] setmod_ff(3);
  3
[2] field_type_ff();
  1
[3] setmod_ff(x^2+x+1);
  x^2+x+1
[4] field_type_ff();
  2
```

References
Section 10.5.1 [setmod], page 168

10.5.3 field_order_ff

```text
field_order_ff()
:: Order of the current base field.
```
return integer

- Returns the order of the current base field.
- \(q \) is returned if the current base field is \(\text{GF}(q) \).

```
[0] field_order_ff();
field_order_ff : current_ff is not set
return to toplevel
[0] setmod_ff(3);
3
[1] field_order_ff();
3
[2] setmod_ff(x^2+x+1);
x^2+x+1
[3] field_order_ff();
4
```

References
Section 10.5.1 [setmod_ff], page 168

10.5.4 characteristic_ff

characteristic_ff()
:: Characteristic of the current base field.

return integer

- Returns the characteristic of the current base field.
- \(p \) is returned if \(\text{GF}(p) \), where \(p \) is a prime, is set. \(2 \) is returned if \(\text{GF}(2^n) \) is set.

```
[0] characteristic_ff();
characteristic_ff : current_ff is not set
return to toplevel
[0] setmod_ff(3);
3
[1] characteristic_ff();
3
[2] setmod_ff(x^2+x+1);
x^2+x+1
[3] characteristic_ff();
2
```

References
Section 10.5.1 [setmod_ff], page 168

10.5.5 extdeg_ff

extdeg_ff()
:: Extension degree of the current base field over the prime field.

return integer

- Returns the extension degree of the current base field over the prime field.
- \(1 \) is returned if \(\text{GF}(p) \), where \(p \) is a prime, is set. \(n \) is returned if \(\text{GF}(2^n) \) is set.
Chapter 10: Finite fields

[0] extdeg_ff();
extdeg_ff: current_ff is not set
return to toplevel
[0] setmod_ff(3);
3
[1] extdeg_ff();
1
[2] setmod_ff(x^2+x+1);
x^2+x+1
[3] extdeg_ff();
2

References
Section 10.5.1 [setmod_ff], page 168

10.5.6 simp_ff

simp_ff(obj)
:: Converts numbers or coefficients of polynomials into elements in finite fields.

return number or polynomial
obj number or polynomial

- Converts numbers or coefficients of polynomials into elements in finite fields.
- It is used to convert integers or integral polynomials into elements of finite fields or polynomials over finite fields.
- An element of a finite field may not have the reduced representation. In such case an application of simp_ff ensures that the output has the reduced representation. If a small finite field is set as a ground field, an integer is projected the finite prime field, then it is embedded into the ground field. ptosfp() can be used for direct projection to the ground field.

[0] simp_ff((x+1)^10);
x^10+10*x^9+45*x^8+120*x^7+210*x^6+252*x^5+210*x^4+120*x^3+45*x^2+10*x+1
[1] setmod_ff(3);
3
[2] simp_ff((x+1)^10);
1*x^10+1*x^9+1*x^1
[3] ntype(coef(@@,10));
6
[4] setmod_ff(2,3);
[2,x^3+x+1,x]
[5] simp_ff(1);
@_0
[6] simp_ff(2);
0
[7] ptosfp(2);
@_1
10.5.7 random_ff

random_ff()
:: Random generation of an element of a finite field.

return element of a finite field

- Generates an element of the current base field randomly.
- The same random generator as in random(), lrandom() is used.

[0] random_ff();
random_ff : current_ff is not set
return to toplevel
[0] setmod_ff(pari(nextprime,2^40));
1099511627791
[1] random_ff();
561856154357
[2] random_ff();
45141628299

References
Section 10.5.1 [setmod_ff], page 168, Section 6.1.8 [random], page 38, Section 6.1.9 [lrandom], page 38

10.5.8 lmptop

lmptop(obj)
:: Converts the coefficients of a polynomial over GF(p) into integers.

return integral polynomial

obj polynomial over GF(p)

- Converts the coefficients of a polynomial over GF(p) into integers.
- An element of GF(p) is represented by a non-negative integer r less than p. Each coefficient of a polynomial is converted into an integer object whose value is r.

[0] setmod_ff(pari(nextprime,2^40));
1099511627791
[1] F(simp_ff((x-1)^10);
1*x^10+1099511627781*x^9+45*x^8+1099511627671*x^7+210*x^6 +1099511627539*x^5+210*x^4+1099511627671*x^3+45*x^2+1099511627781*x+1
[2] setmod_ff(547);
547
[3] F(simp_ff((x-1)^10);
1*x^10+537*x^9+45*x^8+427*x^7+210*x^6+295*x^5+210*x^4+427*x^3 +45*x^2+537*x+1
[4] lmptop(F);
x^10+537*x^9+45*x^8+427*x^7+210*x^6+295*x^5+210*x^4+427*x^3
+45\cdot x^2 + 537\cdot x + 1

[5] \text{lmtpop}(\text{coef}(F,1));
537
[6] \text{nype}(@@);
0

References
Section 10.5.6 [simp_ff], page 171

10.5.9 ntogf2n

ntogf2n(m)

:: Converts a non-negative integer into an element of GF(2^n).

return element of GF(2^n)
m non-negative integer

- Let \(m \) be a non-negative integer. \(m \) has the binary representation \(m = m_0 + m_1 \cdot 2 + \ldots + m_k \cdot 2^k \). This function returns an element of \(GF(2^n) = GF(2)[t]/(g(t)) \), \(m_0 + m_1 \cdot t + \ldots + m_k \cdot t^k \mod g(t) \).
- Apply simp_ff() to reduce the result.

[1] \text{setmod_ff}(x^{30}+x+1);
x^{30}+x+1
[2] N=ntogf2n(2^{100});
(0^{100})
[3] simp_ff(N);
(0^{13}+0^{12}+0^{11}+0^{10})

References
Section 10.5.10 [gf2nton], page 173

10.5.10 gf2nton

gf2nton(m)

:: Converts an element of GF(2^n) into a non-negative integer.

return non-negative integer
m element of GF(2^n)

- The inverse of gf2nton.

[1] \text{setmod_ff}(x^{30}+x+1);
x^{30}+x+1
[2] N=gf2nton(2^{100});
(0^{100})
[3] simp_ff(N);
(0^{13}+0^{12}+0^{11}+0^{10})
[4] gf2nton(N);
1267650600228229401496703205376
[5] gf2nton(simp_ff(N));
15360
Chapter 10: Finite fields

References
Section 10.5.10 [gf2nton], page 173

10.5.11 ptogf2n

ptogf2n(poly)

:: Converts a univariate polynomial into an element of GF(2^n).

return element of GF(2^n)

poly univariate polynomial

• Generates an element of GF(2^n) represented by poly. The coefficients are reduced modulo 2. The output is equal to the result by substituting 0 for the variable of poly.

1. setmod_ff(x^30+x+1);
 x^30+x+1
2. ptogf2n(x^100);
 (0^100)

References
Section 10.5.12 [gf2ntop], page 174

10.5.12 gf2ntop

gf2ntop(m[,v])

:: Converts an element of GF(2^n) into a polynomial.

return univariate polynomial

m an element of GF(2^n)

v indeterminate

• Returns a polynomial representing m.
• If v is used as the variable of the output. If v is not specified, the variable of the argument of the latest ptogf2n() call. The default variable is x.

1. setmod_ff(x^30+x+1);
 x^30+x+1
2. N=simp_ff(gf2ntop(2^100));
 (0^13+0^12+0^11+0^10)
5. gf2ntop(N);
 x^13+x^12+x^11+x^10
207. gf2ntop(N);
 x^13+x^12+x^11+x^10
208. gf2ntop(N,t);
 t^13+t^12+t^11+t^10

References
Section 10.5.11 [ptogf2n], page 174
10.5.13 ptosfp, sfptop

ptosfp(p)
sfptop(p)

:: Transformation to/from a small finite field

\[\text{return \ polynomial} \]

\[\text{p \ polynomial} \]

- \text{ptosfp()} converts coefficients of a polynomial to elements in a small finite field \(\text{GF}(p^n) \) set as a ground field. If a coefficient is already an element of the field, no conversion is done. If a coefficient is a positive integer, then its residue modulo \(p^n \) is expanded as \(p \)-adic integer, then \(p \) is substituted by \(x \), finally the polynomial is converted to its corresponding logarithmic representation with respect to the primitive element. For example, \(\text{GF}(3^5) \) is represented as \(\mathbb{F}(3)[x]/(x^5 + 2x + 1) \), and each element of the field is represented as \(\mathbb{G}_k \) by its exponent \(k \) with respect to the primitive element \(x \). \(23 = 2 \cdot 3^2 + 3 + 2 \) is represented as \(2x^2 + 2x + 2 \) and it is equivalent to \(x \cdot 17 \mod x^5 + 2x + 1 \). Therefore an integer \(23 \) is converted to \(\mathbb{G}_{17} \).

- \text{sfptop()} is the inverse of \text{ptosfp()}.

\begin{verbatim}
[196] setmod_ff(3,5);
[3,x^5+2*x+1,x]
[197] A = ptosfp(23); _17
[198] 9*2+3+2;
23
[199] x^17-(2*x^2+x+2);
23
[200] sremm(_,x^5+2*x+1,3);
0
[201] sfptop(A);
23
\end{verbatim}

References
Section 10.5.1 [setmod_ff], page 168, Section 10.5.6 [simp_ff], page 171

10.5.14 defpoly_mod2

defpoly_mod2(d)

:: Generates an irreducible univariate polynomial over \(\text{GF}(2) \).

\[\text{return \ univariate polynomial} \]

\[\text{d \ positive integer} \]

- Defined in ‘fff’.
- An irreducible univariate polynomial of degree \(d \) is returned.
- If an irreducible trinomial \(x^d + x^m + 1 \) exists, then the one with the smallest \(m \) is returned. Otherwise, an irreducible pentanomial \(x^d + x^m1 + x^m2 + x^m3 + 1 \) (\(m1 > m2 > m3 \)) is returned. \(m1, m2 \) and \(m3 \) are determined as follows: Fix \(m1 \) as small as possible. Then fix \(m2 \) as small as possible. Then fix \(m3 \) as small as possible.
10.5.15 **sffctr**

sffctr(poly)
:: Irreducible factorization over a small finite field.

```plaintext
return  list
poly  polynomial over a finite field
  - Factorize *poly* into irreducible factors over a small finite field currently set.
  - The result is a list $[[f_1, m_1], [f_2, m_2], ...]$, where $f_i$ is a monic irreducible factor and $m_i$ is its multiplicity.

[0] setmod_ff(2,10);
[2, x^10+x^3+1, x]
[1] sffctr((z*y^3+z*y)*x^3+(y^5+y^3+z*y^2+z)*x^2+z^11*y*x+z^10*y^3+z^11);
[[0, 1], [0*z*y*x+0*y^3+0*z, 1], [(0*y+0)*x+0*z^5, 2]]
```

References
Section 10.5.1 [setmod_ff], page 168

10.5.16 **fctr_ff**

fctr_ff(poly)
:: Irreducible univariate factorization over a finite field.

```plaintext
return  list
poly  univariate polynomial over a finite field
  - Defined in ‘fff’.
  - Factorize *poly* into irreducible factors over the current base field.
  - The result is a list $[[f_1, m_1], [f_2, m_2], ...]$, where $f_i$ is a monic irreducible factor and $m_i$ is its multiplicity.
  - The leading coefficient of *poly* is abandoned.

[178] setmod_ff(2^64-95);
18446744073709551521
[179] fctr_ff(x^5+x+1);
[[1*x+14123390394564558010, 1], [1*x+6782485570826905238, 1],
[1*x+1598761218627639793, 1], [1*x^2+1*x+1, 1]]
```

References
Section 10.5.1 [setmod_ff], page 168, Section 6.3.17 [modfctr], page 55

10.5.17 **irredcheck_ff**

irredcheck_ff(poly)
:: Primality check of a univariate polynomial over a finite field.

```plaintext
return  0|1
```
poly univariate polynomial over a finite field

- Defined in ‘fff’.
- Returns 1 if poly is irreducible over the current base field. Returns 0 otherwise.

```
[178] setmod_ff(2^64-95);
18446744073709551521
[179] ] F=x^10+random_ff();
x^10+14687973587364016969
[180] irredcheck_ff(F);
1
```

References
Section 10.5.1 [setmod_ff], page 168

10.5.18 randpoly_ff

```
randpoly_ff(d,v)
:: Generation of a random univariate polynomial over a finite field.
```

```
return  polynomial
d    positive integer
v    indeterminate

- Defined in ‘fff’.
- Generates a polynomial of v such that the degree is less than d and the coefficients are in
the current base field. The coefficients are generated by random_ff().

```
[178] setmod_ff(2^64-95);
18446744073709551521
[179]] F=x^10+random_ff();
[180] randpoly_ff(3,x);
17135261454578964298*x^2+4766826699653615429*x+18317369440429479651
[181] randpoly_ff(3,x);
7565988813172050604*x^2+7430075767279665339*x+4699662986224873544
[182] randpoly_ff(3,x);
10247781277095450395*x^2+10243690944992524936*x+4063829049268845492
```

References
Section 10.5.1 [setmod_ff], page 168, Section 10.5.7 [random_ff], page 172

10.5.19 ecm_add_ff, ecm_sub_ff, ecm_chsgn_ff

```
ecm_add_ff(p1,p2,ec)
ecm_sub_ff(p1,p2,ec)
ecm_chsgn_ff(p1)
:: Addition, Subtraction and additive inverse for points on an elliptic curve.
```

```
return vector or 0
p1 p2 vector of length 3 or 0
ec vector of length 2
```
Let $p_1, p_2$ be points on the elliptic curve represented by $ec$ over the current base field. $ecm\_add\_ff(p_1,p_2,ec)$, $ecm\_sub\_ff(p_1,p_2,ec)$ and $ecm\_chsgn\_ff(p_1)$ returns $p_1+p_2$, $p_1-p_2$ and $-p_1$ respectively.

If the current base field is a prime field of odd order, then $ec$ represents $y^2=x^3+ec[0]x+ec[1]$. If the characteristic of the current base field is 2, then $ec$ represents $y^2+xy=x^3+ec[0]x^2+ec[1]$.

The point at infinity is represented by 0.

If an argument denoting a point is a vector of length 3, then it is the projective coordinate. In such a case the third coordinate must not be 0.

If the result is a vector of length 3, then the third coordinate is not equal to 0 but not necessarily 1. To get the result by the affine coordinate, the first and the second coordinates should be divided by the third coordinate.

The check whether the arguments are on the curve is omitted.

```
[0] setmod_ff(1125899906842679)$
[1] EC=newvect(2,[ptolmp(1),ptolmp(1)])$
[2] Pt1=newvect(3,[1,-412127497938252,1])$
[3] Pt2=newvect(3,[6,-252647084363045,1])$
[4] Pt3=ecm_add_ff(Pt1,Pt2,EC);
[560137044461222 184453736165476 125]
[5] F=y^2-(x^3+EC[0]*x+EC[1])$
[6] subst(F,x,Pt3[0]/Pt3[2],y,Pt3[1]/Pt3[2]);
0
[7] ecm_add_ff(Pt3,ecm_chsgn_ff(Pt3),EC);
0
[8] D=ecm_sub_ff(Pt3,Pt2,EC);
[886545905133065 119584559149586 886545905133065]
[9] D[0]/D[2]==Pt1[0]/Pt1[2];
1
1
```

References
Section 10.5.1 [setmod_ff], page 168
Appendix A Appendix

A.1 Details of syntax

<expression>:
   <expression>'('<expression>')',
<binary operator> <expression>
   '+' <expression>
   '-' <expression>
<left value>
<left value> <assignment operator> <expression>
<left value> '++'
<left value> '--'
'++' <left value>
'--' <left value>
'!' <expression>
<expression> '?' <expression> ':' <expression>
<function> '(' <expr list> ')
<function> '(' <expr list> '|' <option list> ')
<string>
<exponent vector>
<atom>
<list>

(See Section 4.2.10 [various expressions], page 25.)

<left value>:
   <program variable> ['['<expression>']']* 

<binary operator>:
   '+' '-' '*' '/' '%^' (exponentiation)
   '==' '!=' '<' '>' '<=' '>=' '&&' '||'
   '==' '!=' '<' '>' '<=' '>=' '&&' '||'

<assignment operator>:
   '=' '+=' '-=' '*=' '/=' '%=' '^=' 

<expr list>:
   <empty>
   <expression> [',,' <expression>]*

<option>:
   Character sequence beginning with an alphabetical letter '=' <expr>

<option list>:
   <option>
   <option> [',,' <option>]*

<list>:
   [' <expr list> ']

<program variable>:
   Sequence of alphabetical letters or numeric digits or _
   that begins with a capital alphabetical letter
   (X,Y,Japan etc.)
(See Section 4.2.2 [variables and indeterminates], page 20.)

<function>:
  Sequence of alphabetical letters or numeric digits or _
  that begins with a small alphabetical letter
  (fctr,gcd etc.)

<atom>:
  <indeterminate>
  <number>

<indeterminate>:
  Sequence of alphabetical letters or numeric digits or _
  that begin with a small alphabetical letter
  (a,bCD,c1_2 etc.)

(See Section 4.2.2 [variables and indeterminates], page 20.)

<number>:
  <rational number>
  <floating point number>
  <algebraic number>
  <complex number>

(See Section 3.2 [Types of numbers], page 14.)

<rational number>:
  0, 1, -2, 3/4

-floating point number>:
  0.0, 1.2e10

<algebraic number>:
  newalg(x^2+1), alg(0)^2+1

(See Chapter 9 [Algebraic numbers], page 153.)

<complex number>:
  1+@i, 2.3*@i

<string>:
  character sequence enclosed by two ’”’s.

<exponent vector>:
  ‘<<’ <expr list> ‘>>’

(See Chapter 8 [Groebner basis computation], page 119.)

<statement>:
  <expression> <terminator>
  <compound statement>
  ‘break’ <terminator>
  ‘continue’ <terminator>
  ‘return’ <terminator>
  ‘return’ <expression> <terminator>
  ‘if’ ‘(’ <expr list> ‘)’ <statement>
  ‘if’ ‘(’ <expr list> ‘)’ <statement> ‘else’ <statement>
  ‘for’ ‘(’ <expr list> ‘;’ <expr list> ‘;’ <expr list> ‘)’ <statement>
  ‘do’ <statement> ‘while’ ‘(’ <expr list> ‘)’ <terminator>
  ‘while’ ‘(’ <expr list> ‘)’ <statement>
  ‘def’ <function> ‘(’ <expr list> ‘)’ ‘{’ <variable declaration> <stat list> ‘}’
Appendix A: Appendix

A.2 Files of user defined functions

There are several files of user defined functions under the standard library directory. (‘/usr/local/lib/asir’ by default.) Here, we explain some of them.

‘fff’        Univariate factorizer over large finite fields (See Chapter 10 [Finite fields], page 166.)
‘gr’         Groebner basis package. (See Chapter 8 [Groebner basis computation], page 119.)
‘sp’         Operations over algebraic numbers and factorization, Splitting fields. (See Chapter 9 [Algebraic numbers], page 153.)
‘alpi’
‘bgk’
‘cyclic’
‘katsura’
‘kimura’     Example polynomial sets for benchmarks of Groebner basis computation. (See Section 8.10.30 [katsura hkatsura cyclic hcyclic], page 149.)
‘defs.h’     Macro definitions. (See Section 4.2.11 [preprocessor], page 26.)
‘fctrtest’   Test program of factorization of integral polynomials. It includes ‘factor.tst’ of REDUCE and several examples for large multiplicity factors. If this file is load()’ed, computation will begin immediately. You may use it as a first test whether Asir at your hand runs correctly.
‘fctrdata’   This contains example polynomials for factorization. It includes polynomials used in ‘fctrtest’. Polynomials contained in vector Alg[] is for the algebraic factorization af(). (See Section 9.5.10 [asq af af_noalg], page 162.)

```asir
[45] load("sp")$
[84] load("fctrdata")$
[175] cputime(1)$
0msec
[176] Alg[5];
x^9-15*x^6-87*x^3-125
```
Appendix A: Appendix 182

Omsec
[177] af(Alg[5], newalg(Alg[5]));
[[1, 1], [75*x^2 + (10*#0^7 - 175*#0^4 - 470*#0)*x
+ (3*#0^8 - 45*#0^5 - 561*#0^2), 1],
[75*x^2 + (-10*#0^7 + 175*#0^4 + 395*#0)*x
+ (3*#0^8 - 45*#0^5 - 561*#0^2), 1],
[25*x^2 + (25*#0)*x + (#0^8 - 15*#0^5 - 87*#0^2), 1],
[x^2 + (#0)*x + (#0^2), 1], [x+(-#0), 1]]
3.600sec + gc : 1.040sec

'ifplot' Examples for plotting. (See Section 7.5.15 [ifplot conplot plot polarplot plo-
tover], page 114.) Vector IS[] contains several famous algebraic curves. Vari-
ables H, D, C, S contains something like the suits (Heart, Diamond, Club, and
Spade) of cards.

'num' Examples of simple operations on numbers.

'mat' Examples of simple operations on matrices.

'ratint' Indefinite integration of rational functions. For this, files ‘sp’ and ‘gr’ is neces-
sary. A function ratint() is defined. Its returns a rather complex result.

[0] load("gr")$
[45] load("sp")$
[84] load("ratint")$
[102] ratint(x^6/(x^5+x+1),x);
[1/2*x^2,
\[((-#2)*\log(-140*x+(-2737*#2^2+552*#2-131)),
161*t#2^3-23*t#2+15*t#2-1],
\[(#1)*\log(-5*x+(-21*#1-4)),21*t#1^2+3*t#1+1]]

In this example, indefinite integral of the rational function \(x^6/(x^5+x+1)\) is
computed. The result is a list which comprises two elements: The first element
is the rational part of the integral; The second part is the logarithmic part
of the integral. The logarithmic part is again a list which comprises finite number
of elements, each of which is of form \([\text{root}\log(\text{poly}),\text{defpoly}]\). This pair
should be interpreted to sum up the expression \(\text{root}\log(\text{poly})\) through all
\text{root}'s \text{root}'s of the \text{defpoly}. Here, \text{poly} contains \text{root}, and substitution for
\text{root} is equally applied to \text{poly}. The logarithmic part in total is obtained by
applying such interpretation to all element pairs in the second element of the
result and then summing them up all.

'primdec' Primary ideal decomposition of polynomial ideals and prime compotision of
radicals over the rationals (see Section 8.10.31 [primadec primedec], page 149).

'primdec_mod'
Prime decomposition of radicals of polynomial ideals over finite fields (see Sec-
tion 8.10.32 [primedec_mod], page 150).

'bfct' Computation of b-function. (see Section 8.10.33 [bfunction bfct generic_bfct
ann ann0], page 151).
Appendix A: Appendix

A.3 Input interfaces

A command line editing facility and a history substitution facility are built-in for DOS, Windows version of Asir. UNIX versions of Asir do not have such built-in facilities. Instead, the following input interfaces are prepared. This are also available from our ftp server. As for our ftp server See Section 1.3 [How to get Risa/Asir], page 2.

On Windows, ‘asirgui.exe’ has a copy and paste functionality different from Windows convention. Press the left button of the mouse and drag the mouse cursor on a text, then the text is selected and is highlighted. When the button is released, highlighted text returns to the normal state and it is saved in the copy buffer. If the right button is pressed, the text in the copy buffer is inserted at the current text cursor position. Note that the existing text is read-only and one cannot modify it.

A.3.1 fep

Fep is a general purpose front end processor. The author is K. Utashiro (SRA Inc.).

Under fep, emacs- or vi-like command line editing and csh-like history substitution are available for UNIX commands, including ‘asir’.

% fep asir
...
[0] fctr(x^5-1);
[[1,1],[x-1,1],[x^4+x^3+x^2+x+1,1]]
[1] ! /* !+Return */
fctr(x^5-1); /* The last input appears. */
...
/* Edit+Return */
fctr(x^5+1); /* The last input appears. */
[[1,1],[x+1,1],[x^4-x^3+x^2-x+1,1]]

Fep is a free software and the source is available. However machines or operating systems on which the original one can run are limited. The modified version by us running on several unsupported environments is available from our ftp server.

A.3.2 asir.el

‘asir.el’ is a GNU Emacs interface for Asir. The author is Koji Miyajima (YVE25250@pcvan.or.jp). In ‘asir.el’, completion of file names and command names is realized other than the ordinary editing functions which are available on Emacs.

‘asir.el’ is distributed on PC-VAN. The version where several changes have been made according to the current version of Asir is available via ftp.

The way of setting up and the usage can be found at the top of ‘asir.el’.

A.4 Library interfaces

It is possible to link an Asir library to use the functionalities of Asir from other programs. The necessary libraries are included in the OpenXM distribution (http://www.math.kobe-u.ac.jp/OpenXM). At present only the OpenXM interfaces are available. Here we assume that OpenXM is already installed. In the following $OpenXM_HOME denotes the OpenXM
root directory. All the library files are placed in `$OpenXM_HOME/lib`. There are three kinds of libraries as follows.

- **`libasir.a`**
  It does not contain the functionalities related to PARI and X11. Only `libasir-gc.a` is necessary for linking.

- **`libasir_pari.a`**
  It does not contain the functionalities related to X11. `libasir-gc.a`, `libpari.a` are necessary for linking.

- **`libasir_pari_X.a`**
  All the functionalities are included. `libasir-gc.a`, `libpari.a` and libraries related to X11 are necessary for linking.

- **`int asir_ox_init(int byteorder)`**
  It initializes the library. `byteorder` specifies the format of binary CMO data on the memory. If `byteorder` is 0, the byteorder native to the machine is used. If `byteorder` is 1, the network byteorder is used. It returns 0 if the initialization is successful, -1 otherwise.

- **`void asir_ox_push_cmo(void *cmo)`**

- **`int asir_ox_peek_cmo_size()`**
  It returns the size of the object at the top of the stack as CMO object. It returns -1 if the object cannot be converted into CMO object.

- **`int asir_ox_pop_cmo(void *cmo, int limit)`**
  It pops an Asir object at the top of the stack and it converts the object into CMO data. If the size of the CMO data is not greater than `limit`, then the data is written in `cmo` and the size is returned. Otherwise -1 is returned. The size of the array pointed by `cmo` must be at least `limit`. In order to know the size of converted CMO data in advance `asir_ox_peek_cmo_size` is called.

- **`void asir_ox_push_cmd(int cmd)`**
  It executes a stack machine command `cmd`.

- **`void asir_ox_execute_string(char *str)`**
  It evaluates `str` as a string written in the Asir user language. The result is pushed onto the stack.

A program calling the above functions should include `$OpenXM_HOME/include/asir/ox.h`.

In this file all the definitions of OpenXM tags and commands. The following example ('$OpenXM_HOME/doc/oxlib/test3.c') illustrates the usage of the above functions.

```c
#include <asir/ox.h>
#include <signal.h>

main(int argc, char **argv)
{
 char buf[BUFSIZ+1];
 int c;
 unsigned char sendbuf[BUFSIZ+10];
 unsigned char *result;
 unsigned char h[3];
```
```c
int len, i, j;
static int result_len = 0;
char *kwd, *bdy;
unsigned int cmd;

signal(SIGINT, SIG_IGN);
asir_ox_init(1); /* 1: network byte order; 0: native byte order */
result_len = BUFSIZ;
result = (void *)malloc(BUFSIZ);
while (1) {
 printf("Input>"); fflush(stdout);
 fgets(buf, BUFSIZ, stdin);
 for (i = 0; buf[i] && isspace(buf[i]); i++);
 if (!buf[i])
 continue;
 kwd = buf+i;
 for (; buf[i] && !isspace(buf[i]); i++);
 buf[i] = 0;
 bdy = buf+i+1;
 if (!strcmp(kwd, "asir")) {
 sprintf(sendbuf, "%s;", bdy);
 asir_ox_execute_string(sendbuf);
 } else if (!strcmp(kwd, "push")) {
 h[0] = 0;
 h[2] = 0;
 j = 0;
 while (1) {
 for (; (c= *bdy) && isspace(c); bdy++);
 if (!c)
 break;
 else if (h[0]) {
 h[1] = c;
 sendbuf[j++] = strtoul(h, 0, 16);
 h[0] = 0;
 } else
 h[0] = c;
 bdy++;
 }
 if (h[0])
 fprintf(stderr,"Number of characters is odd.\n");
 else {
 sendbuf[j] = 0;
 asir_ox_push_cmo(sendbuf);
 }
 } else if (!strcmp(kwd, "cmd")) {
 cmd = atoi(bdy);
 asir_ox_push_cmd(cmd);
 } else if (!strcmp(kwd, "pop")) {
 len = asir_ox_peek_cmo_size();
 }
```
if ( !len )
    continue;
if ( len > result_len ) {
    result = (char *)realloc(result,len);
    result_len = len;
}
asir_ox_pop_cmo(result,len);
printf("Output>"); fflush(stdout);
printf("\n");
for ( i = 0; i < len; ) {
    printf("%02x ",result[i]);
    i++;
    if ( !(i%16) )
        printf("\n");
}
printf("\n");
}

This program receives a line in the form of keyword body as an input and it executes the following operations according to keyword.

- **asir body**
  body is regarded as an expression written in the Asir user language. The expression is evaluated and the result is pushed onto the stack. `asir_ox_execute_string()` is called.

- **push body**
  body is regarded as a CMO object in the hexadecimal form. The CMO object is converted into an Asir object and is pushed onto the stack. `asir_ox_push_cmo()` is called.

- **pop**
  The object at the top of the stack is converted into a CMO object and it is displayed in the hexadecimal form. `asir_ox_peek_cmo_size()` and `asir_ox_pop_cmo()` are called.

- **cmd body**
  body is regarded as an SM command and the command is executed. `asir_ox_push_cmd()` is called.

### A.5 Appendix

#### A.5.1 Version 990831

Four years have passed since the last distribution. Though the look and feel seem unchanged, internally there are several changes such as 32-bit representation of bignums. Plotting facilities are not available on Windows.

If you have files created by `bsave` on the older version, you have to use `bload27` to read such files.
A.5.2 Version 950831

A.5.2.1 Debugger

- One can enter the debug mode anytime.
- A command finish has been appended.
- One can examine any stack frame with up, down and frame.
- A command trace has been appended.

A.5.2.2 Built-in functions

- One can specify a main variable for sdiv() etc.
- Functions for polynomial division over finite fields such as sdivm() have been appended.
- det(), res() can produce results over finite fields.
- vtol(), conversion from a vector to a list has been appended.
- map() has been appended.

A.5.2.3 Groebner basis computation

- Functions for Groebner basis computation have been implemented as built-in functions.
- grm() and hgrm() have been changed to gr() and hgr() respectively.
- gr() and hgr() requires explicit specification of an ordering type.
- Extension of specification of a term ordering type.
- Groebner basis computations over finite fields.
- Lex order Groebner basis computation via a modular change of ordering algorithm.
- Several new built-in functions.

A.5.2.4 Others

- Implementation of tools for distributed computation.
- Application of modular computation for GCD computation over algebraic number fields.
- Implementation of primary decompostion of ideals.
- Porting to Windows.

A.5.3 Version 940420

The first public verion.
Appendix A: Appendix

A.6 References


Index

% % .................................................................................. 51

A
access .................................................. 85
af ......................................................... 162
af_noalg .............................................. 162
alg ...................................................... 159
algtoalg ................................................ 161
algtdalg .............................................. 165
algv ..................................................... 160
ann ..................................................... 151
ann0 .................................................... 151
append ............................................... 63
arfreg .................................................. 72
args ................................................... 78
asciitostr .......................................... 80
asq .................................................... 162

B
bfct ................................................... 151
bfnc .................................................. 151
blood .................................................. 84
load ................................................... 84
load27 ................................................ 84
bsave ................................................ 84

C
call .................................................... 77
car ..................................................... 63
cdr ..................................................... 63
cell .................................................... 89
characteristic_ff ............................... 170
clear_canvas ..................................... 117
close_file .......................................... 86
coeff ................................................ 47
cola .................................................. 71
colm .................................................. 71
colx .................................................. 71
conj .................................................. 40
complot ............................................ 114
cons .................................................. 63
cputime .............................................. 94
cr_gcda ............................................. 161
ctrl ................................................... 90
currenttime ...................................... 95
cyclic ............................................... 149

D
dabs .................................................. 89
dacos ................................................ 88
dalgtodalg ........................................ 165
dalgtodp .......................................... 165
dasin ................................................ 88
datan ................................................ 88
dceil .................................................. 89
dcos .................................................. 88
ddebug ............................................. 91
defpoly ............................................. 159
defpoly_mod2 ..................................... 175
deg ................................................... 47
delete_history ................... ................................. 98
det ..................................................... 69
deval .................................................. 40
dexp ................................................... 89
dfloor ................................................ 89
dgr .................................................... 129
diff .................................................... 52
dlog ................................................... 89
dn ...................................................... 39
dp_dehomo ........................................ 139
dp_dtop ............................................ 138
dp_etov ............................................ 144
dp_f4_main ........................................ 135
dp_f4_mod_main ................................. 135
dp_gr_f_main ..................................... 134
dp_gr_flags ....................................... 136
dp_gr_main ........................................ 134
dp_gr_mod_main ................................. 134
dp_gr_mod_main .................................. 134
dp_gr_print ....................................... 136
dp_hc .............................................. 142
dp_bm .............................................. 142
dp_homo .......................................... 139
dp_ht ............................................... 142
dp_lcm ............................................. 143
dp_mag ............................................. 145
dp_mbbase ....................................... 145
dp_mod ............................................. 139
dp_of ............................................... 140
dp_nf ............................................... 140
dp_nf_mod ......................................... 140
dp_ord .............................................. 137
dp_prim .......................................... 140
dp_ptod .......................................... 138
dp_ptozp .......................................... 140
dp_rat ............................................. 139
dp_red ............................................. 146
dp_red_mod ...................................... 146
dp_redble ........................................ 143
dp_rest ............................................ 142
dp_sp ............................................. 146
<table>
<thead>
<tr>
<th>Field</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>dp_sp_mod</td>
<td>146</td>
</tr>
<tr>
<td>dp_subd</td>
<td>144</td>
</tr>
<tr>
<td>dp_sugar</td>
<td>142</td>
</tr>
<tr>
<td>dp_td</td>
<td>142</td>
</tr>
<tr>
<td>dp_true_nf</td>
<td>140</td>
</tr>
<tr>
<td>dp_true_nf_mod</td>
<td>140</td>
</tr>
<tr>
<td>dp_vtoe</td>
<td>144</td>
</tr>
<tr>
<td>dp_weyl_f4_main</td>
<td>135</td>
</tr>
<tr>
<td>dp_weyl_f4_mod_main</td>
<td>135</td>
</tr>
<tr>
<td>dp_weyl_gr_f_main</td>
<td>134</td>
</tr>
<tr>
<td>dp_weyl_gr_main</td>
<td>134</td>
</tr>
<tr>
<td>dp_weyl_gr_mod_main</td>
<td>134</td>
</tr>
<tr>
<td>ediff</td>
<td>165</td>
</tr>
<tr>
<td>ediff</td>
<td>165</td>
</tr>
<tr>
<td>end</td>
<td>81</td>
</tr>
<tr>
<td>error</td>
<td>92</td>
</tr>
<tr>
<td>eval</td>
<td>40</td>
</tr>
<tr>
<td>eval_str</td>
<td>79</td>
</tr>
<tr>
<td>extdeg_ff</td>
<td>170</td>
</tr>
<tr>
<td>fac</td>
<td>35</td>
</tr>
<tr>
<td>facr</td>
<td>53</td>
</tr>
<tr>
<td>facr_ff</td>
<td>176</td>
</tr>
<tr>
<td>field_order_ff</td>
<td>169</td>
</tr>
<tr>
<td>field_type_ff</td>
<td>169</td>
</tr>
<tr>
<td>flist</td>
<td>98</td>
</tr>
<tr>
<td>floor</td>
<td>89</td>
</tr>
<tr>
<td>funargs</td>
<td>78</td>
</tr>
<tr>
<td>functor</td>
<td>78</td>
</tr>
<tr>
<td>gb_comp</td>
<td>148</td>
</tr>
<tr>
<td>gcd</td>
<td>57</td>
</tr>
<tr>
<td>generate_port</td>
<td>106</td>
</tr>
<tr>
<td>generic_bfct</td>
<td>151</td>
</tr>
<tr>
<td>get_byte</td>
<td>86</td>
</tr>
<tr>
<td>get_line</td>
<td>86</td>
</tr>
<tr>
<td>get_rootdir</td>
<td>98</td>
</tr>
<tr>
<td>getenv</td>
<td>99</td>
</tr>
<tr>
<td>getopt</td>
<td>99</td>
</tr>
<tr>
<td>gf2ntop</td>
<td>173</td>
</tr>
<tr>
<td>gf2ntop</td>
<td>174</td>
</tr>
<tr>
<td>gr</td>
<td>129</td>
</tr>
<tr>
<td>gr_minipoly</td>
<td>132</td>
</tr>
<tr>
<td>gr_mod</td>
<td>129</td>
</tr>
<tr>
<td>h</td>
<td>149</td>
</tr>
<tr>
<td>h cyclic</td>
<td>149</td>
</tr>
<tr>
<td>heap</td>
<td>96</td>
</tr>
<tr>
<td>help</td>
<td>92</td>
</tr>
<tr>
<td>hgr</td>
<td>129</td>
</tr>
<tr>
<td>hskatsura</td>
<td>149</td>
</tr>
<tr>
<td>hsqrt</td>
<td>89</td>
</tr>
<tr>
<td>dtan</td>
<td>88</td>
</tr>
<tr>
<td>E</td>
<td></td>
</tr>
<tr>
<td>ecm_add_ff</td>
<td>177</td>
</tr>
<tr>
<td>ecm_chsgn_ff</td>
<td>177</td>
</tr>
<tr>
<td>ecm_sub_ff</td>
<td>177</td>
</tr>
<tr>
<td>end</td>
<td>81</td>
</tr>
<tr>
<td>error</td>
<td>92</td>
</tr>
<tr>
<td>eval</td>
<td>40</td>
</tr>
<tr>
<td>eval_str</td>
<td>79</td>
</tr>
<tr>
<td>extdeg_ff</td>
<td>170</td>
</tr>
<tr>
<td>F</td>
<td></td>
</tr>
<tr>
<td>fac</td>
<td>35</td>
</tr>
<tr>
<td>facr</td>
<td>53</td>
</tr>
<tr>
<td>facr_ff</td>
<td>176</td>
</tr>
<tr>
<td>field_order_ff</td>
<td>169</td>
</tr>
<tr>
<td>field_type_ff</td>
<td>169</td>
</tr>
<tr>
<td>flist</td>
<td>98</td>
</tr>
<tr>
<td>floor</td>
<td>89</td>
</tr>
<tr>
<td>funargs</td>
<td>78</td>
</tr>
<tr>
<td>functor</td>
<td>78</td>
</tr>
<tr>
<td>G</td>
<td></td>
</tr>
<tr>
<td>gb_comp</td>
<td>148</td>
</tr>
<tr>
<td>gcd</td>
<td>57</td>
</tr>
<tr>
<td>generate_port</td>
<td>106</td>
</tr>
<tr>
<td>generic_bfct</td>
<td>151</td>
</tr>
<tr>
<td>get_byte</td>
<td>86</td>
</tr>
<tr>
<td>get_line</td>
<td>86</td>
</tr>
<tr>
<td>get_rootdir</td>
<td>98</td>
</tr>
<tr>
<td>getenv</td>
<td>99</td>
</tr>
<tr>
<td>getopt</td>
<td>99</td>
</tr>
<tr>
<td>gf2ntop</td>
<td>173</td>
</tr>
<tr>
<td>gf2ntop</td>
<td>174</td>
</tr>
<tr>
<td>gr</td>
<td>129</td>
</tr>
<tr>
<td>gr_minipoly</td>
<td>132</td>
</tr>
<tr>
<td>gr_mod</td>
<td>129</td>
</tr>
<tr>
<td>H</td>
<td></td>
</tr>
<tr>
<td>h cyclic</td>
<td>149</td>
</tr>
<tr>
<td>heap</td>
<td>96</td>
</tr>
<tr>
<td>help</td>
<td>92</td>
</tr>
<tr>
<td>hgr</td>
<td>129</td>
</tr>
<tr>
<td>hskatsura</td>
<td>149</td>
</tr>
<tr>
<td>hsqrt</td>
<td>89</td>
</tr>
<tr>
<td>dtan</td>
<td>88</td>
</tr>
<tr>
<td>I</td>
<td></td>
</tr>
<tr>
<td>iand</td>
<td>44</td>
</tr>
<tr>
<td>idiv</td>
<td>35</td>
</tr>
<tr>
<td>ifplot</td>
<td>114</td>
</tr>
<tr>
<td>igcd</td>
<td>36</td>
</tr>
<tr>
<td>igcdcntl</td>
<td>36</td>
</tr>
<tr>
<td>ilcm</td>
<td>37</td>
</tr>
<tr>
<td>int32ton</td>
<td>44</td>
</tr>
<tr>
<td>inv</td>
<td>37</td>
</tr>
<tr>
<td>invmat</td>
<td>69</td>
</tr>
<tr>
<td>ior</td>
<td>44</td>
</tr>
<tr>
<td>irem</td>
<td>35</td>
</tr>
<tr>
<td>irreducible_check_ff</td>
<td>176</td>
</tr>
<tr>
<td>ishift</td>
<td>45</td>
</tr>
<tr>
<td>isqrt</td>
<td>37</td>
</tr>
<tr>
<td>ixor</td>
<td>44</td>
</tr>
<tr>
<td>K</td>
<td></td>
</tr>
<tr>
<td>katsura</td>
<td>149</td>
</tr>
<tr>
<td>kmul</td>
<td>60</td>
</tr>
<tr>
<td>ksquare</td>
<td>60</td>
</tr>
<tr>
<td>ktmul</td>
<td>60</td>
</tr>
<tr>
<td>L</td>
<td></td>
</tr>
<tr>
<td>length</td>
<td>63</td>
</tr>
<tr>
<td>lex_hensel</td>
<td>130</td>
</tr>
<tr>
<td>lex_hensel_gsl</td>
<td>131</td>
</tr>
<tr>
<td>lex_tl</td>
<td>130</td>
</tr>
<tr>
<td>lmpart</td>
<td>172</td>
</tr>
<tr>
<td>load</td>
<td>81</td>
</tr>
<tr>
<td>lprime</td>
<td>37</td>
</tr>
<tr>
<td>lrandom</td>
<td>38</td>
</tr>
</tbody>
</table>
Index

itov .............................................. 66

M
map ............................................. 97
mat ............................................. 68
matc ............................................ 68
matr ............................................. 68
matrix .......................................... 67
mindeg ......................................... 47
minipoly ....................................... 132
minipolym ..................................... 131
modfctr ........................................ 55
module_definedp ............................... 88
module_list .................................... 88
mt_load ........................................ 39
mt_save ....................................... 39

N
nd_det .......................................... 69
nd_f4 .......................................... 135
nd_f4_trace ................................... 135
nd ............................................. 135
nd_gr .......................................... 135
nd_gr_trace ................................... 135
nd_weyl ........................................ 135
nd_weyl_gr .................................... 135
nealg .......................................... 159
newbytearray ................................... 67
newmat ........................................ 67
newstruct ...................................... 72
newvect ....................................... 64
mm ............................................. 39
mmono .......................................... 48
ntogf2n ....................................... 173
ntoint32 ....................................... 44
ntype .......................................... 76

O
open_canvas .................................... 117
open_file ...................................... 86
ord ............................................. 48
output ......................................... 83
ox_cmo_rpc ................................... 107
ox_execute_string ............................. 107
ox_flush ....................................... 113
ox_get ......................................... 111
ox_get_serverinfo ............................. 113
ox_launch ...................................... 103
ox_launch_generic ............................. 105
ox_launch_nox ................................ 103
ox_pop_cmo .................................... 110
ox_pop_local .................................. 110
ox_pops ........................................ 111
ox_push_cmd ................................... 110
ox_push_cmo ................................... 109
ox_push_local ................................ 109
ox_reset ....................................... 108
ox_rpc ......................................... 107
ox_select ...................................... 112
ox_shutdown ................................... 103
ox_sync ....................................... 110

P
p_nf ............................................. 147
p_nf_mod ...................................... 147
p_terms ........................................ 148
p_true_nf ...................................... 147
p_true_nf_mod ................................ 147
pari ............................................ 41
plot ............................................ 114
plotover ....................................... 114
polarplot ..................................... 114
prim ............................................ 56
primdec ........................................ 149
prime .......................................... 37
primedec ....................................... 149
primedec_mod ................................ 150
print .......................................... 85
psubst ......................................... 51
ptogf2n ....................................... 174
ptosfp ......................................... 175
ptozp .......................................... 56
purge_stdin ................................... 86
put_byte ....................................... 86

Q
qsort ............................................ 70
quit ............................................. 81

R
random .......................................... 38
random_ff ...................................... 172
randpoly_ff ................................... 177
rattoalgp ...................................... 161
red ............................................. 58
register_handler ............................. 108
register_server ............................... 106
remove_file ................................... 86
remove_module ................................. 88
Short Contents

1 Introduction ....................................................... 1
2 Risa/Asir ............................................................ 3
3 Data types ............................................................ 11
4 User language Asir ................................................. 18
5 Debugger .............................................................. 31
6 Built-in Function ..................................................... 35
7 Distributed computation ............................................ 100
8 Groebner basis computation ...................................... 119
9 Algebraic numbers ................................................... 153
10 Finite fields ......................................................... 166
Appendix A Appendix .................................................. 179
Index ................................................................. 189
# Table of Contents

1 Introduction ............................................. 1  
   1.1 Organization of the Manual .......................... 1  
   1.2 Notation ............................................. 1  
   1.3 How to get Risa/Asir ............................... 2  

2 Risa/Asir ................................................... 3  
   2.1 Risa and Asir ........................................... 3  
   2.2 Features of Asir ....................................... 3  
   2.3 Installation .......................................... 4  
      2.3.1 UNIX binary version .............................. 4  
      2.3.2 UNIX source code version ...................... 4  
      2.3.3 Windows version .................................. 5  
   2.4 Command line options .................................. 5  
   2.5 Environment variable .................................. 6  
   2.6 Starting and Terminating an Asir session .............. 7  
   2.7 Interruption .......................................... 8  
   2.8 Error handling ...................................... 8  
   2.9 Referencing results and special numbers ............. 9  

3 Data types ................................................. 11  
   3.1 Types in Asir ......................................... 11  
   3.2 Types of numbers ..................................... 14  
   3.3 Types of indeterminates .............................. 16  

4 User language Asir ................................. 18  
   4.1 Syntax — Difference from C language ............... 18  
   4.2 Writing user defined functions ...................... 19  
      4.2.1 User defined functions .......................... 19  
      4.2.2 variables and indeterminates .................. 20  
      4.2.3 parameters and arguments ..................... 21  
      4.2.4 comments ......................................... 22  
      4.2.5 statements ....................................... 22  
      4.2.6 return statement ................................ 23  
      4.2.7 if statement ..................................... 23  
      4.2.8 loop, break, return, continue .................. 24  
      4.2.9 structure definition ............................ 25  
      4.2.10 various expressions ............................ 25  
      4.2.11 preprocessor .................................... 26  
      4.2.12 option ........................................... 27  
      4.2.13 module ........................................... 28
5 Debugger ............................................. 31
  5.1 What is Debugger .................................. 31
  5.2 Debugger commands ................................ 31
  5.3 Execution example of debugger ..................... 33
  5.4 Sample file of initialization file for Debugger .... 34

6 Built-in Function ................................. 35
  6.1 Numbers ........................................... 35
    6.1.1 idiv, irem .................................... 35
    6.1.2 fac ........................................... 35
    6.1.3 igcd, igcdcntl ................................. 36
    6.1.4 ilcm .......................................... 37
    6.1.5 isqrt .......................................... 37
    6.1.6 inv ............................................ 37
    6.1.7 prime, lprime .................................. 37
    6.1.8 random ......................................... 38
    6.1.9 lrandom ........................................ 38
    6.1.10 mt_save, mt_load ............................... 39
    6.1.11 nm, dn ........................................ 39
    6.1.12 conj, real, imag .............................. 40
    6.1.13 eval, deval .................................... 40
    6.1.14 pari .......................................... 41
    6.1.15 setprec ....................................... 42
    6.1.16 setmod ....................................... 43
    6.1.17 ntoi32, int32ton .............................. 44
  6.2 Bit operations ..................................... 44
    6.2.1 iand, ior, ixor ................................. 44
    6.2.2 ishift ......................................... 45
  6.3 operations with polynomials and rational expressions .... 45
    6.3.1 var ............................................ 45
    6.3.2 vars .......................................... 46
    6.3.3 uc ............................................. 46
    6.3.4 coef .......................................... 47
    6.3.5 deg, mindeg ................................... 47
    6.3.6 mmono ......................................... 48
    6.3.7 ord ............................................. 48
    6.3.8 sdiv, sdivm, srem, sremm, sqr, sqrm ........... 49
    6.3.9 tdiv .......................................... 50
    6.3.10 % ............................................. 51
    6.3.11 subst, psubst ................................ 51
    6.3.12 diff .......................................... 52
    6.3.13 ediff ......................................... 53
    6.3.14 res .......................................... 53
    6.3.15 fctr, sqfr ................................... 53
    6.3.16 ufctrhint .................................... 54
    6.3.17 modfctr ..................................... 55
    6.3.18 ptozp ......................................... 56
    6.3.19 prim, cont ................................... 56
6.4 Univariate polynomials ........................................ 58
  6.4.1 umul, umul_ff, usquare, usquare_ff, utmul,
        utmul_ff ........................................ 58
  6.4.2 kmul, ksquare, ktmul ................................. 60
  6.4.3 set_upkara, set_uptkara, set_upfft ............... 60
  6.4.4 utrunc, utcdec, ureverse ......................... 61
  6.4.5 uinv_as_power_series,
        ureverse_inv_as_power_series .................. 61
  6.4.6 udiv, urem, urembymul, urembymul_precomp, ugcd
        ............................................. 62

6.5 Lists ........................................................ 63
  6.5.1 car, cdr, cons, append, reverse, length ...... 63

6.6 Arrays ........................................................ 64
  6.6.1 newvec, vector, vect .............................. 64
  6.6.2 ltov .............................................. 66
  6.6.3 vtol .............................................. 66
  6.6.4 newbytearray .................................... 67
  6.6.5 newmat, matrix ................................ 67
  6.6.6 mat, matr, matc ................................ 68
  6.6.7 size ............................................. 69
  6.6.8 det, nd_det, invmat .............................. 69
  6.6.9 qsort ........................................... 70
  6.6.10 rowx, rowm, rowa, colx, colm, cola .......... 71

6.7 Structures ................................................. 72
  6.7.1 newstruct ...................................... 72
  6.7.2 arfreg ......................................... 72
  6.7.3 struct_type .................................... 75

6.8 Types ...................................................... 75
  6.8.1 type ............................................. 75
  6.8.2 ntype ........................................... 76
  6.8.3 vtype ............................................ 77

6.9 Operations on functions ................................. 77
  6.9.1 call ............................................. 77
  6.9.2 functor, args, funargs ......................... 78

6.10 Strings .................................................. 78
  6.10.1 rtostr ......................................... 78
  6.10.2 strtov ......................................... 79
  6.10.3 eval_str ....................................... 79
  6.10.4 strtoascii, asciiotstr .......................... 80
  6.10.5 str_len, str_chr, sub_str ...................... 80

6.11 Inputs and Outputs ...................................... 81
  6.11.1 end, quit ....................................... 81
  6.11.2 load ............................................ 81
  6.11.3 which .......................................... 82
  6.11.4 output ......................................... 83
  6.11.5 bsave, bload ................................... 84
7 Distributed computation

7.1 OpenXM
7.2 Mathcap
7.3 Stackmachine commands
7.4 Debugging
  7.4.1 Error object
  7.4.2 Resetting a server
  7.4.3 Pop-up command window for debugging
7.5 Functions for distributed computation
  7.5.1 ox_launch, ox_launch_nox, ox_shutdown
  7.5.2 ox_launch_generic
  7.5.3 generate_port, try_bind_listen, try_connect,
       try_accept, register_server
  7.5.4 'ox_asir'
8 Groebner basis computation .......................... 119
  8.1 Distributed polynomial ................................ 119
  8.2 Reading files ........................................... 120
  8.3 Fundamental functions .................................. 120
  8.4 Controlling Groebner basis computations .............. 121
  8.5 Setting term orderings .................................. 124
  8.6 Weight .................................................. 126
  8.7 Groebner basis computation with rational function coefficients
  .......................................................... 127
  8.8 Change of ordering ..................................... 127
  8.9 Weyl algebra ............................................ 128
  8.10 Functions for Groebner basis computation ............ 129
    8.10.1 gr, hgr, gr_mod, dgr ............................... 129
    8.10.2 lex_hensel, lex_tl, tolex, tolex_d, tolex_tl
    .......................................................... 130
    8.10.3 lex_hensel_gsl, tolex_gsl, tolex_gsl_d ........ 131
    8.10.4 gr_minipoly, minipoly ............................. 132
    8.10.5 tolexm, minipolym .................................. 133
    8.10.6 dp_gr_main, dp_gr_mod_main, dp_gr_f_main,
        dp_weyl_gr_main, dp_weyl_gr_mod_main,
        dp_weyl_gr_f_main ..................................... 134
    8.10.7 dp_f4_main, dp_f4_mod_main, dp_weyl_f4_main,
        dp_weyl_f4_mod_main .................................. 135
    8.10.8 nd_gr, nd_gr_trace, nd_f4, nd_f4_trace,
        nd_weyl_gr, nd_weyl_gr_trace ....................... 135
    8.10.9 dp_gr_flags, dp_gr_print ........................... 136
    8.10.10 dp_ord ............................................ 137
    8.10.11 dp_ptod .......................................... 138
    8.10.12 dp_dtop .......................................... 138
    8.10.13 dp_mod, dp_rat ................................... 139
    8.10.14 dp_homo, dp_dehomo .............................. 139
    8.10.15 dp_ptozp, dp_prim ................................ 140
9 Algebraic numbers 

9.1 Representation of algebraic numbers .......... 153
9.2 Operations over algebraic numbers .......... 154
9.3 Representation of algebraic numbers by distributed 
   polynomials .................................................. 156
9.4 Operations for uni-variate polynomials over an algebraic 
   number field ................................................... 157
   9.4.1 GCD ......................................................... 157
   9.4.2 Square-free factorization and Factorization ... 157
   9.4.3 Splitting fields ......................................... 158
9.5 Summary of functions for algebraic numbers .... 158
   9.5.1 newalg .................................................. 159
   9.5.2 defpoly ............................................... 159
   9.5.3 alg ...................................................... 159
   9.5.4 algv .................................................... 160
   9.5.5 simpalg ............................................... 160
   9.5.6 algptorat .............................................. 161
   9.5.7 rattoalgp ............................................. 161
   9.5.8 cr_gcd .................................................. 161
   9.5.9 sp_norm ............................................... 162
   9.5.10 asq, af, af_noalg .................................... 162
   9.5.11 sp, sp_noalg ......................................... 163
   9.5.12 set_field ............................................. 164
   9.5.13 algtdalglg, dalgtdalglg, dptodalglg, dalgtdop .. 165
10 Finite fields .............................. 166
   10.1 Representation of finite fields ......................... 166
   10.2 Univariate polynomials on finite fields ................. 167
   10.3 Polynomials on small finite fields .................... 167
   10.4 Elliptic curves on finite fields ...................... 168
   10.5 Functions for Finite fields ........................... 168
       10.5.1 setmod_ff ..................................... 168
       10.5.2 field_type_ff .................................. 169
       10.5.3 field_order_ff .................................. 169
       10.5.4 characteristic_ff ............................... 170
       10.5.5 extdeg_ff ....................................... 170
       10.5.6 simp_ff .......................................... 171
       10.5.7 random_ff ....................................... 172
       10.5.8 lmptop ........................................... 172
       10.5.9 ntogf2n .......................................... 173
       10.5.10 gf2nton .......................................... 173
       10.5.11 ptogf2n ......................................... 174
       10.5.12 gf2ntop ......................................... 174
       10.5.13 ptosfp, sfptop .................................. 175
       10.5.14 defpoly_mod2 .................................... 175
       10.5.15 sffctr .......................................... 176
       10.5.16 fctr_ff .......................................... 176
       10.5.17 irredcheck_ff ................................... 176
       10.5.18 randpoly_ff ..................................... 177
       10.5.19 ecm_add_ff, ecm_sub_ff, ecm_chsgn_ff ............ 177

Appendix A  Appendix .............................. 179
   A.1 Details of syntax ...................................... 179
   A.2 Files of user defined functions .......................... 181
   A.3 Input interfaces ....................................... 183
       A.3.1 fep .................................................. 183
       A.3.2 asir.el ............................................. 183
   A.4 Library interfaces ..................................... 183
   A.5 Appendix ................................................ 186
       A.5.1 Version 990831 ..................................... 186
       A.5.2 Version 950831 ..................................... 187
           A.5.2.1 Debugger ...................................... 187
           A.5.2.2 Built-in functions ............................ 187
           A.5.2.3 Groebner basis computation .................. 187
           A.5.2.4 Others ......................................... 187
       A.5.3 Version 940420 ..................................... 187
   A.6 References .............................................. 188

Index .................................................... 189