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1 About this document

The system kan/sm1 is a Gröbner engine specialized especially to the ring
of differential operators with a subset of Postscript language and an extension
for object oriented programming. It is designed to be a back-end engine for
a heterotic distributed computing system. However, it is not difficult to con-
trol kan/sm1 directly. This document is a collection of programs for kan/sm1
Version 2.xxxx. Since the system is still evolving, there is no comprehensive
manual for the libraries of kan and the Postscript-like language sm1. However,
all operators in kan/sm1 are shortly explained in onlinehelp.tex in this di-
rectory and it will be enough once one understands the fundamental design of
the system. This document provides introductory examples and explains the
fundamental design of the system. If there are questions, please send an E-mail
to the author (kan@math.kobe-u.ac.jp).

There are two design goals of kan/sm1 .

1. Providing a backend engine in a distributed computing system for com-
putations in the ring of differential operators.

2. Providing a virtual machine based on stacks to teach intermediate level
computer science especially for mathematics students.

2 Getting started

To start the system, type in sm1. To quit the system, type in quit. You can
make a program run in kan/sm1 by the operator

(filename) run ;

or

$filename$ run ;

The two expressions $xyz$ and (xyz) have the same meaning; they means
the string xyz. The pair of brackets generates a string object. The dollar sign
is used for a compatibility to kan/sm1 Version 1.x.

There are three groups of functions. The first group is those of primitive
operators. They are functions written in C. The second group is those of macro
operators. They are functions written in sm1 language and automatically loaded
when the system starts. The third group is those of macro operators defined
in the library files in lib/ directory. These operators provide a user friendly
interfaces of computing characteristic ideal, holonomic rank, b-function, anni-
hilating ideal, hypergeometric differential operators, restrictions, de Rham co-
homology groups. You can get a list of primitive operators and macros by ?
and ?? respectively. To see the usage of a macro, type in (macro name) usage
; . Note that you need a space before ;. All tokens should be separated by
the space or special characters ( ) [ ] { } $ % . The help message usually
provides examples. For example, the line (add) usage present the example
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Example: 2 3 add :: ==> 5 You may try the input line 2 3 add :: and
will get the output 5. All printable characters except the special characters
( ) [ ] { } $ % can be a part of a name of a macro or primitive operator.

For example, :: is a name of macro which outputs the top of the stack and the
prompt.

kan/sm1 is a stack machine. Any object that has been input is put on
the top of the stack. Any operator picks up objects from the stack, executes
computations and puts results on the stack. For example, the primitive operator
print picks up one object from the stack and print it to the screen. If you type
in (Hello World) print, then the string “Hello World” is put on the stack and
the operator print picks up the string and print it. The macro message works
like print and outputs the newline. The macro :: is similar to message,
but it also outputs the newline and the prompt; it picks up one object from the
stack, print the object to the screen and output the prompt sm1>. For example,
when you type in

(Hello World) ::

you get

Hello World
sm1>

We introduce two more useful stack operators.

pop Remove the top element from the stack.

pstack Print the contents of the entire stack.

You can use kan/sm1 as a reverse Polish calculator; try the following lines.

11 4 mul ::
3 4 add /a set
5 3 mul /b set
a b add ::

Mathematical expressions such as x^2-1 are not parsed by the stackma-
chine. The parsing is done by the primitive operator . (dot) in the current ring.
For example, type in the following line just after you started kan/sm1

( (x+2)^10 ). ::

then you will get the expansion of (x+2)10. ( (x+2)^10 ) is a string and is
pushed on the stack. Next, the operator . parses the expression and convert it
to an internal expression of the polynomial. Note that the given string is parsed
in the current ring. In order to see the current ring, use the operator show ring.
Note that the polynomials in sm1 means polynomials with the coefficients in a
given ring such as Z. So, (x/3+2). is not accepted.

A variable is defined by placing the variable’s name, value and def operator
on the stack of kan/sm1 as in the following line:
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/abc 23 def

The macro set is an alternative way to define a variable and set a value.

23 /abc set

means to set the value 23 to the variable abc.
In order to output an expression to a file, the macro output is convinient.

For example, the lines

( (x+2)^10 ). /a set
a output

output the expansion of (x + 2)10 to the file sm1out.txt.
If you need to run a start-up script, modify the shell script Doc/startsm1

and write what you need in the file Doc/Sm1rc.
The system kan/sm1 is not designed for a heavy interactive use. So, unless

you are a stackmachine fan, it is recommended to write your input in a file, for
example, in abc.sm1, and execute your input as

sm1 -q <abc.sm1

Here is an example of an input file abc.sm1:

(cohom.sm1) run

[(y^2-x^3-2) (x,y)] deRham ::

The option -q is for not outputting starting messages.

We close this section with introducing some useful references.
For the reader who are interested in writing a script for kan/sm1, it is

strongly recommended to go through Chapters 2 and 4 (stack and arithmetic,
procedures and variables) of the so called “postscript blue book” [2]. The control
structure of Kan/sm1 is based on a subset of Postscript.

The book [4] is a nice introduction to compute D-module invariants with
Gröbner bases. The book [5] is the latest book on this subject. This book
explains the notion of homogenized Weyl algebra, which is the main ring for
computations in kan/sm1 . and algorithms for D-modules. As to an introduc-
tion to mathematical aspect of D-modules, Chapter 5 of [3] is recommended.

The latest information on kan/sm1 and related papers are put on the http
address [6].

3 Package files in the Doc/ (lib/) directory

A set of user friendly packages are provided for people who are interested in
D-modules (D is the ring of differential operators), but are not interested in
the aspect of sm1 as a part of distributed computing system. Here is a list of
packages.

1. bfunction.sm1 : Computing b-functions. This script is written by T.Oaku.
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2. factor-a.sm1 : A sample interface with risa/asir [1] to factor given
polynomials.

3. hol.sm1 : A basic package for holonomic systems (Gröbner basis and
initial ideals, holonomic rank, characteristic variety, annihilating ideal of
fs).

4. gkz.sm1 : Generate GKZ system for a given A and b.

5. appell.sm1 : Generate Appell hypergeometric differential equations.

6. cohom.sm1 : An experimental package for computing restrictions and de
Rham cohomology groups mainly written by T.Oaku.

7. kanlib1.c : An example to explain an interface between kan and C-
program. Type in “make kanlib1” to compile it.

8. ox.sm1 : A package for communication based on the open XM protocol.
The open sm1 server ox sm1 can be obtainable from the same ftp cite of
kan/sm1. See http://www.math.kobe-u.ac.jp/openxxx for the protocol
design.

9. oxasir.sm1 : A package to use open asir server based on the open XM
protocol. Open asir server ox asir will be distributed from [1]. The
package cohom.sm1 (deRham) and annfs need this package to analyze the
roots of b-functions. The built-in function to analyze the roots is slow. The
open asir server and oxasir.sm1 should be used for efficient analysis of the
roots of b-functions. See the usage of oxasir for the latest information.

10. intw.sm1 : Compute 0-th integration of a given D-module by using a
generic weight vector.

See the section three of onlinehelp.tex for more informations.

3.1 Examples: gb, rrank, gkz, bfunction, deRham

Execute Loadall to load packages before executing examples. Dx means ∂x.

Example 1 Compute a Gröbner basis and the initial ideal with respect to the
weight vector (0, 0, 1, 1) of the D-ideal

D · {(x∂x)2 + (y∂y)2 − 1, xy∂x∂y − 1}.

See [5] on the notion of Gröbner basis and the initial ideal with respect to a
weight vector.

[ [( (x Dx)^2 + (y Dy)^2 -1) ( x y Dx Dy -1)] (x,y)
[ [ (Dx) 1 (Dy) 1] ] ] gb pmat ;

Output:
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[

[ x^2*Dx^2+y^2*Dy^2+x*Dx+y*Dy-1 , x*y*Dx*Dy-1 , y^3*Dy^3+3*y^2*Dy^2+x*Dx ]

[ x^2*Dx^2+y^2*Dy^2 , x*y*Dx*Dy , y^3*Dy^3 ]

]

The first line is the Gröbner basis and the second line is a set of generators of
the initial ideal with respect to the weight vector (0, 0, 1, 1). In order to get
syzygies, use syz.

Example 2 Generate the GKZ system for A =
(

1 1 1 1
0 1 3 4

)
and β = (1, 2).

Here, the GKZ system is a holonomic system of differential equations intro-
duced by Gel’fand, Kapranov and Zelevinsky. The system is also called A-
hypergeometric system.

[ [[1 1 1 1] [0 1 3 4]] [1 2]] gkz ::

Output:

[ x1*Dx1+x2*Dx2+x3*Dx3+x4*Dx4-1 , x2*Dx2+3*x3*Dx3+4*x4*Dx4-2 ,

Dx2*Dx3-Dx1*Dx4 , -Dx1*Dx3^2+Dx2^2*Dx4 , Dx2^3-Dx1^2*Dx3 ,

-Dx3^3+Dx2*Dx4^2 ]

Example 3 Evaluate the holonomic rank of the GKZ systems for A =
(

1 1 1 1
0 1 3 4

)

and β = (1, 2) and β = (0, 0). Show also the time of the execution.

{ [ [[1 1 1 1] [0 1 3 4]] [1 2]] gkz rrank ::} timer
{ [ [[1 1 1 1] [0 1 3 4]] [0 0]] gkz rrank ::} timer

Output:

5

User time: 1.000000 seconds, System time: 0.010000 seconds, Real time: 1 s

4

User time: 1.320000 seconds, System time: 0.000000 seconds, Real time: 1 s

Example 4 Compute the b-function of f = x3−y2z2 and the annihilating ideal
of fr0 where r0 is the minimal integral root of the b-function.

(oxasir.sm1) run
[(x^3 - y^2 z^2) (x,y,z)] annfs /ff set
ff message
ff 1 get 1 get fctr ::

Output:

[ [ -y*Dy+z*Dz , 2*x*Dx+3*y*Dy+6 , -2*y*z^2*Dx-3*x^2*Dy ,

-2*y^2*z*Dx-3*x^2*Dz , -2*z^3*Dx*Dz-3*x^2*Dy^2-2*z^2*Dx ] ,

[-1,-139968*s^7-1119744*s^6-3802464*s^5-7107264*s^4-7898796*s^3-5220720*s^2-1900500*s-294000]]

[[ -12 , 1 ] , [ s+1 , 1 ], [3*s+5 , 1], [ 3*s+4, 1], [6*s+7, 2], [6*s+5, 2]]

The first two rows of the output give generators of the annihilating ideal of
(x3 − y2z2)−1. The b-function is (s + 1)(3s + 5)(3s + 4)(6s + 7)2(6s + 5)2 and
−1 is the minimal integral root.
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Example 5 Compute the de Rham cohomology group of X = C2 \V (x3−y2).

(cohom.sm1) run
[(x^3-y^2) (x,y)] deRham ;

Output:

0-th cohomology: [ 0 , [ ] ]

-1-th cohomology: [ 1 , [ ] ]

-2-th cohomology: [ 1 , [ ] ]

[1 , 1 , 0 ]

This means that H2(X,C) = 0, H1(X,C) = C1, H0(X,C) = C1.

Example 6 Compute the integral of I = D · {∂t − (3t2 − x), ∂x + t}, which
annihilates the function et3−xt, with respect to t.

(cohom.sm1) run
[ [(Dt - (3 t^2-x)) (Dx + t)] [(t)]

[ [(t) (x)] [ ]] 0] integration

Output:

[ [ 1 , [ 3*Dx^2-x ] ] ]

4 Data types

Each object in sm1 has a data type. Here is a list of main primitive data types,
which are common to other languages except the type polynomial and the type
ring.

null

integer(machine integer), 32 bit integer. Example: 152

literal, literal. Example: /abc

string, string. Example: (Hello)

executableArray, program data. Example: { add 2 mul }
array, array, Example: [(abc) 5 ]

polynomial, polynomial, Example: (x^2-1).

ring, ring definition.

number(universalNumber), Big num. Example: (123).. 456 power

class, Class.
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4.1 Array

Array is a collection of one dimensional objects surrounded by square brackets
and indexed by integers (machine integers) 0, 1, 2, . . .. Elements of any array
may be arrays again, so we can express list structures by using arrays. An array
is constructed when the sm1 encounters the right square bracket. Note that
square brackets are also operators. Thus, the line

[(Hello) 2 50 add]

sets up an array

[(Hello) 52]

where the 0-th element of the array is the string (Hello) and the 1-th element is
the integer 52. The put and get operator store and fetch an element of an array.
The get operator takes an array and an index from the stack and returned the
object indexed by the second argument. The line

[(sm1) 12 [(is) (fun)] 15] 2 get

would return the array [(is) (fun)] on the stack. The put operator takes
an array, an index i, an object from the stack and store the object at the i-th
position of the array. That is,

/a [(sm1) (is) (fun)] def
a 2 (a stackmachine) put

would rewrite the contents of the variable a as

[(sm1) (is) (a stackmachine)]

4.2 Ring

The ring object is generated by the operator define ring. This operator has a
side effect; it also changes the current ring. The line

[(x,y) ring_of_differential_operators 0] define_ring /R set

would create the ring of differential operators

Z〈x, y, ∂x, ∂y〉,

store it in the variable R and changes the current ring to this Weyl algebra. ∂x

is denoted by Dx on sm1. The suffix D can be changed; for example, if you want
to use dx instead of Dx, execute the command /@@@.Dsymbol (d) def The
current ring can be obtained by [(CurrentRingp)] system variable . The
current ring is the ring of polynomials of two variables x, h when the system
starts.

All polynomial except 0 belongs to a ring. For a non-zero polynomial f, the
line
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f (ring) dc /rr set

put the associated ring object of f to the variable rr. As we have seen before, a
given string is parsed as a polynomial in the current ring by the operator “.”.
To parse in a given ring, the operator “ ” is used. That is,

[(x,y) ring_of_differential_operators 0] define_ring /R set
(x^2-y) R __ /f set

means to parse the string x^2-y in the ring R and put the polynomial x2 − y
in the variable f. Arithmetic operators for two polynomials can be performed
only when the two polynomials belong to a same ring. If you want to map a
polynomial to a different ring, the easiest way is to translate the polynomial
into a string and parse it in the ring. That is,

[(x,y) ring_of_polynomials 0] define_ring /R1 set
(x-y). /f set
[(x,y,z) ring_of_differential_operators 0] define_ring /R2 set
(y+Dz). /g set
f toString . /f set
f g add ::

would output (x− y) + (y + Dz) = Dz.
It is convinient to have a class of numbers that is contained in any ring. The

datatype number (universalNumber) is the class of bignum, which is allowed to
be added and multiplied to any polynomials with characteristic 0.

4.3 Tag

Each object of kan/sm1 has the tag expressed by an integer. The tag expresses
the class to which the object belongs. You can see the tag of a given object by
the operator tag. For example, if you type in

10 tag ::

then you get the number 1. If you type in

[ 1 2] tag ::

then you get the number 6. The number 1 is the tag of the integer objects and
the number 6 is the tag of the array objects. These tag numbers are stored in
the variables IntegerP and ArrayP. In order to translate one object to that in
a different class, there is the operator data conversion or dc. For example,

(10). (integer) dc ::

translates the polynomial 10 in the current ring into the integer 10 and

(10). (string) dc ::

translates the polynomial 10 into the string 10.
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5 Gröbner basis and Syzygy computation in kan/sm1

5.1 Computing Gröbner or standard basis in the ring of
the polynomials

Example 7 Obtain the Gröbner basis of the ideal generated by the polynomials
x2 + y2 − 4 and xy − 1 in terms of the graded reverse lexicographic order :

1 < x < y < x2 < xy < y2 < · · · .

All inputs must be homogenized to get Gröbner basis by the command
groebner. Usually, the variable h is used for the homogenization. In this
example, Gröbner bases in Q[x, y, h] are computed, but rational coefficients in
the input is not allowed. All coefficients must be integers.

The operator groebner sugar is for non-homogenized computation of Gröbner
basis.

The following code is a convinient template to obtain Gröbner bases.

% gbrev.sm1
[
(y,x) % Change here. Declare the variables that you use.
ring_of_polynomials
0 % Change here. Define the characteristic here.

] define_ring

/inputp
[ % Polynomials must be enclosed by ( and ). or $ and $.
( x^2+y^2-4*h^2 ). % Change here. Write a polynomial for input.
(x*y-h^2). % Change here. Write a polynomial for input.

]
def

[inputp] groebner /ans set
ans dehomogenize ::

The letters after the symbol % are ignored by kan/sm1 ; comments begin
with the symbol %. If one needs to compute Gröbner basis of a given set of
polynomials, one may only change the lines marked by the comment % Change
here.

Grammer 1 Any string of alphabets can be used as a name of a variable except
h, E, H and e . For q-difference operators, q is also reserved. Upper and lower
case letters are distinct.
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Example 8 Obtain the Gröbner basis of the ideal generated by the polynomials
x2 + y2 − 4 and xy − 1 in terms of the lexicographic order :

1 < x < x2 < x3 < · · · < y < yx < yx2 < · · · .

% gblex.sm1
[
(y,x) % Change here. Declare the variables that you use.
ring_of_polynomials
[[(y) 1] [(x) 1]] weight_vector
0 % Change here. Define the characteristic here.

] define_ring

/inputp
[ % Polynomials must be enclosed by ( and ). or $ and $.
( x^2+y^2-4 ). % Change here. Write a polynomial for input.
( x*y-1 ). % Change here. Write a polynomial for input.

]
def

[inputp] groebner_sugar /ans set
ans ::

In this example, the order is specified by the weight vector. If the line
[vec1 vec2 ...] weight_vector is given in the definition of the ring,

monomials are compared by the weight vector vec1. If two monomials have the
same weight, then they are compared by the weight vector vec2. This procedure
will be repeated until all weight vectors are used.

The weigth vector is expressed in the form [v1 w1 v2 w2 ... vp wp
], which means that the variable v1 has the weight w1, the variable v2 has the
weight w2, . . .. For example, when the ring is defined by

[(x,y,z) ring_of_polynomials
[[(x) 1 (y) 3] [(z) -5]] weight_vector 0]

define_ring

two monomials xaybzc Â xAyBzC if and only if a + 3b > A + 3B or (a +
3b = A + 3B and −5c > −5C) or (a + 3b = A + 3B and −5c = −5C and
(a, b, c) Âgrlex (A, B,C)) where Âgrlex denotes the graded reverse lexicographic
order.

The Buchberger’s criterion 1 is turned off by default, because it does not
work in case of the ring of differential operators. To turn it on, input
[(UseCriterion1) 1] system_variable
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The operator groebner outputs the status of degree by degree computation
of Gröbner basis. To turn off this message, input [(KanGBmessage) 0] system_variable

Example 9 Obtain the Gröbner basis of the ideal generated by the polynomials

x2 + y2 + z2 − 1, xy + yz + zx− 1, xyz − 1

in terms of the elimination order x, y > z.

% gbelim.sm1
[
(x,y,z) % Change here. Declare the variables that you use.
ring_of_polynomials
[[(x) 1 (y) 1]] weight_vector
0 % Change here. Define the characteristic here.

] define_ring

/inputp
[ % Polynomials must be enclosed by ( and ). or $ and $.
( x^2+y^2+z^2-1 ). % Change here. Write a polynomial for input.
( x*y+y*z+z*x-1 ). % Change here. Write a polynomial for input.
( x*y*z-1 ). % Change here. Write a polynomial for input.

]
def

[inputp] groebner_sugar /ans set
ans dehomogenize ::

5.2 Computing Gröbner basis in the ring of differential
operators

Example 10 Obtain the Gröbner basis of the ideal in the Weyl algebra

Q〈x, y, ∂x, ∂y〉, where ∂x =
∂

∂x
, ∂y =

∂

∂y

generated by the differential operators

x∂x + y∂y, ∂2
x + ∂2

y

in terms of the elimination order ∂x, ∂y > x, y by using the homogenized Weyl
algebra.
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%% gbdiff.sm1

[ (x,y) ring_of_differential_operators
[[(Dx) 1 (Dy) 1]] weight_vector

0
] define_ring

[ (x Dx + y Dy).
(Dx^2 + Dy^2).

] /ff set

ff { [[(h). (1).]] replace homogenize} map /ff2 set

[ff2] groebner dehomogenize ::

5.3 Computing Gröbner basis in Rn

Example 11 Let S be the ring of polynomials Q[x, y]. Obtain the Gröbner
basis of the S-submodule of S3 generated by the vectors

(x− 1, y − 1, z − 1), (xy − 1, yz − 2, zx− 3).

%% gbvec.sm1

[ (x,y,z) ring_of_polynomials [[(x) 1 (y) 1 (z) 1]] weight_vector 0]
define_ring

[ [(x-1). (y-1). (z-1).] homogenize
[(x y - 1). (y z - 2). (z x - 3).] homogenize ] /ff set

[ff] groebner {toVectors dehomogenize} map ::

5.4 Computing syzygies

Let R be a ring and f1, . . . , fm be elements of R. The left R-module

{(s1, . . . , sm ∈ Rm |
m∑

i=1

sifi = 0}

is called the syzygy among f1, . . . , fm. The following script computes the gen-
erators of the syzygy among

x∂x + y∂y, ∂2
x + ∂2

y

in the homogenized Weyl algebra.
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%% syz.sm1

[ (x,y) ring_of_differential_operators
[[(Dx) 1 (Dy) 1]] weight_vector

0
] define_ring

[ (x Dx + y Dy).
(Dx^2 + Dy^2).

] /ff set

ff { [[(h). (1).]] replace homogenize} map /ff2 set

[ff2 [(needBack) (needSyz)]] groebner /ans set ;
(Syzygies are ...) message
ans 2 get ::

The 0-th element of ans is the Gröbner basis. The 1st element of ans is the
transformation matrix from the input to the Gröbner basis. The 2nd element
of ans is a set of generators of the syzygies of the input.

6 Control Structures and programming

6.1 if

The conditional operator if requires three objects on the stack: an integer value
and two executable arrays, which are program data. The first executable array
will be executed if the integer value is not 0. The second executable array will
be executed if the integer value is 0. For example, the program line

1 { op1 } {op2} ifelse

executes { op1 } and the program line

0 { op1 } {op2} ifelse

executes { op2 }.
Here is a list of comparison operators.

eq = Example: [1 2] [1 3] eq

gt > Example: 3 2 gt

lt < Example: 3 2 lt
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not Example: 3 2 eq not

and Example: 3 2 eq 5 6 lt and

or Example: 3 2 eq 5 6 lt or

6.2 for

The for operator implements a counting loop. This operator takes three integers
and one executable array:

i0 d i1 { ops } for

i0 is the loop counter’s starting value, d is the increment amount, i1 is the final
value. The for operator put the value of the counter on the stack before each
execution of ops. For example, the program line

1 1 5 { /i set i message } for

outputs

1 2 3 4 5

6.3 map function

map function is used to apply an operator to each element of a given array. For
example, the following line is used to translate each polynomial of the given
array aa into the corresponding string

/aa [( (x-1)^2 ). (2^10).] def
aa { (string) dc } map /ff set ;
ff ::

It becomes easier to writing script for kan/sm1 by using the map function.

6.4 Function definition

Programs are stored in executable arrays and the curly brackets generate exe-
cutable arrays. For example, if you input the line

{ add 2 mul }

then the executable array object which represents the program “take two ele-
ments from the stack, add them, and multiply two and put the result on the
stack” will be store on the top of the stack. You can bind the program to a
name. That is,

/abc { add 2 mul } def
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binds the executable array to the variable abc. The input 2 4 abc :: outputs
12. When sm1 encounters the name abc, it looks up the user dictionary and finds
that the value of abc is the executable array { add 2 mul } . The executable
array is loaded to the stack machine and executed.

Funtions can be defined by using executable arrays. Here is a complete
example of a function definition in sm1 following standard conventions.

/foo {
/arg1 set
[/n /i /ans] pushVariables
[
/n arg1 def
/ans 0 def
1 1 n {

/i set
/ans ans i add def

} for
ans /arg1 set

] pop
popVariables
arg1

} def

The function returns the sum 1+2+ · · ·+n. For example, 100 foo :: outputs
5050. The arguments of the function should firstly be stored in the variables
arg1, arg2, . . .. It is a convension in sm1 programming. The local variables are
declared in the line

[/n /i /ans] pushVariables

The macro pushVariables stores the previous values of n, i, ans on the stack
and the macro popVariables restores the previous values. So, you can use n, i,
ans as a local variable of this function. The function body should be enclosed
as

[

] pop

It is also a convension in sm1 programming to avoid unmatched use of pushVariables
and popVariables.

Example 12 cv0.sm1 is a script to compute characteristic variety for D-submodules
in Dn.

cv2.sm1 is a script to compute the multiplicites of D-modules.
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7 Dictionaries and contexts

The def or set operators associate a key with a value and that key-value pair is
stored in the current dictionary. They key may starts with any printable char-
acter except ( ) [ ] { } $ % and numbers and be followed by any printable
characters except the special characters. For example,

foo test Test! foo?59

are accepted as names for keys.
A key-value pair is stored in the current dictionary when you use the operator

def or the operator set. For example, when you input the line

/foo 15 def

then the key-value pair (foo, 15) is stored in the current dictionary. We can
generate several dictionaries in sm1. Each dictionary must have its parent dic-
tionary. When you input a token (key) that is not a number or a string or
a literal, sm1 looks up the current dictionary to find the value of the key. If
the value is an executable array, then it will be executed. If the value is not
an executable array, then the value is put on the stack as an object. If the
looking-up fails, then it tries to find the value in the parent dictionary. If it
fails again, then it tries to find the value in the grandparent dictionary and so
on. This mechanism enables us to write an object oriented system. When the
system starts, there are two dictionaries: primitive dictionary and the standard
user dictionary. For example, the input ? makes sm1 to look up the standard
user dictionary and sm1 finds the value of ?, which is an executable array that
displays all keys in the primitive dictionary.

A new dictionary can be created by the operator newcontext. Here is an
example of creating a new dictionary.

/abc { (Bye) message } def
/aaa 20 def
abc aaa ::

The key-value pairs (abc, { (Bye) message } and (aaa, 20 ) are stored
in the current dictionary (StandardContextp). Here is the output from the
system.

Bye

20

(mycontext) StandardContextp newcontext /nc set ;
nc setcontext ;

Create a new dictionary and change the current dictionary by setcontext.

/abc { (Hello) message } def ;
abc aaa ::

Store a new key-value pair in the new dictionary. Here is the output of the
system.
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Hello

20

The key abc was found in the current dictionary, so the system outputs
Hello. The key aaa was not found in the current dictionary, so the system
looked for it in the parent dictionary and outputs the value 20.

It is sometimes preferable to protect the key-value pairs from unexpected
rewriting. If you input the following lines, then all pairs in the current dictionary
except arg1, arg2, arg3, v1, v2, @.usages will become readonly pairs.

[(Strict2) 1] system_variable %% from var.sm1

[(chattrs) 2] extension

[(chattr) 0 /arg1] extension

[(chattr) 0 /arg2] extension

[(chattr) 0 /arg3] extension

[(chattr) 0 /v1] extension %% used in join.

[(chattr) 0 /v2] extension

[(chattr) 0 /@.usages] extension

8 Using sm1 to teach computer science for stu-
dents in mathematics

There are two design goals in sm1. One goal is to provide a backend engine for
the ring of differential operators in a heterotic distributed computing system.
Another interesting design goal is to help to teach basics of intermediate level
computer science quickly and invite students to mathematical programmers’
world. It is a fun to learn computer science with sm1! Here are some topics
that I tried in class rooms. These are intermediate level topics that should be
learned after students have learned elementary programming by languages like
Pascal, C, C++, Java, Basic, Mathematica, Maple, Macaulay 2, etc.

8.1 Recursive call and the stack

The notion of stack is one of the most important idea in computer science.
The notion of recursive call of functions is usually taught in the first course of
programming. I think it is important to understand how the stack is used to
emulate recurisve calls. The idea is the use of the stack. Function arguments
and local variables are stored in the stack. It enables the system to restore the
values of the local variables and arguments after an execution of the function.
However, it should be noted that, for each function call, the stack dynamically
grows.

As an example that I used in a class room, let us evaluate the n-th Fibonacci
number defined by

fn = fn−1 + fn−2, f1 = f2 = 1

by using a recurisive call.
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/fib {
/arg1 set
[/n /ans] pushVariables
pstack
/n arg1 def
(n=) messagen n message
(-------------------------------) message
n 2 le {

/ans 1 def
}
{

n 1 sub fib n 2 sub fib add /ans set
} ifelse
/arg1 ans def

popVariables
arg1

} def

The program would return the n-th Fibonacci number. That is, 4 fib :: would
return f4 = 3. It also output the entire stack at each call, so you can observe
how stack grows during the computation and how local variables n, ans are
stored in the stack. You would also realize that this program is not efficient and
exhausts huge memory space.

8.2 Implementing a Java-like language

One of the exciting topic in the course of computer science is mathematical
theory of parsing. After learning the basics of the theory, it is a very good
Exercise to design a small language and write a compiler or interpreter for the
language. If you do not like to write a compiler for real CPU, the stackmachine
sm1 will be a good target machine. For example, the language may accept the
input

12345678910111213*(256+2)

and the interpreter or the compiler generate the following code for sm1

(12345678910111213)..
(256)..
(2).. add
mul message

One can easily write an arbitrary precision calculator by using sm1 and also try
algorithms in the number theory by one’s own language.
Exercise 1: parse a set of linear equations like 2x+3y+z = 2; y-z =4; , output
the equation in the matrix form and find solutions.
Exercise 2: Modify the calculator hoc so that it can use sm1 as the backend
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engine. The calculator hoc is discussed in the book: Kerningham and Pike,
Unix programming environment.

The stackmachine sm1 provides a very strong virtual machine for object
oriented system by the dictionary tree. We can easily implement a language, on
which Java-like object oriented programming mechanism is installed, by using
sm1. Here is a sample program of kan/k0, which is an object oriented language
and works on sm1. I taught a course on writing mathematical softwares in a
graduate school with k0.

class Complex extends Object {
local re, /* real part */

im; /* imaginary part*/
def new2(a,b) {

this = new(super.new0());
re = a;
im = b;
return(this);

}
def real() { return(re); }
def imaginary() { return(im); }
def operator add(b) {

return( new2(re+b.real(), im+b.imaginary()) );
}
def operator sub(b) {

return( new2(re-b.real(), im-b.imaginary()) );
}
def operator mul(b) {

return(new2( re*b.real()-im*b.imaginary(), re*b.imaginary()+im*b.real()));
}
def operator div(b) {

local den,num1,num2;
den = (b.real())^2 + (b.imaginary())^2 ;
num1 = re*b.real() + im*b.imaginary();
num2 = -re*b.imaginary()+im*b.real();
return(new2(num1/den, num2/den));

}

def void show() {
Print(re); Print(" +I["); Print(im); Print("]");

}
def void showln() {

this.show(); Ln();
}

}
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a = Complex.new2(1,3);
a:

1 +I[3]
a*a:

-8 +I[6]

8.3 Interactive distributed computing

The plugin modules file2, cmo, socket and the package file ox.sm1 provide func-
tions for interactive distributed computing. To install these plugin modules,
compile sm1 after modifying kan/Makefile. See README for details. These plu-
gins are already installed in the binary distributions of sm1. The sm1 server
ox sm1 and ox which are complient to the Open XM protocol (see [7]) is dis-
tributed from the same ftp cite with sm1. The sm1 server is also a stack machine.
Here is an example input of server and client computation.
Server:

./ox -ox ox_sm1 -data 1300 -control 1200

Client:

(ox.sm1) run
[(localhost) 1300 1200] oxconnect /oxserver set
/f (123).. def ;
oxserver f oxsendcmo ; %% send the data f to the server
oxserver f oxsendcmo ; %% send the data f to the server
oxserver (power) oxexec ; %% execute f f power
oxserver oxpopcmo :: %% get data from the server.

The output is 123123 and equal to 114374367....9267.
Exercise: write a graphical interface for functions in packages of sm1 by Java
and call sm1 server to execute them.

8.4 More exercises

1. kan/sm1 contains the GNU MP package for computations of bignumbers.
You can call the functions in GNU MP by the operator mpzext. Write a
program to find integral solution (x, y) of ax + by = d for given integers
a, b, d.

2. Write a program for RSA encryption.
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