: appell1 : Macros in libraries : ann-t-f

## annfs

``` [ f v m r0] annfs g
It returns the annihilating ideal of f^m where r0 must be smaller
or equal to the minimal integral root of the b-function.
Or, it returns the annihilating ideal of f^r0, r0 and the b-function
where r0 is the minial integral root of b.
For the algorithm, see J. Pure and Applied Algebra 117&118(1997), 495--518.
Example 1: [(x^2+y^2+z^2+t^2) (x,y,z,t) -1 -2] annfs ::
It returns the annihilating ideal of (x^2+y^2+z^2+t^2)^(-1).
Example 2: [(x^2+y^2+z^2+t^2) (x,y,z,t)] annfs ::
It returns the annihilating ideal of f^r0 and [r0, b-function]
where r0 is the minimal integral root of the b-function.
Example 3: [(x^2+y^2+z^2) (x,y,z) -1 -1] annfs ::
Example 4: [(x^3+y^3+z^3) (x,y,z)] annfs ::
Example 5: [((x1+x2+x3)(x1 x2 + x2 x3 + x1 x3) - t x1 x2 x3 )
(t,x1,x2,x3) -1 -2] annfs ::
Note that the example 4 uses huge memory space.

Note: This implementation is stable but obsolete.
As to faster implementation, we refer to ann0 and ann of Risa/Asir
Visit  http://www.math.kobe-u.ac.jp/Asir
```

Nobuki Takayama 平成22年2月8日