[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
2.1.1 Res_solv | ||
2.1.2 Res_solv2 | ||
1.1.46 Kernel | ||
2.1.4 Kernel2 | ||
1.1.22 Gb | ||
2.1.5 Gb | ||
2.1.6 Res_shiftMatrix |
2.1.1 Res_solv |
[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
Res_solv
:: Find a solution u of the linear indefinite equation u m =d.
:: Find a solution u of the linear indefinite equation u m =d. r is a ring object.
When [c,r] is the return value, c/r is the solution u.
Matrix or vector
Vector or scalar
In(16)= RingD("x,y"); In(17)= mm=[Dx,Dy,x]; In(18)= Res_solv(mm,1): [ [ x , 0 , -Dx ] , -1 ] |
The output means that -x*Dx + 0*Dy+Dx*x = 1.
In(4)=RingD("x"); m=[ [x*Dx+2, 0],[Dx+3,x^3],[3,x],[Dx*(x*Dx+3)-(x*Dx+2)*(x*Dx-4),0]]; d=[1,0]; Res_solv(m,d): [ [ x^2*Dx-x*Dx-4*x-1 , 0 , 0 , x ] , -2 ] |
The output implies that -(1/2)*(x^2*Dx-x*Dx-4*x-1)*[x*Dx+2, 0]-(1/2)*[Dx*(x*Dx+3)-(x*Dx+2)*(x*Dx-4),0] = [1,0]
In(4)= r=RingD("x,y"); In(5)= Res_solv([[1,2],[3,4]],[5,0],r): [ [ 10 , -5 ] , -1 ] |
Res_solv_h
, Kernel
, GetRing
, SetRing
.
lib/restriction/complex.k
2.1.2 Res_solv2 |
[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
Res_solv2
:: Find a solution u of the linear indefinite equation u m =v mod j.
:: Find a solution u of the linear indefinite equation u m =v mod j. r is a ring object.
When [c,r] is the return value, c/r is the solution u.
Matrix or vector
Vector or scalar
In(28)= r=RingD("x,y"); In(29)= Res_solv2([x,y],[x^2+y^2],[x]): [ [ 0 , y ] , 1 ] |
The output means that 0*x + y*y = x^2+y^2 mod x
In(32)= Res_solv2([x,y],[x^2+y^2],[],r): [ [ x , y ] , 1 ] |
The output implies that x*x + y*y = x^2+y^2.
Res_solv2_h
, Kernel2
, GetRing
, SetRing
.
lib/restriction/complex.k
1.1.46 Kernel |
[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
Kernel
:: Find solution basis of the linear indefinite equation u m =0.
:: Find solution basis of the linear indefinite equation u m =0. r is a ring object.
List
Matrix or vector
In(16)= RingD("x,y"); In(17)= mm=[[Dx],[Dy],[x]]; In(18)= Pmat(Kernel(mm)); [ [ [ -x*Dx-2 , 0 , Dx^2 ] [ -x*Dy , -1 , Dx*Dy ] [ -x^2 , 0 , x*Dx-1 ] ] [ [ [ -1 ] ] [ [ x , 0 , -Dx ] ] [ [ -x*Dx-2 , 0 , Dx^2 ] [ -x*Dy , -1 , Dx*Dy ] [ -x^2 , 0 , x*Dx-1 ] ] ] ] |
In(4)= r=RingD("x,y"); In(5)= k=Kernel([[1,2],[2,4]],r); k[0]: [ [ 2 , -1 ] ] |
Kernel_h
, Res_solv
, GetRing
, SetRing
.
lib/restriction/complex.k
2.1.4 Kernel2 |
[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
Kernel2
:: Get the kernel of m : D^p —> D^q/j.
:: Get the kernel of m : D^p —> D^q/j. r is a ring object.
List
Matrix or vector
In(27)= r=RingD("x,y"); In(28)= Kernel2([[x,y],[x^2,x*y]],[]): [ [ -x , 1 ] ] In(29)=Kernel2([[x,y],[x^2,x*y]],[[x,y]]): [ [ 1 , 0 ] , [ 0 , 1 ] ] In(41)=Kernel2([0],[0],r): [ [ 1 ] , [ 0 ] ] In(42)=Kernel2([[0,0],[0,0]],[[0,0]],r): [ [ 1 , 0 ] , [ 0 , 1 ] , [ 0 , 0 ] ] In(43)=Kernel2([[0,0,0],[0,0,0]],[],r): [ [ 1 , 0 ] , [ 0 , 1 ] ] |
Kernel2_h
, Res_solv2
, GetRing
, SetRing
,
Kernel
lib/restriction/complex.k
1.1.22 Gb |
[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
Gb
:: It computes the Grobner basis of f.
:: It computes the Grobner basis of f. r is a ring object.
:: It computes the Grobner basis of f.
:: It computes the Grobner basis of f. r is a ring object.
List
Matrix or vector
In(5)= r=RingD("x,y"); In(6)= m=[[x^2+y^2-1],[x*y-1]]; In(7)= Gb(m): [ [ [ x^2+y^2-1 ] , [ x*y-1 ] , [ y^3+x-y ] ] , [ [ x^2+y^2-1 ] , [ x*y-1 ] , [ y^3+x-y ] ] ] In(11)= RingD("x,y",[["x",1]]); In(12)= r=RingD("x,y",[["x",1]]); In(13)= Gb(m,r): [ [ [ x+y^3-y ] , [ -y^4+y^2-1 ] ] , [ [ x ] , [ -y^4+y^2-1 ] ] ] |
Gb_h
, Kernel
, Res_solv
, RingD
,
GetRing
, SetRing
.
lib/restriction/complex.k
2.1.6 Res_shiftMatrix |
[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
Res_shiftMatrix
:: Generate a matrix associated to a degree shift vector m
:: Generate a matrix associated to a degree shift vector m r is a ring object.
Matrix
Vector
多項式変数または文字列
In(5)= r=RingD("x,y"); In(6)= Res_shiftMatrix([-1,0,3],x): [ [ x^(-1) , 0 , 0 ] , [ 0 , 1 , 0 ] , [ 0 , 0 , x^3 ] ] |
In(9)= rrr = RingD("t,x,y",[["t",1,"x",-1,"y",-1,"Dx",1,"Dy",1]]); In(10)= m=[Dx-(x*Dx+y*Dy+2),Dy-(x*Dx+y*Dy+2)]; In(12)= m=Gb(m); In(13)= k = Kernel_h(m[0]); In(14)= Pmat(k[0]); [ [ -Dy+3*h , Dx-3*h , 1 ] [ -x*Dx+x*Dy-y*Dy-3*x*h , y*Dy+3*x*h , h-x ] ] In(15)=Pmat(m[0]); [ Dx*h-x*Dx-y*Dy-2*h^2 , Dy*h-x*Dx-y*Dy-2*h^2 , x*Dx^2-x*Dx*Dy+y*Dx*Dy-y*Dy^2 ] In(18)=k2 = Gb_h(k[0]*Res_shiftMatrix([1,1,1],t)); In(19)=Pmat(Substitute(k2[0],t,1)); [ [ -Dy+3*h , Dx-3*h , 1 ] [ -x*Dx+x*Dy-y*Dy-3*x*h , y*Dy+3*x*h , h-x ] ] |
Gb
, (m,(u,v))-Grobner basis
lib/restriction/complex.k
[ < ] | [ > ] | [ << ] | [ Up ] | [ >> ] |
This document was generated on August 30, 2025 using texi2html 1.82.