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ABSTRACT

A holonomic system of linear partial differential equations is, roughly speaking, a system whose
solution space is finite dimensional. A distribution that is a solution of a holonomic system is called
a holonomic distribution. We give a method to numerically evaluate dual activations of holonomic
activation distributions for neural tangent kernels. The method is based on computer algebra algo-
rithms for rings of differential operators.
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1 Introduction

A.Jacot et al [7] introduced a kernel function Θ(x, x′) that
converges to the neural tanget kernel (NTK). Here, x, x′

are data vectors. They show that large width limits of neu-
ral networks (NN’s) can be described in terms of NTK’s
and Θ’s. In order to construct this kernel function, we
need to evalute double integrals of a function expressed
in terms of an activation (distribution) and an exponen-
tial function with parameters. See (7). These double in-
tegrals are called dual activations. Attempts have been
made to calculate dual activations for various activations,
and closed formulas have been found for many activations.
In particular, Han et al [5] gives several new closed for-
mulas as well as some approximation methods based on
Hermite polynomials, which work nicely for smooth acti-
vation functions.

A system of linear partial differential equations of n vari-
ables is called a holonomic system when the dimension of
its characteristic variety (the variety defined by the ideal
generated by principal symbols) is n. A distribution is
called a holonomic distribution if it is a solution of a holo-
nomic system. A typical example of holonomic distribu-
tions is the rectified linear unit (ReLU) max(u, 0). In this
paper, we note that when the activation is a holonomic
distribution, its dual activation satisfies a holonomic sys-
tem of linear partial differential equations [4] and further
show that the holonomic system can be derived by com-
puter algebraic algorithms. The holonomic system can

be translated into a system of ordinary differential equa-
tions (ODE’s) on a given smooth curve on the parameter
space. We evalute numerically the dual activation by solv-
ing this system of ODE’s. Accuracy and efficiency of nu-
merical evaluations of dual activations depend on numer-
ical solver of ODE’s. Our holonomic method is particu-
larly useful when a closed formula of a dual activation of
a non-smooth holonomic activation is not known.

The method of deriving a holonomic system of definite in-
tegrals with parameters and performing a numerical anal-
ysis of it is called the holonomic gradient method (HGM)
and has been applied to several problems [23]. We refer
to the book [6, chap 6] and papers [16], [17] as introduc-
tory documents. Although methods proposed in this paper
falls into the HGM, our method is specialized to evaluat-
ing dual activations.

2 Computation of NTK

Let f(x, θ) be a NN where x is an input vector and θ is
a parameter vector. The neural tangent kernel (NTK) is
defined by the inner product of the gradient ∂f(x,θ)

∂θ as⟨
∂f(x, θ)

∂θ
,
∂f(x′, θ)

∂θ

⟩
.

Here 〈 , 〉 is the inner product. Let f be a totally connected
NN of depth L. Following Jacot et al [7] and Arora et al
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NTK computation by HGM

[1], we define the following covariance matrices and ex-
pecations.

cσ =
(
Ez∼N(0,1)[σ(z)

2]
)−1

(1)

Σ(0)(x, x′) = x⊤x′ + β2, (2)

Λ(h)(x, x′) =

(
Σ(h−1)(x, x) Σ(h−1)(x, x′)
Σ(h−1)(x′, x) Σ(h−1)(x′, x′)

)
(3)

Σ(h)(x, x′) = cσE(u,v)∼N(0,Λ(h))[σ(u)σ(v)] + β2 (4)

Σ̇(h)(x, x′) = cσE(u,v)∼N(0,Λ(h))[σ̇(u)σ̇(v)] (5)

Here, N(0,Λ) is the two variable normal distribution with
average 0 and covariance Λ (see, e.g., [2]), σ̇ is the deriva-
tive of activation, and β is a hyperparameter of a strength
of an effect of bias parameters. We call the expectation in
(4) the dual activation of σ. It is shown in [7] and more
precisely in [1] that the NTK converges in probability to

Θ(x, x′) =

L+1∑
h=1

(
Σ(h−1)(x, x′)

L+1∏
h′=h

Σ̇(x, x′)

)
. (6)

when the width of the NN goes to infinity.

2.1 Related works

A precise analysis of the convergence to NTK is given
in [1]. In order to compute Θ, we need to evaluate the
dual activations of σ and σ̇. Closed formulas for rectified
monomials and GELU are given by [3] and [22] respec-
tively. A lot of efforts have been continued to seek for
closed formulas of dual activations of several activations
other than the above. Since the number of pages is limited,
we refer a list of known closed formulas in [5, Table 1] for
them.

A general numerical evaluation method for dual activation
by utilizing the Gauss-Hermite quadrature formula for nu-
merical integration is given in Han et al [5, 3.3]. They also
give a closed formula of the dual activation of polynomial
activation functions [5, Th 1].

Our general method to numerically evaluate dual activa-
tions is based on the HGM introduced in [16], [17] and
subsequent papers [23]. General algorithms to derive a
holonomic system for a given integral with parameters are
given in, e.g., [9], [11], [14], [18, chap 5]. We do not use
these general algorithms and utilize the result by Koyama
et al [8, Th 1, 2]. Numerical analysis problems for the
HGM are discussed in [12], [20], [21].

3 Holonomic activation and HGM

Let σ(u) be an activation. When it is a solution of a lin-
ear ODE with polyonomial coefficients, we call it holo-
nomic activation (distribution). For example, ReLU satis-
fies (u∂u − 1) • σ(u) = 0 and then it is holonomic acti-
vation. Suppose that a holonomic activation σ is an ana-
lytic function. Then, it has only finite number of poles or

branch points on the complex plane. Thus, for example,
the sigmoid function 1

1+e−x is not holonomic, because
x = (1 + 2k)π

√
−1, k ∈ Z are poles of this function.

For a holonomic activation σ, we put

g(x) =

∫
R2

σ(u)σ(v) exp(x11u
2+2x12uv+x22v

2)dudv.

(7)
When we need to specify the activation σ, we denote g by

Ê[σ(u)σ(v)]. E(u,v)∼N(0,Λ)[σ(u)σ(v)] is g(x)

√
det(x)

π

where x = (xij) = − 1
2Λ

−1.

Let Dn = C〈x1, . . . , xn, ∂1, . . . , ∂n〉 be the ring of
differential operators where ∂i = ∂

∂xi
. Let ℓ =∑

(α,β)∈E cαβx
α∂β be an element of Dn where cαβ ∈ C,

xα =
∏n

i=1 x
αi
i , ∂β =

∏n
i=1 ∂

βi

i , and E is a finite subset
of Z2n

≥0. A left ideal I in Dn is called a holonomic ideal
or a holonomic system (of linear PDE’s) when the dimen-
sion of the zero set of the ideal generated by the principal
symbols of I is n. For example, the principal symbol of
x1∂

2
1+1 is x1ξ

2
1 ∈ C[x1, ξ1] and dimV (x1ξ

2
1) = 1. Then

the left ideal generated by x1∂
2
1 + 1 in D1 is a holonomic

ideal. See, e.g., [6, 6.4, 6.8] and [18] on the notion of a
holonomic ideal. A function (or a distribution) is called a
holonomic function (or a holonomic distribution) when it
is annihilated by a holonomic ideal. The following theo-
rem by I.N.Bernstein [4] is the theoretical foundation of
our method.
Theorem 1. [4], see also, e.g., [6, Th 6.10.8].
If the left ideal I of Dn is holonomic, then the intersection
of the sum of left ideal and right ideal and Dn−1

(I + ∂nDn) ∩Dn−1 (8)

is a holonomic ideal in Dn−1.

Roughly speaking, the theorem implies that if f is a holo-
nomic function in n variables, then

∫
R
fdxn is a holo-

nomic function in n − 1 variables. An algorithm of con-
struct the integration ideal (8) is given by T.Oaku [11]
(see also, e.g., [6, Chap 6]). If we apply a Laplace trans-
formation xn 7→ −∂n, ∂n 7→ xn, we can construct
(I + xnDn)∩Dn−1, which is called the restriction ideal,
by the algorithm.

Let Rn be the rational Weyl algebra (the ring of dif-
ferential operators with rational function coefficients
C(x)〈∂1, . . . , ∂n〉, C(x) = C(x1, . . . , xn)). It is known
that when I is holonomic, then r := dimC(x)Rn/(RnI)
is finite. The dimension r is called the holonomic rank
of I . The holonomic rank is equal to the dimension of
the holomorphic solutions of I at a generic point. Let
s1 = 1, s2, . . . , sr be a basis of Rn/(RnI) regarded as
a vector space over C(x). When they are monomials of
∂, they are called standard monomials. Then, ∂isj can
be expressed as a linear combination of sk’s as ∂isj =∑r

k=1 p
i
jk(x)sk in Rn/(RnI). The rational functions pijk

can be obtained by a Gröbner basis computation (see, e.g.,
[6, 6.1, 6.2]). If a function f is annihilated by the left ideal
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I , then F = (f, s2 • f, . . . , sr • f)T satisfies

∂F

∂xi
= PiF (9)

where Pi is a r × r matrix Pi = (pijk). The equation is
called a Pfaffian system. It is also expressed as

dF = (P1dx1 + · · ·+ Pndxn)F. (10)

It is well-known that an ODE of the rank r and the inde-
pendent variable z can be translated to a system of first
order ODE ∂z • F = P (z)F where P (z) is r × r matrix.
A Pfaffian system associated to a holonomic system is a
generalization of this system. See, e.g., [6, §6.2].

Algorithm 1. (HGM)
Input: Linear ODE’s ℓ1 and ℓ2 annihilating σ1(u) and
σ2(u) respectively. A curve on the x space.
Output: Values2 of Ê[σ1(u)σ2(v)] on the curve.

1. Apply [8, Th 2] to the left ideal gener-
ated by ℓ1 and ℓ2 in C〈u, v, ∂u, ∂v〉 and
obtain a holonomic ideal I1 in D5 =
C〈x11, x12, x22, y1, y2, ∂11, ∂12, ∂22, ∂1, ∂2〉.

2. Apply a restriction algorithm [11] to find gen-
erators of I2 := (I1 + y1D5 + y2D5) ∩
C〈x11, x12, x22, ∂11, ∂12, ∂22〉.

3. Translate I2 into a Pfaffian system.

4. Evaluate initial values of F at x11 = −1, x12 =
0, x22 = −1 or around this point by the series of
Proposition 1.

5. Solve the Pfaffian system numerically on the
given curve.

Proposition 1. Series expansion of Ê[σ1(u)σ2(v)] at
(x11, x12, x22) = (−1, 0,−1) is

∑
k∈N3

0
ckx

k, xk =

(x11 + 1)k11xk12
12 (x22 + 1)k22 where

ck =
2k12

k11!k12!k22!

×
∫ ∞

−∞
u2k11+k12σ1(u) exp(−u2)du

×
∫ ∞

−∞
v2k22+k12σ2(v) exp(−v2)dv. (11)

4 Experiments

1. We evaluate Θ for a one hidden layer NN with the ac-
tivation ReLU and 1 dimensional input and output. We
compare the following 4 methods.

1. The closed formula of the dual activation (e.g.,
[1, I]).

2. Evaluate Ê by the Monte-Carlo method with
5000 samples.

3. Gauss-Hermite quadrature formula of degree 10
[5, 3.3] (Gauss-Herm, gh).

4. Algorithm 1 (HGM).

Training data are values of sin(πx) at 15 points on (−1, 1)
with same distance. Test inference inputs are 20 points on
(−1, 1) with same distance. Steps 1, 2, 3 of Algorithm 1
can be done in 0.196s on the Risa/Asir computer algebra
system [15]. We use solve_ivp of scipy with rtol =

1e-10, atol = 1e-10 as an ODE solver. The following
timing data is taken on AMD EPYC 7552 48-core3 pro-
cessor of 1.5GHz.

Method Training time Pred time
closed 1.500e-2 1.98e-2
Gauss-Herm 3.352e0 3.306e0
hgm 8.571e0 1.017e1
Monte-Carlo 8.597e1 1.149e2

Kernel error
hgm 2.779e-8

Gauss-Herm 1.034e-3
Monte-Carlo 1.103e-3

Pred error
hgm 2.815e-3

Gauss-Herm 4.164e-2
Monte-Carlo 4.039e-1

The matrix (Θ(xi, xj)) is called the Gram matrix where
xi and xj are input data. The kernel error is the mean
squared error (MSE) of the Gram matrix of a test method
and that evaluated by the closed formula. The “pred er-
ror” is the MSE of the outputs of a test method and those
by the Gram matrix evaluated by the closed formula. The
HGM is about 2.6 times slower than the Gauss-Hermite
formula, but the kernel error and the prediction error are
smaller. In fact, the HGM gives the exact shape of the sin
curve. See Figure 1.
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Figure 1: Learning a sin curve.

2(7) is the case of σ = σ1 = σ2.
3We use only 1 core.
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2. We evaluate Θ for a one hidden layer NN with the ac-
tivation ReLU and 784 dimensional input and 2 dimen-
sional output. Training data are 100 pictures of hand
written numbers 0 and 1 of MNIST. Test inference data
are 20 pictures. Timing data is taken on a machine with
Intel(R) Xeon(R) Gold 6426Y (800MHz) and NVIDIA
A800 40GB. The GPU is used only for computing inner
products of vectors. In the timing and error table below,
the Gram matrices are for 120 input points.

Method Eval time Kernel error
closed 2.702e0
Gauss-Herm 1.280e2 6.596e-2
hgm 1.727e2 1.456e-6
Monte-Carlo 2.904e3 1.814e-2

The correct answer rate is 100 % except the Monte-Carlo
method, whose rate is 85 %. The kernel error of Monte-
Carlo method is smaller than that of Gauss-Herm, but the
Monte-Carlo method sometimes gives wrong values of
Θ(x, x′) which cause a recognition error.

These experiments demonstrate that the HGM will be use-
ful to evaluate dual activations for non-smooth holonomic
activations. Source codes for these experiments are ob-
tainable from [13]. Experiments for some other activa-
tions are presented in [19].

5 Closed formula for rectified monomials
of two variables

The Gauss-Hermite quadrature and the HGM are useful
methods when closed formulas of dual activations are not
known. However, they are slower and less accurate than
closed formulas. Then, it will be important to make efforts
to find new closed formulas.

Applying the HGM algorithm by hand, we obtain the fol-
lowing new closed formula of dual activations.

Let m,n are non-negative integers and Y (u) the Heavi-
side function. Assume x11, x22 < 0 and 0 ≤ x2

12

x11x22
< 1.

Put

φ1 := (−x11)
−α(−x22)

−β
2F1

(
α, β,

1

2
; z

)
(12)

φ2 := (−x11)
−α(−x22)

−β
√
z sign (x12)

×2F1

(
α+

1

2
, β +

1

2
,
3

2
; z

)
(13)

where 2F1 is the Gauss hypergeometric function,

α =
1 +m

2
, β =

1 + n

2
, z =

x2
12

x11x22
(14)

and sign (x) is the sign of x. We denote by Ê the unnor-
malized expectation g(x) (7).

Theorem 2. Assume x11, x22 < 0 and x2
12

x11x22
< 1. The

integral Ê[umvnY (u)Y (v)](x11, x12, x22) is equal4 to

1

4
Γ(α)Γ(β)φ1 +

1

2
Γ

(
α+

1

2

)
Γ

(
β +

1

2

)
φ2 (15)

A proof of this theorem is given in [19]5. Note that we
have

2F1((1 +m)/2, 1/2, 1/2; z) = (1− z)−1/2−m/2, (16)

2F1(1, 1, 1/2; z) =

(
1 +

√
z arcsin(

√
z)√

1− z

)
(1− z)−1,

(17)
2F1(3/2, 3/2, 3/2; z) = (1− z)−3/2. (18)

A closed formula of the dual activation of a rectified mono-
mial of one variable is given in [3]. A closed formula of
the dual activation of a polynomial is given in [5, Th 1]
by utilizing Hermite polynomials. Since we have, for con-
stants ci,

Ê[(c1u
m1 + c2u

m2)Y (u)(c1v
m1 + c2v

m2)Y (v)]

=

n∑
i,j=1

cicjÊ[umivmjY (u)Y (v)], (19)

our theorem gives a closed formula of the dual activation
of a rectified polynomial in terms of the Gauss hypergeo-
metric functions with degenerated parameters.
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