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Abstract. In the theory of special functions, a particular kind of multidimensional integral appears fre-
quently. It is called the Euler integral. In order to understand the topological nature of the integral, twisted
de Rham cohomology theory plays an important role. We propose an algorithm of computing an invariant
cohomology intersection number . The algorithm is based on the fact that the Euler integral satisfies GKZ
system and utilizes algorithms to find rational function solutions of differential equations. We also provide
software to perform this algorithm.
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1 Introduction

In the study of hypergeometric functions in several variables, one often considers the integral of the following
form:

⟨ω⟩ =
∫
Γ

h1(x)
−γ1 · · ·hk(x)−γkxcω, (1)

where hl(x; z) = hl,z(l)(x) =
∑Nl

j=1 z
(l)
j xa

(l)(j) (l = 1, . . . , k) are Laurent polynomials in torus variables x =

(x1, . . . , xn), a
(l)(j) ∈ Zn, γl ∈ C and c = t(c1, . . . , cn) ∈ Cn are parameters, xc = xc11 . . . xcnn , Γ is a suitable

integration cycle, and ω is an algebraic n-form on Vz = {x ∈ Cn | x1 . . . xnh1(x) . . . hk(x) ̸= 0}. As a function

of the independent variable z = (z
(l)
j )j,l, the integral (1) defines a hypergeometric function. We call the integral

(1) the Euler integral representation.
We can naturally define the twisted de Rham cohomology group associated to the Euler-Laplace integral

(1). We set N = N1 + · · ·+Nk, Gn
m = Specm C[x±1 , . . . , x±n ], and AN = Specm C[z(l)j ]. For any z ∈ AN , we can

define an integrable connection ∇x = dx −
∑k

l=1 γl
dxhl

hl
∧+

∑n
i=1 ci

dxi

xi
∧ : OVz → Ω1

Vz
. The algebraic de Rham

cohomology group H∗
dR (Vz; (OVz ,∇x)) is defined as the hypercohomology group

H∗
dR (Vz; (OVz

,∇x)) = H∗
(
Vz; (· · ·

∇x→ Ω•
Vz

∇x→ · · · )
)
. (2)

Under a genericity assumption on the parameters γl and c, we have the vanishing result Hm
dR (Vz; (OVz ,∇x)) = 0

(m ̸= n). Moreover, we can define a perfect pairing ⟨•, •⟩ch : Hn
dR (Vz; (OVz ,∇x)) × Hn

dR

(
Vz; (O∨

Vz
,∇∨

x )
)
→ C

which is called the cohomology intersection form.
The study of intersection numbers of twisted cohomology groups and twisted period relations for hyper-

geometric functions started with the celebrated work by K. Cho and K. Matsumoto [6]. They clarified that
the cohomology intersection number appears naturally as a part of the quadratic relation, a class of functional
relations of hypergeometric functions. They also developed a systematic method of computing the cohomology
intersection number for 1-dimensional integrals. Since this work, several methods have been proposed to evalu-
ate intersection numbers of twisted cohomology groups, see, e.g., [2], [3], [10], [11], [14], [17], [19] and references
therein. All methods utilize comparison theorems of twisted cohomology groups and residue calculus.

We proposed a new method in the paper [16] to obtain cohomology intersection numbers by constructing a
rational function solution of a system of linear partial differential equations. One weak point of the method was
that it was not algorithmic to construct Pfaffian system (explicit form of integrable connection) for a given basis
of the twisted cohomology group. We will give a new algorithm to construct the Pfaffian system for a given basis

⋆ Supported by JSPS KAKENHI Grant Number 19K14554 (the first author) and JST CREST Grant Number
JP19209317 (the first and the second authors).
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in this paper (Algorithm 1). To our knowledge, algorithms to find the Pfaffian system (or equation) with respect
to a given basis of twisted cohomology group do not appear in the literature except the twisted logarithmic
cohomology case 1. Our algorithm works in a general case with a different approach by Saito’s b-function [23]
and more efficient with a help of polyhedral geometry. The section 2 is a brief overview of the paper [16]. The
section 3 is the main part and in the sections 4 and 5, we will give demonstrations of our implementation. As to
the construction of rational function solutions, we utilize the algorithm and the implementation by M. Barkatou,
T. Cluzeau, C. El Bacha, J.-A. Weil [5] (see also [4],[18] and their references).

2 General results

2.1 The cohomology intersection form

We denote by Hn
dR,c

(
V an
z ; (OV an

z
,∇an

x )
)
the analytic de Rham cohomology group with compact support. By

Poincaré-Verdier duality, the bilinear pairing

Hn
dR,c

(
V an
z ; (OV an

z
,∇an

x )
)
×Hn

dR

(
V an
z ; (O∨

V an
z
,∇an∨

x )
)
→ C

∈ ∈

(ϕ, ψ) 7→
∫
V an
z
ϕ ∧ ψ

(3)

is perfect. We say the regularization condition is satisfied if the canonical morphism Hn
dR,c

(
V an
z ; (OV an

z
,∇an

x )
)
→

Hn
dR

(
V an
z ; (OV an

z
,∇an

x )
)
is an isomorphism. In the following, we always assume that the regularization condi-

tion is satisfied. A criterion for this assumption is explained in §2.3. Since (OVz ,∇x) is a regular connec-
tion, the canonical morphism Hn

dR (Vz; (OVz ,∇x)) → Hn
dR

(
V an
z ; (OV an

z
,∇an

x )
)
is always an isomorphism by

Deligne-Gröthendieck comparison theorem ([7, Corollaire 6.3]). Therefore, we have a canonical isomorphism
reg : Hn

dR (Vz; (OVz ,∇x)) → Hn
dR,c

(
V an
z ; (OV an

z
,∇an

x )
)
. Note that the Poincaré dual of the isomorphism reg

is called a regularization map in the theory of special functions ([2, §3.2]). Finally, we define the cohomology
intersection form ⟨•, •⟩ch between algebraic de Rham cohomology groups by the formula

⟨•, •⟩ch : Hn
dR (Vz; (OVz ,∇x))×Hn

dR

(
Vz; (O∨

Vz
,∇∨

x )
)
→ C

∈ ∈

(ϕ, ψ) 7→
∫
V an
z

reg(ϕ) ∧ ψ.
(4)

The value above is called the cohomology intersection number of ϕ and ψ.

2.2 The secondary equation

Now, we treat z as a variable. Let π : X = (Gm)nx × AN
z \

∪k
l=1{(x, z) | hl,z(l)(x) = 0} → AN

z = Y be a natural
projection where subscripts stand for coordinates. We define an OY -module Hn

dR by the hypercohomology group

Hn
dR = Hn

(
X; (Ω•

X/Y ,∇x)
)
. (5)

Here, Ω•
X/Y denotes the sheaf of relative differential forms ⊕|I|=•OXdx

I with respect to the morphism π.

Since Y is affine, Hn
dR is also identified with the sheaf Rnπ∗(Ω

•
X/Y ,∇x). For any z ∈ U , there is a natural

evaluation morphism evz : Hn
dR → Hn

dR (Vz; (OVz ,∇x)). We define the dual object Hn∨
dR by replacing ∇x by

∇∨
x in the construction above. By the general theory of relative de Rham cohomology group, there exists a

non-empty Zariski open subset U of Y such that Hn
dR ↾U≃ O⊕r

U . Therefore, for any sections ϕ ∈ Hn
dR ↾U and

ψ ∈ Hn∨
dR ↾U , we can define the cohomology intersection number ⟨ϕ, ψ⟩ch as a function of z ∈ U by the formula

U ∋ z 7→ ⟨evz(ϕ), evz(ψ)⟩ch ∈ C. This actually defines a OU -bilinear map ⟨•, •⟩ch : Hn
dR ↾U ×Hn∨

dR ↾U→ OU .
We can equip Hn

dR with a structure of a DY -module. For this purpose, we only need to define a connection
∇GM : Hn

dR → Ω1
Y (Hn

dR). For any section ϕ ∈ Hn
dR, we define

∇GMϕ = dzϕ−
∑
j,l

γl
xa

(l)(j)

hl,z(l)(x)
dz

(l)
j ∧ ϕ (6)

1 K. Nishitani, master thesis 2011 (in Japanese), Kobe University
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The dual connection ∇∨GM : Hn∨
dR → Ω1

Y (Hn∨
dR) is defined by replacing γl by −γl in (6).

The DY -module structures of Hn
dR and Hn∨

dR are compatible with the cohomology intersection form. Namely,
for any sections ϕ ∈ Hn

dR ↾U and ψ ∈ Hn∨
dR ↾U , we have

dz⟨ϕ, ψ⟩ch = ⟨∇GMϕ, ψ⟩ch + ⟨ϕ,∇∨GMψ⟩ch. (7)

We call (7) the secondary equation. Let us rewrite it in terms of local frames. Let {ϕi}ri=1 (resp. {ψi}ri=1) be
a free basis of ϕ ∈ Hn

dR ↾U (resp. ψ ∈ Hn∨
dR ↾U ). We set I = Ich = (⟨ϕi, ψj⟩)i,j and call it the cohomology

intersection matrix. On the other hand, there is a r × r matrix Ω (resp. Ω∨) with values in 1-forms on U such
that the connection ∇GM (resp. ∇∨GM ) is trivialized as dz+Ω∧ (resp. dz+Ω

∨∧). Then, the secondary equation
is equivalent to the system

dzI = tΩI + IΩ∨. (8)

We also call (8) the secondary equation. The theorem which our algorithm is based on is the following

Theorem 1. [16] Under the regularization condition, any rational function solution I of the secondary equation
(8) is, up to a scalar multiplication, equal to Ich.

2.3 GKZ system behind

In [16], it is discussed that Theorem 1 is true for more general direct image D-module. However, by employing the
combinatorial structure behind our integrable connection Hn

dR ↾U , we can show that the cohomology intersection
number in question has a rational expression with respect to z and δ.

Let us recall the definition of GKZ system ([8]). For a given d×N (d < N) integer matrix A = (a(1)| · · · |a(N))
and a parameter vector δ ∈ Cd, GKZ system MA(δ) is defined as a system of partial differential equations on
CN given by

MA(δ) :

{
Ei · f(z) = 0 (i = 1, . . . , d) (9a)

□u · f(z)= 0
(
u ∈ Ker(A× : ZN×1 → Zd×1)

)
, (9b)

where Ei and □u for u = t(u1, . . . , uN ) are differential operators defined by

Ei =
N∑
j=1

aijzj
∂

∂zj
+ δi, □u =

∏
uj>0

(
∂

∂zj

)uj

−
∏
uj<0

(
∂

∂zj

)−uj

. (10)

For convenience, we assume an additional condition ZA def
= Za(1) + · · · + Za(N) = Zd. In our setting, we put

Al = (a(l)(1)| . . . |a(l)(Nl)), d = n+ k, N = N1 + · · ·+Nk. We define an (n+ k)×N matrix A by

A =


1 · · · 1 0 · · · 0 · · · 0 · · · 0
0 · · · 0 1 · · · 1 · · · 0 · · · 0

...
...

. . .
...

0 · · · 0 0 · · · 0 · · · 1 · · · 1
A1 A2 · · · Ak

 . (11)

We put δ =

(
γ
c

)
. It is known that GKZ system MA(δ) is holonomic ([1]). Moreover, Hn

dR (resp. Hn∨
dR) is

isomorphic to GKZ system MA(δ) (resp. MA(−δ)) and the regularization condition is true when the parameter
vector δ is non-resonant and γl /∈ Z (see [9, 2.9] and [15, Theorem 2.12]). The isomorphism MA(δ) ≃ Hn

dR is
given by the correspondence [1] 7→ [dxx ]. Thus, any section ϕ ∈ Hn

dR ↾U can be written as ϕ = P · [dxx ] for some
linear differential operator P .

Theorem 2. [16] Suppose that A as in (11) admits a unimodular regular triangulation T and δ is non-resonant

and γl /∈ Z. Then, for any P1, P2 ∈ Q(δ)⟨z, ∂z⟩, the cohomology intersection number
⟨P1· dxx ,P2· dxx ⟩ch

(2π
√
−1)n

belongs to

the field Q(δ)(z).
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3 An algorithm of finding the Pfaffian system for a given basis

In this section, we set β := −δ. With this notation, we put HA(β) := MA(δ). This is because we use some
results from [12] and [23] where hypergeometric ideal is denoted by HA(β) while our main references [15], [16]
denote it by MA(δ).

Let ωq be the differential form

k∏
l=1

h
−q′l
l xq

′′ dx

x
, q = (q′, q′′) ∈ Zk × Zn (12)

It is known that there exists a basis of the twisted cohomology group of which elements are of the form ωq when
δ is generic. Let {ωq | q ∈ Q} be a basis of the twisted cohomology group. We will give an algorithm to find
a Pfaffian system ∂

∂zi
ω = Piω with respect to this basis ω = (ωq | q ∈ Q)T . Note that algorithms to translate

a given holonomic ideal to a Pfaffian system are well known (see, e.g., [12, Chap 6]). However, as long as we
know, algorithms to find the Pfaffian system with respect to a given basis of twisted cohomology group do not
appear in literature.

Put ∂i =
∂
∂zi

. In this subsection, we use • to denote the action to avoid a confusion with the multiplication.
The function ⟨ωq⟩ is a solution of the hypergeometric system HA(β − q). The main point of our method is of
use of the following contiguity relation

1

a′i · (β − q)
∂i • ⟨ωq⟩ = ⟨ωq′⟩, q′ = q + ai (13)

where ai is the i-th column vector of A and a′i is the column vector that the first k elements are equal to those of
ai and the last n elements are 0. For example, a′1 = (1, 0, . . . , 0), a′2 = (1, 0, . . . , 0), . . ., a′N1+1 = (0, 1, 0, . . . , 0)T ,

. . .. The relation (13) can be proved by differentiating ⟨ωq⟩ =
∫
Γ
h
−γ1−q′1
1 · · ·h−γk−q′k

k xc+q′′ dx
x , with respect to zi

where we have β − q = (−γ1 − q′1, . . . ,−γk − q′k,−c1 − q′′1 , . . . ,−cn − q′′n)
T .

In [23, Algorithm 3.2], an algorithm to obtain the operator Ci satisfying

Ci∂i − bi(β) = 0 mod HA(β) (14)

is given. The polynomial bi is a b-function in the direction i [23, Th 3.2]. Note that the algorithm outputs the
operator Ci in C⟨z1, . . . , zN , ∂1, . . . , ∂N ⟩, which does not depend on the parameter β. Since ⟨ωq⟩ is a solution of
HA(β − q), we have the following inverse contiguity relation

a′i · (β − q′′)

bi(β − q′′)
Ci • ⟨ωq⟩ = ⟨ωq′′⟩, q′′ = q − ai. (15)

Example 1. (Gauss hypergeometric function 2F1.) Put

A =

1 1 0 0
0 0 1 1
0 1 0 1

 (16)

Then, h1 = z1 + z2x, h2 = z3 + z4x. We have

⟨ω(1,0,0)⟩ =
∫
Γ

h−γ1

1 h−γ2

2 xc
1

h1

dx

x
. (17)

We can show that {ω(1,0,0), ω(1,0,0) − ω(0,1,0)} is a basis of the twisted cohomolgy group. This A is normal and
the b-function b4(s) ∈ Q[s1, s2, s3] for the direction z4 is b4(s) = s2s3. Then, C4 = z2z3∂1 + (θ2 + θ3 + θ4)z4
where θi = zi∂i by reducing (θ3 + θ4)(θ2 + θ4) by the toric ideal IA = ⟨∂2∂3 − ∂1∂4⟩ (see Algorithm 3.2 of [23]).

Our algorithm to find a Pfaffian system with respect to a given basis of the twisted cohomology group is as
follows.

Algorithm 1.
Input: {ωq | q ∈ Q}, a basis of the twisted cohomology group. A direction (index) i.
Output: Pi, the coefficient matrix of the Pfaffian system ∂i − Pi.
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1. Compute a Gröbner basis G of HA(β) in the ring of differential operators with rational function coefficients.
Let S be a column vector of standard monomials with respect to G.

2. Put

F (Q) = (F (q) | q ∈ Q)T , F (q) =
∏
ri<0

C−ri
i

∏
ri>0

∂rii
1

BB′ , q =

N∑
i=1

riai (18)

It is a vector of which elements are in the ring of differential operators and the order of product is i =
N,N−1, . . . , 3, 2, 1. In other words, we apply operators from ∂1. The polynomial B comes from the coefficient
of the contiguity relation (15) and is equal to

B =
N∏

j=1,rj<0

bj(β
′
j + aj)

a′j · (β′
j + aj)

bj(β
′
j + 2aj)

a′j · (β′
j + 2aj)

· · ·
bj(β

′
j + (−rj)aj)

a′j · (β′
j + (−rj)aj)

, (19)

β′
j = β −

∑
rl>0

rlal +

j−1∑
l=1,rl<0

(−rl)al (20)

The polynomial B′ comes from the denominator of the contiguity relation (13) and is equal to

B′ =

N∏
j=1,rj>0

(
a′j · (β′

j)
) (

a′j · (β′
j − aj)

)
· · ·
(
a′j · (β′

j − (rj − 1)aj)
)
, (21)

β′
j = β −

∑
rl>0,l<j

rlal (22)

3. Compute the normal form of the vector ∂iF (Q) and F (Q). Write the normal forms of them as P ′S and
P ′′S respectively where P ′ and P ′′ are matrices with rational function entries.

4. Output Pi = P ′(P ′′)−1.

The matrix P ′′ is invertible if and only if the given set of differential forms {ωq} is a basis of the twisted
cohomology group.

We show the correctness of the algorithm. Take an element q ∈ Q. We express ⟨ωq⟩ in terms of ⟨ω0⟩, which
is a solution of HA(β), by the contiguity relations (13) and (15). Note that the contiguity relations for functions
⟨ωq⟩ give the contiguity relations for cohomology classes [ωq] by virtue of the perfectness of the pairing between
the twisted homology and the twisted cohomology groups. The point of the correctness is the following identity

F (q) • ω0 = ωq. (23)

Let us illustrate how to prove (23) by examples. We assume that q = 2a1 + a2 and N1 ≥ 2. Then ωq can be
obtained by applying (13) with i = 1 for two times and that with i = 2. We have

ωa1 =
1

a′1 · β
∂1 • ω0 (24)

ω2a1 =
1

a′1 · (β − a1)
∂1 • ωa1 (25)

ω2a1+a2 =
1

a′2 · (β − 2a1)
∂2 • ω2a1 (26)

Thus, we obtain the numbers (21) and then (23). Let us consider the case that q = −2a1−a2 and N1 ≥ 2. Then
ωq can be obtained by applying (15) with i = 1 for two times and that with i = 2. Since ⟨ω−a1⟩ is a solution of
HA(β + a1), we have

[c1∂1 − b1(β + a1)] • ω−a1 = 0 (27)

from [23]. Then, we have

ω−a1 =
a′1 · (β + a1)

b1(β + a1)
c1 • ω0 (28)

ω−2a1 =
a′1 · (β + 2a1)

b1(β + 2a1)
c1 • ω−a1 (29)
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ω−2a1−a2 =
a′2 · (β + 2a1 + a2)

b2(β + 2a1 + a2)
c2 • ω−2a1 (30)

Thus, we obtain the numbers (19) and then (23). The general case can be shown by repeating these procedures
and we can show that F (q) • ω0 = ωq. When the normal form F (q) with respect to the Gröbner basis G is∑
p′′i si where S = (si) and p′′i is a rational function in z and β, we have ωq = F (q) • ω0 =

∑
p′′i si • ω0. The

correctness of the last two steps follows from this fact.

Example 2. This is a continuation of Example 1. We have (1, 0, 0)T = a1 and (0, 1, 0)T = a3. Then, the
basis of the twisted cohomology group F (Q) is expressed as F (Q) = (∂1/β1, ∂1/β1 − ∂3/β2)

T and ∂4F (Q) =
(∂4∂1/β1, ∂4∂1/β1−∂4∂3/β2)T . We can obtain a Gröbner basis with the set of the standard monomials is {∂4, 1}.
We multiply β1β2 to F (Q) and ∂4F (Q) in order to avoid rational polynomial arithmetics. Then, the normal
form, for example, of β2∂1 is 1

z1z4−z2z3

(
(β1(β1 + β2)z4)∂4 − β2

2β3
)
. By computing the other normal forms, we

obtain the matrix

P4 =

(
−β2(z3−z1)
z1z4−z2z3

β2z3
z1z4−z2z3

−((β2z3+(−β2+β3)z1)z4+(β1−β3)z2z3−β1z1z2)
z4(z1z4−z2z3)

(β2z3+β3z1)z4+(β1−β3)z2z3
z4(z1z4−z2z3)

)
. (31)

4 Implementation and examples

We implemented our algorithms on the computer algebra system Risa/Asir [21] with a Polymake interface.
Polymake (see, e.g., [20], [22]) is a system for polyhedral geometry and it is used for efficient computation of
contiguity relations ([23, Algorithm 3.2]). Here is an input2 to find the coefficient matrix P4 for Example 1 with
respect to the variable z4 and z1 = z2 = z3 = 1 (note that in our implementation x is used instead of z).

P4=pfaff_eq(A=[[1,1,0,0],[0,0,1,1],[0,1,0,1]],

Beta=[-gamma1,-gamma2,-c],

Ap = [[1,1,0,0],[0,0,1,1],[0,0,0,0]],

Rvec = [[1,0,0,0],[0,0,1,0]],DirX=[dx4] //Rvec is the set of r’s in Algorithm 1.

| xrule=[[x1,1],[x2,1],[x3,1]],

cg=matrix_list_to_matrix([[1,0],[1,-1]]));//get Pfaffian sys for cg*(the basis omega_q)

It outputs the following coefficient matrix

P4 =

(
0 −γ2

x4−1
c
x4

(−c−γ2)x4+c−γ1

(x4−1)x4

)
(32)

Example 3. (3F2, see, e.g., [24, p.224], [19].) Let A =


1 1 0 0 0 0
0 0 1 1 0 0
0 0 0 0 1 1
1 0 0 1 0 0
0 0 1 0 0 1

. The integrals are

∫
Γ

(z1x1 + z2)
−γ1(z3x2 + z4x1)

−γ2(z5 + z6x2)
−γ3xc11 x

c2
2 ωi (33)

where

ω1 =
dx1dx2

(z1x1 + z2)x1x2
, ω2 =

dx1dx2
(z5 + z6x2)x1x2

, ω3 =
dx1dx2

(z3x2 + z4x1)x1x2
(34)

When z2 = −1, z3 = z4 = z5 = z6 = 1, the coefficient matrix for z1 for the basis (⟨ω1⟩, ⟨ω2⟩, ⟨ω3⟩)T is

P1 =


β4z1+β2+β3+β4+β5

z1(z1−1)
β3(β4−β1−β2)
β1z1(z1−1)

(−β4+1)β2(−β2+β4+β5+1)
β4β1z1(z1−1)

(β2+β3−β5)β1

β3(z1−1)
β1z1+β2−β4

z1(z1−1)
(−β4+1)β2(−β2+β4+β5+1)

β4β3z1(z1−1)
β4(β2+β3−β5)β1

(−β4+1)β2(z1−1)
β4β3(β1+β2−β4)
(−β4+1)β2(z1−1)

(−β2+β4+β5+1)
z1−1

 (35)

The result can be obtained in a few seconds.

2 The algorithm 1 is implemented in saito-b.rr distributed at [25]
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5 An algorithm of finding the cohomology intersection matrix

Theorem 3. [16] Given a matrix A = (aij) as in (11) admitting a unimodular regular triangulation T . When
parameters are non-resonant, γl /∈ Z and moreover the set of series solutions by T is linearly independent,
the intersection matrix of the twisted cohomology group of the GKZ system associated to the matrix A can be
algorithmically determined.

We denote by Ωi the coefficient matrix of Ω with respect to the 1-form dzi. The algorithm we propose is
summarized as follows.

Algorithm 2. (A modified version of the algorithm in [16].)
Input: Free bases {ϕj}j ⊂ Hn

dR ↾U , {ψj}j ⊂ Hn∨
dR ↾U which are expressed as (12).

Output:The secondary equation (8) and the cohomology intersection matrix Ich = (⟨ϕi, ψj⟩ch)i,j.

1. Obtain a Pfaffian system with respect to the given bases {ϕj}j and {ψj}j, i.e., obtain matrices Ωi = (ωijk)
and Ω∨

i = (ω∨
ijk) so that the equalities

∂iϕj =
∑
k

ωikjϕk, ∂iψj =
∑
k

ω∨
ikjψk (36)

hold by Algorithm 1.
2. Find a non-zero rational function solution I of the secondary equation

∂iI − tΩiI − IΩ∨
i = 0, i = 1, . . . , N. (37)

To be more precise, see, e.g., [5], [4],[18] and their references.
3. Determine the scalar multiple of I by [15, Theorem 8.1].

Example 4. This is a continuation of Example 3. We want to evaluate the cohomology intersection matrix
Ich = (⟨ωi, ωj⟩ch)3i,j=1. By solving the secondary equation (for example, using [5]), we can verify that (1, 1),
(1, 2), (2, 1), (2, 2) entries of Ich are all independent of z1. Therefore, we can obtain the exact values of these
entries by taking a unimodular regular triangulation T = {23456, 12456, 12346} and substituting z1 = 0 in [15,
Theorem 8.1]. Thus, we get a correct normalization of Ich and the matrix Ich

(2π
√
−1)2

is given by


r11

β4+β5

β5β4(β2−β4−β5)
β4(β1+β2−β4−β4)z1−β5β3

β5(β4+1)(β2−β4−β5)(β2−β4−β5+1)
β4+β5

β5β4(β2−β4−β5)
r22

−(β4β1z1−β5β2−β5β3+β5β4+β2
5)

β5(β4+1)(β2−β4−β5)(β2−β4−β5+1)
β4(β1+β2−β4−β5)z1−β5β3

β5(β4−1)(β2−β4−β5)(β2−β4−β5−1)
−β4β1z1+β5(β2+β3−β4−β5)

β5(β4−1)(β2−β4−β5)(β2−β4−β5−1) r33

 (38)

where

r11 = − (β4β2 + (β4 + β5)β3)β1 + β4β
2
2 + (β4β3 − β2

4 − β5β4)β2 + (−β2
4 − β5β4)β3

β5β4β1(β2 − β4 − β5)(β2 + β3 − β5)
(39)

r22 = − (β5β2 + (β4 + β5)β3 − β5β4 − β2
5)β1 + β5β

2
2 + (β5β3 − β5β4 − β2

5)β2
β5β4β3(β2 − β4 − β5)(β1 + β2 − β4)

(40)

r33 = −β4{(β1β2−β1β5+β2
2−β2β4−2β2β5+β4β5+β5

2)β1β4z1
2−2β1β3β4β5z1+(β2

2+β2β3−2β2β4−β2β5−β3β4+β4
2+β4β5)β3β5}

β5β2(β4−1)(β4+1)(β2−β4−β5)(β2−β4−β5−1)(β2−β4−β5+1)

(41)

Example 5. Let A =

1 1 1 1 1
0 1 0 2 0
0 0 1 0 2

. The integrals are

∫
Γ

h−γ1

1 xc11 x
c2
2 ωi, h1 = z1 + z2x1 + z3x2 + x4x

2
1 + z5x

2
2 (42)

where

ω1 =
dx1dx2
x1x2

, ω2 = x1ω1 =
dx1dx2
x2

, ω3 = x22ω1 =
x2dx1dx2

x1
, ω4 = x1x2ω1 = dx1dx2. (43)
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Note that this A is not normal. When z1 = z4 = z5 = 1, we have obtained the coefficient matrices P2 and P3

in about 9 hours 45 minutes on a machine with Intel(R) Xeon(R) CPU E5-4650 2.70GHz and 256GB memory.
The (1, 1) element of P2 is

((b2z
2
2 + b123)z

2
3 + b2z

4
2 + b132z

2
2 − 32b1 + 16b2 + 16b3 − 16)

z2(z2 − 2)(z2 + 2)(z23 + z22 − 4)
(44)

where b1 = −γ1, b2 = −c1, b3 = −c2 and bijk = 8bi − 4bj − 8bk + 4. A complete data of P2 and P3 is at [25].
The intersection matrix can be obtained by [5] in a few second when we specialize bi’s to rational numbers. See
[25] as to Maple inputs for it.
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