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• TYZ[10] N.Takayama, T.Yaguchi, Y.Zhang, Comparison of Numerical Solvers
for Differential Equations for Holonomic Gradient Method in Statistics,
https://arxiv.org/abs/2111.10947

• OpenXM-hgm[7]
http://www.math.kobe-u.ac.jp/OpenXM/Math/hgm/ref-hgm.html

• chebfun[2] https://chebfun.org
• http://www.math.kobe-u.ac.jp/OpenXM/Math/defusing/ref.html

Sample codes.
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Definite integrals in
physics and statistics

Holonomic systems
(ODE’s) for them

Numerical evaluation of
integrals at a few points

Numerical solver for ODE’s
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What is a difficulty in numerical solver in HGM?

The ODE may contain solutions f (t) such that

f (t) ≫ Z (t)(normalizing constant, ...)

Example 1

dY

dt
=

(
λ1 0
0 −λ2

)
Y

λ1 > 0 > −λ2. We assume Z (t) = Y1(t) + Y2(t) ∼ exp(−λ2t).
A small numerical error ε in the initial condition

Y (0) = (ε, 1)T

gives the solution Y (t) = (ε exp(λ1t), exp(−λ2t))
T and then

Y1(t) + Y2(t) = ε exp(λ1t) + exp(−λ2t)
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Example 2

(Airy function, running example 1)

d2y

dt2
− ty = 0 (1)

Ai(t) ∼ 1

2
√
πt1/4

exp

(
−2

3
t3/2

)
O(1)

Bi(t) ∼ 1
√
πt1/4

exp

(
2

3
t3/2

)
O(1)

https://en.wikipedia.org/wiki/Airy_function

The initial value problem to obtain Ai(t) will have the difficulty.
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Example 3
(Hk

n (x , y), running example 2) Let n and k be positive integers.
(OpenXM/Math/defusing/Hkn/19-a19-n-pf.rr)

Hk
n (x , y) =

∫ x

0

tk exp(−t)0F1(; n; yt)dt (2)

=
Γ(n)√

πΓ(n − 1/2)

∫
D(x)

tk(1− s2)n−3/2 exp(−t − 2s
√
yt)dtds

where D(x) = {(t, s) ∈ [0, x ]× [−1, 1]} (3)

This function appears in studies of the outage probability of
MIMO WiFi systems KA[6]. The function Hk

n (x , y) is
annihilated by the following ordinary differential operator w.r.t
y .

y2∂4
y + (−y + 2n + 2)y∂3

y

+(−yx + (−k − n − 3)y + n(n + 1))∂2
y

+((y − n)x − n(k + 2))∂y + (k + 1)x (4)
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Initial value problem.

1. Runge-Kutta methods work in a short range. Implicit
Runge-Kutta methods work in a longer range, but are not
enough.

2. Geometric integrators like simpletic methods cannot be
applied in most cases.

Boundary value problem.

1. A naive approaches do not work well.

6 / 28



Sparse interpolation/extrapolation methods

A few
evaluations

of the
integral

(value data)
and ODE L

values on
a longer
interval

1. Chebyshef function method Trefethen[12], chebfun[2].

2. Minimizing
∫
D |Lf |2dµ(t) with constraints by value data1

1It is standard in functional and numerical analysis, but it is useful in HGM.
Then, we name it the sparse interpolation/extrapolation method.
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Chebyshef function method, chebfun[2]

The chebfun project was initiated in 2002 by Lloyd N. Trefethen
and his student Zachary Battles.
https://en.wikipedia.org/wiki/Chebfun.
The n-th Chebyshef function (polynomial) is

Tn(x) = cos(nθ), x = cos θ (5)

The extreme points of the curve y = Tn(x) in [−1, 1], which we
mean points that take the value y = 1 or y = −1, are called
Chebyshef points (of the second kind) of Tn. For example,
T2(x) = 2x2 − 1, the Chebyshef points are {−1, 0, 1}.
T3(x) = 4x3 − 3x , {−1,−0.5, 0.5, 1}.
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Chebyshef interpolant

Let f (x) be a function. Fix the set of Chebyshef points for Tn(x).
Let the value of f at Chebyshef point xj be fj . The Chebyshev
interpolant is

p(x) =
n∑

j=0

′
(−1)j fj
x − xj

/

n∑
j=0

′
(−1)j

x − xj
(6)

The primes on the summation signes signify that the terms j = 0
and j = n are multiplied by 1/2.

p(xj) = fj . Degree n polynomial.
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Convergence rate

ak = 2
π

∫ 1
−1

f (x)Tk (x)√
1−x2

dx . f =
∑∞

k=0 akTk(x) when f is Lipschitz

continuous.

Theorem 4
(Bernstein 1911, 1912. See, e.g., Th 8.2, Th 8.3 in Trefethen[12])
If f is analytic on [−1, 1], its Chebyshef coefficients ak decrease
geometrically. If f is analytic and |f | ≤ M in the Bernstein
ρ-ellipse 2 about [−1, 1], then |ak | < 2Mρ−k . The degreee n
Chebyshev interpolant has accuracy O(Mρ−n) by the sup norm.

2The radius ρ circle in the z-plane. Map it by x = (z + z−1)/2 and then we
obtain the Bernstein ρ-ellipse:
https://www.chebfun.org/examples/approx/Entire.html
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chebmat M(n −m, n; s) chebfun[2]

Let X be the set of the n Chebyshef points (of the second kind) for
the Chebyshef function Tn−1.
ℓj(X ; t): the j-th polynomial of the Lagrange interpolation for X .
Let Y be the set of the (n −m) Chebyshef points where m ≥ 0 3.

Definition 5
chebfun[2] M(n −m, n; s): (n −m)× n matrix with (i , j) entries

n−m−1∑
k=0

ℓk(Y ;Yi )ℓ
(s)
j (X ;Yk) (7)

When f (t) is the Chebyshef interpolant w.r.t. X ,

f (s)(Yi ) = (i-th row of M(n −m, n; s)) · (f0, . . . , fn−1)
T

.
3We approximate f (t) by the values at Y , which is called “down-sampling”

in DH2016[3]. 11 / 28



From ODE to a (dense) matrix equation

Example 6

The Airy equation
f ′′ − tf = 0

Symbolically, we solve

(M(n − 2, n; 2)− diag(Y )M(n − 2, n; 0))F = 0 (8)

where F = [f0, f1, . . . , fn−1]
T with giving, e.g., values of f0 and

fn−1 (boundary values) or values of f0 and the first entry of
M(n − 2, n; 1)(f0, . . . , fn)

T (initial values f and f ′).
See https://www.chebfun.org/examples/ode-linear/
SpectralDisc.html.
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Figure: Solving the Airy differential equation by chebfun

Initial value problem for Airy Ai(t). (OpenXM/Math/defusing/intro/y2023 07 16 airy initial value.m)
Ai(−20) = −0.176406127077984689590192292219,. Ai′(−20) = 0.892862856736471238398409934114

Chebfun gives reasonable values4 upto t = 9, but divergent values appear when t is larger than 9. See the left
graph of Figure 1.

Boundary value problem for Airy Ai(t). (OpenXM/Math/defusing/intro/y2023 07 16 airy boundary value.m)

Ai(−20) = −0.176406127077984689590192292219, Ai(11) = 4.22627586496035959129883545080 × 10−12.

Divergent values do not appear. See the right graph of Figure 1.

4Values are compared with Mathematica.
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Hk
n (x , y)

Example 7

Boundary value problem for Hk
n (x , y) for x = 1 and

y ∈ [108, 108 + 2× 105].

We give the boundary values of H10
1 (1, y) and

∂H10
1

∂y (1, y) at

y = 108 and y = 108 + 2× 105. We apply the chebfun package
for this boundary value problem.
(OpenXM/Math/defusing/Hkn/y2023 07 25 hkn valid10power8.m)
To check the accuracy, we compare the values by the chebfun
package and by the numerical integration by Mathematica at
y = 108 + 200. The chebfun package keeps 4 digits accuracy at
the point and the ODE is solved in 1.66s5. On the otherhand,
the numerical integration by Mathematica (2022)
(OpenXM/Math/defusing/Hkn/2023-07-09-hkn-int.m) took
23.58s6.

5Apple M1, 2020, Matlab 2022b
6AMD EPYC 7552 48-Core Processor, 1499.534MHz
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Figure: Left: H10
1 (1, y). Right: logH10

1 (1, y). Values should be magnified
by 108678.
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Sparse interpolation/extrapolation TYZ[10]

Known: Lf = 0 (ODE), f (pi ) = qi for some points pi ’s. {ej}: a set of basis
functions. Put f (t) =

∑M
k=0 fkek(t) (unknown contants fj ’s). Minimize∫ b

a

|Lf (t)|2dµ(t), f (pi ) = qi , i = 1, 2, . . . . (9)

A numerical integration for a function g :

IN(g) =
N∑
j=0

Tjg(tj) (10)

where t0 = a < t1 < · · · < tN−1 < tN = b and Tj ∈ R≥0. Fix it. Then, the loss
function is

ℓ({fk}) :=
N∑
j=0

|(Lf )(tj)|2Tj (11)

=
N∑
j=0

∣∣∣∣∣√Tj

M∑
k=0

fk(Lek)(tj)

∣∣∣∣∣
2

We minimize it under f (pi ) = qi (least square for the data (Lek)(tj)
√

Tj).
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Chebyshef function method as a sparse interpolation

The Chebyshef function method can be regarded as a special case
of this method. The numerical integration scheme of the
Chebyshef quadrature:∫ 1

−1

√
1− t2g(t)dt ∼

k−1∑
i=1

Tig(Yi ) (12)

where Y is the set of the Chebyshef points for Tk and the weight
Ti is

Ti =
π

k
sin2

(
i

k
π

)
Put g(t) = |Lf |2 and dµ(t) =

√
1− t2dt in (9). Since the left

hand side of (8) are values at the set of Chebyshef points Y ,
assuming that it is equal to the zero vector is equivalent to that
the integral by the Chebyshef quadrature over Y is equal to zero.
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Todo

A different solver with validation and Chebyshef functions is
proposed in BBJ2018[1]7.
The advantage of the method is that matrices in the solver are
banded and validation is given. We will test this method for the
HGM as a next try.

7F.Bréhard, N.Brisebarre, M.Jolders, Validated and numerically efficient
Chebyshev spectral methods for linear ordinary differential equations
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Example 8

E [χ(Mx)], TJKZ2020[11] (Expectation of Euler characteristic of
random manifolds).
Extrapolation of some values near t = 4.8 by the sparse
interpolation/extrapolation method; The degree 29 polynomial and
the rectangle integration is used for a rank 11 ODE (26KB).
https://colab.research.google.com/drive/

1XhysmF1DMZfAhTtl0tc9A7tFYRBeI6tI?usp=sharing See
Figure 3.

Figure: The graph of F29(t) and simulation values in the left and relative
errors in the right. The data points are marked with ’x’.

19 / 28

https://colab.research.google.com/drive/1XhysmF1DMZfAhTtl0tc9A7tFYRBeI6tI?usp=sharing
https://colab.research.google.com/drive/1XhysmF1DMZfAhTtl0tc9A7tFYRBeI6tI?usp=sharing


Defusing method (filter method) for initial value problems

The initial value problem of the ODE

dF

dt
= P(t)F (13)

F (t0) = F true
0 ∈ Rr (14)

where P(t) is an r × r matrix, F (t) is a column vector function of
size r , and F true

0 is the initial value of F at t = t0.

Situation 1

1. The initial value has at most 3 digits of accuracy. We
denote this initial value F0.

2. The property |F | → 0 when t → +∞ is known, e.g., from a
background of the statistics.

3. There exists a solution F̃ of (13) such that |F̃ | → +∞ or
non-zero finite value when t → +∞.
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Defusing method

Numerical schemes such as the Runge-Kutta method obtain a
numerical solution by the recurrence

Fk+1 = Q(k , h)Fk (15)

from F0 where Q(k , h) is an r × r matrix determined by a
numerical scheme and h is a small number. The vector Fk is an
approximate value of F (t) at t = tk = t0 + hk . Let N be a
suitable natural number and put

Q = Q(N − 1, h)Q(N − 2, h) · · ·Q(1, h)Q(0, h) (16)

We call Q the matrix factorial of Q(k , h). The matrix Q
approximates the fundamental solution matrix of the ODE.

Project F0 to eigenspaces of non-positive eigenvalues.
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Defusing method — algorithm

Algorithm 1

1. Obtain eigenvalues λ1 > λ2 > · · · > λr > 0 of Q and the
corresponding eigenvectors v1, . . . , vr .

2. Let λm be the first non-positive eigenvalue.

3. Express the initial value vector F0 containing errors in terms
of vi ’s as

F0 = f1v1 + · · ·+ frvr , fi ∈ R (17)

4. Choose a constant c such that F ′
0 := c(fmvm + · · ·+ frvr )

approximates F0.

5. Determine FN by FN = QF ′
0 with the new initial value vector

F ′
0.

22 / 28



Example 9

Solving Airy differential equation by the defusing method.
(OpenXM/Math/defusing/intro/2023-07-21-airy.rr) Give initial
values at t = −20 as
F0=[-0.17640612707798468959,0.89286285673647123840]
(Ai[−20] and Ai′[−20]).
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 0.1
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 0.3

 0.4

 0.5

 0.6

-20 -10  0  10  20  30  40

"t.txt"

Figure: Solving initial value problem, t ∈ [−20, 30]
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Example 10

We implement the defusing method in tk ode by mpfr.rr 8 for
the Risa/Asir [9]. It generates C codes utilizing the MPFR [8]
for bigfloat and the GSL [4] for eigenvalues and eigenvectors.
We apply the defusing method for initial value problem to
H10
1 (1, y) which is a solution of the ODE (4). We apply the

defusing method for a transformed ODE with a gauge function
exp(y)y1−n+k to make the target solution decrease to 0 when
y → ∞. We use the step size h = 10−3 and the bigfloat of 30
digits of accuracy.
(OpenXM/Math/defusing/asir-tmp/tk-ode-assert.rr (code
generation), tk-ode-assert.hkn1(), tk-ode-assert.hkn2()) The
Figure 5 shows that the adaptive Runge-Kutta method of GSL
[4] fails before y becomes 30. The Figure 6 presents the
relative error of values by the defusing method and exact values.
It shows that the defusing method works even when y = 103.

8
http://www.math.kobe-u.ac.jp/OpenXM/Current/doc/asir-contrib/ja/tk_ode_by_mpfr-html/tk_

ode_by_mpfr-ja.html. Todo, English manual.
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Figure: logH10
1 (1, y). Exact

value (by numerical integration)
and the value by our defusing
method agree. The adaptive
Runge-Kutta method with the
initial relative error 10−20 (upper
curve) does not agree with the
exact value when y is larger than
about 25.

Figure: The relative error of
H10

1 (1, y) of our defusing
method. The relative error is
defined as (Hd − H)/H where
Hd is the value by the defusing
method and H is the exact value.
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Summary

1. The use of implicit Runge-Kutta method will be a good
choice for solving ODE in a short range.

2. In order to solve unstable HGM initial value problem, the
defusing method (filter method) will be a good choice.

3. In order to solve unstable HGM boundary value or sparse
interpolation problem, the Chebyshef function method and
other sparse interpolation method will be a good choice.

4. See also todo.
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