Numerical Methods in Holonomic Gradient Method (HGM)

Nobuki Takayama (Kobe University)

e TYZ[10] N.Takayama, T.Yaguchi, Y.Zhang, Comparison of Numerical Solvers
for Differential Equations for Holonomic Gradient Method in Statistics,
https://arxiv.org/abs/2111.10947

e OpenXM-hgm([7]
http://www.math.kobe-u.ac.jp/OpenXM/Math/hgm/ref-hgm.html

e chebfun[2] https://chebfun.org

e http://www.math.kobe-u.ac.jp/OpenXM/Math/defusing/ref .html
Sample codes.
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[ What is a difficulty in numerical solver in HGM?

The ODE may contain solutions f(t) such that

f(t) > Z(t)(normalizing constant, ...)
Example 1
dy A0
b %
dt ( 0 X\ >

A1 > 0> —Xo. We assume Z(t) = Yi1(t) + Ya(t) ~ exp(—Aat).
A small numerical error € in the initial condition

Y(0) = (s, 1)"
gives the solution Y(t) = (e exp(A1t),exp(—X2t))T and then

Yi(t) + Ya(t) = cexp(Ait) + exp(—Azt)
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Example 2

(Airy function, running example 1)
d’y
— —ty=0 1
e (1)

Ai() ~ ——exp <—§t3/2> o(1)

Bi(t) ———exp <§t3/2> o(1)

https://en.wikipedia.org/wiki/Airy_function
The initial value problem to obtain Ai(t) will have the difficulty.
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Example 3
HX(x,y), running example 2) Let n and k be positive integers.
OpenXM/Math/defusing/Hkn/19-a19-n-pf.rr)

H,‘,((x,y) = /OX t exp(—t)oFi(; n; yt)dt (2)
_ r(n) k 2\n—3/2
= -1/ o0 t“(1 — s?)" /2 exp(—t — 2s+/yt)dtds
where D(x) = {(t,s) € [0,x] x [-1,1]} 3)

This function appears in studies of the outage probability of
MIMO WiFi systems KA[6]. The function HX(x, y) is
annihilated by the following ordinary differential operator w.r.t

y.
Y204+ (—y +2n +2)yd}
+(—yx+ (=k —n—=3)y + n(n+1))d;
+H(y —nmx —n(k+2)0y + (k+1)x  (4)
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Initial value problem.

1. Runge-Kutta methods work in a short range. Implicit
Runge-Kutta methods work in a longer range, but are not
enough.

2. Geometric integrators like simpletic methods cannot be
applied in most cases.

Boundary value problem.
1. A naive approaches do not work well.
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Sparse interpolation/extrapolation methods ]
A few
evaluations
e values on
. I
e[| 2o
(value data)
and ODE L

1. Chebyshef function method Trefethen[12], chebfun[2].
2. Minimizing [, |Lf|?dpu(t) with constraints by value data’

It is standard in functional and numerical analysis, but it is useful in HGM.
Then, we name it the sparse interpolation/extrapolation. method.
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[ Chebyshef function method, chebfun[2] ]

The chebfun project was initiated in 2002 by Lloyd N. Trefethen
and his student Zachary Battles.
https://en.wikipedia.org/wiki/Chebfun.

The n-th Chebyshef function (polynomial) is

Th(x) = cos(nf), x = cosf (5)

The extreme points of the curve y = Tp(x) in [—1, 1], which we
mean points that take the value y =1 or y = —1, are called
Chebyshef points (of the second kind) of T,. For example,
To(x) = 2x? — 1, the Chebyshef points are {—1,0,1}.

T3(x) = 4x3 — 3x, {~1,-0.5,0.5,1}.
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[ Chebyshef interpolant ]

Let f(x) be a function. Fix the set of Chebyshef points for T,(x).
Let the value of f at Chebyshef point x; be f;. The Chebyshev
interpolant is

n /

p(X)—Z — J/Z (6)

j=0

The primes on the summation signes signify that the terms j =0
and j = n are multiplied by 1/2.

p(x;j) = f;. Degree n polynomial.
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[ Convergence rate ]

= 2 1 T g £ = 573 2k Ti(x) when f is Lipschitz
contlnuous

Theorem 4

(Bernstein 1911, 1912. See, e.g., Th 8.2, Th 8.3 in Trefethen[12])
If f is analytic on [—1,1], its Chebyshef coefficients ay decrease
geometrically. If f is analytic and |f| < M in the Bernstein
p-ellipse 2 about [—1,1], then |ax| < 2Mp~*. The degreee n
Chebyshev interpolant has accuracy O(Mp~") by the sup norm.

>The radius p circle in the z-plane. Map it by x = (z + z7!)/2 and then we
obtain the Bernstein p-ellipse:
https://www.chebfun.org/examples/approx/Entire.html
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[ chebmat M(n — m, n; s) chebfun|[2] ]

Let X be the set of the n Chebyshef points (of the second kind) for
the Chebyshef function T,_;.

¢;j(X; t): the j-th polynomial of the Lagrange interpolation for X.
Let Y be the set of the (n — m) Chebyshef points where m >0 3.
Definition 5

chebfun[2] M(n — m, n;s): (n — m) x n matrix with (/,/) entries

1

i G(Y YD (X V) (7)
k=0

n

When f(t) is the Chebyshef interpolant w.r.t. X,

[ f)(Y;) = (i-th row of M(n— m, n;s))-(fo,...,fn-1)7

3We approximate f(t) by the values at Y, which is called. “down-sampling”
in DH2016[3].
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From ODE to a (dense) matrix equation

Example 6
The Airy equation
f"—tf =0

Symbolically, we solve
(M(n—2,n;2) —diag(Y)M(n—2,n;0)) F =0 (8)

where F = [fy, f1,...,f,_1]" with giving, e.g., values of f and
fo—1 (boundary values) or values of fy and the first entry of
M(n—2,nm1)(f,...,f,)7 (initial values f and f').

See https://www.chebfun.org/examples/ode-linear/
SpectralDisc.html.
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Figure: Solving the Airy differential equation by chebfun

Initial value problem for Airy Ai(t). (OpenXM/Math/defusing/intro/y2023_07_16_airy_initial_value.m)
Ai(—20) = —0.176406127077984689590192292219,. Ai/(—20) = 0.892862856736471238398409934114
Chebfun gives reasonable values* upto t = 9, but divergent values appear when t is larger than 9. See the left

graph of Figure 1.

Boundary value problem for Airy Ai(t). (OpenXM/Math/defusing/intro/y2023.07_16_airy_boundary_value.m)

Ai(—20) = —0.176406127077984689590192292219, Ai(11) = 4.22627586496035959129883545080 X 10712,

Divergent values do not appear. See the right graph of Figure 1.

*Values are compared with Mathematica.
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[ HX(x,y) ]

Example 7

Boundary value problem for H*(x, y) for x = 1 and

y € [108,10% + 2 x 10°].

We give the boundary values of H1%(1,y) and ag’}}m (1,y) at

y =108 and y = 108 + 2 x 10°. We apply the chebfun package
for this boundary value problem.
(OpenXM/Math/defusing/Hkn/y2023_07_25_hkn_valid10power8.m)
To check the accuracy, we compare the values by the chebfun
package and by the numerical integration by Mathematica at
y = 108 4+ 200. The chebfun package keeps 4 digits accuracy at
the point and the ODE is solved in 1.66s°. On the otherhand,
the numerical integration by Mathematica (2022)
(OpenXM/Math/defusing/Hkn/2023-07-09-hkn-int.m) took
23.58s°

SApple M1, 2020, Matlab 2022b
SAMD EPYC 7552 48-Core Processor, 1499.534MHz
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Figure: Left: Hi%(1,y). Right: log Hi°(1,y). Values should be magnified

by 108678.
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[ Sparse interpolation/extrapolation TYZ[10] ]

Known: Lf =0 (ODE), f(p;) = gi for some points p;'s. {ej}: a set of basis
functions. Put f(t) = S}, feex(t) (unknown contants f;'s). Minimize

[ OPae, ey =ai=12,.... (©)

A numerical integration for a function g:
N

In(g) = Tig(t) (10)
j=0

where to =a < t; <--- < ty_1 <ty =band T; € Ryo. Fixit. Then, the loss
function is

({f}) = LAY ()T (11)

\Fka (Lex)(t))

2
;

We minimize it under f(p;) = g; (least square for the data (Lex)(t))+/T;)-
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[ Chebyshef function method as a sparse interpolation ]

The Chebyshef function method can be regarded as a special case
of this method. The numerical integration scheme of the
Chebyshef quadrature:

1 k—1
/ VI Pa(de~ Y Tia(Y) (12)

where Y is the set of the Chebyshef points for T, and the weight

T,' is )
T = %sin2 (;<77>

Put g(t) = |Lf|? and du(t) = v/1 — t2dt in (9). Since the left
hand side of (8) are values at the set of Chebyshef points Y,
assuming that it is equal to the zero vector is equivalent to that
the integral by the Chebyshef quadrature over Y is equal to zero.
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[ ]

A different solver with validation and Chebyshef functions is
proposed in BBJ2018[1]”.

The advantage of the method is that matrices in the solver are
banded and validation is given. We will test this method for the
HGM as a next try.

"F.Bréhard, N.Brisebarre, M.Jolders, Validated and numerically efficient
Chebyshev spectral methods for linear ordinary differential equations
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Example 8

E[x(My)], TIKZ2020[11] (Expectation of Euler characteristic of
random manifolds).

Extrapolation of some values near t = 4.8 by the sparse
interpolation /extrapolation method; The degree 29 polynomial and
the rectangle integration is used for a rank 11 ODE (26KB).
https://colab.research.google.com/drive/
1XhysmF1DMZfAhTt10tc9A7tFYRBeI6tI7usp=sharing See
Figure 3.

Figure: The graph of Fy(t) and simulation values in the left and relative
errors in the right. The data points are marked with 'x'.
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Defusing method (filter method) for initial value problems

The initial value problem of the ODE

dF
— = P(F (13)
F(t) = F™ eR (14)

where P(t) is an r x r matrix, F(t) is a column vector function of
size r, and Fgrue is the initial value of F at t = tg.

Situation 1

1. The initial value has at most 3 digits of accuracy. We
denote this initial value Fg.

2. The property |F| — 0 when t — 400 is known, e.g., from a
background of the statistics.

3. There exists a solution F of (13) such that |F| — 400 or
non-zero finite value when t — +o0.
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Defusing method

Numerical schemes such as the Runge-Kutta method obtain a
numerical solution by the recurrence

Fii1 = Q(k, h)Fy (15)

from Fo where Q(k, h) is an r x r matrix determined by a
numerical scheme and h is a small number. The vector Fj is an
approximate value of F(t) at t = t, = typ + hk. Let N be a
suitable natural number and put

Q=Q(N—-1,hQ(N—2,h)---Q(1,h)Q(0, h) (16)

We call Q the matrix factorial of Q(k, h). The matrix Q
approximates the fundamental solution matrix of the ODE.

Project Fy to eigenspaces of non-positive eigenvalues.

21/28



Defusing method — algorithm

Algorithm 1

1.

Obtain eigenvalues Ay > Ao > --- > A\, > 0 of Q and the
corresponding eigenvectors vi,. .., Vy.

2. Let A\, be the first non-positive eigenvalue.

3. Express the initial value vector Fy containing errors in terms

of vi's as
Fo=fw+---+fv, fieR (17)

Choose a constant c such that F} := c(fmVm + -+ + frv,)
approximates Fy.

Determine Fy by Fny = QF(’) with the new initial value vector
F§.
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Example 9

Solving Airy differential equation by the defusing method.
(OpenXM/Math/defusing/intro/2023-07-21-airy.rr) Give initial
values at t = —20 as
F0=[-0.17640612707798468959,0.89286285673647123840]
(Ai[-20] and Ai'[—20]).

Figure: Solving initial value problem, t € [—20, 30]
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Example 10

We implement the defusing method in tk_ode by mpfr.rr & for
the Risa/Asir [9]. It generates C codes utilizing the MPFR [8]
for bigfloat and the GSL [4] for eigenvalues and eigenvectors.
We apply the defusing method for initial value problem to
H19(1,y) which is a solution of the ODE (4). We apply the
defusing method for a transformed ODE with a gauge function
exp(y)y! ="k to make the target solution decrease to 0 when
y — 00. We use the step size h = 1073 and the bigfloat of 30
digits of accuracy.

(OpenXM /Math /defusing/asir-tmp/tk-ode-assert.rr (code
generation), tk-ode-assert.hknl(), tk-ode-assert.hkn2()) The
Figure 5 shows that the adaptive Runge-Kutta method of GSL
[4] fails before y becomes 30. The Figure 6 presents the

relative error of values by the defusing method and exact values.

It shows that the defusing method works even when y = 103.

8http ://www.math.kobe-u.ac. jp/OpenXM/Current/doc/asir-contrib/ja/tk_ode_by_mpfr-html/tk_
ode_by_mptr-ja.ntmi. lodo, English manual.
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Figure: log H1°(1,y). Exact
value (by numerical integration)
and the value by our defusing
method agree. The adaptive
Runge-Kutta method with the
initial relative error 1072° (upper
curve) does not agree with the
exact value when y is larger than
about 25.

Figure: The relative error of
H1%(1, y) of our defusing
method. The relative error is
defined as (Hy — H)/H where
Hy is the value by the defusing
method and H is the exact value.
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Summary

1. The use of implicit Runge-Kutta method will be a good
choice for solving ODE in a short range.

2. In order to solve unstable HGM initial value problem, the
defusing method (filter method) will be a good choice.

3. In order to solve unstable HGM boundary value or sparse
interpolation problem, the Chebyshef function method and
other sparse interpolation method will be a good choice.

4. See also todo.
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