Algebraic Combinatorics on Symmetric edge polytopes

Akiyoshi Tsuchiya (Toho University)

Hypergeometric School 2023 Kobe University August 18, 2023

joint work with Hidefumi Ohsugi (Kwansei Gakuin University)

0 0 0 0

Symmetric edge polytopes

 $\mathbf{e}_1, \dots, \mathbf{e}_n$: the standard basis for \mathbb{R}^n G: a finite simple graph on $[n] := \{1, \dots, n\}$ E(G): the edge set of G

Definition

The symmetric edge polytope or (PV-type) adjacency polytope \mathcal{A}_G of G is the lattice polytope which is the convex hull of

$$\{\pm (\mathbf{e}_i - \mathbf{e}_j) \in \mathbb{R}^n : \{i, j\} \in E(G)\}.$$

Recently, we have focused on computing the volume of \mathcal{A}_G .

Kuramoto Model

Synchronization phenomena for network of interconnected oscillators is modeled by a wighted graph G = (V, E, A), where

- \circ vertices $V=\{1,\ldots,n\}$ (oscillators with natural frequencies $\omega_i)$
- \circ edges E (connectivity)
- weights $A = \{a_{i,j}\}$ for each $\{i, j\} \in E$ (coupling strengths between coupled oscillators)

• $N_G(i)$ is the set of neighbors of the *i*th osillator. $(\theta_1, \ldots, \theta_n)$: frequency synchronization configuration $\Leftrightarrow \forall i, \frac{d\theta_i}{dt} = 0$

Kuramoto Model

Fix $\theta_n = 0$.

Problem

Given $\omega_1, \ldots, \omega_{n-1} \in \mathbb{R}$ and a wighted graph of n nodes, what is the maximal number M(G) of real roots the system of n-1 nonlinear equations

$$\omega_i - \sum_{j \in N_G(i)} a_{i,j} \sin(\theta_i - \theta_j) = 0, \text{ for } i = 1, \dots, n-1$$

could have?

Theorem (Baillieul–Byrnes, 1982)

$$M(G) \le \binom{2(n-1)}{n-1}$$

Normalized volume of \mathcal{A}_G

What is $\binom{2(n-1)}{n-1}$?

If G is a graph with n vertices, then

$$\mathsf{Vol}(\mathcal{A}_G) \leq \mathsf{Vol}(\mathcal{A}_{K_n}) = igg(rac{2(n-1)}{n-1} igg)$$

where K_n is a complete graph with n vertices and Vol(\cdot) is the normalized volume of a lattice polytope.

Theorem (Chen, 2017)

 $M(G) \leq \operatorname{Vol}(\mathcal{A}_G).$

Normalized volume of \mathcal{A}_G

Problem

Compute $Vol(\mathcal{A}_G)$ or give a formula for $Vol(\mathcal{A}_G)$ in terms of G.

Theorem (Higashitanai–Jochemko–Michałek, 2019) Let $K_{a,b}$ be a complete bipartite graph with a and b vertices ($a \le b$). Then

$$\mathsf{Vol}(\mathcal{A}_{K_{a,b}}) = \sum_{i=0}^{a-1} \binom{2i}{i} \binom{a-1}{i} \binom{b-1}{i} 2^{a+b-2i-1}$$

How do we get this volume from information of $K_{a,b}$?

Ehrhart theory

 $\mathcal{P} \subset \mathbb{R}^n$: a lattice polytope of dimension d $m\mathcal{P} = \{m\mathbf{x} : \mathbf{x} \in \mathcal{P}\}$: the *m*th dilated polytope of \mathcal{P} $L_{\mathcal{P}}(m) := |m\mathcal{P} \cap \mathbb{Z}^n|$: the Ehrhart polynomial of \mathcal{P}

 $L_{\mathcal{P}}(1) = 4$ $L_{\mathcal{P}}(2) = 9$ $L_{\mathcal{P}}(m) = (m+1)^2 = m^2 + 2m + 1$

0 0 0 0

Theorem (Ehrhart) $L_{\mathcal{P}}(m)$ is a polynomial in m of degree d.

Ehrhart h^* -polynomials

We consider the generating series of $L_{\mathcal{P}}(m)$

$$\sum_{m \ge 0} L_{\mathcal{P}}(m) t^m = \frac{h^*(\mathcal{P}, t)}{(1 - t)^{d+1}}$$

$$h^*(\mathcal{P},t) = h_d^* t^d + h_{d-1}^* t^{d-1} + \dots + h_1^* t + h_0^*$$

 $h^*(\mathcal{P},t)$ is a polynomial of degree $\leq d$, called the h^* -polynomial of \mathcal{P} .

All the coefficients have a combinatorial interpretation. In particular,

 \circ each $h_i^* \ge 0$ (Stanley)

 $h_0^* = 1, h_1^* = |\mathcal{P} \cap \mathbb{Z}^n| - (d+1) \text{ and } h_d^* = |\operatorname{relint}(\mathcal{P}) \cap \mathbb{Z}^n|$ Moreover,

 $\circ 1 + h_1^* + \dots + h_d^* = \mathsf{Vol}(\mathcal{P})$: the normalized volume of \mathcal{P}

Palindromic polynomials and γ -polynomials $f(t) = \sum_{i=0}^{d} a_i t^i \in \mathbb{Z}_{>0}[t]$: a palindromic polynomial i.e., $a_i = a_{d-i}$ for any $1 \le i \le \lfloor d/2 \rfloor$ Then there exists a unique expression

$$f(t) = \sum_{i=0}^{\lfloor d/2 \rfloor} \gamma_i t^i (1+t)^{d-2i}$$

 $\gamma(t) := \sum_{i=0}^{\lfloor d/2 \rfloor} \gamma_i t^i \in \mathbb{Z}[t]$ is called the γ -polynomial of f(t). For example,

$$f(t) = 1 + 6t + 11t^{2} + 6t^{3} + t^{4}$$

= $(1 + t)^{4} + 2t + 5t^{2} + 2t^{3}$
= $(1 + t)^{4} + 2t(1 + t)^{2} + t^{2}$
 $\gamma(t) = 1 + 2t + t^{2}$

Properties of palindromic polynomials

We consider the following properties of palindromic polynomials: (RR) f(t) is real-rooted if all roots of f(t) are real. (GP) f(t) is γ -positive if $\gamma_i \ge 0$ for all i. (UN) f(t) is unimodal if $a_0 \le \cdots \le a_k \ge \cdots \ge a_d$ with some k. In general,

 $(\mathsf{RR}) \Rightarrow (\mathsf{GP}) \Rightarrow (\mathsf{UN})$

If f(t) is γ -positive, then

f(t) is real-rooted $\iff \gamma(t)$ is real-rooted

For example, $f(t) = 1 + 6t + 11t^2 + 6t^3 + t^4$ is real-rooted because $\gamma(t) = 1 + 2t + t^2$ is real-rooted.

0 0 0 0 0

Unimodality of $h^*(\mathcal{P}_G, t)$

A lattice polytope \mathcal{P} is called Gorenstein if $h^*(\mathcal{P}, t)$ is palindromic. Especially, a Gorestein polytope with a unique relative interior lattice point is called reflexive.

Theorem (Bruns–Römer)

If \mathcal{P} is Gorenstein and has a regular unimodular triangulation, then $h^*(\mathcal{P},t)$ is unimodal.

Theorem (Matsui et al.)

 \mathcal{P}_G is reflexive and has a regular unimodular triangulation. In particular, $h^*(\mathcal{A}_G, t)$ is palindromic and unimodal.

When is $h^*(\mathcal{A}_G, t)$ γ -positive or real-rooted?

For a Gorenstein polytope \mathcal{P} , let $\gamma(\mathcal{P}, t)$ be the γ -polynomial of $h^*(\mathcal{P}, t)$.

Theorem (Higashitanai–Jochemko–Michałek, 2019) Let $K_{a,b}$ be a complete bipartite graph with a and b vertices ($a \le b$). Then

$$\gamma(\mathcal{A}_{K_{a,b}}, t) = \sum_{i=0}^{a-1} \binom{2i}{i} \binom{a-1}{i} \binom{b-1}{i} t^i$$

Furthermore, $\gamma(\mathcal{A}_{K_{a,b}}, t)$ is real-rooted.

Perfectly matchable set polynomials

G : a graph on [n]

- A k-matching of G is a set of k pairwise non-adjacent edges of G.
- $\circ m_G(k)$: the number of k-matchings of G
- $\circ~g(G,t) = \sum_{k \geq 0} m_G(k) t^k$: matching generating polynomial
- A k-matching of G is called a perfect matching if 2k = n.
- A subset S ⊂ [n] is called a perfectly matchable set if the induced subgraph of G on S has a perfect matching.
- $\circ \ pm_G(k)$: the number of perfectly matchable sets with cardinality 2k

 $\circ p(G,t) = \sum_{k \ge 0} pm_G(k)t^k$: perfectly matchable set polynomial

Remark Clearly, $pm_G(k) \le m_G(k)$.

Example of k-matchings and perfectly matchable sets

0 0 0 0

 M_1 and M_2 are different 3-matchings. M_1 and M_2 give a same perfectly matchable set.

Cuts of graphs

G: a graph on [n]Given a subset $S \subset [n]$,

$$E_S := \{ e \in E(G) : |e \cap S| = 1 \}$$
 : a cut of G.

We identify E_S with the subgraph of G on the vertex set [n] and the edge set E_S . In particular, E_S is a bipartite graph.

0

 $\operatorname{Cut}(G)$: the set of all cuts of G. Note that $|\operatorname{Cut}(G)| = 2^{n-1}$.

Suspension graphs

G: a graph on [n] Let \widehat{G} be the suspension of G, i.e., the connected graph on [n+1] whose edge set is

 $E(\widehat{G}) = E(G) \cup \{\{i, n+1\} : i \in \overline{[n]\}}.$

Theorem (Ohsugi-T, 2021a) Let G be a graph on [n]. Then one has

$$\gamma(\mathcal{A}_{\widehat{G}}, t) = \frac{1}{2^{n-1}} \sum_{H \in \operatorname{Cut}(G)} p(H, 4t).$$

In particular, $h^*(\mathcal{A}_{\widehat{C}}, t)$ is γ -positive.

Interior polynomials and perfectly mathable set polynomials

G: a bipartite graph with a bipartition $V_1 \cup V_2 = [n]$ Let \widetilde{G} be the connected bipartite graph on [n+2] whose edge set is

 $E(\widetilde{G}) = E(G) \cup \{\{\overline{n+1, n+2}\}\} \cup \{\{i, n+1\} : i \in V_1\} \cup \{\overline{\{j, n+2\}} : j \in V_2\}\}$

Theorem (Ohsugi-T, 2021a) Let G be a bipartite graph. Then one has

 $\gamma(\mathcal{A}_{\widetilde{G}}, t) = \gamma(\mathcal{A}_{\widehat{G}}, t).$

In particular, $h^*(\mathcal{A}_{\widetilde{G}}, t)$ is γ -positive.

γ -positivity of $h^*(\mathcal{A}_G,t)$

Theorem (Ohsugi–T, 2021a) $h^*(\mathcal{A}_G, t)$ is γ -positive if one of the following $\circ G = \widehat{H}$ for some graph H (complete graphs); $\circ G = H$ for some bipartite graph H (complete bipartite graphs); \circ G is a cycle; • G is an outerplaner bipartite graph. Conjecture (Ohsugi–T, 2021a) $\gamma(\mathcal{A}_G, t)$ is γ -positive for any graph G.

Theorem (D'Alì–Kubitzke–Köhne–Venturello, 2023) For any G, $\gamma_1, \gamma_2 \ge 0$.

Real-rootedness of $h^*(\mathcal{A}_G, t)$

Example We consider a cycle C_n of length n. Then

$$\gamma(\mathcal{A}_{C_n}, t) = \sum_{i=0}^{(n-1)/2} \binom{2i}{i} t_i.$$

When n = 5, $\gamma(\mathcal{A}_{C_5}, t) = 1 + 2t + 6t^2$. Hence $\gamma(\mathcal{A}_{C_5}, t)$ is not real-rooted. Therefore, $h^*(\mathcal{A}_{C_5}, t)$ is not real-rooted.

Problem When is $h^*(\mathcal{A}_G, t)$ real-rooted?

Wheel graphs

In

A wheel graph W_n is \widehat{C}_n . **Theorem (D'Alì–Delucchi–Michałek, 2022)** For $n \ge 3$, one has

$$\gamma(\mathcal{A}_{W_n}, t) = \begin{cases} (1+\sqrt{3})^n + (1-\sqrt{3})^n & \text{if } n \text{ is odd}, \\ (1+\sqrt{3})^n + (1-\sqrt{3})^n - 2 & \text{otherwise.} \end{cases}$$

Theorem (Ohsugi–T, 2021b) For $n \ge 3$, one has

0 0

Cactus graphs

A graph is called cactus if each edge belongs to at most one cycle. For example, a cycle is cactus. We consider the suspension of a cactus graph.

Theorem (Ohsugi-T, 2021b) Let G be a cactus graph. Then

$$\gamma(\mathcal{A}_{\widehat{G}}, t) = g(G, 2t) + \sum_{R \in \mathcal{R}'_2(G)} (-2)^{c(R)} g(G - R, 2t) \ t^{\frac{|E(R)|}{2}}.$$

where $\mathcal{R}'_2(G)$ is the set of all subgraphs of G consisting of vertex-disjoint even cycles, and c(R) is the number of the cycles of R.

μ -polynomials

 $\alpha(G,t):=\sum_{k\geq 0}(-1)^km_k(G)t^{n-2k}$: the matching polynomial of GNote that $\alpha(G,t)=t^ng(G,-t^{-2})$ and it is real-rooted.

Definition

Assume that G has r cycles C_1, \ldots, C_r . Let $\mathbf{s} = (s_1, \ldots, s_r) \in \mathbb{R}^r$ be a vector. Then the μ -polynomial of G is

$$\mu(G, \mathbf{s}, t) = \alpha(G, t) + \sum_{R \in \mathcal{R}_2(G)} (-2)^{c(R)} \alpha(G - R, t) \prod_{C_i \subset R} s_i$$

Theorem (Gutman–Polansky, 1981) Let G be a cactus graph. If $|s_i| \le 1$ for all $1 \le i \le r$, then $\mu(G, \mathbf{s}, t)$ is real-rooted.

Theorem (Ohsugi–T, 2021b) Let G be a cactus graph. Then $\gamma(\mathcal{A}_{\widehat{G}}, t)$ is real-rooted.

Connection to hypergeometric function?

From the explicit formulas for $\gamma(\mathcal{A}_{K_a}, t)$ and $\gamma(\mathcal{A}_{K_{a,b}}, t)$, we can notice the following:

$$\gamma(\mathcal{A}_{K_a}, t) = {}_2F_1\left(\frac{1-a}{2}, 1-\frac{a}{2}; 1; 4t\right)$$

$$\gamma(\mathcal{A}_{K_{a,b}}, t) = {}_{3}F_{2}\left(\frac{1}{2}, -a+1, -b+1; 1, 1; 4t\right)$$

Theorem (Driver–Jordaan, 2002) $_2F_1\left(\frac{1-a}{2}, 1-\frac{a}{2}; 1; 4t\right)$ is real-rooted.

Theorem (Driver–Jordaan–Martínez-Finkelshtein, 2007) $_{3}F_{2}(\frac{1}{2}, -a + 1, -b + 1; 1, 1; 4t)$ is real-rooted.

0 0 0 0 0

Connection to hypergeometric function?

From the explicit formulas for $\gamma(\mathcal{A}_{K_a}, t)$ and $\gamma(\mathcal{A}_{K_{a,b}}, t)$, we can notice the following:

$$\gamma(\mathcal{A}_{K_a}, t) = {}_2F_1\left(\frac{1-a}{2}, 1-\frac{a}{2}; 1; 4t\right)$$

$$\gamma(\mathcal{A}_{K_{a,b}}, t) = {}_{3}F_{2}\left(\frac{1}{2}, -a+1, -b+1; 1, 1; 4t\right)$$

Theorem (Driver–Jordaan, 2002) $_2F_1\left(\frac{1-a}{2}, 1-\frac{a}{2}; 1; 4t\right)$ is real-rooted.

Theorem (Driver–Jordaan–Martínez-Finkelshtein, 2007) $_{3}F_{2}(\frac{1}{2}, -a + 1, -b + 1; 1, 1; 4t)$ is real-rooted.

Thank you for your attentions!