Algebraic Combinatorics on Symmetric edge polytopes

Akiyoshi Tsuchiya (Toho University)

Hypergeometric School 2023
Kobe University
August 18, 2023
joint work with Hidefumi Ohsugi (Kwansei Gakuin University)

Symmetric edge polytopes

$\mathbf{e}_{1}, \ldots, \mathbf{e}_{n}$: the standard basis for \mathbb{R}^{n}
$G:$ a finite simple graph on $[n]:=\{1, \ldots, n\}$
$E(G)$: the edge set of G
Definition
The symmetric edge polytope or (PV-type) adjacency polytope \mathcal{A}_{G} of G is the lattice polytope which is the convex hull of

$$
\left\{ \pm\left(\mathbf{e}_{i}-\mathbf{e}_{j}\right) \in \mathbb{R}^{n}:\{i, j\} \in E(G)\right\}
$$

Recently, we have focused on computing the volume of \mathcal{A}_{G}.

Kuramoto Model

Synchronization phenomena for network of interconnected oscillators is modeled by a wighted graph $G=(V, E, A)$, where

- vertices $V=\{1, \ldots, n\}$ (oscillators with natural frequencies ω_{i})
- edges E (connectivity)
- weights $A=\left\{a_{i, j}\right\}$ for each $\{i, j\} \in E$ (coupling strengths between coupled oscillators)

Kuramoto Model

For $i=1, \ldots, n$,

$$
\frac{d \theta_{i}}{d t}=\omega_{i}-\sum_{j \in N_{G}(i)} a_{i, j} \sin \left(\theta_{i}-\theta_{j}\right)
$$

where

- $\theta_{i} \in[0,2 \pi)$ is the phase angle of the i th oscillator,
- $N_{G}(i)$ is the set of neighbors of the i th osillator.
$\left(\theta_{1}, \ldots, \theta_{n}\right)$: frequency synchronization configuration $\underset{\text { def }}{\Longleftrightarrow} \forall i, \frac{d \theta_{i}}{d t}=0$

Kuramoto Model

Fix $\theta_{n}=0$.

Problem

Given $\omega_{1}, \ldots, \omega_{n-1} \in \mathbb{R}$ and a wighted graph of n nodes, what is the maximal number $M(G)$ of real roots the system of $n-1$ nonlinear equations

$$
\omega_{i}-\sum_{j \in N_{G}(i)} a_{i, j} \sin \left(\theta_{i}-\theta_{j}\right)=0, \text { for } i=1, \ldots, n-1
$$

could have?
Theorem (Baillieul-Byrnes, 1982)

$$
M(G) \leq\binom{ 2(n-1)}{n-1}
$$

Normalized volume of \mathcal{A}_{G}

What is $\binom{2(n-1)}{n-1}$?
If G is a graph with n vertices, then

$$
\operatorname{Vol}\left(\mathcal{A}_{G}\right) \leq \operatorname{Vol}\left(\mathcal{A}_{K_{n}}\right)=\binom{2(n-1)}{n-1}
$$

where K_{n} is a complete graph with n vertices and $\operatorname{Vol}(\cdot)$ is the normalized volume of a lattice polytope.

Theorem (Chen, 2017)

$$
M(G) \leq \operatorname{Vol}\left(\mathcal{A}_{G}\right)
$$

Normalized volume of \mathcal{A}_{G}

Problem

Compute $\operatorname{Vol}\left(\mathcal{A}_{G}\right)$ or give a formula for $\operatorname{Vol}\left(\mathcal{A}_{G}\right)$ in terms of G.
Theorem (Higashitanai-Jochemko-Michałek, 2019)
Let $K_{a, b}$ be a complete bipartite graph with a and b vertices ($a \leq b$). Then

$$
\operatorname{Vol}\left(\mathcal{A}_{K_{a, b}}\right)=\sum_{i=0}^{a-1}\binom{2 i}{i}\binom{a-1}{i}\binom{b-1}{i} 2^{a+b-2 i-1}
$$

How do we get this volume from information of $K_{a, b}$?

Ehrhart theory

$\mathcal{P} \subset \mathbb{R}^{n}$: a lattice polytope of dimension d $m \mathcal{P}=\{m \mathbf{x}: \mathbf{x} \in \mathcal{P}\}$: the m th dilated polytope of \mathcal{P} $L_{\mathcal{P}}(m):=\left|m \mathcal{P} \cap \mathbb{Z}^{n}\right|:$ the Ehrhart polynomial of \mathcal{P}

$$
L_{\mathcal{P}}(1)=4
$$

$L_{\mathcal{P}}(2)=9$

$L_{\mathcal{P}}(m)=(m+1)^{2}=m^{2}+2 m+1$

Theorem (Ehrhart)
$L_{\mathcal{P}}(m)$ is a polynomial in m of degree d.

Ehrhart h^{*}-polynomials
We consider the generating series of $L_{\mathcal{P}}(m)$

$$
\begin{gathered}
\sum_{m \geq 0} L_{\mathcal{P}}(m) t^{m}=\frac{h^{*}(\mathcal{P}, t)}{(1-t)^{d+1}} \\
h^{*}(\mathcal{P}, t)=h_{d}^{*} t^{d}+h_{d-1}^{*} t^{d-1}+\cdots+h_{1}^{*} t+h_{0}^{*}
\end{gathered}
$$

$h^{*}(\mathcal{P}, t)$ is a polynomial of degree $\leq d$, called the h^{*}-polynomial of \mathcal{P}.
All the coefficients have a combinatorial interpretation.
In particular,

- each $h_{i}^{*} \geq 0$ (Stanley)
- $h_{0}^{*}=1, h_{1}^{*}=\left|\mathcal{P} \cap \mathbb{Z}^{n}\right|-(d+1)$ and $h_{d}^{*}=\left|\operatorname{relint}(\mathcal{P}) \cap \mathbb{Z}^{n}\right|$

Moreover,

- $1+h_{1}^{*}+\cdots+h_{d}^{*}=\operatorname{Vol}(\mathcal{P}):$ the normalized volume of \mathcal{P}

Palindromic polynomials and γ-polynomials
$f(t)=\sum_{i=0}^{d} a_{i} t^{i} \in \mathbb{Z}_{>0}[t]$: a palindromic polynomial

$$
\text { i.e., } a_{i}=a_{d-i} \text { for any } 1 \leq i \leq\lfloor d / 2\rfloor
$$

Then there exists a unique expression

$$
f(t)=\sum_{i=0}^{\lfloor d / 2\rfloor} \gamma_{i} t^{i}(1+t)^{d-2 i}
$$

$\gamma(t):=\sum_{i=0}^{\lfloor d / 2\rfloor} \gamma_{i} t^{i} \in \mathbb{Z}[t]$ is called the γ-polynomial of $f(t)$.
For example,

$$
\begin{aligned}
f(t)= & 1+6 t+11 t^{2}+6 t^{3}+t^{4} \\
= & (1+t)^{4}+2 t+5 t^{2}+2 t^{3} \\
= & (1+t)^{4}+2 t(1+t)^{2}+t^{2} \\
& \gamma(t)=1+2 t+t^{2}
\end{aligned}
$$

Properties of palindromic polynomials

We consider the following properties of palindromic polynomials:
(RR) $f(t)$ is real-rooted if all roots of $f(t)$ are real.
(GP) $f(t)$ is γ-positive if $\gamma_{i} \geq 0$ for all i.
(UN) $f(t)$ is unimodal if $a_{0} \leq \cdots \leq a_{k} \geq \cdots \geq a_{d}$ with some k.
In general,

$$
(\mathrm{RR}) \Rightarrow(\mathrm{GP}) \Rightarrow(\mathrm{UN})
$$

If $f(t)$ is γ-positive, then

$$
f(t) \text { is real-rooted } \Longleftrightarrow \gamma(t) \text { is real-rooted }
$$

For example, $f(t)=1+6 t+11 t^{2}+6 t^{3}+t^{4}$ is real-rooted because $\gamma(t)=1+2 t+t^{2}$ is real-rooted.

Unimodality of $h^{*}\left(\mathcal{P}_{G}, t\right)$

A lattice polytope \mathcal{P} is called Gorenstein if $h^{*}(\mathcal{P}, t)$ is palindromic. Especially, a Gorestein polytope with a unique relative interior lattice point is called reflexive.

Theorem (Bruns-Römer)
If \mathcal{P} is Gorenstein and has a regular unimodular triangulation, then $h^{*}(\mathcal{P}, t)$ is unimodal.

Theorem (Matsui et al.)
\mathcal{P}_{G} is reflexive and has a regular unimodular triangulation. In particular, $h^{*}\left(\mathcal{A}_{G}, t\right)$ is palindromic and unimodal.

When is $h^{*}\left(\mathcal{A}_{G}, t\right) \gamma$-positive or real-rooted?

Complete bipartite graph

For a Gorenstein polytope \mathcal{P}, let $\gamma(\mathcal{P}, t)$ be the γ-polynomial of $h^{*}(\mathcal{P}, t)$.

Theorem (Higashitanai-Jochemko-Michałek, 2019)

Let $K_{a, b}$ be a complete bipartite graph with a and b vertices ($a \leq b$). Then

$$
\gamma\left(\mathcal{A}_{K_{a, b}}, t\right)=\sum_{i=0}^{a-1}\binom{2 i}{i}\binom{a-1}{i}\binom{b-1}{i} t^{i} .
$$

Furthermore, $\gamma\left(\mathcal{A}_{K_{a, b}}, t\right)$ is real-rooted.

Perfectly matchable set polynomials

G : a graph on $[n]$

- A k-matching of G is a set of k pairwise non-adjacent edges of G.
- $m_{G}(k)$: the number of k-matchings of G
- $g(G, t)=\sum_{k \geq 0} m_{G}(k) t^{k}$: matching generating polynomial
- A k-matching of G is called a perfect matching if $2 k=n$.
- A subset $S \subset[n]$ is called a perfectly matchable set if the induced subgraph of G on S has a perfect matching.
- $p m_{G}(k)$: the number of perfectly matchable sets with cardinality $2 k$
- $p(G, t)=\sum_{k \geq 0} p m_{G}(k) t^{k}$: perfectly matchable set polynomial

Remark

Clearly, $p m_{G}(k) \leq m_{G}(k)$.

Example of k-matchings and perfectly matchable sets

M_{1}

M_{2}

3-matchings
M_{1} and M_{2} are different 3-matchings.
M_{1} and M_{2} give a same perfectly matchable set.

Cuts of graphs

G : a graph on $[n]$
Given a subset $S \subset[n]$,

$$
E_{S}:=\{e \in E(G):|e \cap S|=1\}: \text { a cut of } G \text {. }
$$

We identify E_{S} with the subgraph of G on the vertex set $[n]$ and the edge set E_{S}. In particular, E_{S} is a bipartite graph.

$\operatorname{Cut}(G)$: the set of all cuts of G.
Note that $|\operatorname{Cut}(G)|=2^{n-1}$.

Suspension graphs

G : a graph on $[n]$
Let \widehat{G} be the suspension of G, i.e., the connected graph on $[n+1]$ whose edge set is

$$
E(\widehat{G})=E(G) \cup\{\{i, n+1\}: i \in[n]\} .
$$

Theorem (Ohsugi-T, 2021a)
Let G be a graph on $[n]$. Then one has

$$
\gamma\left(\mathcal{A}_{\widehat{G}}, t\right)=\frac{1}{2^{n-1}} \sum_{H \in \operatorname{Cut}(G)} p(H, 4 t) .
$$

In particular, $h^{*}\left(\mathcal{A}_{\widehat{G}}, t\right)$ is γ-positive.

Interior polynomials and perfectly mathable set polynomials
$G:$ a bipartite graph with a bipartition $V_{1} \cup V_{2}=[n]$
Let \widetilde{G} be the connected bipartite graph on $[n+2]$ whose edge set is
$E(\widetilde{G})=E(G) \cup\{\{n+1, n+2\}\} \cup\left\{\{i, n+1\}: i \in V_{1}\right\} \cup\left\{\{j, n+2\}: j \in V_{2}\right\}$

Theorem (Ohsugi-T, 2021a)
Let G be a bipartite graph. Then one has

$$
\gamma\left(\mathcal{A}_{\widetilde{G}}, t\right)=\gamma\left(\mathcal{A}_{\widehat{G}}, t\right) .
$$

In particular, $h^{*}\left(\mathcal{A}_{\widetilde{G}}, t\right)$ is γ-positive.
γ-positivity of $h^{*}\left(\mathcal{A}_{G}, t\right)$

Theorem (Ohsugi-T, 2021a)
$h^{*}\left(\mathcal{A}_{G}, t\right)$ is γ-positive if one of the following

- $G=\widehat{H}$ for some graph H (complete graphs);
- $G=\widetilde{H}$ for some bipartite graph H (complete bipartite graphs);
- G is a cycle;
- G is an outerplaner bipartite graph.

Conjecture (Ohsugi-T, 2021a)
$\gamma\left(\mathcal{A}_{G}, t\right)$ is γ-positive for any graph G.
Theorem (D'Alì-Kubitzke-Köhne-Venturello, 2023)
For any $G, \gamma_{1}, \gamma_{2} \geq 0$.

Real-rootedness of $h^{*}\left(\mathcal{A}_{G}, t\right)$

Example

We consider a cycle C_{n} of length n. Then

$$
\gamma\left(\mathcal{A}_{C_{n}}, t\right)=\sum_{i=0}^{(n-1) / 2}\binom{2 i}{i} t_{i}
$$

When $n=5, \gamma\left(\mathcal{A}_{C_{5}}, t\right)=1+2 t+6 t^{2}$. Hence $\gamma\left(\mathcal{A}_{C_{5}}, t\right)$ is not real-rooted. Therefore, $h^{*}\left(\mathcal{A}_{C_{5}}, t\right)$ is not real-rooted.

Problem

When is $h^{*}\left(\mathcal{A}_{G}, t\right)$ real-rooted?

Wheel graphs

A wheel graph W_{n} is $\widehat{C_{n}}$.
Theorem (D'Ali-Delucchi-Michałek, 2022)
For $n \geq 3$, one has

$$
\gamma\left(\mathcal{A}_{W_{n}}, t\right)= \begin{cases}(1+\sqrt{3})^{n}+(1-\sqrt{3})^{n} & \text { if } n \text { is odd } \\ (1+\sqrt{3})^{n}+(1-\sqrt{3})^{n}-2 & \text { otherwise }\end{cases}
$$

Theorem (Ohsugi-T, 2021b)
For $n \geq 3$, one has

$$
\gamma\left(\mathcal{A}_{W_{n}}, t\right)= \begin{cases}\frac{(1+\sqrt{1+8 t})^{n}+(1-\sqrt{1+8 t})^{n}}{2^{t}} & \text { if } n \text { is odd } \\ \frac{(1+\sqrt{1+8 t})^{n}+(1-\sqrt{1+8 t})^{n}}{2^{n}}-2 t^{\frac{n}{2}} & \text { otherwise. }\end{cases}
$$

In particular, $\gamma\left(\mathcal{A}_{W_{n}}, t\right)$ is real-rooted.

Cactus graphs

A graph is called cactus if each edge belongs to at most one cycle. For example, a cycle is cactus.
We consider the suspension of a cactus graph.
Theorem (Ohsugi-T, 2021b)
Let G be a cactus graph. Then

$$
\gamma\left(\mathcal{A}_{\widehat{G}}, t\right)=g(G, 2 t)+\sum_{R \in \mathcal{R}_{2}^{\prime}(G)}(-2)^{c(R)} g(G-R, 2 t) t^{\frac{|E(R)|}{2}},
$$

where $\mathcal{R}_{2}^{\prime}(G)$ is the set of all subgraphs of G consisting of vertex-disjoint even cycles, and $c(R)$ is the number of the cycles of R.

μ-polynomials

$\alpha(G, t):=\sum_{k \geq 0}(-1)^{k} m_{k}(G) t^{n-2 k}$: the matching polynomial of G Note that $\alpha(G, t)=t^{n} g\left(G,-t^{-2}\right)$ and it is real-rooted.
Definition
Assume that G has r cycles C_{1}, \ldots, C_{r}. Let $\mathrm{s}=\left(s_{1}, \ldots, s_{r}\right) \in \mathbb{R}^{r}$ be a vector. Then the μ-polynomial of G is

$$
\mu(G, \mathrm{~s}, t)=\alpha(G, t)+\sum_{R \in \mathcal{R}_{2}(G)}(-2)^{c(R)} \alpha(G-R, t) \prod_{C_{i} \subset R} s_{i} .
$$

Theorem (Gutman-Polansky, 1981)

Let G be a cactus graph. If $\left|s_{i}\right| \leq 1$ for all $1 \leq i \leq r$, then $\mu(G, \mathbf{s}, t)$ is real-rooted.

Theorem (Ohsugi-T, 2021b)
Let G be a cactus graph. Then $\gamma\left(\mathcal{A}_{\widehat{G}}, t\right)$ is real-rooted.

Connection to hypergeometric function?
From the explicit formulas for $\gamma\left(\mathcal{A}_{K_{a}}, t\right)$ and $\gamma\left(\mathcal{A}_{K_{a, b}}, t\right)$, we can notice the following:

$$
\begin{gathered}
\gamma\left(\mathcal{A}_{K_{a}}, t\right)={ }_{2} F_{1}\left(\frac{1-a}{2}, 1-\frac{a}{2} ; 1 ; 4 t\right) \\
\gamma\left(\mathcal{A}_{K_{a, b}, t}\right)={ }_{3} F_{2}\left(\frac{1}{2},-a+1,-b+1 ; 1,1 ; 4 t\right)
\end{gathered}
$$

Theorem (Driver-Jordaan, 2002)
${ }_{2} F_{1}\left(\frac{1-a}{2}, 1-\frac{a}{2} ; 1 ; 4 t\right)$ is real-rooted.
Theorem (Driver-Jordaan-Martínez-Finkelshtein, 2007)
${ }_{3} F_{2}\left(\frac{1}{2},-a+1,-b+1 ; 1,1 ; 4 t\right)$ is real-rooted.

Connection to hypergeometric function?
From the explicit formulas for $\gamma\left(\mathcal{A}_{K_{a}}, t\right)$ and $\gamma\left(\mathcal{A}_{K_{a, b}}, t\right)$, we can notice the following:

$$
\begin{gathered}
\gamma\left(\mathcal{A}_{K_{a}}, t\right)={ }_{2} F_{1}\left(\frac{1-a}{2}, 1-\frac{a}{2} ; 1 ; 4 t\right) \\
\gamma\left(\mathcal{A}_{K_{a, b}}, t\right)={ }_{3} F_{2}\left(\frac{1}{2},-a+1,-b+1 ; 1,1 ; 4 t\right)
\end{gathered}
$$

Theorem (Driver-Jordaan, 2002)
${ }_{2} F_{1}\left(\frac{1-a}{2}, 1-\frac{a}{2} ; 1 ; 4 t\right)$ is real-rooted.
Theorem (Driver-Jordaan-Martínez-Finkelshtein, 2007)
${ }_{3} F_{2}\left(\frac{1}{2},-a+1,-b+1 ; 1,1 ; 4 t\right)$ is real-rooted.
Thank you for your attentions!

