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Symmetric edge polytopes

e1,...,e, : the standard basis for R"

G : a finite simple graph on [n] := {1,...,n}

E(QG) : the edge set of G

Definition

The symmetric edge polytope or (PV-type) adjacency polytope Ag of
G is the lattice polytope which is the convex hull of

{£(ei—e;j) eR": {i,j} € E(G)}.

Recently, we have focused on computing the volume of Agq.




Kuramoto Model

Synchronization phenomena for network of interconnected oscillators is
modeled by a wighted graph G = (V, E, A), where

o vertices V = {1,...,n} (oscillators with natural frequencies w;)

o edges E (connectivity)

o weights A = {a; ;} for each {i, j} € E (coupling strengths between
coupled oscillators)




Kuramoto Model

For 4= 100000,

62—0; = Ww; — : Z . am‘ sin(@i S QJ)
JENG (@)
where
o 0; € [0,2m) is the phase angle of the ith oscillator,
o Ng(i) is the set of neighbors of the ith osillator.
(01,...,6y) : frequency synchronization configuration ﬁ) Vi, % =0




Kuramoto Model
[Elbe @ = (0.

Problem

Given w1, ...,wn,—1 € R and a wighted graph of n nodes, what is the
maximal number M (QG) of real roots the system of n — 1 nonlinear
equations
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could have?
Theorem (Baillieul-Byrnes, 1982)
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M(G) < (




Normalized volume of Ag

What is (2("_1)) ?

n—1

If G is a graph with n vertices, then
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where K, is a complete graph with n vertices and Vol(-) is the
normalized volume of a lattice polytope.

Theorem (Chen, 2017)

M(G) < Vol(Ag).




Normalized volume of Ag

Problem
Compute Vol(Ag) or give a formula for Vol(Ag) in terms of G.

Theorem (Higashitanai-Jochemko—Michatek, 2019)
Let Ko be a complete bipartite graph with a and b vertices (a < b).

Then

Vol(Ag, ,) = az—l (221) (a ; 1) (b; 1)2a+b—2i—1

=0

How do we get this volume from information of K, ;?




Ehrhart theory

P C R™ : a lattice polytope of dimension d
mP = {mx : x € P} : the mth dilated polytope of P
Lp(m) := |[mP NZ"| : the Ehrhart polynomial of P

m

L'p(l):4 Lp(2):9 Lp(m):(m+1)2:m2+2m+1

Theorem (Ehrhart)
Lp(m) is a polynomial in m of degree d.




Ehrhart h*-polynomials

We consider the generating series of Lp(m)

h*(P,t
5 Ip(mitn = i

m>0
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h*(P,t) is a polynomial of degree < d, called the h*-polynomial of P.

All the coefficients have a combinatorial interpretation.
In particular,

o each h} > 0 (Stanley)
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Moreover,

o 14+ hj+---+ k%= Vol(P): the normalized volume of P




Palindromic polynomials and ~-polynomials
%y ait’ € Zso[t] : a palindromic polynomial
e =tk e s A e i
Then there exists a unique expression
l4/2] :
el

=0

Y= Z}i{fj y;tt € Z[t] is called the y-polynomial of f(t).

For example,
f@) =1+6t+11¢2 + 6t +¢*
= il e e B L
S G

Y(t) =1+2t+ ¢




Properties of palindromic polynomials

We consider the following properties of palindromic polynomials:
(RR) f(t) is real-rooted if all roots of f(t) are real.
(GP) f(t) is y-positive if v; > 0 for all i.
(UN) f(t) is unimodal if ap < --- < ap > --- > aq with some k.
In general,
(RR) = (GP) = (UN)
If f(t) is y-positive, then

f(t) is real-rooted <= ~(t) is real-rooted

For example, f(t) = 1 + 6t + 11t + 6t3 + * is real-rooted
because y(t) = 1 + 2t + t? is real-rooted.




Unimodality of h*(Pg,t)

A lattice polytope P is called Gorenstein if h*(P,t) is palindromic.
Especially, a Gorestein polytope with a unique relative interior lattice
point is called reflexive.

Theorem (Bruns—Rémer)

If ‘P is Gorenstein and has a regular unimodular triangulation, then
h*(P,t) is unimodal.

Theorem (Matsui et al.)

‘Pq is reflexive and has a regular unimodular triangulation. In particular,
h*(Ag,t) is palindromic and unimodal.

When is h*(Agq,t) y-positive or real-rooted?




Complete bipartite graph

For a Gorenstein polytope P, let v(P,t) be the y-polynomial of
R

Theorem (Higashitanai-Jochemko—Michatek, 2019)
Let K, be a complete bipartite graph with a and b vertices (a < b).

Then ;
= 20\ fa—1\ (b—1\ ,
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Furthermore, v(Ak, ,,t) is real-rooted.




Perfectly matchable set polynomials

G : a graph on [n]
A k-matching of G is a set of k£ pairwise non-adjacent edges of G.
me(k) : the number of k-matchings of G
ClleHi =D mq(k)t* : matching generating polynomial
A k—matching_of G is called a perfect matching if 2k = n.

A subset S C [n] is called a perfectly matchable set if the induced
subgraph of G on S has a perfect matching.

pma (k) : the number of perfectly matchable sets with cardinality
2k

SHlE = Zkzopmg(k)tk : perfectly matchable set polynomial

Remark
Clearly, pmg (k) < mg(k).




Example of k-matchings and perfectly matchable sets

/M VK

M, M,

3-matchings

M and Ms are different 3-matchings.
M7 and M give a same perfectly matchable set.




Cuts of graphs
G : a graph on [n]
Given a subset S C [n],
Es:={ec€ E(G):|lenS|=1}: acut of G.
We identify Eg with the subgraph of G on the vertex set [n] and the
edge set Fg. In particular, Eg is a bipartite graph.

Eg

Cut(G) : the set of all cuts of G.
Note that |Cut(G)| = 2" L.




Suspension graphs

G : a graph on [n]
Let G be the suspension of G, i.e., the connected graph on [n + 1]
whose edge set is

E(G) = E(G)U{{i,n+1}:i € [n]}.

[N~ >

Theorem (Ohsugi-T, 2021a)
Let G be a graph on [n]. Then one has
1

HeCut(G)

In particular, h*(Ag,t) is y-positive.




Interior polynomials and perfectly mathable set polynomials

G : a bipartite graph with a bipartition V; U V3 = [n]
Let G be the connected bipartite graph on [n + 2] whose edge set is

E(G) = E(G)U{{n+1,n+2}}U{{s,n+1} : i € Vi}U{{j,n+2} : j € Va}

Theorem (Ohsugi-T, 2021a)
Let G be a bipartite graph. Then one has

’V(Aéa t) = V(A@v t)'

In particular, h*(Az,t) is y-positive.




~-positivity of h*(Ag,t)

Theorem (Ohsugi-T, 2021a)
h*(Ag,t) is y-positive if one of the following

G = H for some graph H (complete graphs);

G = H for some bipartite graph H (complete bipartite graphs);
G is a cycle;

G is an outerplaner bipartite graph.
Conjecture (Ohsugi-T, 2021a)
v(Ag,t) is y-positive for any graph G.

Theorem (D’Ali—Kubitzke—Kéhne—Venturello, 2023)
For any G, 71,72 > 0.




Real-rootedness of h*(Ag,t)

Example

We consider a cycle C,, of length n. Then

(n—1)/2 9%

1=0

When n =5, v(Acs,t) = 1+ 2t + 6t2. Hence v(Acs,t) is not
real-rooted. Therefore, h*(Ac,t) is not real-rooted.

Problem
When is h*(Ag,t) real-rooted?




Wheel graphs

A wheel graph W, is C,.

Theorem (D’Ali-Delucchi-Michatek, 2022)
Forn > 3, one has

(Elisiss /B et BN if n is odd,
fY(’AWn7t) an
(1+V3)"+ (1 —-3)" -2 otherwise.

Theorem (Ohsugi-T, 2021b)
For n > 3, one has

S BRSO Lol ifn is odd,

e 1+8t)n;,2(1_ BRI 2t2  otherwise.

In particular, v(Aw, ,t) is real-rooted.




Cactus graphs

A graph is called cactus if each edge belongs to at most one cycle.
For example, a cycle is cactus.
We consider the suspension of a cactus graph.

Theorem (Ohsugi-T, 2021b)
Let G be a cactus graph. Then

IE(R)I
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where RY5(G) is the set of all subgraphs of G consisting of
vertex-disjoint even cycles, and c¢(R) is the number of the cycles of R.




p-polynomials

Gy{(Cras s Zkzo(—l)kmk(G)tn_% : the matching polynomial of G
Note that a(G,t) = t"g(G, —t~2) and it is real-rooted.

Definition

Assume that G has r cycles Cy,...,C,. Let s = (s1,...,8,) € R" be a
vector. Then the p-polynomial of G is

u(G,s,t) = a(G,t) + Z T e H G

RER- (G) C;CR

Theorem (Gutman—Polansky, 1981)

Let G be a cactus graph. If |s;| <1 forall 1 <i <, then u(G,s,t) is
real-rooted.

Theorem (Ohsugi-T, 2021b)

Let G be a cactus graph. Then ’y(.A@, t) is real-rooted.




Connection to hypergeometric function?
From the explicit formulas for v(Ak,,t) and v(Ag, ,,t), we can notice
the following:

1—a

a
t)= o | —,1 — —;1;4¢
V(AKQ’ ) 2 1( 2 ) 2a ) )

1
VALK, ,,t) = 3% (5, —a+1,-b+1;1, 1;4t)

Theorem (Driver—Jordaan, 2002)
oFy (152,1 — %;1;4¢) is real-rooted.

Theorem (Driver—Jordaan—Martinez-Finkelshtein, 2007)
3F (3, —a+1,—b+1;1,1;4¢t) is real-rooted.




Connection to hypergeometric function?
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1
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Thank you for your attentions!




