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Symmetric edge polytopes

e1, . . . , en : the standard basis for Rn

G : a finite simple graph on [n] := {1, . . . , n}
E(G) : the edge set of G

Definition
The symmetric edge polytope or (PV-type) adjacency polytope AG of
G is the lattice polytope which is the convex hull of

{±(ei − ej) ∈ Rn : {i, j} ∈ E(G)}.

Recently, we have focused on computing the volume of AG.



Kuramoto Model

Synchronization phenomena for network of interconnected oscillators is
modeled by a wighted graph G = (V,E,A), where

◦ vertices V = {1, . . . , n} (oscillators with natural frequencies ωi)

◦ edges E (connectivity)

◦ weights A = {ai,j} for each {i, j} ∈ E (coupling strengths between
coupled oscillators)



Kuramoto Model

For i = 1, . . . , n,

dθi
dt

= ωi −
󰁛

j∈NG(i)

ai,j sin(θi − θj),

where

◦ θi ∈ [0, 2π) is the phase angle of the ith oscillator,
◦ NG(i) is the set of neighbors of the ith osillator.

(θ1, . . . , θn) : frequency synchronization configuration ⇐⇒
def

∀i, dθidt = 0



Kuramoto Model

Fix θn = 0.

Problem
Given ω1, . . . ,ωn−1 ∈ R and a wighted graph of n nodes, what is the
maximal number M(G) of real roots the system of n− 1 nonlinear
equations

ωi −
󰁛

j∈NG(i)

ai,j sin(θi − θj) = 0, for i = 1, . . . , n− 1

could have?

Theorem (Baillieul–Byrnes, 1982)

M(G) ≤
󰀕
2(n− 1)

n− 1

󰀖



Normalized volume of AG

What is
󰀃
2(n−1)
n−1

󰀄
?

If G is a graph with n vertices, then

Vol(AG) ≤ Vol(AKn) =

󰀕
2(n− 1)

n− 1

󰀖
,

where Kn is a complete graph with n vertices and Vol(·) is the
normalized volume of a lattice polytope.

Theorem (Chen, 2017)

M(G) ≤ Vol(AG).



Normalized volume of AG

Problem
Compute Vol(AG) or give a formula for Vol(AG) in terms of G.

Theorem (Higashitanai–Jochemko–Micha󰀀lek, 2019)

Let Ka,b be a complete bipartite graph with a and b vertices (a ≤ b).
Then

Vol(AKa,b
) =

a−1󰁛

i=0

󰀕
2i

i

󰀖󰀕
a− 1

i

󰀖󰀕
b− 1

i

󰀖
2a+b−2i−1

How do we get this volume from information of Ka,b?



Ehrhart theory

P ⊂ Rn : a lattice polytope of dimension d
mP = {mx : x ∈ P} : the mth dilated polytope of P
LP(m) := |mP ∩ Zn| : the Ehrhart polynomial of P

LP(1) = 4 LP(2) = 9 LP(m) = (m+ 1)2 = m2 + 2m+ 1

1

1

2

2

m

m

Theorem (Ehrhart)

LP(m) is a polynomial in m of degree d.



Ehrhart h∗-polynomials

We consider the generating series of LP(m)

󰁛

m≥0

LP(m)tm =
h∗(P, t)

(1− t)d+1

h∗(P, t) = h∗dt
d + h∗d−1t

d−1 + · · ·+ h∗1t+ h∗0

h∗(P, t) is a polynomial of degree ≤ d, called the h∗-polynomial of P.

All the coefficients have a combinatorial interpretation.
In particular,

◦ each h∗i ≥ 0 (Stanley)

◦ h∗0 = 1, h∗1 = |P ∩ Zn|− (d+ 1) and h∗d = |relint(P) ∩ Zn|
Moreover,

◦ 1 + h∗1 + · · ·+ h∗d = Vol(P): the normalized volume of P



Palindromic polynomials and γ-polynomials

f(t) =
󰁓d

i=0 ait
i ∈ Z>0[t] : a palindromic polynomial

i.e., ai = ad−i for any 1 ≤ i ≤ ⌊d/2⌋
Then there exists a unique expression

f(t) =

⌊d/2⌋󰁛

i=0

γit
i(1 + t)d−2i

γ(t) :=
󰁓⌊d/2⌋

i=0 γit
i ∈ Z[t] is called the γ-polynomial of f(t).

For example,

f(t) = 1 + 6t+ 11t2 + 6t3 + t4

= (1 + t)4 + 2t+ 5t2 + 2t3

= (1 + t)4 + 2t(1 + t)2 + t2

γ(t) = 1 + 2t+ t2



Properties of palindromic polynomials

We consider the following properties of palindromic polynomials:

(RR) f(t) is real-rooted if all roots of f(t) are real.

(GP) f(t) is γ-positive if γi ≥ 0 for all i.

(UN) f(t) is unimodal if a0 ≤ · · · ≤ ak ≥ · · · ≥ ad with some k.

In general,

(RR) ⇒ (GP) ⇒ (UN)

If f(t) is γ-positive, then

f(t) is real-rooted ⇐⇒ γ(t) is real-rooted

For example, f(t) = 1 + 6t+ 11t2 + 6t3 + t4 is real-rooted
because γ(t) = 1 + 2t+ t2 is real-rooted.



Unimodality of h∗(PG, t)

A lattice polytope P is called Gorenstein if h∗(P, t) is palindromic.
Especially, a Gorestein polytope with a unique relative interior lattice
point is called reflexive.

Theorem (Bruns–Römer)

If P is Gorenstein and has a regular unimodular triangulation, then
h∗(P, t) is unimodal.

Theorem (Matsui et al.)

PG is reflexive and has a regular unimodular triangulation. In particular,
h∗(AG, t) is palindromic and unimodal.

When is h∗(AG, t) γ-positive or real-rooted?



Complete bipartite graph

For a Gorenstein polytope P, let γ(P, t) be the γ-polynomial of
h∗(P, t).

Theorem (Higashitanai–Jochemko–Micha󰀀lek, 2019)

Let Ka,b be a complete bipartite graph with a and b vertices (a ≤ b).
Then

γ(AKa,b
, t) =

a−1󰁛

i=0

󰀕
2i

i

󰀖󰀕
a− 1

i

󰀖󰀕
b− 1

i

󰀖
ti.

Furthermore, γ(AKa,b
, t) is real-rooted.



Perfectly matchable set polynomials

G : a graph on [n]

◦ A k-matching of G is a set of k pairwise non-adjacent edges of G.

◦ mG(k) : the number of k-matchings of G

◦ g(G, t) =
󰁓

k≥0mG(k)t
k : matching generating polynomial

◦ A k-matching of G is called a perfect matching if 2k = n.

◦ A subset S ⊂ [n] is called a perfectly matchable set if the induced
subgraph of G on S has a perfect matching.

◦ pmG(k) : the number of perfectly matchable sets with cardinality
2k

◦ p(G, t) =
󰁓

k≥0 pmG(k)t
k : perfectly matchable set polynomial

Remark
Clearly, pmG(k) ≤ mG(k).



Example of k-matchings and perfectly matchable sets

3-matchings

M1 M2

M1 and M2 are different 3-matchings.
M1 and M2 give a same perfectly matchable set.



Cuts of graphs

G : a graph on [n]
Given a subset S ⊂ [n],

ES := {e ∈ E(G) : |e ∩ S| = 1} : a cut of G.

We identify ES with the subgraph of G on the vertex set [n] and the
edge set ES . In particular, ES is a bipartite graph.

1

2

3 4

5

S ES

Cut(G) : the set of all cuts of G.
Note that |Cut(G)| = 2n−1.



Suspension graphs

G : a graph on [n]
Let 󰁥G be the suspension of G, i.e., the connected graph on [n+ 1]
whose edge set is

E( 󰁥G) = E(G) ∪ {{i, n+ 1} : i ∈ [n]}.

G = Ĝ =

Theorem (Ohsugi-T, 2021a)

Let G be a graph on [n]. Then one has

γ(A 󰁥G, t) =
1

2n−1

󰁛

H∈Cut(G)

p(H, 4t).

In particular, h∗(A 󰁥G, t) is γ-positive.



Interior polynomials and perfectly mathable set polynomials

G : a bipartite graph with a bipartition V1 ∪ V2 = [n]
Let 󰁨G be the connected bipartite graph on [n+ 2] whose edge set is

E( 󰁨G) = E(G)∪{{n+1, n+2}}∪{{i, n+1} : i ∈ V1}∪{{j, n+2} : j ∈ V2}

G =
eG =

Theorem (Ohsugi-T, 2021a)

Let G be a bipartite graph. Then one has

γ(A 󰁨G, t) = γ(A 󰁥G, t).

In particular, h∗(A 󰁨G, t) is γ-positive.



γ-positivity of h∗(AG, t)

Theorem (Ohsugi–T, 2021a)

h∗(AG, t) is γ-positive if one of the following

◦ G = 󰁥H for some graph H (complete graphs);

◦ G = 󰁨H for some bipartite graph H (complete bipartite graphs);

◦ G is a cycle;

◦ G is an outerplaner bipartite graph.

Conjecture (Ohsugi–T, 2021a)

γ(AG, t) is γ-positive for any graph G.

Theorem (D’Al̀ı–Kubitzke–Köhne–Venturello, 2023)

For any G, γ1, γ2 ≥ 0.



Real-rootedness of h∗(AG, t)

Example

We consider a cycle Cn of length n. Then

γ(ACn , t) =

(n−1)/2󰁛

i=0

󰀕
2i

i

󰀖
ti.

When n = 5, γ(AC5 , t) = 1 + 2t+ 6t2. Hence γ(AC5 , t) is not
real-rooted. Therefore, h∗(AC5 , t) is not real-rooted.

Problem
When is h∗(AG, t) real-rooted?



Wheel graphs

A wheel graph Wn is 󰁦Cn.

Theorem (D’Al̀ı–Delucchi–Micha󰀀lek, 2022)

For n ≥ 3, one has

γ(AWn , t) =

󰀻
󰀿

󰀽

(1 +
√
3)n + (1−

√
3)n if n is odd,

(1 +
√
3)n + (1−

√
3)n − 2 otherwise.

Theorem (Ohsugi–T, 2021b)

For n ≥ 3, one has

γ(AWn , t) =

󰀻
󰁁󰀿

󰁁󰀽

(1+
√
1+8t)n+(1−

√
1+8t)n

2t if n is odd,

(1+
√
1+8t)n+(1−

√
1+8t)n

2n − 2t
n
2 otherwise.

In particular, γ(AWn , t) is real-rooted.



Cactus graphs

A graph is called cactus if each edge belongs to at most one cycle.
For example, a cycle is cactus.
We consider the suspension of a cactus graph.

Theorem (Ohsugi-T, 2021b)

Let G be a cactus graph. Then

γ(A 󰁥G, t) = g(G, 2t) +
󰁛

R∈R′
2(G)

(−2)c(R)g(G−R, 2t) t
|E(R)|

2 ,

where R′
2(G) is the set of all subgraphs of G consisting of

vertex-disjoint even cycles, and c(R) is the number of the cycles of R.



µ-polynomials

α(G, t) :=
󰁓

k≥0(−1)kmk(G)tn−2k : the matching polynomial of G

Note that α(G, t) = tng(G,−t−2) and it is real-rooted.

Definition
Assume that G has r cycles C1, . . . , Cr. Let s = (s1, . . . , sr) ∈ Rr be a
vector. Then the µ-polynomial of G is

µ(G, s, t) = α(G, t) +
󰁛

R∈R2(G)

(−2)c(R)α(G−R, t)
󰁜

Ci⊂R

si.

Theorem (Gutman–Polansky, 1981)

Let G be a cactus graph. If |si| ≤ 1 for all 1 ≤ i ≤ r, then µ(G, s, t) is
real-rooted.

Theorem (Ohsugi–T, 2021b)

Let G be a cactus graph. Then γ(A 󰁥G, t) is real-rooted.



Connection to hypergeometric function?

From the explicit formulas for γ(AKa , t) and γ(AKa,b
, t), we can notice

the following:

γ(AKa , t) = 2F1

󰀕
1− a

2
, 1− a

2
; 1; 4t

󰀖

γ(AKa,b
, t) = 3F2

󰀕
1

2
,−a+ 1,−b+ 1; 1, 1; 4t

󰀖

Theorem (Driver–Jordaan, 2002)

2F1

󰀃
1−a
2 , 1− a

2 ; 1; 4t
󰀄
is real-rooted.

Theorem (Driver–Jordaan–Mart́ınez-Finkelshtein, 2007)

3F2

󰀃
1
2 ,−a+ 1,−b+ 1; 1, 1; 4t

󰀄
is real-rooted.
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1
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Thank you for your attentions!


