
DELIGNE-MOSTOW-TERADA CLASSIFICATION, K3

SURFACES, AUTOMORPHIC FORMS, JACOBI-THOMAE

IDENTITY

(HYPERGEOMETRIC SCHOOL 2022.9.18)

TOMOHIDE TERASOMA

1. Introduction

This is a text for the hypergeometric school. In this text, we try to present
uniform method of treat a period map to complex ball arising from Appell-
Lauricella hypergeometric function. We treat important classes classified by
Terada-Deligne-Mostow and Mostow. We try to give a course related to the
following topics. We appologize that only references of the topics (5) and (6)
are mentioned.

(1) Appell-Lauricella hypergeometric function. Period map to a complex
ball.

(2) Deligne-Mostow-Terada classfication
(3) Automorphic function Theta function of curves with cyclic group ac-

tion
(4) Individual results
(5) Period of K3 surface with cyclic group action.
(6) Thomae’s formula

We will see that only several cases are known in detail. In the list of Terada-
Deligne-Mostow and Mostow, there are many cases to be done, including
period maps for non-principal Prym variety.

1.1. Preliminary to Hodge structure and its polarizations. In this
subsection, we introduce the definition of Hodge structures and its polariza-
tion. Let A be a ring contained in R. We may assume that A = Z, Q or
R.

Definition 1.1. A pair H = (HA, F
•) consisting of

(1) A lattice HA of finite type over A, and
(2) A decreasing filtration F • on HC

satisfying the condition

HC = ⊕i+j=n(F
i ∩ F j)
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is called a A-Hodge structure of weight i. Here HC = HA ⊗A C and the
conjugation is that with respect to HR = HA ⊗A R. The subspace Hij =
F i ∩ F j is called the Hodge (i, j)-component of H.

Let S be a real algebraic group defined by

S = {(a, b) ∈ R2 | a2 + b2 6= 0}.
An element z = α + βi in C× defines an R-valued point (α, β) of S, which
is denoted by z. By this correspondence the set S(R) of R-valued points of S
is identified with C×. For an element z = α + βi ∈ C× = S(R), α − βi in
S(R) is denoted by z. The condition (2) is equivalent to the existence of the
action ρ of S on HR such that

ρ(z) | Hij = the multiplication of zizj

on the scalar extension HC = HR ⊗R C.

1.2. Polarization of Hodge structure. Let H = (HQ, F
i) be a polarized

Hodge strucutre of weight n. The Hodge decomposition defines an action
ρ : S → Aut(HR). The action of C = ρ(i) is called the Weil operator of HR.

Definition 1.2. A Q-valued bilinear form 〈 〉 on HQ is called a polarization
if

(1) for x ∈ Hi,j, y ∈ Hk,l, 〈x, y〉 = 0 if i+ k 6= n, and
(2) 〈x,C(y)〉 is symmetric and positive definite on HR.

Here the scalar extension of the pairing 〈 〉 to HR and HC are also denoted
by 〈 〉.

Definition 1.3. This definition is a little bit different from [Weil2]. The
value of the pairing is in Q not in Q(−n).

Since we have

〈x, y〉 = 〈C(x), C(y)〉 = 〈y, C2(x)〉 = (−1)n〈y, x〉,
the pairing is symmetric if n is even and skew symmetric if n is odd.

1.2.1. The weight one case. We consider the case where the weight n = 1. In
this case, the pairing 〈 〉 is non-degenerate skew symmetric form. Therefore
there exists a symplectic base Ai, Bi satsifying

〈Ai, Bj〉 = δij , 〈Ai, Aj〉 = 〈Bi, Bj〉 = 0.

We can chosse a basis {ωi} of H10 such that

(1.1) 〈ωi, Bj〉 = δij .

This base is called a noralized basis of H10.

Proposition 1.4. We set

(1.2) 〈ωi, Aj〉 = τij

and set τ = (τij)ij. Then

(1) The matrix τ is a symmetric matrix.
(2) The matrix Im(τ) is a positive definite matrix.
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Proof. By (1.1) and (1.2), we have

ωi = Ai −
∑
k

τikBk

Since 〈ωi, ωj〉 = 0, we have

0 = 〈Ai −
∑
k

τikBk, Aj −
∑
l

τjlBl〉 = −τji + τij

HR is generated by {γi = ωi + ωi}. Since C(γi) = iωi − iωi, we have

〈γi, C(γj)〉 =〈ωi,−iωj〉+ 〈ωi, iωj〉

=〈Ai −
∑
k

τikBk,−iAj + i
∑
k

τjkBk〉

+ 〈Ai −
∑
k

τikBk, iAj − i
∑
k

τjkBk〉

=iτji − iτij − iτji + iτij

=− 2i(τij − τij) = 2 Im(τij).

Therefore Im(τ) is positive definite. □

Definition 1.5. We define the Siegel upper half space Sg of degree g by

Sg = {τ ∈Mg | tτ = τ, Im(τ) is positive definite}.

2. Appell Lauricella hypergeometric function

Appell-Lauricella hypergeometric function is defined as the following inte-
gral:

F (λ1, . . . , λd) =

∫ ∞

1

x−µ0(1− x)−µ1

d∏
i=1

(x− λi)
−µidx

We assume that 0 < µi < 1. We define µ∞ as the order of the pole of the
integrand at infinity. Then we have∑

µi + µ∞ = 2.

We assume that 0 < µ∞ < 1. The function F satisfies a linear differen-
tial equation of rnak d+ 1, which is called Appell-Lauricella hypergeometric
equation.

The function F is “a period of cohomology” of a curve C. Let C be a
covering of P1 defined by

(2.1) C : yn = xm0(1− x)m1

d+1∏
i=2

(x− λi)
mi

where n is the smallest common denominator of µi and mi = −nµi. On the
curve C the cyclic group µn of n-the roots of unity. An element ζ ∈ µn acts
on C by

gζ : y 7→ ζ−1y
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By Hodge theory, the cohomology H1(C,Z) is equipped with a natural Hodge
structures:

H1(C,Z)⊗C = H01(C)⊕H10(C), H10 ' H0(C,Ω1), H01 ' H1(C,O)

The action of µn induces an action of µn on H10(C) and H01(C). We set

H1(C,C)(χ) = {v ∈ H1(C,C) | g∗ζv = ζv}
H01(C)(χ) = {v ∈ H01(C) | g∗ζv = ζv}
H10(C)(χ) = {v ∈ H10(C) | g∗ζv = ζv}

Then we have

H1(C,C)(χ) = H01(C)(χ)⊕H10(C)(χ)

and by holomorphic Lefschetz theorem, we have

dimCH
10(C)(χ) =

∑
µi − 1 = 2− 1 = 1,(2.2)

dimCH
01(C)(χ) =

∑
(1− µi)− 1 = d+ 3− 2− 1 = d.

2.0.1. Moduli spaces and a marked curve. Let M be the naive moduli space

M = {(λ1, . . . , λd) ∈ Cd | λi 6= λj .}

A reference curve C0 is a curve corresponding to a chosen base point of the
moduli space. Let K = Q(µn) be a subfield of C generated by µn over Q.
Then dimQK = φ(n), where φ(n) is the Eular function of n. Let χ be the
natural inclusion µn → C×, which defines a character of µn. For an element
t ∈ (Z/nZ)×, we have another character χt : µn → C×. Then we have an
isomorphism

H1(C,K)(χt)⊗K C ' H1(C,C)(χt).

We define the primitive part of H1
prim(C,Q) by the following Q-subvector

space of H1(C,Q):

H1
prim(C,Q) =

(
⊕t∈(Z/nZ)× H

1(C,K)(χt)

)
∩H1(C,Q).

Similarly, we define the prmitive part Hprim
1 (C,Q) of the homology H1(C,Q).

We define the lattice Hprim
1 (C,Z) of Hprim

1 (C,Q) by

Hprim
1 (C,Z) = Hprim

1 (C,Q) ∩H1(C,Z).

A polarization of Hprim
1 (C,Z) is induced from that of H1(C,Z). Note that the

polarization on Hprim
1 (C,Z) is not necessarily principal unless Hprim

1 (C,Q) =
H1(C,Q).

For a moduli problem of curves with the above structures, we often choose
a typical curve C0, which is called a reference curve. For a reference curve C0,
we have a lattice Hprim

1,Z = Hprim
1 (C0,Z) with the polarization and the action

of µn.
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Definition 2.1. (1) Let C be a curve C which is a covering of P1. An
isomorphism

m : Hprim
1 (C,Z) ' Hprim

1,Z

compatible with the polarization and the µn-action is called a marking
of C.

(2) A pair (C,m) of a curve C and its marking is called a marked curve.
Let Mmk be the set of the marked curves. It is called the moduli space
of marked curves.

The K-vector space H1
K(χ) and C-vector space H1

C(χ) are defined as fol-
lows:

m : H1
K(χ) = H1(C0,K)(χ),H1

C(χ) = H1(C0,C)(χ).

Definition 2.2. We introduce a Hermatian form h on H1(C,C)(χ) and
H1

C(χ) by

(2.3) h(ξ, η) = 2〈ξ, η〉(ω − ω).

We set q(ξ) = h(ξ, ξ).

A marking m induces an isomorphism

m : H1(C,K)(χ) ' H1
K(χ)

compatible with the polarizations and the µn-actions.

2.1. Period map for a marked curve.

2.1.1. Hermitian form on H1
C(χ). Let (C,m) be a marked curve. Then we

have a sequence of homomorphisms:

(2.4) H10(C)(χ) ⊂ H1(C,K)(χ)⊗K C
m⊗C−−−→ H1

K ⊗K C ' H1
C.

To define a period map to a complex ball using this homomorphisms, we use
a hermatian form q on H1

C

Let σ be a generator of µn and ω = χ(σ). We assume that Im(ω) > 0. We
set

H1
R(χ, χ) = H1

R ∩
(
H1

C(χ)⊕H1
C(χ)

)
Then the map

ι : H1
C(χ) → H1

R(χ, χ) : ξ 7→ x = ξ + ξ

is an isomorphism of R-vector spaces. We introduce an action of R[σ] on
H1

R(χ, χ) by

σ(ξ + ξ) = ωξ + ωξ.

The isomorphism ι is compatible with the action of C = R[ω] and R[σ]. By
simple computation, we have the following proposition.

Proposition 2.3. (1) Via the isomorphism ι, the Hermitian form h is
identified with the Hermitian form on H1

R(χ, χ) defined by

h∗(x, y) = 〈x, (σ − σ−1)y〉+ 〈x, y〉(ω − ω)
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(2) Since 〈ξ, η〉 = 〈ξ, η〉 = 0 for ξ, η ∈ H1
C(χ), the space H10(C)(χ)

is positive definite and H01(C)(χ) is negarive definite subspace of
H1(C,C)(χ). The space H10(C)(χ) and H01(C)(χ) is orthogonal
complement to each other.

Proof. (1) We have

h∗(x, y) =〈ξ + ξ, (σ − σ−1)(η + η)〉+ 〈ξ + ξ, η + η〉(ω − ω)

=〈ξ + ξ, ωη + ωη))〉 − 〈ξ + ξ, ωη + ωη〉
+ 〈ξ + ξ, η + η〉(ω − ω)

=2〈ξ, η〉(ω − ω)

(2) Since ω − ω = ri with r > 0, for ξ ∈ H10(χ) and x = ξ + ξ,

h∗(x, x) = 〈x, (σ − σ−1)x〉+ 〈x, x〉(ω − ω) = r〈x,Cx〉 > 0

where C is the Weil operator. If ξ ∈ H01(χ), then h∗(x, x) = −r〈x,Cx〉 <
0. □

Via the homomorphism

H10(C)(χ) ⊂ H1(C,K)(χ)⊗C
m⊗C−−−→ H1

C(χ)

the space H10(C)(χ) is a one dimentional subspace in H1
C(χ), which defines

a point π(C,m) in P (H1
C(χ)) ' Pd. By the positivity of Proposition 2.3, the

point π(C,m) is contained in the domain D ⊂ Pd defined by

D = {[v] ∈ P(H1
C(χ)) | q(v) > 0}.

HereD is the symmetric domain associated to the unitary group U(H1
C(χ), q) =

U(1, d) of VC defined by

U(H1
C(χ), q) = {g ∈ Aut(H1

C(χ)) | q(ξ) = q(g(ξ)) for all ξ ∈ H1
C(χ)}

It is easy to see that D is a complex ball. Thus we have a map

π : Mmk → D : (C,m) 7→ π(C,m),

which is called the period map. Thus we have the following diagram

Mmk
//

��

D // Pd

M

2.2. Deligne-Mostow-Terada classification. Deligne and Mostow gives a
sufficient condition such that Mmk → D is almost an isomorphism.

Theorem 2.4 (Deligne-Mostow-Terada). If the condition

(INT) : (1− µi − µj)
−1 ∈ Z for any i 6= j and µi + µj < 1

is satisfied, then π : Mmk → D is almost isomorphic. Moreover, suitable
compactification induces an isomorphism. Actually π is an isomorphism by
adding stable locus.
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Here is the list of indexes µ satisfying the above theorem. Let N be the
number of branch locus. We consider the case N > 4. Schwarz triangular
group is classified as N = 4. The following lists are from [Td], [DM].

(1) N = 5

Table 1. N = 5
type no d m0 m1 m2 m1 m2

1 3 2 1 1 1 1
2 4 2 2 2 1 1
3 4 3 2 1 1 1
4 5 2 2 2 2 2
5 6 3 3 2 2 2
6 6 3 3 3 2 1
7 6 4 3 2 2 1
8 6 5 2 2 2 1
9 8 4 3 3 3 3
10 8 5 5 2 2 2
11 8 6 3 3 3 1
12 9 4 4 4 4 2
13 10 7 4 4 4 1
14 12 5 5 5 5 4
15 12 6 5 5 4 4
16 12 6 5 5 5 3
17 12 7 5 4 4 4
18 12 7 6 5 3 3
19 12 7 7 4 4 2
20 12 8 5 5 3 3
21 12 8 5 5 5 1
22 12 8 7 3 3 3
23 12 10 5 3 3 3
24 15 8 6 6 6 4
25 18 11 8 8 8 1
26 20 14 11 5 5 5
27 24 14 9 9 9 7

(2) N = 6
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Table 2. N = 6
type no d m0 m1 m2 m3 m4 m5

1 3 1 1 1 1 1 1
2 4 2 2 1 1 1 1
3 4 3 1 1 1 1 1
4 6 3 2 2 2 2 1
5 8 3 3 3 3 3 1
6 12 5 5 5 3 3 3
7 12 7 5 3 3 3 3

(3) N = 7

Table 3. N = 7

type no d m0 m1 m2 m3 m4 m5 m6

1 4 2 1 1 1 1 1 1

(4) N = 8

Table 4. N = 8

type no d m0 m1 m2 m3 m4 m5 m6 m7

1 4 1 1 1 1 1 1 1 1

Moreover Mostow relaxed the above condition to the “half integral conditions”
to get wider class. (See the list of [Mo].)

3. Arithmetic case and construction of Automorphic forms

In the Deligne-Mostow classifiction, there are criterion of the arithmeticity
of the monodory group.

Definition 3.1. We define a group U(Hprim
1,Z ) as the set of elements g ∈

Aut(Hprim
1,Z ) preserving the polarizations 〈 〉 and µn-actions.

Proposition 3.2. If the following condition is satisfied, then the group U(Hprim
1,Z )

is covolume finite discrete subgroup of U(Hprim
1,C ).

(Arith): For all t ∈ (Z/dZ)× − {1,−1}, we have∑
〈tµi〉 − 1 = 0

or ∑
〈−tµi〉 − 1 = d+ 1.

A group with the above properties is called arithmetic lattice.

In the following, we treat the cases of arithmetic lattices. By transpose of
the action, the group U(Hprim

1,Z ) acts on the domain D.
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Definition 3.3. A lattice L containg Hprim
1,Z such that # | L/Hprim

1,Z |< ∞ is

called a superlattice of Hprim
1,Z . If the restriction of the polarization to a super

lattice is integral and principal, it is called a principally polarized superlattice.
Two super lattices L1, L2 are associated if there exists g ∈ U(Hprim

1,Z ⊗ Q)

such that g(Hprim
1,Z ) = Hprim

1,Z and gL1 = L2. For any Hprim
1,Z , there exists

a principally polarized superlattice. Even though Hprim
1,Z is stable under the

action of µn, a principally polarized superlattice may not by stable under the
action of µn.

Problem 3.4. Are there µn-stable principally polarized superlattice ? This
question is trivial for Hprim

1 (C,Z) = H1(C,Z). We have an affirmative an-
swer for (1/48).

3.1. Modular embedding for µn-action and Theta functions. In this
section, we assume that

(3.1) degQ Q(ζn) = 2 and H1(C,Q) = H1
prim(C,Q).

For a reference curve C0, we set H1
Z = H1(C0,Z), etc. In this case, we have

H1 ⊗K = H1
K(χ)⊕H1

K(χ).

In (2.3), we introduced a skew symmetric form h(v, w) on H1(C,K)(χ). Then
by Proposition 2.3, the space H10(C)(χ) is one dimensional and positive def-
inite. The spaces H10(C)(χ) and H01(C)(χ) are orthogonal complement to
each other.

3.2. Modular embedding. On the dual lattice H1,Z a polarization is in-
duced by that of H1

Z. Let Ai, Bi be a symplectic basis of H1,Z, i.e. a basis
satisfying

〈Ai, Bj〉 = δij , 〈Ai, Aj〉 = 〈Bi, Bj〉 = 0.

A base {ωi} of F 1H1
C = H10 is normalized if

〈ωi, Bj〉 = δij

We set 〈ωi, Aj〉 = τij . Then we haveA1

...
Bg

(
ω1, . . . ωg

)
=

(
τ
Ig

)

By Proposition 1.4, τ = (τij)ij is an element of Siegel upper space Sg.
Let [v1] be an element in P(H1

C(χ)) such that h(v1, v1) > 0. The element
v1 determines a polarized Hodge structure on H1

Z with an action of µn such
that v1 is a generator of H10(χ). The Hodge structure is given as follows.

(1) Under the hermitian form h( , ) on H1
C(χ), H

01(χ) is defined as the
space vertical to v1.

(2) The subspace H10 is defined as the dirct sum of H10(χ) and H01(χ) =
H10(χ).
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By this correspondence, we have a embedding of symmetric domain

(3.2) D → Sg.

Now we give the explicit formula of the above embedding. The action of
the generator ζ of the covering transformation group induces the action σ∗
and σ∗ on the space H1 and H1

C. For a differential form ω ∈ H1
C and Γ ∈ H1,

we have ∫
σ∗Γ

ω =

∫
Γ

σ∗ω.

We define a matrix

σ =

(
α β
γ δ

)
∈ Sp(2g,Z)

by

t(σ∗A1, . . . , σ∗Ag, σ∗B1, . . . , σ∗Bg) = σ t(A1, . . . , Ag, B1, . . . , Bg)

where Sp(2g,Z) is an element satisfying

σ

(
0 1
−1 0

)
tσ =

(
0 1
−1 0

)
.

An element η ∈ H1
C is identified with v = t(α1, . . . , αg, β1, . . . , βg) ∈ C2g

by

v = t(

∫
A1

η, . . . ,

∫
Ag

η,

∫
B1

η, . . . ,

∫
Bg

η) =

(
vA
vB

)
Under this identification, the cup product is given by

(3.3) 〈v, u〉 = tvAuB − tvBuA.

Since H1
C = H1

C(χ) +H1
C(χ), (σ − ω)(σ − ω) = 0. Therefore H1

C(χ) is equal
to the image of σ − ω. Therefore a general element of H1

C(χ) is given by(
α− ω β
γ δ − ω

)(
u′

0

)
=

(
(α− ω)u′

γu′

)
=

(
(α− ω)γ−1uB

uB

)
By a similar computation, we have

uA =

{
(α− ω)γ−1uB (u ∈ H1

C(χ))

(α− ω)γ−1uB (u ∈ H1
C(χ))

Thus, we have an isomorphism:

(3.4) Cg → H1(χ) : uB 7→
(
(α− ω)γ−1uB

uB

)
Under the isomorhism (3.4), the Hermitian fom h on H1

C(χ) is transformed
to the Hermitian form hB on Cg. By (3.3) and (3.4) we have

hB(uB , vB) =
tuBH

∗vB

where

H∗ = 2(ω − ω)

(
t((α− ω)γ−1)− (α− ω)γ−1

)
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Let ψ be a generator of H10(χ). Under the decomposition H10 = H10(χ) ⊕
H10(χ), ξ ∈ H10 is expressed as

ξ = tψ + ϕ (ψ ∈ H10(χ), ϕ ∈ H01(χ)).

Since ϕ = (ξ − tψ) and h(ψ, ϕ) = 0, we have

0 =h(ψ, (ξ − tψ)) = hB(ψB , (ξB − tψB))

=hB(ψB , ξB)− thB(ψB , ψB)

= tψBH
∗ξB − t tψBH

∗ψB

t =
tψBH

∗ξB
tψBH∗ψB

Therefore the H10(χ) and H10(χ) components tψ and ϕ are given by

tψ =
tψBH

∗ξB
tψBH∗ψB

ψ, ϕ = ξ −
tψBH

∗ξB
tψBH∗ψB

ψ

Therefore,

tψA = (α− ω)γ−1
tψBH

∗ξB
tψBH∗ψB

ψB , ϕA = (α− ω)γ−1(ξB −
tψBH

∗ξB
tψBH∗ψB

ψB)

and ξA can be computed by ξB by the formula:

ξA =(α− ω)γ−1
tψBH

∗ξB
tψBH∗ψB

ψB + (α− ω)γ−1(ξB −
tψBH

∗ξB
tψBH∗ψB

ψB)

=(α− ω)γ−1ξB + (ω − ω)γ−1
tψBH

∗ξB
tψBH∗ψB

ψB

=

[
(α− ω)γ−1 + (ω − ω)γ−1ψB

tψBH
∗

tψBH∗ψB

]
ξB

Therefore we have the following proposition.

Proposition 3.5. The map (3.2) is given by

τ = (α− ω)γ−1 + (ω − ω)γ−1ψB
tψBH

∗

tψBH∗ψB

3.3. Theta function and Abel-Jacobi map. As for the theta function, we
refer [I].

3.3.1. Igusa transformation formula of theta function.

Definition 3.6. For ϵ′, ϵ′′ ∈ Qg, we define the theta function ϑϵ′ϵ′′(τ, z) for
τ ∈ Sg and z ∈ Cg by

ϑϵ′ϵ′′(τ, z) =
∑

m∈Zg

e(
1

2
(m+ ϵ′)τ t(m+ ϵ′) + (m+ ϵ′) t(z + ϵ′′))

We define the theta characteristic ϑϵϵ′(τ) by

ϑϵ′ϵ′′(τ) = ϑϵ′ϵ′′(τ, 0).

Since Im(τ) is positive definite, the above summations convege.
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Theorem 3.7 (Quasi-periodicity). We have the following relations.

(1) For δ′, δ′′ ∈ Qg, we have

ϑϵ′,ϵ′′(z + τδ′ + δ′′, τ) =e(−1

2
δ′τ tδ′ − δ′ t(z + δ′′)− δ′ tϵ′′)

ϑϵ′+δ′,ϵ′′+δ′′(z, τ)

(2) For m′,m′ ∈ Zg, we have

ϑϵ′+m′,ϵ′′+m′′(z, τ) = e(ϵ′ tm′′)ϑϵ′,ϵ′′(z, τ)

(3) For m′,m′ ∈ Zg, we have

ϑϵ′,ϵ′′(z +m′′, τ) = e(ϵ′ tm′′)ϑϵ′,ϵ′′(z, τ)

ϑϵ′,ϵ′′(z + τm′, τ) = e(−ϵ′′ tm′)e(−1

2
m′τ tm′ −m′ tz)︸ ︷︷ ︸

independent of ϵ′,ϵ′′

ϑϵ′,ϵ′′(z, τ)

Elements Ai, Bi in the homology group is a linear form on the space of
differential forms H10 by setting

Ai(ωj) =

∫
Ai

ωj , Bi(ωj) =

∫
Bi

ωj

Here we use the following identification:

ς :
(H10)∗ → Cg

ψ 7→ (z1, . . . , zg) = (ψ(ω1), . . . , ψ(ωg))

ι :
H1,Z → τZg ⊕ Zg∑

i(αiAi + βiBi) 7→ τα+ β

Theorem 3.8. If nϵ′, nϵ′, nδ′, nδ′ ∈ Z, then(
ϑϵ′,ϵ′′(z, τ)

ϑδ′,δ′′(z, τ)

)n

is a rational function on the abelian variety

J = (H10)∗/H1 = Cg/(τZg + Zg).

To analyse the zero of theta function, we user theta trnasformation formula
([I]). To avoid the complexity, in this section H1

prim is principally polarized.
Non-principal case is considered later. Let

σ =

(
α β
γ δ

)
be an element in Sp(2g,Z) and m = (m′,m′′) an element in

1

2n
(Zg)2. We set

σ#z = z(γτ + δ)−1, σ#τ = (ατ + β)(γτ + δ)−1,

σ#m = mσ−1 +
1

2
((γtδ)0, (α

tβ)0).
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Proposition 3.9. Under the above notation, we have

ϑσ#m(σ#z, σ#τ) = e(
1

2
z(γτ + δ)−1γtz) det(γτ + δ)

1
2ϑm(z, τ) · u

where | u |= 1.

3.4. Transformation for cyclic action and Abel-Jacobi map.

3.4.1. Cyclic action on Prym variety. We apply the above formula to the
situation of Section 3.2. Let η1, . . . , ηg be a basis of H10 such that

σ∗η1 = ωη1, σ
∗η2 = ωη2, . . . , σ

∗ηg = ωηg.

The unnormalized period matrices ΩA,ΩB are defined by

(
ΩA

ΩB

)
=

A1

...
Bg

(
η1, . . . ηg

)
Therefore, we have

σ

(
ΩA

ΩB

)
=σ t(A1, . . . , Ag, B1, . . . , Bg)

(
η1, . . . ηg

)
= t(A1, . . . , Ag, B1, . . . , Bg)

(
σ∗η1, . . . σ

∗ηg
)

= t(A1, . . . , Ag, B1, . . . , Bg)
(
η1, . . . ηg

)
R(ζ)

=

(
ΩAR(ζ)
ΩBR(ζ)

)
where R(ζ) = Diag(ω, ω, . . . , ω). We compute the automorphic factor for the
theta function. Since τ = ΩAΩ

−1
B , we have(

α β
γ δ

)(
τ
Ig

)
=

(
ΩAR(ζ)Ω

−1
B

ΩBR(ζ)Ω
−1
B

)
and

γτ + δ = χ(ζ), (ατ + β)(γτ + δ)−1 = τ

where χ(ζ) = ΩBR(ζ)Ω
−1
B .

Proposition 3.10. Under the situation of Section 3.2, we have

ϑσ#m(zχ(ζ)−1, τ) = e(
1

2
z(γτ + δ)−1γtz) det(R(ζ))

1
2ϑm(z, τ) · u

Proof. Since γτ + δ = χ(ζ) we have

ζ#z = zχ(ζ)−1, ζ#τ = τ

□
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4. Abel-Jacobi map

In this section, we consider the case where Hprim
1 = H1. We consider the

case where (3.1) and the equation of the cyclic covering is given as (2.1). Then
the spaces H10(χ) and H10(χ) are generated by

η1 =
dx

y
and η2 =

dx

y∗
, η3 =

xdx

y∗
, . . . , ηg =

xg−2dx

y∗
.

with

y∗ =
x(1− x)

∏d+1
i=2 (x− λi)

y
.

Suppose that b ∈ C is fixed under the action of µn. Let C̃ be the universal

covering of C and b̃ be a lifting of b in C̃. Then the action of µn on C̃ can be

extended to that of C̃ fixing b̃. We define a vector valued function I∗ on C̃
by

I∗(z̃) = (

∫ z̃

b̃

η1,

∫ z̃

b̃

η2, . . . ,

∫ z̃

b̃

ηg)

and we set I = I∗Ω−1
B .

Proposition 4.1. (1) The map I : C̃ → H10(C)∗ = Cg induces a map
C → J(C)

(2) The action of µd on the vector valued function ξ is given by

I(ζz̃) = I(z̃)χ(ζ).

(3) Under the notations and assumption in Theorem 3.8, the function(
ϑϵ′,ϵ′′(I(z̃), τ)

ϑδ′,δ′′(I(z̃), τ)

)2n

becomes a rational function on C if the denominator is not identically
zero.

Now consider the branch locus w of the covering C → P1. Let w ∈ C be
a lifting of w. Let µm ⊂ µn be stabilizer of the point w. Let w̃ be a point in

the universal covering C̃ over w.

C̃ → C → P1 : w̃ 7→ w 7→ w

Proposition 4.2. Let ζ be an element in µm, We have

I(ζw̃)− I(w̃) ∈ τZg ⊕ Zg

In particular I(w̃) ∈ 1

m
(τZg ⊕ Zg).

Proof. We use the relation I(ζz̃) = I(z̃)χ(ζ) and

m =
d

dx
(xm − 1) |x=1=

m−1∏
i=1

(x− e(i/m))

□
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Let U be a small neighborhood of w stable under the action of ζ. Then

there exists a small neighborhood Ũ of w̃ which maps isomorphically to U

under the universal covering map. The action of ζ induces an action on Ũ

which is denoted by ζ̂. For a point u ∈ Ũ , we define

J∗(u) = (

∫ u

w̃

η1,

∫ u

w̃

η2, . . . ,

∫ u

w̃

ηg)

and we set J = J∗Ω−1
B .

Proposition 4.3. Suppose that ζ#(ϵ) = ϵ mod Z2g. For u ∈ Ũ , we have

ϑϵ(I(w̃) + J(ζ̂u), τ) = φ(u) · ϑϵ(I(w̃) + J(u), τ)

and u1 = limu→w̃ φ(u) is a root of unity. Moreover, u1 is computable using
transformation formula.

Proof. By Proposition 4.2, we have I(w̃) = δ′τ + δ′′ with δ′, δ′′ ∈ 1
mZg. Since

J(ζ̂u) = (

∫ ζ̂u

w̃

ηi) = (

∫ ζu

ζw̃

ηi) = (

∫ u

w̃

ηi)χ(ζ) = J(u)χ(u)

and
ϑϵ(I(w̃) + J(u), τ) = E(J(u))ϑϵ+δ(J(u), τ),

with

E(z) = e(−1

2
δ′τ tδ′ − δ′ t(z + δ′′)− δ′ tϵ′′),

we have

ϑϵ(I(w̃) + J(ζ∗u), τ) =E(J(u)χ(ζ))ϑϵ+δ(J(u)χ(ζ), τ)

=E(J(u)χ(ζ))v(ϵ+ δ, u)ϑϵ+δ(J(u), τ)

=E(J(u)χ(ζ))E(J(u))−1v(ϵ+ δ, u)ϑϵ(I(w̃) + J(u), τ)

and limu→w̃ v(ϵ+ δ, u) is a root of unity. Since limu→w̃ J(u) = 0, we have

lim
u→w̃

E(J(u)χ(ζ))E(J(u))−1 = 1

Thus, we have the proposition. □
By the following proposition, we can compute the order of the analytic

function ϑϵ(I(w̃) + J(u), τ) on U at u = w̃.

Proposition 4.4. (1) Let tw be a uniformaizer of C at w such that
ζ∗tw = twe(θw), (θw ∈ Q). We set limu→w̃ v(ϵ+δ, w) = e(γ(ϵ+δ, w)).
Then we have

θw ordu=w̃ ϑϵ(I(ũ), τ) = γ(ϵ+ δ, w) mod Z.

(2) Suppose that

f(z̃) =

(
ϑϵ(I(z̃), τ)

ϑγ(I(z̃), τ)

)n

is a rational function of C. Then we have

(4.1) θw ordw f(z) ≡ n(γ(ϵ+ δ, w)− γ(γ + δ, w)) mod n.
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Proposition 4.5. The zero divisor of φϵ(Iz̃, τ) is the pull back of the divisor
D of C. The degree of the divisor D is equal to the genus g. If ϵ = 0, it is
called the theta divisor associated to the symplectic basis and the base point.

5. Inverse period map for some cases

Using the relation (4.1), one can compute the order of zero of ϑϵ(I(z̃), τ)
mod n. We already know the order of theta divisor is equal to the genus
g. Using these conditions, if we can detect the zero locus and order of theta
function with character, we can specify the rational function on the curve
defined by theta functions. By this computation, inverse period map can be
computed for several cases.

5.1. µ = (2/3, 1/3, 1/3, 1/3, 1/3)([S2],[S3]). This case is related to a K3 sur-
face. Inverse period map is a spacialization of §5.2. In the continuation of
this paper, 9-families of K3 surfaces are mentioned.

(1) (1/6, 1/3, 1/3, 1/3, 5/6)(2,specialization of §5.3)
(2) (1/6, 1/6, 1/6, 2/3, 5/6)(3,Mostow-list)
(3) (1/6, 1/6, 1/3, 1/2, 5/6)(4,Mostow-list)
(4) (1/3, 1/3, 1/3, 1/2, 1/2)(5)
(5) (1/6, 1/6, 1/3, 2/3, 2/3)(6,Mostow-list,specialization of §5.3)
(6) (1/6, 1/3, 1/3, 1/2, 2/3)(7,specialization of §5.3)
(7) (1/6, 1/6, 1/2, 1/2, 2/3)(8,Mostow-list)
(8) (1/6, 1/3, 1/2, 1/2, 1/2)(9)

5.2. µ = (1/3, 1/3, 1/3, 1/3, 1/3, 1/3)([M2]). This is a specialization of §5.3.
Here we give how the story goes in this case. The other case is more or less

similar. We consider distinct complex numbers λ1, λ2, λ3 and triple covering

C : y3 = x(x− 1)(x− λ1)(x− λ2)(x− λ3)

of P1 branching at 6-points. We set H1 = H1(C). Then

H10(χ) = 〈dx
y
〉,H10(χ) = 〈dx

y2
,
xdx

y2
,
x2dx

y2
〉

We choose a reference curve C0 to be λi ∈ R and 0 < 1 < λ1 < λ2 < λ3. We
choose a symplectic basis A1, . . . , A4, B1, . . . , B4 of H1(C0). (See the paper
[M2].) Under this base the action of σ on H1(C) is given by

σ =

(
O H
−H −I4

)
where H = diag(1, 1, 1,−1). We concider a theta characteristic ϵ ∈ ( 16Z

4)2

such that ϵσ − ϵ ∈ (Z4)2. This condition is equivalent to ϵ′′ = −ϵ′H. The
parameter ϵ′′ is determined by ϵ′. From now on, the index ϵ is denoted by
6 × ϵ′. By considering the order of zeros of theta functions, we have the
following proposition.
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Proposition 5.1. We choose a base point as a lifting 1̃ of 1. The function

f(z) =
ϑ(−1,−3,−3,−3)(I(z̃), τ)

3

ϑ(1,3,3,3)(I(z̃), τ)3

is a rational function of C. The divisor (f) of f is equal to 3(0) − 3(∞).
Therefore f is a constant multiple of u.

Using the above proposition, we have

λ1 =
f(λ1)

f(1)
=
ϑϵ(I(λ̃1), τ)

3ϑδ(I(1̃), τ)
3

ϑδ(I(λ̃1), τ)3ϑϵ(I(1̃), τ)3
=
ϑϵ(I(λ̃1), τ)

3

ϑδ(I(λ̃1), τ)3
=

ϑ(1,1,3,−3)(τ)
3

ϑ(1,−1,3,−3)(τ)3

Here, we use the equality I(1̃) = 0

λ1 =
(λ1 − 0)(1−∞)

(λ1 −∞)(1− 0)

The cross ratios of 4 points out of 6-points ∞, 0, 1, λ1, λ2, λ3 is computed.
Cross ratio of 4 points out of 6-points is expressed as determinant of sub-

matrix as follows. Let A be the following matrix consisting of homogeneous
coordinate of 6-points (ν0i : ν1i).

A =

(
ν01 ν02 ν03 ν04 ν05 ν06
ν11 ν12 ν13 ν14 ν15 ν16

)
The determinant of 2× 2-matrix consisting of i, j columns (0 ≤ i < j ≤ 5) is
denoted by Dij . Then we have

ϑ(1,1,3,−3)(τ)
3

ϑ(1,−1,3,−3)(τ)3
=
D24D13

D14D23
=
D24D13D56

D14D23D56

Proposition 5.2 ([M2]). There exists a set {ϑϵ(τ)} consisting of 15 theta
characteristics and a labeling

θϵ(τ) = ϑ(ij : kl : mn, τ)

such that the point

(ϑ(ij : kl : mn))(ij:kl:mn)∈S15
= (DijDklDmn)(ij:kl:mn)∈S15

in P14.

5.3. µ = (1/6, 1/6, 1/3, 1/3, 1/3, 1/3, 1/3)([ACT], [MT1]). There are unex-
pected relation between the action of Weyl group W (E6) of type E6. Degree
three Del-Pezzo surface S is obtained by blowing up of 6 points in P2. The
linear system of cubic curves passing through the 6-points defines a embed-
ding into P3 whose image is a cubic surface. By Griffith-Clemens algebraic
correspondences, the period map for triple coverings of P3 branching at this
cubic surface is nothing but that of 6-ple covering of P1. Using this geometry,
the inverse period map is completely understood by using W (E6)-invariant
set of polynomials.
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5.4. µ = (1/4, 1/4, 1/4, 1/4, 1/4, 1/4, 1/4, 1/4)([MT2]). This case belongs to
the list of Mostow. We use Prym variety of 4-ple covering of P1. This abelian
variety is not principal. Therefore the treatment is subtle.
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