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1. INTRODUCTION

This is a text for the hypergeometric school. In this text, we try to present
uniform method of treat a period map to complex ball arising from Appell-
Lauricella hypergeometric function. We treat important classes classified by
Terada-Deligne-Mostow and Mostow. We try to give a course related to the
following topics. We appologize that only references of the topics (5) and (6)
are mentioned.

(1) Appell-Lauricella hypergeometric function. Period map to a complex
ball.

(2) Deligne-Mostow-Terada classfication

(3) Automorphic function Theta function of curves with cyclic group ac-
tion

(4) Individual results

(5) Period of K3 surface with cyclic group action.

(6) Thomae’s formula

We will see that only several cases are known in detail. In the list of Terada-
Deligne-Mostow and Mostow, there are many cases to be done, including
period maps for non-principal Prym variety.

1.1. Preliminary to Hodge structure and its polarizations. In this
subsection, we introduce the definition of Hodge structures and its polariza-
tion. Let A be a ring contained in R. We may assume that A = Z, Q or
R.
Definition 1.1. A pair H = (Hyx, F'®) consisting of

(1) A lattice Ha of finite type over A, and

(2) A decreasing filtration F'* on Hc

satisfying the condition

HC = @i—}—j:n(Fi mﬁ)
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is called a A-Hodge structure of weight i. Here Hc = Haq ®4 C and the
conjugation s that with respect to Hr = Hy ®4 R. The subspace HY =
F'N FJ is called the Hodge (i, j)-component of H.
Let S be a real algebraic group defined by
S = {(a,b) € R* | a® + b* # 0}.
An element z = o+ pi in C* defines an R-valued point (c,3) of S, which
is denoted by z. By this correspondence the set S(R) of R-valued points of S
is identified with C*. For an element z = a+ i € C* = S(R), a — fi in
S(R) is denoted by Z. The condition (2) is equivalent to the existence of the
action p of S on Hr such that
p(2) | HY = the multiplication of 'z
on the scalar extension Hc = Hr ®r C.

1.2. Polarization of Hodge structure. Let H = (Hq, F") be a polarized
Hodge strucutre of weight n. The Hodge decomposition defines an action
p:S — Aut(Hgr). The action of C' = p(i) is called the Weil operator of Hg.

Definition 1.2. A Q-valued bilinear form ( ) on Hq is called a polarization
if

(1) forx e HY, ye H* (x,y) =0 ifi+k #n, and

(2) (x,C(y)) is symmetric and positive definite on Hg.
Here the scalar extension of the pairing ( ) to Hr and Hc are also denoted
by ().
Definition 1.3. This definition is a little bit different from [Weil2]. The
value of the pairing is in Q not in Q(—n).

Since we have

(@,y) = (C(2), Cy)) = {y, C*(x)) = (-1)"(y, ),

the pairing is symmetric if n is even and skew symmetric if n is odd.

1.2.1. The weight one case. We consider the case where the weight n = 1. In
this case, the pairing ( ) is non-degenerate skew symmetric form. Therefore
there exists a symplectic base A;, B; satsifying

(Ai, Bj) = 05, (Ai, Aj) = (Bi, B;j) = 0.
We can chosse a basis {w;} of HY such that
(11) (wi,Bj> = (S”
This base is called a noralized basis of HY.
Proposition 1.4. We set
(1.2) <wi,Aj> = Tij
and set T = (7;;)ij. Then

(1) The matriz T is a symmetric matriz.
(2) The matriz Im(7) is a positive definite matriz.
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Proof. By (1.1) and (1.2), we have
w; = A; — ZTikBk
k

Since (w;,w;) = 0, we have
0=(4; - ZTikBk,Aj - ZleBl> = —Tji + Tij
k 1

Hpg is generated by {7v; = w; +w;}. Since C(v;) = iw; — iw;, we have
(i, C(75)) ={ws, —iw;) + (Wi, iw;)
A ZTszkn ZA +'LZ7—kak

A ZTszlmZA —ZZTkak

—ZTji — ZTij — ZTji + ZTZ‘j
= — 21(7'” — ﬁ) = QIm(T”)
Therefore Im(7) is positive definite. O

Definition 1.5. We define the Siegel upper half space S, of degree g by
={re M, | 'r=7,Im(7) is positive definite}.

2. APPELL LAURICELLA HYPERGEOMETRIC FUNCTION

Appell-Lauricella hypergeometric function is defined as the following inte-

gral:
d

F(A,..., ) = / x (1l —a)™H H(x — \;) Hidx
1 i=1
We assume that 0 < pu; < 1. We define o, as the order of the pole of the
integrand at infinity. Then we have

We assume that 0 < po < 1. The function F' satisfies a linear differen-
tial equation of rnak d 4 1, which is called Appell-Lauricella hypergeometric
equation.

The function F' is “a period of cohomology” of a curve C. Let C be a
covering of P! defined by

d+1
(2.1) Ciyt=a™1—a)™ [[(z—x)™
i=2
where n is the smallest common denominator of p; and m; = —ny,;. On the

curve C' the cyclic group p, of n-the roots of unity. An element ¢ € u,, acts
on C' by

gery—Cly
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By Hodge theory, the cohomology H'(C, Z) is equipped with a natural Hodge
structures:

HY(C,Z)® C=H"(C)p H'(C), H™ ~H°C,Q"), H"~H(C, 0)
The action of u,, induces an action of u,, on H°(C) and H°}(C). We set
HY(C,C)(x) = {v € H'(C,C) | giv = Cu}
H(C)(x) = {v e H"(C) | gfv = (v}
H'™(C)(x) = {v e H(C) | gfv = (v}
Then we have
H'(C,C)(x) = H*'(C)(x) ® H"(C)(x)

and by holomorphic Lefschetz theorem, we have
(2.2) dimg HO(C)(x) => pi—1=2-1=1,
dimc H(C)(x) => (1—p)—1=d+3-2-1=d.

2.0.1. Moduli spaces and a marked curve. Let M be the naive moduli space
M={(A1,...,0) €CH| N, # N}

A reference curve (Y is a curve corresponding to a chosen base point of the
moduli space. Let K = Q(u,) be a subfield of C generated by pu, over Q.
Then dimg K = ¢(n), where ¢(n) is the Eular function of n. Let x be the
natural inclusion p,, — C*, which defines a character of p,. For an element
t € (Z/nZ)*, we have another character x' : p, — C*. Then we have an
isomorphism

H1(07 K)(Xt) QK C =~ Hl(cv C)(Xt)

We define the primitive part of Hérim(C', Q) by the following Q-subvector
space of H1(C, Q):

H}%rim(ca Q) = (Galfe(Z/nZ)>< H1(07 K)(Xt)) ﬂHl(C, Q)

Similarly, we define the prmitive part H>™ (C, Q) of the homology H:(C, Q).
We define the lattice H""™(C, Z) of HY™™(C, Q) by

HP"™(C,Z) = HP"™(C, Q) N H,(C, Z).

A polarization of HP"™(C, Z) is induced from that of Hy(C,Z). Note that the
polarization on H”"™™(C, Z) is not necessarily principal unless H>"™(C, Q) =
H 1 (07 Q) :

For a moduli problem of curves with the above structures, we often choose
a typical curve Cy, which is called a reference curve. For a reference curve Cj,
we have a lattice H f’rzim = HP"™(C), Z) with the polarization and the action

of pu,.
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Definition 2.1. (1) Let C be a curve C which is a covering of Pt. An

1somorphism
m : H"™(C,Z) ~ Hf‘"zim
compatible with the polarization and the u,-action is called a marking
of C.
(2) A pair (C,m) of a curve C' and its marking is called a marked curve.

Let My be the set of the marked curves. It is called the moduli space
of marked curves.

The K-vector space Hj(x) and C-vector space H(x) are defined as fol-
lows:

m: Hi(x) = H'(Co, K)(x), H&(x) = H' (Co, C)(x)
Definition 2.2. We introduce a Hermatian form h on H'(C,C)(x) and
Hg(x) by
(2.3) h(&m) =26, (@ — w).

We set q(€) = h(&,€).
A marking m induces an isomorphism
m: H'(C, K)(x) =~ Hy(x)
compatible with the polarizations and the pu,-actions.

2.1. Period map for a marked curve.

2.1.1. Hermitian form on H&(x). Let (C,m) be a marked curve. Then we
have a sequence of homomorphisms:

(24)  HY(CO)(x) c H(C,K)(x) ®x C 2% H) ®x C ~ HE.

To define a period map to a complex ball using this homomorphisms, we use
a hermatian form ¢ on H (13

Let o be a generator of u, and w = x(o). We assume that I'm(w) > 0. We
set

A0 = i (H00 © H5(0))
Then the map

v Ho(Y) = Hr(GX) 1§ o =6 +¢
is an isomorphism of R-vector spaces. We introduce an action of R[o] on
Hg (x,X) by B B

o(§+§) =wé+wE.

The isomorphism ¢ is compatible with the action of C = R[w| and R[o]. By
simple computation, we have the following proposition.

Proposition 2.3. (1) Via the isomorphism ¢, the Hermitian form h is
identified with the Hermitian form on Hg (x,X) defined by

h(z,y) = (z, (0 — o My) + (z,y)([@ — w)
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(2) Since (&,m) = (£,7) = 0 for &, € H&(x), the space HY(C)(x)
is positive definite and H°'(C)(x) is negarive definite subspace of
HYC,C)(x). The space HP(C)(x) and H°(C)(x) is orthogonal

complement to each other.
Proof. (1) We have
W (z,y) =€+ & (@ —o N+ + E+En+ M@ - w)
=(£ + & wn +wn))) — (€ + & wn + w)
+E+EN+N (@ —w)
=25, M) (W — w)
(2) Since w — @ = ri with r > 0, for £ € H'%(x) and = = £ + €,
h* (2, 2) = (z, (0 — o Nz) + (z,2)(@ - w) = r(z,Cx) >0

where C' is the Weil operator. If £ € H%(x), then h*(z,z2) = —r(z,Cz) <
0. U

Via the homomorphism
H™(C)(x) € H(C, K)(x) ® C ™% HE(x)

the space H'°(C')(x) is a one dimentional subspace in H& (), which defines
a point m(C,m) in P(H&(x)) ~ P?. By the positivity of Proposition 2.3, the
point 7(C,m) is contained in the domain D C P9 defined by

D = {[v] € P(H&(x)) | a(v) > 0}
Here D is the symmetric domain associated to the unitary group U(Hg(x), q) =
U(1,d) of Vi defined by

U(HE(X),q) = {9 € Aut(HE(x)) | a(€) = q(g(€)) for all £ € HE(x)}

It is easy to see that D is a complex ball. Thus we have a map
T My — D : (Cym) — w(C,m),
which is called the period map. Thus we have the following diagram

Mk D P4

|

M

2.2. Deligne-Mostow-Terada classification. Deligne and Mostow gives a
sufficient condition such that M, — D is almost an isomorphism.

Theorem 2.4 (Deligne-Mostow-Terada). If the condition
(INT) : (1 —pi — pj) "L € Z for any i # j and p; + pj < 1
1s satisfied, then m : My — D is almost isomorphic. Moreover, suitable

compactification induces an isomorphism. Actually 7 is an isomorphism by
adding stable locus.



Deligne-Mostow-Terada Classification, K3 surfaces, Thomae formula 7
Here is the list of indexes p satisfying the above theorem. Let N be the

number of branch locus. We consider the case N > 4. Schwarz triangular
group is classified as N = 4. The following lists are from [Td], [DM].

1) N=5

TABLE 1. N =5
[iypeno [ d [ mo | ma [ ma [ [ s

1 3 2 1 1 1 1
2 4 2 2 2 1 1
3 4 3 2 1 1 1
4 ) 2 2 2 2 2
) 6 3 3 2 2 2
6 6 3 3 3 2 1
7 6 4 3 2 2 1
8 6 ) 2 2 2 1
9 8 4 3 3 3 3
10 8 ) ) 2 2 2
11 8 6 3 3 3 1
12 9 4 4 4 4 2
13 10 7 4 4 4 1
14 12 ] 5 5) ) ) 4
15 12 || 6 5) 5) 4 4
16 12| 6 ) 5) 5) 3
17 12 7 5) 4 4 4
18 12 7 6 ) 3 3
19 12 7 7 4 4 2
20 12 ] 8 ) ) 3 3
21 12 ] 8 5) ) ) 1
22 12 8 7 3 3 3
23 121 10 | 5 3 3 3
24 15| 8 6 6 6 4
25 18] 11 | 8 8 8 1
26 20| 14 | 11 | 5 ) )
27 24 14| 9 9 9 7
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[typeno || d || mo | ma | ma | ms | ma | ms |

1 3 1 1 1 1 1 1
2 4 2 2 1 1 1 1
3 4 3 1 1 1 1 1
4 6 3 2 2 2 2 1
5) 8 3 3 3 3 3 1
6 12 ] 5 ) ) 3 3 3
7 12 7 ) 3 3 3 3

3) N=71
TABLE 3. N =7

|typeno||d||m0|m1|m2|m3|m4|m5|m6|
L1 Jaff2 111 ][1]1]

(4) N=38
TABLE 4. N =&

(iype 0 [ d [ o [ix [tz [y J s [ns [ g [ e ]
(1 4t i [i[T T[T [1]1]

Moreover Mostow relaxed the above condition to the “half integral conditions”
to get wider class. (See the list of [Mo].)

3. ARITHMETIC CASE AND CONSTRUCTION OF AUTOMORPHIC FORMS

In the Deligne-Mostow classifiction, there are criterion of the arithmeticity
of the monodory group.

Definition 3.1. We define a group U(Hf’rzim) as the set of elements g €
Aut(Hf,rZim) preserving the polarizations { ) and p,-actions.
Proposition 3.2. If the following condition is satisfied, then the group U(Hfj%m)
is covolume finite discrete subgroup of U (Hf,%m).

(Arith): For allt € (Z/dZ)* — {1,—1}, we have

D (tp) —1=0
> (—tp) —1=d+1.

A group with the above properties is called arithmetic lattice.

or

In the following, we treat the cases of arithmetic lattices. By transpose of
the action, the group U(H}',") acts on the domain D.
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Definition 3.3. A lattice L containg Hp“m such that # | L/Hprlm |< oo is

called a superlattice of HY)™. If the restriction of the polarization to a super

lattice s integral and prmczpal it is called a principally polarized superlattice.
Two super lattices Ly, Ly are associated if there exists g € U(Hj prlm ® Q)
such that g(Hffém) = Hffém and gL; = Lo. For any Hf’rém, th,ere exists

a principally polarized superlattice. Even though Hj p“m is stable under the
action of ln, a principally polarized superlattice may not by stable under the
action of [y, .

Problem 3.4. Are there ji,-stable principally polarized superlattice ? This
question is trivial for H " (C,Z) = H1(C,Z). We have an affirmative an-
swer for (1/4%).

3.1. Modular embedding for p,-action and Theta functions. In this
section, we assume that

(3.1) degq Q(Cr) =2 and H'(C,Q) = Hpin(C, Q).

For a reference curve Cy, we set Hy, = H'(Cy,Z), etc. In this case, we have
H'® K = He(x) ® Hi (%)-

In (2.3), we introduced a skew symmetric form h(v, w) on H*(C, K)(x). Then
by Proposition 2.3, the space H°(C)(x) is one dimensional and positive def-
inite. The spaces H°(C)(x) and H%(C)(x) are orthogonal complement to
each other.

3.2. Modular embedding. On the dual lattice H; z a polarization is in-
duced by that of H}. Let A;, B; be a symplectic basis of Hy z, i.e. a basis
satisfying
(Ai, Bj) = dij,(Ai, Aj) = (Bi, Bj) = 0.
A base {w;} of F1HL = H'? is normalized if
(wi, Bj) = i
We set (w;, A;) = 7;5. Then we have

Ay
= (7

By Proposition 1.4, 7 = (7;5);; is an element of Siegel upper space G,.

Let [v1] be an element in P(Hg(x)) such that h(vi,v1) > 0. The element
vy determines a polarized Hodge structure on Hy with an action of u, such
that v; is a generator of H'°(x). The Hodge structure is given as follows.

(1) Under the hermitian form h( , ) on H(x), H% (x) is defined as the
space vertical to v1.

(2) Tli(g subspace H1Y is defined as the dirct sum of H'%(y) and HO(y) =
HIO ().

By
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By this correspondence, we have a embedding of symmetric domain
(3.2) D — &,.

Now we give the explicit formula of the above embedding. The action of
the generator ¢ of the covering transformation group induces the action o,
and o* on the space H; and H¢. For a differential form w € H and I' € Hy,

we have
/ w:/a*w.
oI’ I

o= ((;é ?) € Sp(29,7Z)

We define a matrix

by
HouAy,...,00A4,0.B1,...,0.By) =0 "(A1,..., Ay, B1,...,By)
where Sp(2g,Z) is an element satisfying

(o) = (ho)

An element n € H{ is identified with v = (a1, ..., a4, 51,...,3,) € C¥

by
v
S Y N Y
Aq Ay B B B

g

Under this identification, the cup product is given by
(3.3) (v,u) = 'vpup — "vpua.

Since H = H&(x) + HE(X), (0 — w) (0 — w) = 0. Therefore H () is equal
to the image of o — w. Therefore a general element of Hg(x) is given by

(2 ) (0452 ()

By a similar computation, we have
uq = @@ s (u e He(x)
(a—w)ylup  (ue Hg(X))

Thus, we have an isomorphism:

(34) cwﬁﬂumzmwﬁ(W—ig*wﬁ

Under the isomorhism (3.4), the Hermitian fom h on H(x) is transformed
to the Hermitian form hp on CY. By (3.3) and (3.4) we have

hg(up,vg) = 'up H*vp

where

i = 2@ ) o -@) - (a =)
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Let ¢ be a generator of H'°(x). Under the decomposition H'® = H1%(y) @
H'9(x), ¢ € H'Y is expressed as

E=tp+¢ (Ve H (x),¢0cH" (x)).

Since ¢ = (£ — tv) and h(1), ¢) = 0, we have

0=h(y,(§ —t¥)) = hp(¥s, (s — t¥B))
=hp(¥p,Ep) — the(Vs, Up)
="ypH*ép —t "ypH Pp

. “YpH*Ep
“WpH*)p
Therefore the H'°(X) and H'°(X) components t1) and ¢ are given by
_ "WpH*¢p - “pH*Ep
R A Y
Therefore,
B 1 "WpH*¢R - 1 tWpH*¢p
tpa = (o —w)y WQ/JB, 4= (a—w)y ({B — T H g VB)
and &4 can be computed by £ by the formula:
_ -1 "WpH*p 1 “YpH*Ep
{a =(a—w)y m@bB +(a—w)y (€ — m@l@)
_ ., WppH*E
~a— W)y ien + (0 -y
_ -1 . _1¥B "YpH*
=l(a—w)y +(w—w)y T H g 92}

Therefore we have the following proposition.

Proposition 3.5. The map (3.2) is given by
Y MpH*
bhpH*p

3.3. Theta function and Abel-Jacobi map. As for the theta function, we
refer [I].

T=(a—wn T+ (w-w)

3.3.1. Igusa transformation formula of theta function.

Definition 3.6. For ¢',;¢’" € QY9, we define the theta function O (T, 2) for
7€ G, and z € CI by

Ve (T,2) = Z e(%(m + VT i m+€)+(m+€) Hz+€"))
meZ9I

We define the theta characteristic Vee(T) by
'196/6// (T) = 1951511 (’7'7 O)

Since Im(7) is positive definite, the above summations convege.
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Theorem 3.7 (Quasi-periodicity). We have the following relations.
(1) Ford',¢" € QY9, we have
Yerer(z+ 78 4+ 6", 7) :e(—%yT b — 8 Yz 4 0") =8 )
Verst, 57 (2, T)
(2) For m/,m’ € Z9, we have
Der vt crramr (2,7) = e(€ 'm0 e (2, T)
(3) Form/,m' € Z9, we have
e en(z+m",7) = e(e 'm" Ve (2, 7)
Derer(z+7mm,7) = e(—€" ltm')e(—%m’T bm/ —m/ ') (2, 7)

independent of €'’

J/

v~

Elements A;, B; in the homology group is a linear form on the space of
differential forms H'° by setting

Ai(wy) :/Ai wj, Bi(w;) :/Bi w;

Here we use the following identification:
. (HO)*  — CY
. 1/) = (217-"7’29) = (w(wl)w.,?w(wg))

. Hiz S TZIDZI
Y (A4 BiBy) = Ta+f

Theorem 3.8. If ne’,ne’,nd’,nd’ € Z, then
e e (2,7)\"
(196',5”(% T))
1 a rational function on the abelian variety
J=(H"Y)"/H, =C%/(7Z% + Z9).
To analyse the zero of theta function, we user theta trnasformation formula

([1]). To avoid the complexity, in this section H,,,,, is principally polarized.
Non-principal case is considered later. Let

1
be an element in Sp(2¢g,Z) and m = (m’, m”) an element in 2—(Z9)2. We set
n

oz =z2(yT+6)7, ot =(ar+B)(yr +0)7 1,

o"m=mo ' + %((*yté)o, (a'B)o).
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Proposition 3.9. Under the above notation, we have
1
Dott(07 2,07 T) = e(éz(*yT +68) 1 2) det(yT + 8) 20 (2, 7) - u

where | u |= 1.

3.4. Transformation for cyclic action and Abel-Jacobi map.

3.4.1. Cyclic action on Prym wvariety. We apply the above formula to the
situation of Section 3.2. Let n1,...,n, be a basis of H'® such that

o' m =wn1, 0 Ny =W, ..., 07N, = Wn,.
The unnormalized period matrices (24, {2p are defined by

Ay

(32): A (e mg)

By

Therefore, we have

Q4
o (QB> =0 "(Ay,..., Ay, B1,...,B,) (771, . -779)

="(A1,..., Ay, B1,...,By) (6% m1,...0%ny)

= t<A17 s 7Ag7Bl7' -'7Bg) (7717' . 779) R(C)

_ (QaR(C)

QpR(Q)

where R(¢) = Diag(w,w,...,w). We compute the automorphic factor for the
theta function. Since 7 = QAQ;, we have

(8 () - (aang)

YT+I=x(Q), (ar+B)(yr+d) =7
where x(¢) = QBR(C)QEI.

and

Proposition 3.10. Under the situation of Section 3.2, we have

NI

orm(2X(Q)717) = e(L2(y7 + 8)71t2) det (R(O))

9 ﬁm(Z,T)'U

Proof. Since y7 4+ § = x(¢) we have

Fa=2x(Q)7", (Fr=1
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4. ABEL-JACOBI MAP

In this section, we consider the case where HP™ = H;. We consider the
case where (3.1) and the equation of the cyclic covering is given as (2.1). Then
the spaces H'%(x) and H'°(Y) are generated by

dx xdz 29 2dx

i
/’71:_ and 772:—*”]73: *7...,779: " .
Yy Y Y Y

with
(1= ) [T (= — )
y .
Suppose that b € C is fixed under the action of u,,. Let C be the universal

Yyt =

covering of C' and b be a lifting of b in C'. Then the action of [br, O C can be
extended to that of C' fixing b. We define a vector valued function I* on C

by - N _
rE = m [ [ )

and we set [ = I*Q]_S,l.

Proposition 4.1. (1) The map I : C — H(C)* = C9 induces a map
C — J(O)
(2) The action of g on the vector valued function & is given by

1(¢2) = 1(Z)x(C)-

(3) Under the notations and assumption in Theorem 3.8, the function

( Ver e (1(2), 7) ) o
Vs 50 (1(2),7)

becomes a rational function on C' if the denominator is not identically
zero.

Now consider the branch locus w of the covering C' — P!. Let w € C be
a lifting of w. Let ., C py, be stabilizer of the point w. Let w be a point in
the universal covering C' over w.

C—C—oP:o—w—w
Proposition 4.2. Let ( be an element in p,,, We have
I((w) — I(w) € TZ9 & Z9
~ 1
In particular I(w) € —(72Z9 & Z9).
m

Proof. We use the relation I((z) = I(2)x(¢) and

m= L@ 1) o= ][ (e - eli/m)
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Let U be a small neighborhood of w stable under the action of (. Then
there exists a small neighborhood U of @ which maps isomorphically to U
under the universal covering map. The action of ¢ induces an action on U
which is denoted by C For a point u € U we define

/7)17/ 772,"-7/ Mg)

Proposition 4.3. Suppose that (¥ (¢) = ¢ mod Z29. For u € U, we have
Ie(I(@) + J(Cu), 7) = p(u) - D (I() + J (u),7)

and uy = lim,_,5 p(u) is a root of unity. Moreover, uy is computable using
transformation formula.

and we set J = J*QBl.

Proof. By Proposition 4.2, we have I(w) = 6’7 + 6" with §’,6"” € LZ9. Since

1Co = ([ T = ( /C ) = ( [ (@) = s

and

Je(I(w) + J(u),7) = E(J(u))dets(J(u), ),
with .

E(z) = e(—§5’7 b — 8 Y24+ 08") =6 L"),
we have

Ve(I(w) + J(C"u), 7) =E(J (u)x(¢))Vets(J (u)x(C), )
E(J(u)x(C))v(e + 8, u)dets(J(u), 7)
=E(J(u)x(Q))E(J (u) ™ v(e + 6, u)de(I(@) + J(u), T)
and lim,_, g v(e + 6,u) is a root of unity. Since lim,_,z J(u) = 0, we have
lim E(J(w)x(O) B ()™ =1
Thus, we have the proposition. Il

By the following proposition, we can compute the order of the analytic
function 9. (I(w) + J(u),7) on U at u = w.
Proposition 4.4. (1) Let t,, be a uniformaizer of C' at w such that
't = twe(by), (Ow € Q). We setlim,_,zv(e+d, w) = e(y(e+0,w)).
Then we have
Oy ordy—g V. (I(w), ) = (e + §,w) mod Z.
(2) Suppose that
9 (I(2),7)\"
. ( 1@ >)
197 (I(g)v T)
18 a rational function of C'. Then we have
(4.1) 0, ordy, f(2) = n(y(e + 6, w) —y(y + 6,w)) mod n.
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Proposition 4.5. The zero divisor of p.(IZ,T) is the pull back of the divisor
D of C. The degree of the divisor D is equal to the genus g. If € =0, it is
called the theta divisor associated to the symplectic basis and the base point.

5. INVERSE PERIOD MAP FOR SOME CASES

Using the relation (4.1), one can compute the order of zero of J.(I(2), 7)
mod n. We already know the order of theta divisor is equal to the genus
g. Using these conditions, if we can detect the zero locus and order of theta
function with character, we can specify the rational function on the curve
defined by theta functions. By this computation, inverse period map can be
computed for several cases.

5.1. p=(2/3,1/3,1/3,1/3,1/3)([S2],[S3]). This case is related to a K3 sur-
face. Inverse period map is a spacialization of §5.2. In the continuation of
this paper, 9-families of K3 surfaces are mentioned.

1) (1/6,1/3,1/3,1/3,5/6)(2,specialization of §5.3)
(1/6,1/6,1/6,2/3,5/6)(3,Mostow-list)
(1/6,1/6,1/3,1/2,5/6)(4,Mostow-list)
(1/3,1/3,1/3,1/2,1/2)(5)
(1/6,1/6,1/3,2/3,2/3)(6,Mostow-list,specialization of §5.3)
(1/6,1/3,1/3,1/2,2/3)(7,specialization of §5.3)
(1/6,1/6,1/2,1/2,2/3)(8,Mostow-list)
(1/6,1/3,1/2,1/2,1/2)(9)

NN AN N N S S
0 ~J O U= W N
S N N N N N N

5.2. pn=1(1/3,1/3,1/3,1/3,1/3,1/3)([M2]). This is a specialization of §5.3.
Here we give how the story goes in this case. The other case is more or less
similar. We consider distinct complex numbers Aq, A2, A3 and triple covering

C:y®=a(x—1)(z— M)z — ) (2 — A3)
of P! branching at 6-points. We set H; = H;(C). Then

dx de xdr x2dx
H'Y = —,Hlo_ =(—=,—, —
(x) = ( ) ) X) <y2 R )

We choose a reference curve Cp to be \; E Rand 0 <1 < )\ < Ay < A3. We

choose a symplectic basis Ay,..., A4, By,..., By of H'(Cy). (See the paper
[M2].) Under this base the action of o on Hy(C) is given by

(0 H
7= \-g -1,

where H = diag(1,1,1,—1). We concider a theta characteristic ¢ € ($Z*)
such that eo — e € (Z*)2. This condition is equivalent to €/ = —¢’H. The
parameter €’ is determined by €. From now on, the index € is denoted by
6 x ¢’. By considering the order of zeros of theta functions, we have the
following proposition.
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Proposition 5.1. We choose a base point as a lifting 1 of 1. The function
flz) = 19(71,73,73,73)(1(5377')3
19(1,3,3,3)(1(5)» 7)?3

is a rational function of C. The divisor (f) of f is equal to 3(0) — 3(c0).
Therefore f is a constant multiple of u.

Using the above proposition, we have

A = SO 9O, 000D, 1) TN 1) sy’

FO) 95(I0n), 7)39.(I(1),7)3  9s(I(n),7)3  Ya,-1,3-3)(1)°

Here, we use the equality I(1) =0

(A —0)(1 —00)
(A —00)(1-0)
The cross ratios of 4 points out of 6-points oo, 0, 1, A1, A2, A3 is computed.
Cross ratio of 4 points out of 6-points is expressed as determinant of sub-
matrix as follows. Let A be the following matrix consisting of homogeneous
coordinate of 6-points (vo; : v14)-

A =

A= Vo1 Vo2 Vo3 Voa Vos LVoe
Vi1 Vig Vi3 Viga Vis Vie

The determinant of 2 X 2-matrix consisting of 7, j columns (0 <i < j <5) is
denoted by D;;. Then we have

D(1,1,3,-3)(7)° _ D2y D3 _ D24 D13D56
V1,-1,3,-3)(7)®  D14D2z  Di14D23Dsg

Proposition 5.2 ([M2]). There exists a set {U.(T)} consisting of 15 theta
characteristics and a labeling

O (1) =9(ij : kl : mn,T)
such that the point
((ig : kl 2 mn))Gjrtmn)esis = (DijDriDmn) (ijikimn)eSys
in P14,

53. p=(1/6,1/6,1/3,1/3,1/3,1/3,1/3)([ACT], [MT1]). There are unex-
pected relation between the action of Weyl group W (Eg) of type Eg. Degree
three Del-Pezzo surface S is obtained by blowing up of 6 points in P2. The
linear system of cubic curves passing through the 6-points defines a embed-
ding into P3 whose image is a cubic surface. By Griffith-Clemens algebraic
correspondences, the period map for triple coverings of P3 branching at this
cubic surface is nothing but that of 6-ple covering of P!. Using this geometry,
the inverse period map is completely understood by using W (Eg)-invariant
set of polynomials.



18 TOMOHIDE TERASOMA

54. p=(1/4,1/4,1/4,1/4,1/4,1/4,1/4,1/4)(]MT2]). This case belongs to
the list of Mostow. We use Prym variety of 4-ple covering of P'. This abelian
variety is not principal. Therefore the treatment is subtle.
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