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1 Positive Toric Geometry

Exercise 1.1 (Toric ideals). Prove the inclusion IA ⊂ I(YA).

Exercise 1.2 (Affine lattices). Prove that Z(A− ai) = Z(A− aj) for all 1 ≤ i, j ≤ s.

Exercise 1.3 (Dimension, degree, and smoothness). Verify Theorems 1.6, 1.9, and 1.13
for the matrices A1, A2, and A3 in Example 1.3.

Exercise 1.4 (Double pillow). Consider the integer matrix

A =

(
1 −1 0 0 0
0 0 1 −1 0

)
.

(a) Determine the vertices of Conv(A). For one of these vertices v, write down a monomial
parametrization of the affine toric surface YA−v, and compute its toric ideal. Is this a
smooth surface?

(b) Compute the toric ideal of the projective toric surface XA ⊂ P4.

(c) Compute the defining equation of the projection of XA under

π =


1 1 1 1 0
1 −1 0 0 0
0 0 1 −1 0
0 0 0 0 1

 : P4 99K P3.

(d) Plot the surface π(XA) in the affine chart of RP3 with nonzero first coordinate. Do you
recognize the real part of π(YA−v) from part (a) in the picture?

(e) Identify π((XA)≥0) in the plot. Verify that (XA)≥0 is homeomorphic to Conv(A).

Exercise 1.5 (Real toric varieties). Show that ϕA((R∗)n) ⊂ YA(R), where (·) denotes the
Euclidean closure, might be a strict inclusion.

1.6 The boundary of an affine toric variety. Prove the proposition below.

Proposition 1. Let x ∈ YA ⊂ Cs and let supp(x) = {ai ∈ A : xi ̸= 0}. We have supp(x) =
Q ∩A for some face Q of the cone pos(A) = {r1a1 + · · ·+ rsas : ri ∈ R≥0}.

http://www.math.kobe-u.ac.jp/cm/koen/2023-08-16-hgs.html


Exercise 1.7 (Stratification of affine toric varieties).

Proposition 2. For a face Q ⊂ pos(A), let A ∩ Q = {ai1 , . . . , air} and define the projection
πQ : Cs → Cr, x 7→ (xi1 , . . . , xir ). Let YA,A∩Q = {x ∈ YA, supp(x) ⊂ A ∩Q} . We have

πQ(YA) = πQ(YA,A∩Q) = YA∩Q .

In particular, if supp(x) = A ∩Q, then there is t ∈ (C∗)n such that

xi =

{
tai ai ∈ A ∩Q ,

0 otherwise.

Exercise 1.8 (Nonnegative projective toric varieties). Prove the second part of Propo-
sition 2.6.

Exercise 1.9 (Positive toric models). Show that the positive part (XA)>0 of a toric model
consists of all probability distributions (x1, . . . , xs) ∈ relint(∆s−1) whose coordinate-wise loga-
rithm (log x1, . . . , log xs) belongs to the row span of Â.

Exercise 1.10 (Maximum likelihood estimation). Compute the MLE for Example 3.5.
Based on these fictional data, does your result confirm the ansatz that being vegetarian or not
is independent of someone’s subject preference? Can you estimate pY, pN, pA, pG, and pH?

Exercise 1.11 (Toric patches). Plot the Bézier plane curve of degree 6, i.e., A = (0 1 · · · 6),
for any matrix of control points P ∈ R2×6 and weights w ∈ R6

>0. Investigate the influence of
the control points and the weights by experimenting. Solve the same exercise for k = 3 and

A =

(
0 1 0 1 2 1
0 0 1 2 1 1

)
.

2 Algebraic and Holonomic Statistics

Exercise 2.1 (Another coin model).

Consider the following discrete statistical model M with 3 states. A gambler has a biased coin
which shows head with probability x, and tail with probability 1 − x. She flips the coin thrice
and records three possible outcomes: ⋄ only heads ⋄ mixed outcome ⋄ only tails

(a) Compute an implicitization of the model. More precisely, determine a homogeneous poly-
nomial f ∈ C[p0, p1, p2] of degree 3, such that M = V (f). Interpret the two images in
Figure 1. Can you reproduce them in Mathematica?

(b) Determine the very affine variety X of the model and compute its ML degree dML(X).

(c) For data s = (s0, s1, s2) ∈ N3, compute the likelihood function Ls, and the the maximum
likelihood estimator of the model.

(d) Compute the Bernstein–Sato ideal of the model M. You can compute it using the library
Dmod lib in the computer algebra software Singular1 by running the following code.

1An online version of Singular is available at the following link: https://www.singular.uni-kl.de:8003/
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LIB "dmod.lib";

ring r = 0,x,dp; setring r;

ideal F = (x^2,x*(1-x),1-x);

def A = annfsBMI(F); setring A;

BS;

In order to interpret the output of the code above, have a look at the documentation of the
command annfsBMI: https://www.singular.uni-kl.de/Manual/4-0-3/sing 598.htm

(e) Compute the tropical variety trop(X).

Figure 1: Images accompanying Exercise 2.1 (a)

Exercise 2.2 (Mellin transform).

The Mellin transform of a complex-valued function f in n variables x = (x1, . . . , xn) is

M{f}(ν1, . . . , νn) =

∫
Γ

f(x1, . . . , xn)x
ν1
1 · · ·xνn

n

dx1 · · · dxn

x1 · · ·xn
,

where the integration contour Γ is such that the boundary term in IBP vanishes and the integral
converges. The (n-th) shift algebra is the non-commutative C-algebra obtained from the free
C-algebra generated by variables ν1, . . . , νn and shift-operators σ±1

1 , . . . , σ±1
n by imposing the

following relations: all generators commute, except νi and σ±1
i . They obey the rule

σiν
±1
i = (νi ± 1)σ±1

i .

(a) Compute M{xi · f} and M{xi∂i • f}.

(b) Formulate the action of Sn on M{f}.

(c) Building on (a), formulate the Mellin transform as an isomorphism of the Weyl algebra on
the torus DGn

m
= C[x±1

1 , . . . , x±1
n ]⟨∂1, . . . , ∂n⟩ and the shift algebra Sn. This isomorphism

is referred to as “algebraic Mellin transform”.

(d) Let f = (x1 + 1)(x2 + 1) ∈ C[x1, x2]. Compute its s-parametric annihilator AnnD2[s] (f
s).

In order to compute it, you can use the command annfsBMI in Singular. The s-parametric
annihilator is encoded as LD in the output ring. Deduce shift-relations for M{fs}.
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3 Twisted Cohomology and Likelihood Ideals

Exercise 3.1 (Convergence). Describe the convergence condition on (s, ν) ∈ (0,∞)×R3 of
an integral ∫

R3
>0

f(x)−sxν1
1 xν2

2 xν3
3

dx1dx2dx3

x1x2x3

for the following polynomials f(x).

(a) f(x) = 1 + x1 + x2 + x3 + x1x3 + x2x3 .

(b) f(x) = 1 + x1 + x2 + x3 + x1x3 .

(c) f(x) = 1 +
∑

σ∈S3
x
σ(1)
1 x

σ(2)
2 x

σ(3)
3 .

Exercise 3.2 (ML degree and Euler characteristic).

(a) Compute the Euler characteristics of M0,4 and M0,5.

We aim to compute the Euler characteristic of M0,n for n ≥ 4. To do this, we use the following
lemma from algebraic topology (see, e.g., [1, Exercise 14.37]):

Lemma 3. Let E,B be reasonably good manifolds (such as complex affine algebraic varieties).
If π : E → B is a fiber bundle with fiber F , the following product relation hold true:

χ(E) = χ(B)χ(F ) .

(b) Construct a fiber bundle π : M0,n → M0,n−1.

(c) Compute the Euler characteristic of M0,n for all n ≥ 4.

Exercise 3.3 (Twisted Cohomology). Consider f1(x), . . . , fℓ(x) ∈ C[x±1
1 , . . . , x±1

n ]. We
claimed that the following elements of R = C(s, ν)⟨σ±1

s1 , . . . , σ±1
sℓ

, σ±1
ν1

, . . . , σ±1
νn

⟩ generates a left
ideal of R which corresponds to the twisted cohomology:

1− σsifi(σν) (i = 1, . . . , ℓ), νj −
ℓ∑

i=1

siσsiσνj

∂fi
∂xj

(σν) (j = 1, . . . , n).

Show that these operators annihilate the cohomology class
[
dx1∧···∧dxn

x1···xn

]
∈ Hn(XK , ω).

Exercise 3.4 (Variation of coefficients). Consider an integral of the form

I(z; s, ν) :=

∫ 1

0

(1− x)−s1(1− z2x)
−s2 · · · (1− zℓx)

−sℓxν dx

x
,

where si, ν are complex parameters and z2, . . . , zℓ ∈ C∗. Describe the condition on z that the
ML degree is one. Combined with a theorem explained in the lecture, this problem recovers the
result of [2].
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