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Abstract

Two variants of the g-hypergeometric equation Hs and Hj are
introduced by Hatano-Matsunawa-Sato-Takemura from the viewpoint of
some quantum integrable system.

In this talk, we will discuss H3 mainly.

We will show that this equation can be regarded as a g-analog of the
Riemann-Papperitz differential system.

From this aspect, we will give integral solutions and series solutions for
the equation Hj.

If time permits, we will show some applications.

61 Introduction pp.3-8.
62 Solutions for the equation H3 pp.9-25.
§3 Some applications (if time permits) pp.26—36.
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Throughout this talk, we fix ¢ € C with 0 < |q| < 1.

the g-shifted factorial (the g-Pochhammer symbol):

(@)oo = H(l - aqi)» (a)n = (CEZBL;O s (a1, an)n = (a1)n -+ (aar)n-
i=0 OO
the Jackson integral: (@)
| f0ag =003 s,
i=0
| = =00 Y steaha

/(:2 f(t)dgt = /002 f(t)dgt — /001 F(t)dgt.

the g-shift operator: T, f(x) = f(qx).
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Main result

The variant of the ¢g-hypergeometric equation of degree three is defined

as follows:
HB Y= 07
3 3
Hy = H(‘T - qhi+1/2t1‘) ~T;1 + q2a+1 H(‘T _ qli71/2ti) T,
=1 =1

{@+1 1”§:q +q")

+ q(hl+h2+h3+l1+l2+13+1)/2t1t2t3 Z T
i=1 ti

_ q(h1+h2+h3+l1+l2+ls)/2(q + 1)t1t2t3:| .
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The functions
o /"2 (q"at, q" ¥ 2tat,q" 21t g5 T t5t) o0
o (wt, gt T3t t, g T 3t U T S st o
_ 1
voa (@ 20 ts) o
(qéihgx/%)oo

hi—h —hg+l —hg+l Byt 1y
W tygh ety gty gttty tigm T wgr
X gWr , ,

dyt,

t3 ’ t3 ’ t3 4 x to

satisfy Hzy = 0, where v = % (hl +ho+hg —11—1ls—1Il3+ 1),
01, 02 € {q2 M [t1,q2 "2 [y, q2 "9 Jtg, ¢V [z} and

> ]- - aq2n (a7 bv c, da €, .f)n
Wala:b,c,d,e, f;2) = n
8 7((17 , C, 76,f,2> Z 1 —a (q’qa/b7 qa/c7 qa/d7qa/e’qa/f)nz

n=0
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Background

Ruijsenaars-

Painlevé¢ | — —— | hypergeometric

van Diejen
specialization of specialization like
Lax linear equations Heun — Gauss

elliptic B{Y ———  Ay=FEy

¢E  ——— Aly—Ey
l R

¢EY s ARy =By s Hzy=0
l | 1 l

¢E - ABly=FEy, ——  Hay=0
! L !

q Dél) N 3A<4>y =FEy — Heine

,,,,,,,,,,

g-Heun and its variants

6 /37



A brief review for the Heine's equation

The Heine's g-hypergeometric equation is defined as follows:
(1—T,)(1 —cqg 'Ty) — (1 — aTy) (1 — bTy)]y = 0.

This equation is a g-analog of the Gauss hypergeometric equation. More
precisely, by taking the classical limit ¢ — 1 with a = ¢, b= ¢°, ¢ = ¢,
we get

2

z(1— x)d—

de-l—(v—(a—i—ﬁ—kl)x)%—aﬁ y=0.

The variants of the ¢g-hypergeometric equation Ho and H3 are some
extensions for the Heine's equation.
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The Gauss equation has Euler type integral solutions and series solutions
in terms of the Gauss hypergeometric function o Fj:

/ 71— )TN (1 — )P,
C

aBf N_,, B  olatD-BB+1) 5
2F1< , ,m)—1+7.1x+ Thrn-12 © 7

Similarly the Heine's equation has solutions in terms of g-analogs of the
above functions:

Lot (20

t
201 ( Z ”((b "
—b)
q):c +

77,(177,
(1-a)(1 1—a)(1 —ag)(1 - b)(1 —bg) ,
(1—e)(1 -

=1+ z” +

(
(I—c)(1—cq)(1—q)(1—q?)
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The equation Hzy = 0 (recall)

The variant of the ¢g-hypergeometric equation of degree three is defined

as follows:
HB Y= 07
3 3
Hy = H(‘T - qhi+1/2t1‘) ~T;1 + q2a+1 H(‘T _ qli71/2ti) T,
=1 =1

{@+1 1”§:q +q")

+ q(hl+h2+h3+l1+l2+13+1)/2t1t2t3 Z T
i=1 ti

_ q(h1+h2+h3+l1+l2+ls)/2(q + 1)t1t2t3:| .
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Characterization

31
Suppose an operator H = Z Z ai,jmiTg satisfies the following
i=0 j=—1
conditions:
3

o We rewrite H = Zm L;(Ty), then
=0
o Lo(y) o< (y — a)(y — aq), Li(y) o< (y — a).
o Ls(y) o (y —b)(y —bg™ "), La(y) < (y — b).
1
o We rewrite H = Z P;( x)TJ, then
j=-—1
o Pi(z) x (x—c1)(z — c2)(x — c3).
o Pi(z) x (x —di)(z — d2)(x — ds).

Then the equation Hy = 0 is equivalent to the equation Hsy = 0.
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Classical limit ¢ — 1

By taking the limit ¢ — 1, the equation Hsy = 0 becomes a Fuchsian
differential equation which has the following Riemann scheme:

r=0 tl tQ tg (0.@]

Po 0 0 O Poo
po+1 x x x poo+1

The points = 0 and oo are essentially non-singular (i.e. these points
can be transformed to regular points by some gauge factor).
By some gauge transformation, this differential equation is transformed to

l’:tl tg t3

This equation is called the Riemann-Papperitz's differential equation.
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Solutions for the Riemann-Papperitz's equation

The Riemann-Papperitz's differential equation can be transformed to the

Gauss’ hypergeometric equation by the Mobius transformation
s Tr — tl t2 — tg
T

xr — t3 tg — tl '
It is well known that the Gauss' equation has Euler-type integral solutions
and series solutions in terms of the hypergeometric function o Fj:

/ Y1 — )Tt A —at)TPdt, oF ( *f ;a:) .
C Y
So we get solutions for the Riemann-Papperitz's equation:

(gauge factor) ></(t—w)”‘)(t—tl)”l(t—tg)”z(t—tg)”sdt,
C

—t1ta—1
(gauge factor) x o F} ( Hupp L7 0 B 3),

ps  x—tzta—t
where vy + 1 + 19 + v3 = —2.
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Observation

@ The equation Hzy = 0 can be regarded as a g-analog of the
Riemann-Papperitz's differential system.

@ The Riemann-Papperitz's system has integral solutions and series
solutions as follows:

(sauge factor) x / (t — )" (t —t1)" (t — ta)2(t — t3)"3dt,
c

i, 2 T — 1 tz—t?,)

auge factor) x o F ;
(g & ) 2 1( 3 l’*tgtg*tl

where vy + 11 + 19 +v3 = —2.

~~ Naively it is expected that the equation Hsy = 0 has solutions in
terms of g-analogs of these functions.
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We consider g-analogs of such solutions for the Riemann-Papperitz's
system.
o It is difficult to directly consider a g-analog of the series

o[ H b2 x—tite — 13
241 ) .
K3 T —1t3to — 1

In the theory of g-difference equations, the points x = 0 and oo are
special points because these are fixed points of the ¢-shift operator
T, :x— qr +— ¢’z +— ---. So we cannot apply some M&bius
transformation to g-difference equations.

@ It is easy to consider a g-analog of the integral

/ (t — x)””(t — tl)ul (t — t2)l/2 (t — tg)ugdt,
C

by the g-binomial theorem <(q(x§;)°° Lma NG 1)“)

14 /37



In short, we should consider the following Jackson integral:

/ (g xt)oo (4" tit)oo (4" 12t)oo (qﬂ"*tﬁ)oocl t
© (l’t)oo (tlt)oo (t2t) oo (f3t)oo a

where vy + 11 + v + v3 = —2. This integral is equivalent to
Azt 0o > it 0o
/( ) 17 0s)ee
o (Brt) i1 (bit)oo

where Aajasas = ¢>Bbbsbs.

We will derive a g-difference equation that the integral satisfies.
To derive it, a g-difference equation that the integrand satisfies will be
considered.

3
= W(a,t) = Ao 11 (ait)oo
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Joo satisfies the following system:

(Axt) 3
The integrand ¢ = Joo H

(Bxt) oo b
1 — Bat
Top = ——4,
¥ 17Axtw

So we get the equations:
ta(B — AT, ) = (1 — Ty)ib,
3
> (1M (en(@) T T — ex(b)) ¥ = 0.
k=0
Here ey, is the k-th elementary symmetric function.

By using the first equation, we can delete t* from the second equation.
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We get the following:
[23(B — A¢*T,)(B — AqT,)(B — AT,)(T, 'T; — 1)
— (B — AqT,)(B — AT;)(e1(a)T; T, — ex (b))(1 — T)
+2(B — AT,)(ea(a)T, Ty — ea(b))(1 — ¢ ' T0) (1 — Ty)

= (e3(@)T; Ty — e3(0))(1 = ¢ *T2)(1 — ¢~ ' To) (1 = Ty = 0.

By integrating this equation with ¢, we can delete T} because

[ st g

So we obtain a linear g-difference equation of rank 4 that the integral

p=p(x,o)= / Y (x, t)dgt satisfies.
0
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We find

[2°(B — A¢*T.)(B — AqT,)(B — AT )(T; g™ — 1)

—2*(B — AqTy)(B — ATy)(ex(a)T; g — en(b)(1 — 1)
+a(B = AT, )(e2(a) T g™ — e2(17))(1 —¢ )1 - Ty)
—(es(@)T; g™ —es(b)(1 = ¢ *Tu)(1 — ¢ ' T3)(1 — Ti)]p(z, 0) = 0.

This equation is reducible:
(B - Aq_lTw)(l - q_QTa:)H390(x7J) = 07
Hy = 2*(B — AqT,)(B — AT,)T;" = 2%(B — AT)(en()T5" — gea(h))

+ lea(@) I = ges(b)(1 = Th) = o2 (1 — g7 1) (1 - LT
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The equation H3y = 0 is equivalent to the variant of the
g-hypergeometric equation of degree three Hzy = 0.

More precisely, we put A =¢”, B =1,a; = t;¢""2,b; = t;¢" "2 and
apply some gauge transformation y — ¥~ “y, then Hsy = 0 becomes
7'[3 Yy = 0.

Now we have (B — Aq~'T,)(1 — ¢ 2T, )Hzp(x,0) = 0.
So we want to delete the terms (B — Aq—'T,)(1 — ¢~ 2T).

o (B—Aq7'T,)y=0~ y=Cz* (¢ = Bq/A).
e (1—q 2Ty =0~ y=Cx?
~ We get Hyp(z,0) = Cra* + Cox?.

By some calculations, we find the following:

H3p(z,0) = (A— B)gz®, (0 € {q/a1,q/a2,q/a3,q/(Ax)}).
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Integral solutions

Finally we get 6 integral solutions for the equation Hsy = 0:

[ G

(2

3
(azt)oo
=1 (bit) Aot

where Aajasaz = ¢ Bbibebs and o1, 02 € {q/a1,q/az,q/asz,q/(Ax)}.
These are g-analogs of integral solutions

/ (t—x)0(t —t1)" (t — t2)"2 (¢t — t3)"2dt,
C

for the Riemann-Papperitz's equation.
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From integral solutions to series solutions

Next, we give series solutions for the equation Hsy = 0.
By the Bailey's formula

/b (qt/a, qt/b,ct,dt) o
dyt
a (et7 ft’ gt? ht)oo
(¢,bq/a,a/b,cd/eh,cd/ fh,cd/gh, b, bd)
(ae,af,ag,be,bf, bg, bh,bcd/h)so
x gWr(bed/hq; be,bf,bg, c/h,d/h;ah) (cd = abefgh),

=b(1—9q)

we get solutions for the equation Hsy = 0 in terms of the
very-well-poised g-hypergeometric function gWy;. Here,

oo

8W7(a; ba c, d,ea f? Z) - Z

n=0

1- ann (avbv C, daevf)n Zn
1—a (q,qa/b,qa/c,qa/d, qa/e,qa/f)n
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Applying the Bailey's formula, we have

/q/a3 (A.I:t,a1t,a2t,a3t)ood ’
q/al (Bwt,blt,bgt,b:jt)oo av

(Azq/az)s W <(12A.qb1 qba qbs a2 A.B$Q>

= (const.) (BCEQ/aS)oo8 —————

Therefore the function

(Azg/as)oc y,, (@24 gb1 gbs ¢bs az A Brg
(Brq/as)ee " ’ ’

satisfies the equation Hsy = 0.
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Solutions for Hyy = 0

We get integral solutions and series solutions for Hz y = 0.
So we have solutions for the original equation Hsy = 0:

oo /02 (q"xt,q" *2tst " 3 tat, "5 Rt
x qt?
e

(ot gttt g T St VT T S gt ) o
v—a (quih3+%x/t3)00
(q%7h3x/t3)oo

hi—h —hs+1 —hs+1 hi+3% i-h
t1g™ 3+v ) tiq s+lhi+v taq 3t+l2+v hatlat tiq 1+3 L, Tq2 2
X 8W7 9 ) » 4 ’ .
t3 t3 t3 x t2

x—tltz—t3>

This series sW7 is a g-analog of the series solution o F}
xr — t3 tg — tl

(see next page).
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Taking the limit ¢ — 1, we have

hi—h —h3+l —h3+l hy+1 1p
sWr (th R U B - B SN VR ST L S ' 2)

) tS 7q ) T 7q ) t2

t3 ’ t3

1 — (taq®/t3)q®™ (t1q°/t3,t1q% [t3, t2q° [t3, 4%, t14° /2, q°)n (2" \"
B Z 1—taq®/ts  (q,q°,t1q°/ta, t1q®/t3, 2q° [t3,t1q° [t3)n ( to )
q—1 Z (7]L3 + lg + Vi TL)(Z/;TL) ((1 — tl/tg)(]. — tl/tg)(]. 7t2/t3)(1 — tl/fﬂ) $>n
o (1; n)(h,l — 1l + I;n) (1 — tl/tg)(l — tl/ﬁg)(l — a?/tg)(l — tl/tg) to

—hz+ll3+v,v xT—1t1la—1t3
=9I ; .
hl*ll‘i’l (ﬂ*tgtgftl

Note that (¢%), /(1 —q)" UmdN ala+1)--(a+n—1)=(a;n),
(X)n 5 (1= X"
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Summary

In this talk, we give integral solutions and series solutions for the variant
of the g-hypergeometric equation of degree three Hzy = 0.

The key point is to regard this equation as a g-analog of the
Riemann-Papperitz system.

There are many applications:
@ g-analogs of Kummer's 24 solutions.
@ A new equation that the Askey-Wilson function satisfies.

@ A connection problem, and a new linear relation for the
Askey-Wilson functions.

There are many future works.
@ Some variants of various g-hypergeometric functions/equations.

@ Special solutions for the eigenvalue problem of (first degeneration
of) the Ruijsenaars-van Diejen operator.
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g-analogs of Kummer's 24 solutions

Kummer's 24 solutions are the list of the series solutions for the Gauss’
hypergeometric equation. For examples,
r—1—=x
N

2 ( a:yﬂ ;m), 3 v ) gl
_ a—v+1,8-7+1 g e YTLA-vH]
zt 72F1< 7 2_ﬁ,y 7 ;$>7E( 2 —~

a,f
F ’ 3 1—xz). Q, 5
L COTEIEE E QU Ly -
In the theory of g-difference equations, we can not apply some Mobius

transformations. So it is difficult to find g-analogs of the above solutions
directly.
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By degenerating the equation H3y = 0, we get the variant of the
g-hypergeometric equation of degree two Hs y = 0 and the Heine's
equation:

HgyzoﬂHgyzoﬂHeine.

So by taking the same limit for solutions, we obtain solutions for
Hoy = 0 and the Heine's equation systematically. For integrals, we have

/H qjj 4t [ H dt—>/ Hq;; ot

For series, we have many solutions. We summarize them in next page.
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Ha

sWr

ag, y r
e b
_ - (ala 7a7’)n

(Qabla >bs)n

Ho

o 0 ol /1 T
wor (T o)

o e ox/t; 11
3@2( o,ox/tg ;.tz>

o7o,ot1/t2
3%02( o 01 /ts §Q)

3¥2 <

.7.7.t1/t2 .

o of/x

.7.,.t1/$' .
592 ( o, oty/x ,q)

.7.,..’17/t1 .
392 < o, oty /t; 7Q>

o,o,o/x

32 o0 1

L) )

22 o o ,ox

o0 o

22 .7./1, ’E
.7.70 .

3¥2 o o1 3 q
0,00

3¢2 .7./1, 54
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On the Askey-Wilson function

The very-well-poised balanced ¢-hypergeometric function

a
8W7<abcdef,bcdq€f>

is well known as the Askey-Wilson function.
Some g¢-difference equations that the Askey-Wilson function satisfies were
obtained (cf. Askey-Wilson, Ismail-Rahman).

The equation Hsy = 0 is different from these equations, so we get
another equation for the Askey-Wilson function.
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On a connection problem

We give 6 integral solutions for the equation Hzy = 0:

o /“2 (¢"at, gt 3tet, g2t 3 tot, ¢ T3 tat) o p
T qt
o

L (wt, gt st gt st g T T S st o

where o1, 02 € {q7 7 /t1,q3 "2 [ty,q3 "5 Jt3,¢" Y [}
So there are 4 linear relations for such solutions.
We consider a connection problem:

”

“Find 4 linear relations for solutions of the equation Hsy = 0.

By the definition f;f = 0“2_ 001
of the Jackson integral, we have
02 g3 o1

fo’l +fo'2 +f0’3 = 0 ThUS we get

3 relations for the above solutions.

20 /37



Another one is derived by considering Mimachi’s relations for the Jackson
integral of the Jordan-Pochhammer type:

/ /Aﬂ oo (Azt)oo
oo (Bxt)oo *
M ai M
:ZC-/M >t“ 1H (ait)oc (AT ; 4
—~ " Jo (bit)oo (Bat)so
by
(qt/bi)so (qt/(Bz)) oo a1 rap A
+C / tP det (¢ =q¢g“—F).
MEL S H (qt/a)m (at) Az 0t O =T 5 T, B
Here C4,...,Cyr41 are given by some ratio of the theta function

0(z) = (v,¢/7)0c. We put the parameters as M =3, a =1,

arazazA = ¢*b1babsB (and p = 1). Then the coefficient Cry1 is
. x O(gP

vanished (because Cp;11 = ><7((1))
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We have

q/(Az) M (ait)me (A a/(a;) M (ait)me (At)os
/0 Iimae - ZC / 160 Bar). "

So we get

q/(Az) M (a-z‘) q/(ai) (a-z‘) (Aa?t)
C/ 2l )oo C/ il )oo Ood t’
0 LI;[l (bit)oo Z o/ (A2) Ll;[l (bit)oo (Bt)os

where C' =1+ Cy 4+ C3 + C5. The integral of the L.H.S. is not a
solution for the equation Hsy = 0, although the R.H.S. is a solution, so
we finally find C' =0 and
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Future works: a variant of the g-Appell-Lauricella system

A g-analog of the Riemann-Papperitz system has not been considered
because the points = 0 and oo are special in the theory of ¢-difference
equations. However we could consider such a g-analog.

) a g-analog,
however = 0’ o0
\ wtreated specially
Riemann-
P . — Gauss
apperitz

every points are treated equally

[ We can treat every point equally even in g-difference equations! ]

It is interesting to consider some g-hypergeometric functions with this

slogan. Now | am trying for the ¢g-Appell-Lauricella case.
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The g-Appell-Lauricella system

The g-Appell-Lauricella system is defined as follows:

[(1=T)(A = eq 'T) = 2:i(1 = ;7)1 —al)ly =0 (1<i< M),
[2:(1 = b T)(1 = T;) —2;(1 = b;T;) (1 =Ty =0 (1 <i<j< M),

The rank of this system is M + 1, and it has integral solutions and series

solutions:
/ jo-1 ﬁ (bix; t
C ct/a 0 i (2it) oo
M
7{b } ) (a)m1+"‘+mM ((bl)"nz mi>
¥D Ti R I
( { ,mM>O (C)mlJr"'erM 21;[1 (q)ml
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We consider the following Jackson integral:

dqt (al C QM43 :q2b1...bM+3).

/q/aj T (@it)es
q/ai ;- (blt)OC

We find some properties about this integral:
@ The integral satisfies a ¢-difference system of rank M + 1.

@ The integral can be transformed to some multiple ¢-hypergeometric
series. This transformation can be derived by taking some limit for
the Kajihara's transformation formula.

@ A connection problem associated with the above system is solved.

We expect that many solutions for the g-Appell-Lauricella system can be
obtained by degenerating the multiple series. And there are more
applications, | think.
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A g-analog of the Riemann-Papperitz system has not been considered
because the points = 0 and oo are special in the theory of ¢-difference
equations. However we could consider such a g-analog.

H a g-analog,
eine however z = 0, co
'\ wtreated specially
Riemann-
. — Gauss
Papperitz

every points are treated equally

[ We can treat every point equally even in g-difference equations! ]
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Thank you very much for
your attention!



