The variant of the q-hypergeometric equation of degree three: a q-analog of Papperitz's differential system

Takahiko Nobukawa
Kobe University (Ph.D student) mail:tnobukw@math.kobe-u.ac.jp

Hypergeometric school 2023 08/18/2023

This talk is based on the collaboration with Taikei Fujii (arXiv:2207.12777)

Abstract

Two variants of the q-hypergeometric equation \mathcal{H}_{2} and \mathcal{H}_{3} are introduced by Hatano-Matsunawa-Sato-Takemura from the viewpoint of some quantum integrable system.
In this talk, we will discuss \mathcal{H}_{3} mainly.
We will show that this equation can be regarded as a q-analog of the Riemann-Papperitz differential system.
From this aspect, we will give integral solutions and series solutions for the equation \mathcal{H}_{3}.
If time permits, we will show some applications.
§1 Introduction pp.3-8.
§2 Solutions for the equation \mathcal{H}_{3} pp.9-25.
§3 Some applications (if time permits) pp.26-36.

Notations

Throughout this talk, we fix $q \in \mathbb{C}$ with $0<|q|<1$. the q-shifted factorial (the q-Pochhammer symbol):

$$
(a)_{\infty}=\prod_{i=0}^{\infty}\left(1-a q^{i}\right),(a)_{n}=\frac{(a)_{\infty}}{\left(a q^{n}\right)_{\infty}},\left(a_{1}, \ldots, a_{M}\right)_{n}=\left(a_{1}\right)_{n} \cdots\left(a_{M}\right)_{n}
$$

the Jackson integral:

$$
\begin{aligned}
& \int_{0}^{\sigma} f(t) d_{q} t=(1-q) \sigma \sum_{i=0}^{\infty} f\left(\sigma q^{i}\right) q^{i} \\
& \int_{0}^{\sigma \infty} f(t) d_{q} t=(1-q) \sigma \sum_{i=-\infty}^{\infty} f\left(\sigma q^{i}\right) q^{i} \\
& \int_{\sigma_{1}}^{\sigma_{2}} f(t) d_{q} t=\int_{0}^{\sigma_{2}} f(t) d_{q} t-\int_{0}^{\sigma_{1}} f(t) d_{q} t .
\end{aligned}
$$

the q-shift operator: $T_{x} f(x)=f(q x)$.

Main result

The variant of the q-hypergeometric equation of degree three is defined as follows:

$$
\begin{aligned}
& \mathcal{H}_{3} y=0, \\
& \begin{aligned}
\mathcal{H}_{3}= & \prod_{i=1}^{3}\left(x-q^{h_{i}+1 / 2} t_{i}\right) \cdot T_{x}^{-1}+q^{2 \alpha+1} \prod_{i=1}^{3}\left(x-q^{l_{i}-1 / 2} t_{i}\right) \cdot T_{x} \\
- & q^{\alpha}\left[(q+1) x^{3}-q^{1 / 2} \sum_{i=1}^{3}\left(q^{h_{i}}+q^{l_{i}}\right) t_{i} x^{2}\right. \\
& \quad+q^{\left(h_{1}+h_{2}+h_{3}+l_{1}+l_{2}+l_{3}+1\right) / 2} t_{1} t_{2} t_{3} \sum_{i=1}^{3} \frac{q^{-h_{i}}+q^{-l_{i}}}{t_{i}} x \\
& \left.\quad-q^{\left(h_{1}+h_{2}+h_{3}+l_{1}+l_{2}+l_{3}\right) / 2}(q+1) t_{1} t_{2} t_{3}\right] .
\end{aligned}
\end{aligned}
$$

The functions

$$
\begin{aligned}
& x^{\nu-\alpha} \int_{\sigma_{1}}^{\sigma_{2}} \frac{\left(q^{\nu} x t, q^{h_{1}+\frac{1}{2}} t_{1} t, q^{h_{2}+\frac{1}{2}} t_{2} t, q^{h_{3}+\frac{1}{2}} t_{3} t\right)_{\infty}}{\left(x t, q^{\nu+l_{1}-\frac{1}{2}} t_{1} t, q^{\nu+l_{2}-\frac{1}{2}} t_{2} t, q^{\nu+l_{3}-\frac{1}{2}} t_{3} t\right)_{\infty}} d_{q} t, \\
& x^{\nu-\alpha} \frac{\left(q^{\nu-h_{3}+\frac{1}{2}} x / t_{3}\right)_{\infty}}{\left(q^{\frac{1}{2}-h_{3}} x / t_{3}\right)_{\infty}} \\
\times & { }_{8} W_{7}\left(\frac{t_{1} q^{h_{1}-h_{3}+\nu}}{t_{3}} ; \frac{t_{1} q^{-h_{3}+l_{1}+\nu}}{t_{3}}, \frac{t_{2} q^{-h_{3}+l_{2}+\nu}}{t_{3}}, q^{-h_{3}+l_{3}+\nu}, \frac{t_{1} q^{h_{1}+\frac{1}{2}}}{x}, q^{\nu} ; \frac{x q^{\frac{1}{2}-h_{2}}}{t_{2}}\right),
\end{aligned}
$$

satisfy $\mathcal{H}_{3} y=0$, where $\nu=\frac{1}{2}\left(h_{1}+h_{2}+h_{3}-l_{1}-l_{2}-l_{3}+1\right)$, $\sigma_{1}, \sigma_{2} \in\left\{q^{\frac{1}{2}-h_{1}} / t_{1}, q^{\frac{1}{2}-h_{2}} / t_{2}, q^{\frac{1}{2}-h_{3}} / t_{3}, q^{1-\nu} / x\right\}$ and

$$
{ }_{8} W_{7}(a ; b, c, d, e, f ; z)=\sum_{n=0}^{\infty} \frac{1-a q^{2 n}}{1-a} \frac{(a, b, c, d, e, f)_{n}}{(q, q a / b, q a / c, q a / d, q a / e, q a / f)_{n}} z^{n}
$$

Background

A brief review for the Heine's equation

The Heine's q-hypergeometric equation is defined as follows:

$$
\left[\left(1-T_{x}\right)\left(1-c q^{-1} T_{x}\right)-x\left(1-a T_{x}\right)\left(1-b T_{x}\right)\right] y=0 .
$$

This equation is a q-analog of the Gauss hypergeometric equation. More precisely, by taking the classical limit $q \rightarrow 1$ with $a=q^{\alpha}, b=q^{\beta}, c=q^{\gamma}$, we get

$$
\left[x(1-x) \frac{d^{2}}{d x^{2}}+(\gamma-(\alpha+\beta+1) x) \frac{d}{d x}-\alpha \beta\right] y=0 .
$$

The variants of the q-hypergeometric equation \mathcal{H}_{2} and \mathcal{H}_{3} are some extensions for the Heine's equation.

The Gauss equation has Euler type integral solutions and series solutions in terms of the Gauss hypergeometric function ${ }_{2} F_{1}$:

$$
\begin{aligned}
& \int_{C} t^{\alpha-1}(1-t)^{\gamma-\alpha-1}(1-x t)^{-\beta} d t, \\
& { }_{2} F_{1}\left(\begin{array}{c}
\alpha, \beta \\
\gamma
\end{array} ; x\right)=1+\frac{\alpha \cdot \beta}{\gamma \cdot 1} x+\frac{\alpha(\alpha+1) \cdot \beta(\beta+1)}{\gamma(\gamma+1) \cdot 1 \cdot 2} x^{2}+\cdots .
\end{aligned}
$$

Similarly the Heine's equation has solutions in terms of q-analogs of the above functions:

$$
\begin{aligned}
& \int_{C} t^{\alpha-1} \frac{(q t)_{\infty}}{(c t / a)_{\infty}} \frac{(b x t)_{\infty}}{(x t)_{\infty}} d_{q} t \quad\left(q^{\alpha}=a\right), \quad\left(\frac{\left(q^{\alpha} x\right)_{\infty}}{(x)_{\infty}} \xrightarrow{q \rightarrow 1}(1-x)^{-\alpha}\right) \\
& { }_{2} \varphi_{1}\left(\begin{array}{c}
a, b \\
c
\end{array} ; x\right)=\sum_{n=0}^{\infty} \frac{(a)_{n}(b)_{n}}{(c)_{n}(q)_{n}} x^{n} \\
& =1+\frac{(1-a)(1-b)}{(1-c)(1-q)} x+\frac{(1-a)(1-a q)(1-b)(1-b q)}{(1-c)(1-c q)(1-q)\left(1-q^{2}\right)} x^{2}+\cdots .
\end{aligned}
$$

The equation $\mathcal{H}_{3} y=0$ (recall)

The variant of the q-hypergeometric equation of degree three is defined as follows:

$$
\begin{aligned}
& \mathcal{H}_{3} y=0 \\
& \begin{aligned}
\mathcal{H}_{3}= & \prod_{i=1}^{3}\left(x-q^{h_{i}+1 / 2} t_{i}\right) \cdot T_{x}^{-1}+q^{2 \alpha+1} \prod_{i=1}^{3}\left(x-q^{l_{i}-1 / 2} t_{i}\right) \cdot T_{x} \\
- & q^{\alpha}\left[(q+1) x^{3}-q^{1 / 2} \sum_{i=1}^{3}\left(q^{h_{i}}+q^{l_{i}}\right) t_{i} x^{2}\right. \\
& \quad+q^{\left(h_{1}+h_{2}+h_{3}+l_{1}+l_{2}+l_{3}+1\right) / 2} t_{1} t_{2} t_{3} \sum_{i=1}^{3} \frac{q^{-h_{i}}+q^{-l_{i}}}{t_{i}} x \\
& \left.\quad-q^{\left(h_{1}+h_{2}+h_{3}+l_{1}+l_{2}+l_{3}\right) / 2}(q+1) t_{1} t_{2} t_{3}\right] .
\end{aligned}
\end{aligned}
$$

Characterization

Suppose an operator $H=\sum_{i=0}^{3} \sum_{j=-1}^{1} a_{i, j} x^{i} T_{x}^{j}$ satisfies the following conditions:

- We rewrite $H=\sum_{i=0}^{3} x^{i} L_{i}\left(T_{x}\right)$, then
- $L_{0}(y) \propto(y-a)(y-a q), L_{1}(y) \propto(y-a)$.
- $L_{3}(y) \propto(y-b)\left(y-b q^{-1}\right), L_{2}(y) \propto(y-b)$.
- We rewrite $H=\sum_{j=-1}^{1} P_{j}(x) T_{x}^{j}$, then
- $P_{-1}(x) \propto\left(x-c_{1}\right)\left(x-c_{2}\right)\left(x-c_{3}\right)$.
- $P_{1}(x) \propto\left(x-d_{1}\right)\left(x-d_{2}\right)\left(x-d_{3}\right)$.

Then the equation $H y=0$ is equivalent to the equation $\mathcal{H}_{3} y=0$.

Classical limit $q \rightarrow 1$

By taking the limit $q \rightarrow 1$, the equation $\mathcal{H}_{3} y=0$ becomes a Fuchsian differential equation which has the following Riemann scheme:

$$
\left\{\begin{array}{ccccc}
x=0 & t_{1} & t_{2} & t_{3} & \infty \\
\rho_{0} & 0 & 0 & 0 & \rho_{\infty} \\
\rho_{0}+1 & * & * & * & \rho_{\infty}+1
\end{array}\right\}
$$

The points $x=0$ and ∞ are essentially non-singular (i.e. these points can be transformed to regular points by some gauge factor).
By some gauge transformation, this differential equation is transformed to

$$
\left\{\begin{array}{ccc}
x=t_{1} & t_{2} & t_{3} \\
* & * & * \\
* & * & *
\end{array}\right\}
$$

This equation is called the Riemann-Papperitz's differential equation.

Solutions for the Riemann-Papperitz's equation

The Riemann-Papperitz's differential equation can be transformed to the Gauss' hypergeometric equation by the Möbius transformation $x \mapsto \frac{x-t_{1}}{x-t_{3}} \frac{t_{2}-t_{3}}{t_{2}-t_{1}}$.
It is well known that the Gauss' equation has Euler-type integral solutions and series solutions in terms of the hypergeometric function ${ }_{2} F_{1}$:

$$
\int_{C} t^{\alpha-1}(1-t)^{\gamma-\alpha-1}(1-x t)^{-\beta} d t, \quad{ }_{2} F_{1}\left(\begin{array}{c}
\alpha, \beta \\
\gamma
\end{array} ; x\right)
$$

So we get solutions for the Riemann-Papperitz's equation:

$$
\begin{aligned}
& \text { (gauge factor) } \times \int_{C}(t-x)^{\nu_{0}}\left(t-t_{1}\right)^{\nu_{1}}\left(t-t_{2}\right)^{\nu_{2}}\left(t-t_{3}\right)^{\nu_{3}} d t, \\
& \text { (gauge factor) } \times{ }_{2} F_{1}\left(\begin{array}{c}
\mu_{1}, \mu_{2} \\
\mu_{3}
\end{array} ; \frac{x-t_{1}}{x-t_{3}} \frac{t_{2}-t_{3}}{t_{2}-t_{1}}\right)
\end{aligned}
$$

where $\nu_{0}+\nu_{1}+\nu_{2}+\nu_{3}=-2$.

Observation

- The equation $\mathcal{H}_{3} y=0$ can be regarded as a q-analog of the Riemann-Papperitz's differential system.
- The Riemann-Papperitz's system has integral solutions and series solutions as follows:

$$
\begin{aligned}
& \text { (gauge factor) } \times \int_{C}(t-x)^{\nu_{0}}\left(t-t_{1}\right)^{\nu_{1}}\left(t-t_{2}\right)^{\nu_{2}}\left(t-t_{3}\right)^{\nu_{3}} d t, \\
& \text { (gauge factor) } \times{ }_{2} F_{1}\left(\begin{array}{c}
\mu_{1}, \mu_{2} \\
\mu_{3}
\end{array} ; \frac{x-t_{1}}{x-t_{3}} \frac{t_{2}-t_{3}}{t_{2}-t_{1}}\right),
\end{aligned}
$$

where $\nu_{0}+\nu_{1}+\nu_{2}+\nu_{3}=-2$.
\rightsquigarrow Naively it is expected that the equation $\mathcal{H}_{3} y=0$ has solutions in terms of q-analogs of these functions.

We consider q-analogs of such solutions for the Riemann-Papperitz's system.

- It is difficult to directly consider a q-analog of the series

$$
{ }_{2} F_{1}\left(\begin{array}{c}
\mu_{1}, \mu_{2} \\
\mu_{3}
\end{array} ; \frac{x-t_{1}}{x-t_{3}} \frac{t_{2}-t_{3}}{t_{2}-t_{1}}\right) .
$$

In the theory of q-difference equations, the points $x=0$ and ∞ are special points because these are fixed points of the q-shift operator $T_{x}: x \mapsto q x \mapsto q^{2} x \mapsto \cdots$. So we cannot apply some Möbius transformation to q-difference equations.

- It is easy to consider a q-analog of the integral

$$
\int_{C}(t-x)^{\nu_{0}}\left(t-t_{1}\right)^{\nu_{1}}\left(t-t_{2}\right)^{\nu_{2}}\left(t-t_{3}\right)^{\nu_{3}} d t
$$

by the q-binomial theorem $\left(\frac{\left(q^{\alpha} x\right)_{\infty}}{(x)_{\infty}} \xrightarrow{q \rightarrow 1}(1-x)^{-\alpha}\right)$.

In short, we should consider the following Jackson integral:

$$
\int_{C} \frac{\left(q^{-\nu_{0}} x t\right)_{\infty}}{(x t)_{\infty}} \frac{\left(q^{-\nu_{1}} t_{1} t\right)_{\infty}}{\left(t_{1} t\right)_{\infty}} \frac{\left(q^{-\nu_{2}} t_{2} t\right)_{\infty}}{\left(t_{2} t\right)_{\infty}} \frac{\left(q^{-\nu_{3}} t_{3} t\right)_{\infty}}{\left(t_{3} t\right)_{\infty}} d_{q} t
$$

where $\nu_{0}+\nu_{1}+\nu_{2}+\nu_{3}=-2$. This integral is equivalent to

$$
\int_{C} \frac{(A x t)_{\infty}}{(B x t)_{\infty}} \prod_{i=1}^{3} \frac{\left(a_{i} t\right)_{\infty}}{\left(b_{i} t\right)_{\infty}} d_{q} t
$$

where $A a_{1} a_{2} a_{3}=q^{2} B b_{1} b_{2} b_{3}$.
We will derive a q-difference equation that the integral satisfies.
To derive it, a q-difference equation that the integrand satisfies will be considered.

$$
\psi=\psi(x, t)=\frac{(A x t)_{\infty}}{(B x t)_{\infty}} \prod_{i=1}^{3} \frac{\left(a_{i} t\right)_{\infty}}{\left(b_{i} t\right)_{\infty}}
$$

The integrand $\psi=\frac{(A x t)_{\infty}}{(B x t)_{\infty}} \prod_{i=1}^{3} \frac{\left(a_{i} t\right)_{\infty}}{\left(b_{i} t\right)_{\infty}}$ satisfies the following system:

$$
T_{x} \psi=\frac{1-B x t}{1-A x t} \psi, \quad T_{x}^{-1} T_{t} \psi=\prod_{i=1}^{3} \frac{1-b_{i} t}{1-a_{i} t} \psi .
$$

So we get the equations:

$$
\begin{aligned}
& t x\left(B-A T_{x}\right) \psi=\left(1-T_{x}\right) \psi, \\
& \sum_{k=0}^{3}(-1)^{k} t^{k}\left(e_{k}(a) T_{x}^{-1} T_{t}-e_{k}(b)\right) \psi=0 .
\end{aligned}
$$

Here e_{k} is the k-th elementary symmetric function. By using the first equation, we can delete t^{k} from the second equation.

We get the following:

$$
\begin{aligned}
& {\left[x^{3}\left(B-A q^{2} T_{x}\right)\left(B-A q T_{x}\right)\left(B-A T_{x}\right)\left(T_{x}^{-1} T_{t}-1\right)\right.} \\
& \quad-x^{2}\left(B-A q T_{x}\right)\left(B-A T_{x}\right)\left(e_{1}(a) T_{x}^{-1} T_{t}-e_{1}(b)\right)\left(1-T_{x}\right) \\
& \quad+x\left(B-A T_{x}\right)\left(e_{2}(a) T_{x}^{-1} T_{t}-e_{2}(b)\right)\left(1-q^{-1} T_{x}\right)\left(1-T_{x}\right) \\
& \left.\quad-\left(e_{3}(a) T_{x}^{-1} T_{t}-e_{3}(b)\right)\left(1-q^{-2} T_{x}\right)\left(1-q^{-1} T_{x}\right)\left(1-T_{x}\right)\right] \psi=0
\end{aligned}
$$

By integrating this equation with t, we can delete T_{t} because

$$
\int_{0}^{\sigma \infty} T_{t} f(t) d_{q} t=q^{-1} \int_{0}^{\sigma \infty} f(t) d_{q} t
$$

So we obtain a linear q-difference equation of rank 4 that the integral $\varphi=\varphi(x, \sigma)=\int_{0}^{\sigma \infty} \psi(x, t) d_{q} t$ satisfies.

We find

$$
\begin{aligned}
& {\left[x^{3}\left(B-A q^{2} T_{x}\right)\left(B-A q T_{x}\right)\left(B-A T_{x}\right)\left(T_{x}^{-1} q^{-1}-1\right)\right.} \\
& \quad-x^{2}\left(B-A q T_{x}\right)\left(B-A T_{x}\right)\left(e_{1}(a) T_{x}^{-1} q^{-1}-e_{1}(b)\right)\left(1-T_{x}\right) \\
& \quad+x\left(B-A T_{x}\right)\left(e_{2}(a) T_{x}^{-1} q^{-1}-e_{2}(b)\right)\left(1-q^{-1} T_{x}\right)\left(1-T_{x}\right) \\
& \left.\quad-\left(e_{3}(a) T_{x}^{-1} q^{-1}-e_{3}(b)\right)\left(1-q^{-2} T_{x}\right)\left(1-q^{-1} T_{x}\right)\left(1-T_{x}\right)\right] \varphi(x, \sigma)=0
\end{aligned}
$$

This equation is reducible:

$$
\begin{aligned}
& \left(B-A q^{-1} T_{x}\right)\left(1-q^{-2} T_{x}\right) H_{3} \varphi(x, \sigma)=0 \\
& H_{3}=x^{3}\left(B-A q T_{x}\right)\left(B-A T_{x}\right) T_{x}^{-1}-x^{2}\left(B-A T_{x}\right)\left(e_{1}(a) T_{x}^{-1}-q e_{1}(b)\right) \\
& \quad+x\left(e_{2}(a) T_{x}^{-1}-q e_{2}(b)\right)\left(1-T_{x}\right)-\frac{a_{1} a_{2} a_{3}}{B}\left(1-q^{-1} T_{x}\right)\left(1-T_{x}\right) T_{x}^{-1}
\end{aligned}
$$

The equation $H_{3} y=0$ is equivalent to the variant of the q-hypergeometric equation of degree three $\mathcal{H}_{3} y=0$.
More precisely, we put $A=q^{\nu}, B=1, a_{i}=t_{i} q^{h_{i}+\frac{1}{2}}, b_{i}=t_{i} q^{l_{i}-\frac{1}{2}+\nu}$ and apply some gauge transformation $y \rightarrow x^{\nu-\alpha} y$, then $H_{3} y=0$ becomes $\mathcal{H}_{3} y=0$.

Now we have $\left(B-A q^{-1} T_{x}\right)\left(1-q^{-2} T_{x}\right) H_{3} \varphi(x, \sigma)=0$.
So we want to delete the terms $\left(B-A q^{-1} T_{x}\right)\left(1-q^{-2} T_{x}\right)$.

- $\left(B-A q^{-1} T_{x}\right) y=0 \rightsquigarrow y=C x^{\lambda},\left(q^{\lambda}=B q / A\right)$.
- $\left(1-q^{-2} T_{x}\right) y=0 \rightsquigarrow y=C x^{2}$.
\rightsquigarrow We get $H_{3} \varphi(x, \sigma)=C_{1} x^{\lambda}+C_{2} x^{2}$.
By some calculations, we find the following:

$$
H_{3} \varphi(x, \sigma)=(A-B) q x^{2}, \quad\left(\sigma \in\left\{q / a_{1}, q / a_{2}, q / a_{3}, q /(A x)\right\}\right) .
$$

Integral solutions

Finally we get 6 integral solutions for the equation $H_{3} y=0$:

$$
\int_{\sigma_{1}}^{\sigma_{2}} \frac{(A x t)_{\infty}}{(B x t)_{\infty}} \prod_{i=1}^{3} \frac{\left(a_{i} t\right)_{\infty}}{\left(b_{i} t\right)_{\infty}} d_{q} t
$$

where $A a_{1} a_{2} a_{3}=q^{2} B b_{1} b_{2} b_{3}$ and $\sigma_{1}, \sigma_{2} \in\left\{q / a_{1}, q / a_{2}, q / a_{3}, q /(A x)\right\}$.
These are q-analogs of integral solutions

$$
\int_{C}(t-x)^{\nu_{0}}\left(t-t_{1}\right)^{\nu_{1}}\left(t-t_{2}\right)^{\nu_{2}}\left(t-t_{3}\right)^{\nu_{3}} d t
$$

for the Riemann-Papperitz's equation.

From integral solutions to series solutions

Next, we give series solutions for the equation $H_{3} y=0$. By the Bailey's formula

$$
\begin{aligned}
& \int_{a}^{b} \frac{(q t / a, q t / b, c t, d t)_{\infty}}{(e t, f t, g t, h t)_{\infty}} d_{q} t \\
& =b(1-q) \frac{(q, b q / a, a / b, c d / e h, c d / f h, c d / g h, b c, b d)_{\infty}}{(a e, a f, a g, b e, b f, b g, b h, b c d / h)_{\infty}} \\
& \times{ }_{8} W_{7}(b c d / h q ; b e, b f, b g, c / h, d / h ; a h) \quad(c d=a b e f g h)
\end{aligned}
$$

we get solutions for the equation $H_{3} y=0$ in terms of the very-well-poised q-hypergeometric function ${ }_{8} W_{7}$. Here,

$$
{ }_{8} W_{7}(a ; b, c, d, e, f ; z)=\sum_{n=0}^{\infty} \frac{1-a q^{2 n}}{1-a} \frac{(a, b, c, d, e, f)_{n}}{(q, q a / b, q a / c, q a / d, q a / e, q a / f)_{n}} z^{n}
$$

Applying the Bailey's formula, we have

$$
\begin{aligned}
& \int_{q / a_{1}}^{q / a_{3}} \frac{\left(A x t, a_{1} t, a_{2} t, a_{3} t\right)_{\infty}}{\left(B x t, b_{1} t, b_{2} t, b_{3} t\right)_{\infty}} d_{q} t \\
& =(\text { const. }) \frac{\left(A x q / a_{3}\right)_{\infty}}{\left(B x q / a_{3}\right)_{\infty}}{ }_{8} W_{7}\left(\frac{a_{2} A}{a_{3} B} ; \frac{q b_{1}}{a_{3}}, \frac{q b_{2}}{a_{3}}, \frac{q b_{3}}{a_{3}}, \frac{a_{2}}{B x}, \frac{A}{B} ; \frac{B x q}{a_{1}}\right) .
\end{aligned}
$$

Therefore the function

$$
\frac{\left(A x q / a_{3}\right)_{\infty}}{\left(B x q / a_{3}\right)_{\infty}}{ }_{8} W_{7}\left(\frac{a_{2} A}{a_{3} B} ; \frac{q b_{1}}{a_{3}}, \frac{q b_{2}}{a_{3}}, \frac{q b_{3}}{a_{3}}, \frac{a_{2}}{B x}, \frac{A}{B} ; \frac{B x q}{a_{1}}\right)
$$

satisfies the equation $H_{3} y=0$.

Solutions for $\mathcal{H}_{3} y=0$

We get integral solutions and series solutions for $H_{3} y=0$.
So we have solutions for the original equation $\mathcal{H}_{3} y=0$:

$$
x^{\nu-\alpha} \int_{\sigma_{1}}^{\sigma_{2}} \frac{\left(q^{\nu} x t, q^{h_{1}+\frac{1}{2}} t_{1} t, q^{h_{2}+\frac{1}{2}} t_{2} t, q^{h_{3}+\frac{1}{2}} t_{3} t\right)_{\infty}}{\left(x t, q^{\nu+l_{1}-\frac{1}{2}} t_{1} t, q^{\nu+l_{2}-\frac{1}{2}} t_{2} t, q^{\nu+l_{3}-\frac{1}{2}} t_{3} t\right)_{\infty}} d_{q} t,
$$

$$
x^{\nu-\alpha} \frac{\left(q^{\nu-h_{3}+\frac{1}{2}} x / t_{3}\right)_{\infty}}{\left(q^{\frac{1}{2}-h_{3}} x / t_{3}\right)_{\infty}}
$$

$\times{ }_{8} W_{7}\left(\frac{t_{1} q^{h_{1}-h_{3}+\nu}}{t_{3}} ; \frac{t_{1} q^{-h_{3}+l_{1}+\nu}}{t_{3}}, \frac{t_{2} q^{-h_{3}+l_{2}+\nu}}{t_{3}}, q^{-h_{3}+l_{3}+\nu}, \frac{t_{1} q^{h_{1}+\frac{1}{2}}}{x}, q^{\nu} ; \frac{x q^{\frac{1}{2}-h_{2}}}{t_{2}}\right)$
This series ${ }_{8} W_{7}$ is a q-analog of the series solution ${ }_{2} F_{1}\left(\frac{x-t_{1}}{x-t_{3}} \frac{t_{2}-t_{3}}{t_{2}-t_{1}}\right)$ (see next page).

${ }_{8} W_{7} \xrightarrow{q \rightarrow 1}{ }_{2} F_{1}$

Taking the limit $q \rightarrow 1$, we have

$$
\begin{aligned}
&{ }_{8} W_{7}\left(\frac{t_{1} q^{h_{1}-h_{3}+\nu}}{t_{3}} ; \frac{t_{1} q^{-h_{3}+l_{1}+\nu}}{t_{3}}, \frac{t_{2} q^{-h_{3}+l_{2}+\nu}}{t_{3}}, q^{-h_{3}+l_{3}+\nu}, \frac{t_{1} q^{h_{1}+\frac{1}{2}}}{x}, q^{\nu} ; \frac{x q^{\frac{1}{2}-h_{2}}}{t_{2}}\right) \\
&= \sum_{n=0}^{\infty} \frac{1-\left(t_{2} q^{\bullet} / t_{3}\right) q^{2 n}}{1-t_{2} q^{\bullet} / t_{3}} \frac{\left(t_{1} q^{\bullet} / t_{3}, t_{1} q^{\bullet} / t_{3}, t_{2} \bullet^{\bullet} / t_{3}, q^{\bullet}, t_{1} q^{\bullet} / x, q^{\bullet}\right)_{n}}{\left(q, q^{\bullet}, t_{1} q^{\bullet} / t_{2}, t_{1} q^{\bullet} / t_{3}, x q^{\bullet} / t_{3}, t_{1} q^{\bullet} / t_{3}\right)_{n}}\left(\frac{q^{\bullet}}{t_{2}}\right)^{n} \\
& \xrightarrow{q \rightarrow 1} \sum_{n=0}^{\infty} \frac{\left(-h_{3}+l_{3}+\nu ; n\right)(\nu ; n)}{(1 ; n)\left(h_{1}-l_{1}+1 ; n\right)}\left(\frac{\left(1-t_{1} / t_{3}\right)\left(1-t_{1} / t_{3}\right)\left(1-t_{2} / t_{3}\right)\left(1-t_{1} / x\right)}{\left(1-t_{1} / t_{2}\right)\left(1-t_{1} / t_{3}\right)\left(1-x / t_{3}\right)\left(1-t_{1} / t_{3}\right)} \frac{x}{t_{2}}\right)^{n} \\
&={ }_{2} F_{1}\left(\begin{array}{c}
-h_{3}+l_{3}+\nu, \nu \\
h_{1}-l_{1}+1
\end{array} ; \frac{x-t_{1}}{x-t_{3}} \frac{t_{2}-t_{3}}{t_{2}-t_{1}}\right) .
\end{aligned}
$$

Note that $\left(q^{\alpha}\right)_{n} /(1-q)^{n} \xrightarrow{q \rightarrow 1} \alpha(\alpha+1) \cdots(\alpha+n-1)=(\alpha ; n)$, $(X)_{n} \xrightarrow{q \rightarrow 1}(1-X)^{n}$.

Summary

In this talk, we give integral solutions and series solutions for the variant of the q-hypergeometric equation of degree three $\mathcal{H}_{3} y=0$. The key point is to regard this equation as a q-analog of the Riemann-Papperitz system.

There are many applications:

- q-analogs of Kummer's 24 solutions.
- A new equation that the Askey-Wilson function satisfies.
- A connection problem, and a new linear relation for the Askey-Wilson functions.
There are many future works.
- Some variants of various q-hypergeometric functions/equations.
- Special solutions for the eigenvalue problem of (first degeneration of) the Ruijsenaars-van Diejen operator.

q-analogs of Kummer's 24 solutions

Kummer's 24 solutions are the list of the series solutions for the Gauss' hypergeometric equation. For examples,

$$
\begin{aligned}
& { }_{2} F_{1}\left(\begin{array}{c}
\alpha, \beta \\
\gamma
\end{array} ; x\right), \\
& x^{1-\gamma}{ }_{2} F_{1}\left(\begin{array}{c}
\alpha-\gamma+1, \beta-\gamma+1 \\
2-\gamma
\end{array} ; x\right), \\
& \left.{ }_{2} F_{1}\binom{\alpha, \beta}{\alpha+\beta-\gamma+1} 1-x\right) .
\end{aligned}
$$

$$
\begin{aligned}
& E\binom{\alpha, \beta}{\gamma} \xrightarrow{\square \mapsto 1-x} \underset{x^{1-\gamma}}{ } \\
& E\binom{\alpha-\gamma+1, \beta-\gamma+1}{2-\gamma} \\
& E\binom{\alpha, \beta}{\alpha+\beta-\gamma+1}
\end{aligned}
$$

In the theory of q-difference equations, we can not apply some Möbius transformations. So it is difficult to find q-analogs of the above solutions directly.

By degenerating the equation $\mathcal{H}_{3} y=0$, we get the variant of the q-hypergeometric equation of degree two $\mathcal{H}_{2} y=0$ and the Heine's equation:

$$
\mathcal{H}_{3} y=0 \xrightarrow{t_{i} \rightarrow \infty} \mathcal{H}_{2} y=0 \xrightarrow{t_{j} \rightarrow 0} \text { Heine. }
$$

So by taking the same limit for solutions, we obtain solutions for $\mathcal{H}_{2} y=0$ and the Heine's equation systematically. For integrals, we have

$$
\int \prod_{i=0}^{3} \frac{\left(q^{\bullet} t_{i} t\right)_{\infty}}{\left(q^{\bullet} t_{i} t\right)_{\infty}} d_{q} t \rightarrow \int t^{\bullet} \prod_{i=0}^{2} \frac{\left(q^{\bullet} t_{i} t\right)_{\infty}}{\left(q^{\bullet} t_{i} t\right)_{\infty}} d_{q} t \rightarrow \int t^{\bullet} \prod_{i=0}^{1} \frac{\left(q^{\bullet} t_{i} t\right)_{\infty}}{\left(q^{\bullet} t_{i} t\right)_{\infty}} d_{q} t
$$

For series, we have many solutions. We summarize them in next page.

$$
\begin{aligned}
& \mathcal{H}_{3} \longrightarrow \mathcal{H}_{2} \longrightarrow \text { Heine } \\
& { }_{8} W_{7} \quad{ }_{3 \varphi_{2}}\left(\underset{\substack{0, t_{1} / x \\
\bullet, t_{1} / t_{2}}}{ } \cdot \boldsymbol{\bullet} \frac{x}{t_{2}}\right) \\
& { }_{2} \varphi_{1}(\because ; x) \\
& { }_{3} \varphi_{2}\left(\begin{array}{cc}
\bullet, \bullet, \bullet x / t_{1} & \left.; \bullet \frac{t_{1}}{t_{2}}\right)
\end{array}\right. \\
& { }_{2} \varphi_{1}\left(\stackrel{\bullet}{\bullet} \quad ; \frac{\bullet}{x}\right) \\
& { }_{3} \varphi_{2}\left(\begin{array}{c}
\bullet, \bullet, t_{1} / t_{2} \\
\bullet, \bullet x / t_{2}
\end{array} ; q\right) \\
& { }_{3} \varphi_{2}\left(\begin{array}{c}
\bullet, \bullet, \bullet x \\
\bullet, 0
\end{array} ; q\right) \\
& { }_{3} \varphi_{2}\left(\begin{array}{c}
\bullet, \bullet, \bullet t_{1} / t_{2} \\
\bullet, \bullet t_{1} / x
\end{array} ; \cdot \frac{t_{2}}{x}\right) \\
& { }_{3} \varphi_{2}\left(\begin{array}{c}
\bullet, \bullet, \bullet / x \\
\bullet, 0
\end{array} ; q\right) \\
& { }_{3} \varphi_{2}\left(\begin{array}{c}
\bullet, \bullet, \bullet t_{1} / x \\
\bullet, \bullet t_{2} / x
\end{array} ; q\right) \\
& 2 \varphi_{2}\left(\begin{array}{cc}
\bullet, \bullet & \bullet x \\
\bullet, \bullet x
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
& { }_{2} \varphi_{2}\left(\begin{array}{cc}
\bullet, \bullet & \bullet \\
\bullet & \bullet \\
\bullet
\end{array}\right) \\
& 3 \varphi_{2}\left(\begin{array}{c}
\bullet, \bullet, 0 \\
\bullet, \bullet x
\end{array} ; q\right) \\
& 3 \varphi_{2}\left(\begin{array}{l}
\bullet, \bullet, 0 \\
\bullet, \bullet / x
\end{array} ; q\right)
\end{aligned}
$$

On the Askey-Wilson function

The very-well-poised balanced q-hypergeometric function

$$
{ }_{8} W_{7}\left(a ; b, c, d, e, f ; \frac{a^{2} q^{2}}{b c d e f}\right),
$$

is well known as the Askey-Wilson function.
Some q-difference equations that the Askey-Wilson function satisfies were obtained (cf. Askey-Wilson, Ismail-Rahman).

The equation $\mathcal{H}_{3} y=0$ is different from these equations, so we get another equation for the Askey-Wilson function.

On a connection problem

We give 6 integral solutions for the equation $\mathcal{H}_{3} y=0$:

$$
x^{\nu-\alpha} \int_{\sigma_{1}}^{\sigma_{2}} \frac{\left(q^{\nu} x t, q^{h_{1}+\frac{1}{2}} t_{1} t, q^{h_{2}+\frac{1}{2}} t_{2} t, q^{h_{3}+\frac{1}{2}} t_{3} t\right)_{\infty}}{\left(x t, q^{\nu+l_{1}-\frac{1}{2}} t_{1} t, q^{\nu+l_{2}-\frac{1}{2}} t_{2} t, q^{\nu+l_{3}-\frac{1}{2}} t_{3} t\right)_{\infty}} d_{q} t
$$

where $\sigma_{1}, \sigma_{2} \in\left\{q^{\frac{1}{2}-h_{1}} / t_{1}, q^{\frac{1}{2}-h_{2}} / t_{2}, q^{\frac{1}{2}-h_{3}} / t_{3}, q^{1-\nu} / x\right\}$.
So there are 4 linear relations for such solutions.
We consider a connection problem:
"Find 4 linear relations for solutions of the equation $\mathcal{H}_{3} y=0$."

By the definition $\int_{\sigma_{1}}^{\sigma_{2}}=\int_{0}^{\sigma_{2}}-\int_{0}^{\sigma_{1}}$ of the Jackson integral, we have $\int_{\sigma_{1}}^{\sigma_{2}}+\int_{\sigma_{2}}^{\sigma_{3}}+\int_{\sigma_{3}}^{\sigma_{1}}=0$. Thus we get 3 relations for the above solutions.

Another one is derived by considering Mimachi's relations for the Jackson integral of the Jordan-Pochhammer type:

$$
\begin{aligned}
& \int_{0}^{q /(A x)} t^{\alpha-1} \prod_{i=1}^{M} \frac{\left(a_{i} t\right)_{\infty}}{\left(b_{i} t\right)_{\infty}} \frac{(A x t)_{\infty}}{(B x t)_{\infty}} d_{q} t \\
& =\sum_{i=1}^{M} C_{i} \int_{0}^{q /\left(a_{i}\right)} t^{\alpha-1} \prod_{i=1}^{M} \frac{\left(a_{i} t\right)_{\infty}}{\left(b_{i} t\right)_{\infty}} \frac{(A x t)_{\infty}}{(B x t)_{\infty}} d_{q} t \\
& +C_{M+1} \int_{0}^{b_{1}} t^{\rho} \prod_{i=1}^{M} \frac{\left(q t / b_{i}\right)_{\infty}}{\left(q t / a_{i}\right)_{\infty}} \frac{(q t /(B x))_{\infty}}{(q t /(A x))_{\infty}} d_{q} t \quad\left(q^{\rho}=q^{-\alpha} \frac{a_{1} \cdots a_{M} A}{b_{1} \cdots b_{M} B}\right)
\end{aligned}
$$

Here C_{1}, \ldots, C_{M+1} are given by some ratio of the theta function $\theta(x)=(x, q / x)_{\infty}$. We put the parameters as $M=3, \alpha=1$, $a_{1} a_{2} a_{3} A=q^{2} b_{1} b_{2} b_{3} B$ (and $\rho=1$). Then the coefficient C_{M+1} is vanished (because $C_{M+1}=\frac{\cdots \times \theta\left(q^{\rho}\right)}{\cdots}$).

We have

$$
\int_{0}^{q /(A x)} \prod_{i=1}^{M} \frac{\left(a_{i} t\right)_{\infty}}{\left(b_{i} t\right)_{\infty}} \frac{(A x t)_{\infty}}{(B x t)_{\infty}} d_{q} t=\sum_{i=1}^{3} C_{i} \int_{0}^{q /\left(a_{i}\right)} \prod_{i=1}^{M} \frac{\left(a_{i} t\right)_{\infty}}{\left(b_{i} t\right)_{\infty}} \frac{(A x t)_{\infty}}{(B x t)_{\infty}} d_{q} t
$$

So we get
$C \int_{0}^{q /(A x)} \prod_{i=1}^{M} \frac{\left(a_{i} t\right)_{\infty}}{\left(b_{i} t\right)_{\infty}} \frac{(A x t)_{\infty}}{(B x t)_{\infty}} d_{q} t=\sum_{i=1}^{3} C_{i} \int_{q /(A x)}^{q /\left(a_{i}\right)} \prod_{i=1}^{M} \frac{\left(a_{i} t\right)_{\infty}}{\left(b_{i} t\right)_{\infty}} \frac{(A x t)_{\infty}}{(B x t)_{\infty}} d_{q} t$,
where $C=1+C_{1}+C_{2}+C_{3}$. The integral of the L.H.S. is not a solution for the equation $H_{3} y=0$, although the R.H.S. is a solution, so we finally find $C=0$ and

$$
\sum_{i=1}^{3} C_{i} \int_{q /(A x)}^{q /\left(a_{i}\right)} \prod_{i=1}^{M} \frac{\left(a_{i} t\right)_{\infty}}{\left(b_{i} t\right)_{\infty}} \frac{(A x t)_{\infty}}{(B x t)_{\infty}} d_{q} t=0
$$

Future works: a variant of the q-Appell-Lauricella system

A q-analog of the Riemann-Papperitz system has not been considered because the points $x=0$ and ∞ are special in the theory of q-difference equations. However we could consider such a q-analog.

We can treat every point equally even in q-difference equations!

It is interesting to consider some q-hypergeometric functions with this slogan. Now I am trying for the q-Appell-Lauricella case.

The q-Appell-Lauricella system

The q-Appell-Lauricella system is defined as follows:

$$
\begin{aligned}
& {\left[\left(1-T_{i}\right)\left(1-c q^{-1} T\right)-x_{i}\left(1-b_{i} T_{i}\right)(1-a T)\right] y=0 \quad(1 \leq i \leq M),} \\
& {\left[x_{i}\left(1-b_{i} T_{i}\right)\left(1-T_{j}\right)-x_{j}\left(1-b_{j} T_{j}\right)\left(1-T_{i}\right)\right] y=0 \quad(1 \leq i<j \leq M) .}
\end{aligned}
$$

The rank of this system is $M+1$, and it has integral solutions and series solutions:

$$
\begin{aligned}
& \int_{C} t^{\alpha-1} \frac{(q t)_{\infty}}{(c t / a)_{\infty}} \prod_{i=1}^{M} \frac{\left(b_{i} x_{i} t\right)_{\infty}}{\left(x_{i} t\right)_{\infty}} d_{q} t, \\
& \varphi_{D}\left(\begin{array}{c}
a ;\left\{b_{i}\right\} \\
c
\end{array} ;\left\{x_{i}\right\}\right)=\sum_{m_{1}, \ldots, m_{M} \geq 0} \frac{(a)_{m_{1}+\cdots+m_{M}}}{(c)_{m_{1}+\cdots+m_{M}}} \prod_{i=1}^{M}\left(\frac{\left(b_{i}\right)_{m_{i}}}{(q)_{m_{i}}} x_{i}^{m_{i}}\right) .
\end{aligned}
$$

We consider the following Jackson integral:

$$
\int_{q / a_{i}}^{q / a_{j}} \prod_{i=1}^{M+3} \frac{\left(a_{i} t\right)_{\infty}}{\left(b_{i} t\right)_{\infty}} d_{q} t \quad\left(a_{1} \cdots a_{M+3}=q^{2} b_{1} \cdots b_{M+3}\right)
$$

We find some properties about this integral:

- The integral satisfies a q-difference system of rank $M+1$.
- The integral can be transformed to some multiple q-hypergeometric series. This transformation can be derived by taking some limit for the Kajihara's transformation formula.
- A connection problem associated with the above system is solved.

We expect that many solutions for the q-Appell-Lauricella system can be obtained by degenerating the multiple series. And there are more applications, I think.

A q-analog of the Riemann-Papperitz system has not been considered because the points $x=0$ and ∞ are special in the theory of q-difference equations. However we could consider such a q-analog.

We can treat every point equally even in q-difference equations!

Thank you very much for your attention!

