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Abstract

Two variants of the q-hypergeometric equation H2 and H3 are
introduced by Hatano-Matsunawa-Sato-Takemura from the viewpoint of
some quantum integrable system.
In this talk, we will discuss H3 mainly.
We will show that this equation can be regarded as a q-analog of the
Riemann-Papperitz differential system.
From this aspect, we will give integral solutions and series solutions for
the equation H3.
If time permits, we will show some applications.

§1 Introduction pp.3–8.

§2 Solutions for the equation H3 pp.9–25.

§3 Some applications (if time permits) pp.26–36.
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Notations

Throughout this talk, we fix q ∈ C with 0 < |q| < 1.

the q-shifted factorial (the q-Pochhammer symbol):

(a)∞ =

∞∏
i=0

(1− aqi), (a)n =
(a)∞

(aqn)∞
, (a1, . . . , aM )n = (a1)n · · · (aM )n.

the Jackson integral:∫ σ

0

f(t)dqt = (1− q)σ

∞∑
i=0

f(σqi)qi,

∫ σ∞

0

f(t)dqt = (1− q)σ

∞∑
i=−∞

f(σqi)qi,∫ σ2

σ1

f(t)dqt =

∫ σ2

0

f(t)dqt−
∫ σ1

0

f(t)dqt.

the q-shift operator: Txf(x) = f(qx).
t

f(t)

σσqσq2· · ·O
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Main result

The variant of the q-hypergeometric equation of degree three is defined
as follows:

H3 y = 0,

H3 =

3∏
i=1

(x− qhi+1/2ti) · T−1
x + q2α+1

3∏
i=1

(x− qli−1/2ti) · Tx

− qα
[
(q + 1)x3 − q1/2

3∑
i=1

(qhi + qli)tix
2

+ q(h1+h2+h3+l1+l2+l3+1)/2t1t2t3

3∑
i=1

q−hi + q−li

ti
x

− q(h1+h2+h3+l1+l2+l3)/2(q + 1)t1t2t3

]
.
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The functions

xν−α

∫ σ2

σ1

(qνxt, qh1+
1
2 t1t, q

h2+
1
2 t2t, q

h3+
1
2 t3t)∞

(xt, qν+l1− 1
2 t1t, qν+l2− 1

2 t2t, qν+l3− 1
2 t3t)∞

dqt,

xν−α (q
ν−h3+

1
2x/t3)∞

(q
1
2−h3x/t3)∞

× 8W7

(
t1q

h1−h3+ν

t3
;
t1q

−h3+l1+ν

t3
,
t2q

−h3+l2+ν

t3
, q−h3+l3+ν ,

t1q
h1+

1
2

x
, qν ;

xq
1
2−h2

t2

)
,

satisfy H3 y = 0, where ν = 1
2 (h1 + h2 + h3 − l1 − l2 − l3 + 1),

σ1, σ2 ∈ {q 1
2−h1/t1, q

1
2−h2/t2, q

1
2−h3/t3, q

1−ν/x} and

8W7(a; b, c, d, e, f ; z) =

∞∑
n=0

1− aq2n

1− a

(a, b, c, d, e, f)n
(q, qa/b, qa/c, qa/d, qa/e, qa/f )n

zn.
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Background

Painlevé

elliptic E
(1)
8

q-E
(1)
8

q-E
(1)
7

q-E
(1)
6

q-D
(1)
5

specialization of
Lax linear equations

Ruijsenaars-
van Diejen

Ay = Ey

A⟨1⟩y = Ey

A⟨2⟩y = Ey

A⟨3⟩y = Ey

A⟨4⟩y = Ey

q-Heun and its variants

specialization like
Heun → Gauss

hypergeometric

H3 y = 0

H2 y = 0

Heine
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A brief review for the Heine’s equation

The Heine’s q-hypergeometric equation is defined as follows:

[(1− Tx)(1− cq−1Tx)− x(1− aTx)(1− bTx)]y = 0.

This equation is a q-analog of the Gauss hypergeometric equation. More
precisely, by taking the classical limit q → 1 with a = qα, b = qβ , c = qγ ,
we get [

x(1− x)
d2

dx2
+ (γ − (α+ β + 1)x)

d

dx
− αβ

]
y = 0.

The variants of the q-hypergeometric equation H2 and H3 are some
extensions for the Heine’s equation.
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The Gauss equation has Euler type integral solutions and series solutions
in terms of the Gauss hypergeometric function 2F1:∫

C

tα−1(1− t)γ−α−1(1− xt)−βdt,

2F1

(
α, β
γ

;x

)
= 1 +

α · β
γ · 1

x+
α(α+ 1) · β(β + 1)

γ(γ + 1) · 1 · 2
x2 + · · · .

Similarly the Heine’s equation has solutions in terms of q-analogs of the
above functions:∫

C

tα−1 (qt)∞
(ct/a)∞

(bxt)∞
(xt)∞

dqt (qα = a),

(
(qαx)∞
(x)∞

q→1−−−→ (1− x)−α

)
2φ1

(
a, b
c

;x

)
=

∞∑
n=0

(a)n(b)n
(c)n(q)n

xn

= 1 +
(1− a)(1− b)

(1− c)(1− q)
x+

(1− a)(1− aq)(1− b)(1− bq)

(1− c)(1− cq)(1− q)(1− q2)
x2 + · · · .
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The equation H3 y = 0 (recall)

The variant of the q-hypergeometric equation of degree three is defined
as follows:

H3 y = 0,

H3 =

3∏
i=1

(x− qhi+1/2ti) · T−1
x + q2α+1

3∏
i=1

(x− qli−1/2ti) · Tx

− qα
[
(q + 1)x3 − q1/2

3∑
i=1

(qhi + qli)tix
2

+ q(h1+h2+h3+l1+l2+l3+1)/2t1t2t3

3∑
i=1

q−hi + q−li

ti
x

− q(h1+h2+h3+l1+l2+l3)/2(q + 1)t1t2t3

]
.
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Characterization

Suppose an operator H =

3∑
i=0

1∑
j=−1

ai,jx
iT j

x satisfies the following

conditions:

We rewrite H =

3∑
i=0

xiLi(Tx), then

L0(y) ∝ (y − a)(y − aq), L1(y) ∝ (y − a).
L3(y) ∝ (y − b)(y − bq−1), L2(y) ∝ (y − b).

We rewrite H =

1∑
j=−1

Pj(x)T
j
x , then

P−1(x) ∝ (x− c1)(x− c2)(x− c3).
P1(x) ∝ (x− d1)(x− d2)(x− d3).

Then the equation Hy = 0 is equivalent to the equation H3 y = 0.
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Classical limit q → 1

By taking the limit q → 1, the equation H3 y = 0 becomes a Fuchsian
differential equation which has the following Riemann scheme: x = 0 t1 t2 t3 ∞

ρ0 0 0 0 ρ∞
ρ0 + 1 ∗ ∗ ∗ ρ∞ + 1

 .

The points x = 0 and ∞ are essentially non-singular (i.e. these points
can be transformed to regular points by some gauge factor).
By some gauge transformation, this differential equation is transformed to x = t1 t2 t3

∗ ∗ ∗
∗ ∗ ∗

 .

This equation is called the Riemann-Papperitz’s differential equation.
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Solutions for the Riemann-Papperitz’s equation

The Riemann-Papperitz’s differential equation can be transformed to the
Gauss’ hypergeometric equation by the Möbius transformation

x 7→ x− t1
x− t3

t2 − t3
t2 − t1

.

It is well known that the Gauss’ equation has Euler-type integral solutions
and series solutions in terms of the hypergeometric function 2F1:∫

C

tα−1(1− t)γ−α−1(1− xt)−βdt, 2F1

(
α, β
γ

;x

)
.

So we get solutions for the Riemann-Papperitz’s equation:

(gauge factor)×
∫
C

(t− x)ν0(t− t1)
ν1(t− t2)

ν2(t− t3)
ν3dt,

(gauge factor)× 2F1

(
µ1, µ2

µ3
;
x− t1
x− t3

t2 − t3
t2 − t1

)
,

where ν0 + ν1 + ν2 + ν3 = −2.
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Observation

The equation H3 y = 0 can be regarded as a q-analog of the
Riemann-Papperitz’s differential system.

The Riemann-Papperitz’s system has integral solutions and series
solutions as follows:

(gauge factor)×
∫
C

(t− x)ν0(t− t1)
ν1(t− t2)

ν2(t− t3)
ν3dt,

(gauge factor)× 2F1

(
µ1, µ2

µ3
;
x− t1
x− t3

t2 − t3
t2 − t1

)
,

where ν0 + ν1 + ν2 + ν3 = −2.

⇝ Naively it is expected that the equation H3 y = 0 has solutions in
terms of q-analogs of these functions.

13 / 37



We consider q-analogs of such solutions for the Riemann-Papperitz’s
system.

It is difficult to directly consider a q-analog of the series

2F1

(
µ1, µ2

µ3
;
x− t1
x− t3

t2 − t3
t2 − t1

)
.

In the theory of q-difference equations, the points x = 0 and ∞ are
special points because these are fixed points of the q-shift operator
Tx : x 7→ qx 7→ q2x 7→ · · · . So we cannot apply some Möbius
transformation to q-difference equations.

It is easy to consider a q-analog of the integral∫
C

(t− x)ν0(t− t1)
ν1(t− t2)

ν2(t− t3)
ν3dt,

by the q-binomial theorem

(
(qαx)∞
(x)∞

q→1−−−→ (1− x)−α

)
.
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In short, we should consider the following Jackson integral:∫
C

(q−ν0xt)∞
(xt)∞

(q−ν1t1t)∞
(t1t)∞

(q−ν2t2t)∞
(t2t)∞

(q−ν3t3t)∞
(t3t)∞

dqt,

where ν0 + ν1 + ν2 + ν3 = −2. This integral is equivalent to∫
C

(Axt)∞
(Bxt)∞

3∏
i=1

(ait)∞
(bit)∞

dqt,

where Aa1a2a3 = q2Bb1b2b3.

We will derive a q-difference equation that the integral satisfies.
To derive it, a q-difference equation that the integrand satisfies will be
considered.

ψ = ψ(x, t) =
(Axt)∞
(Bxt)∞

3∏
i=1

(ait)∞
(bit)∞

.
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The integrand ψ =
(Axt)∞
(Bxt)∞

3∏
i=1

(ait)∞
(bit)∞

satisfies the following system:

Txψ =
1−Bxt

1−Axt
ψ, T−1

x Ttψ =

3∏
i=1

1− bit

1− ait
ψ.

So we get the equations:

tx(B −ATx)ψ = (1− Tx)ψ,

3∑
k=0

(−1)ktk
(
ek(a)T

−1
x Tt − ek(b)

)
ψ = 0.

Here ek is the k-th elementary symmetric function.
By using the first equation, we can delete tk from the second equation.
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We get the following:

[x3(B −Aq2Tx)(B −AqTx)(B −ATx)(T
−1
x Tt − 1)

− x2(B −AqTx)(B −ATx)(e1(a)T
−1
x Tt − e1(b))(1− Tx)

+ x(B −ATx)(e2(a)T
−1
x Tt − e2(b))(1− q−1Tx)(1− Tx)

− (e3(a)T
−1
x Tt − e3(b))(1− q−2Tx)(1− q−1Tx)(1− Tx)]ψ = 0.

By integrating this equation with t, we can delete Tt because∫ σ∞

0

Ttf(t)dqt = q−1

∫ σ∞

0

f(t)dqt.

So we obtain a linear q-difference equation of rank 4 that the integral

φ = φ(x, σ) =

∫ σ∞

0

ψ(x, t)dqt satisfies.
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We find

[x3(B −Aq2Tx)(B −AqTx)(B −ATx)(T
−1
x q−1 − 1)

− x2(B −AqTx)(B −ATx)(e1(a)T
−1
x q−1 − e1(b))(1− Tx)

+ x(B −ATx)(e2(a)T
−1
x q−1 − e2(b))(1− q−1Tx)(1− Tx)

− (e3(a)T
−1
x q−1 − e3(b))(1− q−2Tx)(1− q−1Tx)(1− Tx)]φ(x, σ) = 0.

This equation is reducible:

(B −Aq−1Tx)(1− q−2Tx)H3φ(x, σ) = 0,

H3 = x3(B −AqTx)(B −ATx)T
−1
x − x2(B −ATx)(e1(a)T

−1
x − qe1(b))

+ x(e2(a)T
−1
x − qe2(b))(1− Tx)−

a1a2a3
B

(1− q−1Tx)(1− Tx)T
−1
x .
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The equation H3 y = 0 is equivalent to the variant of the
q-hypergeometric equation of degree three H3 y = 0.
More precisely, we put A = qν , B = 1, ai = tiq

hi+
1
2 , bi = tiq

li− 1
2+ν and

apply some gauge transformation y → xν−αy, then H3 y = 0 becomes
H3 y = 0.

Now we have (B −Aq−1Tx)(1− q−2Tx)H3φ(x, σ) = 0.
So we want to delete the terms (B −Aq−1Tx)(1− q−2Tx).

(B −Aq−1Tx)y = 0 ⇝ y = Cxλ, (qλ = Bq/A).

(1− q−2Tx)y = 0 ⇝ y = Cx2.

⇝ We get H3φ(x, σ) = C1x
λ + C2x

2.

By some calculations, we find the following:

H3φ(x, σ) = (A−B)qx2, (σ ∈ {q/a1, q/a2, q/a3, q/(Ax)}).
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Integral solutions

Finally we get 6 integral solutions for the equation H3 y = 0:∫ σ2

σ1

(Axt)∞
(Bxt)∞

3∏
i=1

(ait)∞
(bit)∞

dqt,

where Aa1a2a3 = q2Bb1b2b3 and σ1, σ2 ∈ {q/a1, q/a2, q/a3, q/(Ax)}.
These are q-analogs of integral solutions∫

C

(t− x)ν0(t− t1)
ν1(t− t2)

ν2(t− t3)
ν3dt,

for the Riemann-Papperitz’s equation.

20 / 37



From integral solutions to series solutions

Next, we give series solutions for the equation H3 y = 0.
By the Bailey’s formula∫ b

a

(qt/a, qt/b, ct, dt)∞
(et, ft, gt, ht)∞

dqt

= b(1− q)
(q, bq/a, a/b, cd/eh, cd/fh, cd/gh, bc, bd)∞

(ae, af, ag, be, bf, bg, bh, bcd/h)∞

× 8W7(bcd/hq; be, bf, bg, c/h, d/h; ah) (cd = abefgh),

we get solutions for the equation H3 y = 0 in terms of the
very-well-poised q-hypergeometric function 8W7. Here,

8W7(a; b, c, d, e, f ; z) =

∞∑
n=0

1− aq2n

1− a

(a, b, c, d, e, f)n
(q, qa/b, qa/c, qa/d, qa/e, qa/f )n

zn.
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Applying the Bailey’s formula, we have∫ q/a3

q/a1

(Axt, a1t, a2t, a3t)∞
(Bxt, b1t, b2t, b3t)∞

dqt

= (const.)
(Axq/a3)∞
(Bxq/a3)∞

8W7

(
a2A

a3B
;
qb1
a3
,
qb2
a3
,
qb3
a3
,
a2
Bx

,
A

B
;
Bxq

a1

)
.

Therefore the function

(Axq/a3)∞
(Bxq/a3)∞

8W7

(
a2A

a3B
;
qb1
a3
,
qb2
a3
,
qb3
a3
,
a2
Bx

,
A

B
;
Bxq

a1

)
,

satisfies the equation H3 y = 0.
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Solutions for H3 y = 0

We get integral solutions and series solutions for H3 y = 0.
So we have solutions for the original equation H3 y = 0:

xν−α

∫ σ2

σ1

(qνxt, qh1+
1
2 t1t, q

h2+
1
2 t2t, q

h3+
1
2 t3t)∞

(xt, qν+l1− 1
2 t1t, qν+l2− 1

2 t2t, qν+l3− 1
2 t3t)∞

dqt,

xν−α (q
ν−h3+

1
2x/t3)∞

(q
1
2−h3x/t3)∞

× 8W7

(
t1q

h1−h3+ν

t3
;
t1q

−h3+l1+ν

t3
,
t2q

−h3+l2+ν

t3
, q−h3+l3+ν ,

t1q
h1+

1
2

x
, qν ;

xq
1
2−h2

t2

)
.

This series 8W7 is a q-analog of the series solution 2F1

(
x− t1
x− t3

t2 − t3
t2 − t1

)
(see next page).
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8W7
q→1−−→ 2F1

Taking the limit q → 1, we have

8W7

(
t1q

h1−h3+ν

t3
;
t1q

−h3+l1+ν

t3
,
t2q

−h3+l2+ν

t3
, q−h3+l3+ν ,

t1q
h1+

1
2

x
, qν ;

xq
1
2−h2

t2

)

=

∞∑
n=0

1− (t2q
•/t3)q

2n

1− t2q•/t3

(t1q
•/t3, t1q

•/t3, t2q
•/t3, q

•, t1q
•/x, q•)n

(q, q•, t1q•/t2, t1q•/t3, xq•/t3, t1q•/t3)n

(
xq•

t2

)n

q→1−−−→
∞∑

n=0

(−h3 + l3 + ν;n)(ν;n)

(1;n)(h1 − l1 + 1;n)

(
(1− t1/t3)(1− t1/t3)(1− t2/t3)(1− t1/x)

(1− t1/t2)(1− t1/t3)(1− x/t3)(1− t1/t3)

x

t2

)n

= 2F1

(
−h3 + l3 + ν, ν
h1 − l1 + 1

;
x− t1
x− t3

t2 − t3
t2 − t1

)
.

Note that (qα)n/(1− q)n
q→1−−−→ α(α+ 1) · · · (α+ n− 1) = (α;n),

(X)n
q→1−−−→ (1−X)n.
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Summary

In this talk, we give integral solutions and series solutions for the variant
of the q-hypergeometric equation of degree three H3 y = 0.
The key point is to regard this equation as a q-analog of the
Riemann-Papperitz system.

There are many applications:

q-analogs of Kummer’s 24 solutions.

A new equation that the Askey-Wilson function satisfies.

A connection problem, and a new linear relation for the
Askey-Wilson functions.

There are many future works.

Some variants of various q-hypergeometric functions/equations.

Special solutions for the eigenvalue problem of (first degeneration
of) the Ruijsenaars-van Diejen operator.
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q-analogs of Kummer’s 24 solutions

Kummer’s 24 solutions are the list of the series solutions for the Gauss’
hypergeometric equation. For examples,

2F1

(
α, β
γ

;x

)
,

x1−γ
2F1

(
α− γ + 1, β − γ + 1

2− γ
;x

)
,

2F1

(
α, β

α+ β − γ + 1
; 1− x

)
.

E

(
α, β
γ

)

E

(
α− γ + 1, β − γ + 1

2− γ

)

E

(
α, β

α+ β − γ + 1

)
×x1−γ

x 7→ 1− x

In the theory of q-difference equations, we can not apply some Möbius
transformations. So it is difficult to find q-analogs of the above solutions
directly.
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By degenerating the equation H3 y = 0, we get the variant of the
q-hypergeometric equation of degree two H2 y = 0 and the Heine’s
equation:

H3 y = 0
ti→∞−−−−→ H2 y = 0

tj→0−−−→ Heine.

So by taking the same limit for solutions, we obtain solutions for
H2 y = 0 and the Heine’s equation systematically. For integrals, we have∫ 3∏

i=0

(q•tit)∞
(q•tit)∞

dqt→
∫
t•

2∏
i=0

(q•tit)∞
(q•tit)∞

dqt→
∫
t•

1∏
i=0

(q•tit)∞
(q•tit)∞

dqt.

For series, we have many solutions. We summarize them in next page.
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H3 H2 Heine

2φ1

(
•, •
• ;x

)
2φ1

(
•, •
• ;

•
x

)
3φ2

(
•, •, •x
•, 0 ; q

)
3φ2

(
•, •, •/x

•, 0 ; q

)
2φ2

(
•, •
•, •x ; •x

)
2φ2

(
•, •

•, •/x ;
•
x

)
3φ2

(
•, •, 0
•, •x ; q

)
3φ2

(
•, •, 0
•, •/x ; q

)

3φ2

(
•, •, •t1/x
•, •t1/t2

; • x
t2

)
3φ2

(
•, •, •x/t1
•, •x/t2

; • t1
t2

)
3φ2

(
•, •, •t1/t2
•, •x/t2

; q

)
3φ2

(
•, •, •t1/t2
•, •t1/x

; • t2
x

)
3φ2

(
•, •, •t1/x
•, •t2/x

; q

)
3φ2

(
•, •, •x/t1
•, •t2/t1

; q

)

8W7

rφs

(
a1, . . . , ar
b1, . . . , bs

;x

)
=

∞∑
n=0

(a1, . . . , ar)n
(q, b1, . . . , bs)n

(
(−1)nq(

n
2)
)s+1−r

xn.
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On the Askey-Wilson function

The very-well-poised balanced q-hypergeometric function

8W7

(
a; b, c, d, e, f ;

a2q2

bcdef

)
,

is well known as the Askey-Wilson function.
Some q-difference equations that the Askey-Wilson function satisfies were
obtained (cf. Askey-Wilson, Ismail-Rahman).

The equation H3 y = 0 is different from these equations, so we get
another equation for the Askey-Wilson function.
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On a connection problem

We give 6 integral solutions for the equation H3 y = 0:

xν−α

∫ σ2

σ1

(qνxt, qh1+
1
2 t1t, q

h2+
1
2 t2t, q

h3+
1
2 t3t)∞

(xt, qν+l1− 1
2 t1t, qν+l2− 1

2 t2t, qν+l3− 1
2 t3t)∞

dqt,

where σ1, σ2 ∈ {q 1
2−h1/t1, q

1
2−h2/t2, q

1
2−h3/t3, q

1−ν/x}.
So there are 4 linear relations for such solutions.
We consider a connection problem:

“Find 4 linear relations for solutions of the equation H3 y = 0.”

By the definition
∫ σ2

σ1
=
∫ σ2

0
−
∫ σ1

0
of the Jackson integral, we have∫ σ2

σ1
+
∫ σ3

σ2
+
∫ σ1

σ3
= 0. Thus we get

3 relations for the above solutions.
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Another one is derived by considering Mimachi’s relations for the Jackson
integral of the Jordan-Pochhammer type:∫ q/(Ax)

0

tα−1
M∏
i=1

(ait)∞
(bit)∞

(Axt)∞
(Bxt)∞

dqt

=

M∑
i=1

Ci

∫ q/(ai)

0

tα−1
M∏
i=1

(ait)∞
(bit)∞

(Axt)∞
(Bxt)∞

dqt

+ CM+1

∫ b1

0

tρ
M∏
i=1

(qt/bi)∞
(qt/ai)∞

(qt/(Bx))∞
(qt/(Ax))∞

dqt (qρ = q−α a1 · · · aMA
b1 · · · bMB

).

Here C1, . . . , CM+1 are given by some ratio of the theta function
θ(x) = (x, q/x)∞. We put the parameters as M = 3, α = 1,
a1a2a3A = q2b1b2b3B (and ρ = 1). Then the coefficient CM+1 is

vanished (because CM+1 =
· · · × θ(qρ)

· · ·
).
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We have∫ q/(Ax)

0

M∏
i=1

(ait)∞
(bit)∞

(Axt)∞
(Bxt)∞

dqt =

3∑
i=1

Ci

∫ q/(ai)

0

M∏
i=1

(ait)∞
(bit)∞

(Axt)∞
(Bxt)∞

dqt.

So we get

C

∫ q/(Ax)

0

M∏
i=1

(ait)∞
(bit)∞

(Axt)∞
(Bxt)∞

dqt =

3∑
i=1

Ci

∫ q/(ai)

q/(Ax)

M∏
i=1

(ait)∞
(bit)∞

(Axt)∞
(Bxt)∞

dqt,

where C = 1 + C1 + C2 + C3. The integral of the L.H.S. is not a
solution for the equation H3 y = 0, although the R.H.S. is a solution, so
we finally find C = 0 and

3∑
i=1

Ci

∫ q/(ai)

q/(Ax)

M∏
i=1

(ait)∞
(bit)∞

(Axt)∞
(Bxt)∞

dqt = 0.
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Future works: a variant of the q-Appell-Lauricella system

A q-analog of the Riemann-Papperitz system has not been considered
because the points x = 0 and ∞ are special in the theory of q-difference
equations. However we could consider such a q-analog.

Gauss
Riemann-
Papperitz

HeineH3
a q-analog,
however x = 0, ∞
must be treated specially

every points are treated equally� �
We can treat every point equally even in q-difference equations!� �

It is interesting to consider some q-hypergeometric functions with this
slogan. Now I am trying for the q-Appell-Lauricella case.
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The q-Appell-Lauricella system

The q-Appell-Lauricella system is defined as follows:

[(1− Ti)(1− cq−1T )− xi(1− biTi)(1− aT )]y = 0 (1 ≤ i ≤M),

[xi(1− biTi)(1− Tj)− xj(1− bjTj)(1− Ti)]y = 0 (1 ≤ i < j ≤M).

The rank of this system is M + 1, and it has integral solutions and series
solutions:∫

C

tα−1 (qt)∞
(ct/a)∞

M∏
i=1

(bixit)∞
(xit)∞

dqt,

φD

(
a; {bi}
c

; {xi}
)

=
∑

m1,...,mM≥0

(a)m1+···+mM

(c)m1+···+mM

M∏
i=1

(
(bi)mi

(q)mi

xmi
i

)
.
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We consider the following Jackson integral:∫ q/aj

q/ai

M+3∏
i=1

(ait)∞
(bit)∞

dqt (a1 · · · aM+3 = q2b1 · · · bM+3).

We find some properties about this integral:

The integral satisfies a q-difference system of rank M + 1.

The integral can be transformed to some multiple q-hypergeometric
series. This transformation can be derived by taking some limit for
the Kajihara’s transformation formula.

A connection problem associated with the above system is solved.

We expect that many solutions for the q-Appell-Lauricella system can be
obtained by degenerating the multiple series. And there are more
applications, I think.
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A q-analog of the Riemann-Papperitz system has not been considered
because the points x = 0 and ∞ are special in the theory of q-difference
equations. However we could consider such a q-analog.

Gauss
Riemann-
Papperitz

HeineH3
a q-analog,
however x = 0, ∞
must be treated specially

every points are treated equally� �
We can treat every point equally even in q-difference equations!� �
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Thank you very much for
your attention!
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