INTRODUCTION TO GRÖBNER BASES

TAKAYUKI HIBI AND HIDEFUMI OHSUGI

Let $S = K[x_1, ..., x_n]$ denote the polynomial ring in n variables over a field K with deg $x_i = 1$ for i = 1, 2, ..., n, and let

$$Mon(S) = \{x_1^{a_1} x_2^{a_2} \cdots x_n^{a_n} : a_i \in \mathbb{Z}_+, i = 1, 2, \dots, n\},\$$

be the set of monomials of S, where \mathbb{Z}_+ is the set of nonnegative integers. In particular $1 \in \text{Mon}(S)$. For monomials $\mathbf{x}^{\mathbf{a}} = x_1^{a_1} x_2^{a_2} \cdots x_n^{a_n}$ and $\mathbf{x}^{\mathbf{b}} = x_1^{b_1} x_2^{b_2} \cdots x_n^{b_n}$ of S, we say that $\mathbf{x}^{\mathbf{b}}$ divides $\mathbf{x}^{\mathbf{a}}$ if $b_i \leq a_i$ for i = 1, 2, ..., n. We write $\mathbf{x}^{\mathbf{b}} \mid \mathbf{x}^{\mathbf{a}}$ if $\mathbf{x}^{\mathbf{b}}$ divides $\mathbf{x}^{\mathbf{a}}$. Let \mathcal{M} be a nonempty subset of Mon(S). A monomial $\mathbf{x}^{\mathbf{a}} \in \mathcal{M}$ is said to be a minimal element of \mathcal{M} with respect to divisibility if whenever $\mathbf{x}^{\mathbf{b}} \mid \mathbf{x}^{\mathbf{a}}$ with $\mathbf{x}^{\mathbf{b}} \in \mathcal{M}$, then $\mathbf{x}^{\mathbf{b}} = \mathbf{x}^{\mathbf{a}}$. Let \mathcal{M}^{\min} denote the set of minimal elements of \mathcal{M} .

Theorem 1 (Dickson's Lemma). Let \mathcal{M} be a nonempty subset of Mon(S). Then \mathcal{M}^{min} is a finite set.

Proof. We prove Dickson's lemma by using induction on n, the number of variables of $S = K[x_1, x_2, \ldots, x_n]$. Let n = 1. If d is the smallest integer for which $x_1^d \in \mathcal{M}$, then $\mathcal{M}^{\min} = \{x_1^d\}$. Thus \mathcal{M}^{\min} is a finite set.

Let $n \geq 2$ and $B = K[\mathbf{x}] = K[x_1, x_2, \dots, x_{n-1}]$. We use the notation y instead of x_n . Thus $S = K[x_1, x_2, \dots, x_{n-1}, y]$. Let \mathcal{M} be a nonempty subset of Mon(S). Write \mathcal{N} for the subset of Mon(B) which consists of those monomials $\mathbf{x}^{\mathbf{a}}$, where $\mathbf{a} \in \mathbb{Z}_+^{n-1}$, such that $\mathbf{x}^{\mathbf{a}}y^b \in \mathcal{M}$ for some $b \geq 0$. Our induction hypothesis says that \mathcal{N}^{\min} is a finite set. Let $\mathcal{N}^{\min} = \{u_1, u_2, \dots, u_s\}$. By the definition of \mathcal{N} , for each $1 \leq i \leq s$, there is $b_i \geq 0$ with $u_i y^{b_i} \in \mathcal{M}$. Let $b = \max\{b_1, b_2, \dots, b_s\}$. Now, for each $0 \leq \xi < b$, define the subset $\mathcal{N}_{\mathcal{E}}$ of \mathcal{N} to be

$$\mathcal{N}_{\xi} = \{ \mathbf{x}^{\mathbf{a}} \in \mathcal{N} : \mathbf{x}^{\mathbf{a}} y^{\xi} \in \mathcal{M} \}.$$

Again, our induction hypothesis says that, for each $0 \leq \xi < b$, the set \mathcal{N}_{ξ}^{\min} is finite. Let $\mathcal{N}_{\xi}^{\min} = \{u_1^{(\xi)}, u_2^{(\xi)}, \dots, u_{s_{\xi}}^{(\xi)}\}$. We now show that each monomial belonging to \mathcal{M} is divisible by one of the monomials which appear in the following list:

$$u_1 y^{b_1}, u_2 y^{b_2}, \dots, u_s y^{b_s},$$

$$u_1^{(0)}, u_2^{(0)}, \dots, u_{s_0}^{(0)},$$

$$u_1^{(1)} y, u_2^{(1)} y, \dots, u_{s_1}^{(1)} y,$$

$$\dots \dots$$

$$u_1^{(b-1)} y^{b-1}, u_2^{(b-1)} y^{b-1}, \dots, u_{s_{b-1}}^{(b-1)} y^{b-1}.$$

In fact, since, for each monomial $w = \mathbf{x}^{\mathbf{a}} y^{\gamma} \in \mathcal{M}$ with $\mathbf{x}^{\mathbf{a}} \in \text{Mon}(B)$, one has $\mathbf{x}^{\mathbf{a}} \in \mathcal{N}$, it follows that if $\gamma \geq b$, then w is divisible by one of the monomials $u_1 y^{b_1}, u_2 y^{b_2}, \dots, u_s y^{b_s}$, and that if $0 \leq \gamma < b$, then w is divisible by one of the monomials $u_1^{(\gamma)} y^{\gamma}, u_2^{(\gamma)} y^{\gamma}, \dots, u_{s_{\gamma}}^{(\gamma)} y^{\gamma}$. Clearly, the monomials listed above are in \mathcal{M} . Hence \mathcal{M}^{\min} is a subset of the set of monomials listed above. Thus \mathcal{M}^{\min} is finite, as desired.

A monomial order on S is a total order < on Mon(S) such that

- 1 < u for all $1 \neq u \in \text{Mon}(S)$;
- if $u, v \in \text{Mon}(S)$ and u < v, then uw < vw for all $w \in \text{Mon}(S)$.

Example 2. (a) Let $\mathbf{a} = (a_1, a_2, \dots, a_n)$ and $\mathbf{b} = (b_1, b_2, \dots, b_n)$ be vectors belonging to \mathbb{Z}_+^n . We define the total order $<_{\text{lex}}$ on Mon(S) by setting $\mathbf{x}^{\mathbf{a}} <_{\text{lex}} \mathbf{x}^{\mathbf{b}}$ if either (i) $\sum_{i=1}^n a_i < \sum_{i=1}^n b_i$, or (ii) $\sum_{i=1}^n a_i = \sum_{i=1}^n b_i$ and the left-most nonzero component of the vector $\mathbf{a} - \mathbf{b}$ is negative. It follows that $<_{\text{lex}}$ is a monomial order on S, which is called the *lexicographic order* on S induced by the ordering $x_1 > x_2 > \dots > x_n$.

(b) Let $\mathbf{a} = (a_1, a_2, \dots, a_n)$ and $\mathbf{b} = (b_1, b_2, \dots, b_n)$ be vectors belonging to \mathbb{Z}_+^n . We define the total order $<_{\text{rev}}$ on Mon(S) by setting $\mathbf{x}^{\mathbf{a}} <_{\text{rev}} \mathbf{x}^{\mathbf{b}}$ if either (i) $\sum_{i=1}^n a_i < \sum_{i=1}^n b_i$, or (ii) $\sum_{i=1}^n a_i = \sum_{i=1}^n b_i$ and the right-most nonzero component of the vector $\mathbf{a} - \mathbf{b}$ is positive. It follows that $<_{\text{rev}}$ is a monomial order on S, which is called the reverse lexicographic order on S induced by the ordering $x_1 > x_2 > \dots > x_n$.

For example, $x_2x_3 <_{\text{lex}} x_1x_4$ and $x_1x_4 <_{\text{rev}} x_2x_3$ in $K[x_1, x_2, x_3, x_4]$. Among the monomials of degree 2 of $K[x_1, x_2, x_3]$, one has

$$x_3^2 <_{\text{lex}} x_2 x_3 <_{\text{lex}} x_2^2 <_{\text{lex}} x_1 x_3 <_{\text{lex}} x_1 x_2 <_{\text{lex}} x_1^2$$

and

$$x_3^2 <_{\text{rev}} x_2 x_3 <_{\text{rev}} x_1 x_3 <_{\text{rev}} x_2^2 <_{\text{rev}} x_1 x_2 <_{\text{rev}} x_1^2$$

Exercise 3. List the 10 monomials of degree 3 of $K[x_1, x_2, x_3]$ with respect to each of $<_{\text{lex}}$ and $<_{\text{rev}}$.

Lemma 4. Let < be a monomial order on S. Let $u, v \in Mon(S)$ with $u \neq v$ and suppose that u divides v. Then u < v.

Proof. Write v = uw with $w \in \text{Mon}(S)$. Since $w \neq 1$, one has 1 < w. Thus $1 \cdot u < w \cdot u$. Hence u < v, as desired.

We will work with a fixed monomial order < on S. Let $f = \sum_{u \in \text{Mon}(S)} a_u u$ be a nonzero polynomial of S with each $a_u \in K$. The *support* of f is the finite set

$$\operatorname{supp}(f) = \{ u \in \operatorname{Mon}(S) : a_u \neq 0 \}.$$

The *initial monomial* of f with respect to < is the biggest monomial with respect to < among the monomials belonging to supp(f).

Recall that an ideal of S is a nonempty subset I of S such that

- if $f, g \in I$, then $f \pm g \in I$;
- if $f \in I$ and $h \in S$, then $fh \in I$.

Given a subset $\{f_{\lambda}\}_{{\lambda}\in\Lambda}$ of S, we write $(\{f_{\lambda}\}_{{\lambda}\in\Lambda})$ for the set of polynomials of the form $\sum_{{\lambda}\in\Lambda}h_{\lambda}f_{\lambda}$, where $\{{\lambda}\in\Lambda:h_{\lambda}\neq 0\}$ is finite. Then $(\{f_{\lambda}\}_{{\lambda}\in\Lambda})$ is an ideal of S, which is called the ideal of S generated by $\{f_{\lambda}\}_{{\lambda}\in\Lambda}$. When Λ is finite, say, $\Lambda=\{1,2,\ldots,s\}$, we write (f_1,f_2,\ldots,f_s) instead of $(\{f_1,f_2,\ldots,f_s\})$. Conversely, given an ideal I of S, there exists a subset $(\{f_{\lambda}\}_{{\lambda}\in\Lambda})$ of S with $I=(\{f_{\lambda}\}_{{\lambda}\in\Lambda})$. We call $\{f_{\lambda}\}_{{\lambda}\in\Lambda}$ a system of generators of I. We say that an ideal I of S is finitely generated if I possesses a system of generators consisting of a finite number of polynomials. Later, we will see that every ideal of S is finitely generated (Corollary 9).

A monomial ideal is an ideal which is generated by a set of monomials. Let $I \subset S$ be a monomial ideal. It follows that I is generated by a subset $\mathcal{N} \subset \operatorname{Mon}(S)$ if and only if $(I \cap \operatorname{Mon}(S))^{\min} \subset \mathcal{N}$. Hence $(I \cap \operatorname{Mon}(S))^{\min}$ is a unique minimal system of monomial generators of I. Dickson's lemma guarantees that $(I \cap \operatorname{Mon}(S))^{\min}$ is finite. Thus in particular every monomial ideal is finitely generated.

Let I be a nonzero ideal of S. The *initial ideal* of I with respect to < is the monomial ideal of S which is generated by $\{\operatorname{in}_{<}(f): 0 \neq f \in I\}$. We write $\operatorname{in}_{<}(I)$ for the initial ideal of I. Thus

$$\operatorname{in}_{<}(I) = (\{\operatorname{in}_{<}(f) : 0 \neq f \in I\}).$$

Since $(\operatorname{in}_{<}(I) \cap \operatorname{Mon}(S))^{\min}$ is a minimal system of monomial generators of $\operatorname{in}_{<}(I)$, and since $\operatorname{in}_{<}(I) \cap \operatorname{Mon}(S) = (\{\operatorname{in}_{<}(f) : 0 \neq f \in I\})$, there exists a finite number of nonzero polynomials g_1, g_2, \ldots, g_s belonging to I such that $\operatorname{in}_{<}(I)$ is generated by the set $\{\operatorname{in}_{<}(g_1), \operatorname{in}_{<}(g_2), \ldots, \operatorname{in}_{<}(g_s)\}$ of their initial monomials.

Definition 5. Let I be a nonzero ideal of S. A finite set $\{g_1, g_2, \ldots, g_s\}$ of nonzero polynomials with each $g_i \in I$ is said to be a *Gröbner basis* of I with respect to < if the initial ideal $\operatorname{in}_{<}(I)$ of I is generated by the set $\{\operatorname{in}_{<}(g_1), \operatorname{in}_{<}(g_2), \ldots, \operatorname{in}_{<}(g_s)\}$ of their initial monomials.

A Gröbner basis of I with respect to < exists. If \mathcal{G} is a Gröbner basis of I with respect to <, then every finite set \mathcal{G}' with $\mathcal{G} \subset \mathcal{G}' \subset I$ is also a Gröbner basis of I with respect to <. If $\mathcal{G} = \{g_1, \ldots, g_s\}$ is a Gröbner basis of I with respect to < and if f_1, \ldots, f_s are nonzero polynomials belonging to I with each $\operatorname{in}_{<}(f_i) = \operatorname{in}_{<}(g_i)$, then $\{f_1, \ldots, f_s\}$ is also a Gröbner basis of I with respect to <.

Example 6. Let $S = K[x_1, x_2, ..., x_7]$ and I = (f, g), where $f = x_1x_4 - x_2x_3$ and $g = x_4x_7 - x_5x_6$. Let $<_{\text{lex}}$ the lexicographic order on S induced by $x_1 > x_2 > \cdots > x_7$. One has $\text{in}_{<_{\text{lex}}}(f) = x_1x_4$ and $\text{in}_{<_{\text{lex}}}(g) = x_4x_7$. We claim that $\{f, g\}$ is not a Gröbner basis of I with respect to $<_{\text{lex}}$. In fact, the polynomial $h = x_7f - x_1g = x_1x_5x_6 - x_2x_3x_7$ belongs to I, but its initial monomial $\text{in}_{<_{\text{lex}}}(h) = x_1x_5x_6$ can be divided by neither $\text{in}_{<_{\text{lex}}}(f)$ nor $\text{in}_{<_{\text{lex}}}(g)$. Hence $\text{in}_{<_{\text{lex}}}(h) \not\in (\text{in}_{<_{\text{lex}}}(f), \text{in}_{<_{\text{lex}}}(g))$. Thus $\text{in}_{<_{\text{lex}}}(I) \neq (\text{in}_{<_{\text{lex}}}(f), \text{in}_{<_{\text{lex}}}(g))$. In other words, $\{f, g\}$ is not a Gröbner basis of I with respect to $<_{\text{lex}}$. Later, we will show that $\{f, g, h\}$ is a Gröbner basis of I with respect to $<_{\text{lex}}$ (Example 16).

Lemma 7. Let < be a monomial order on $S = K[x_1, ..., x_n]$. Then, for any monomial u of S, there is no infinite descending sequence of the form

$$(1) u = u_0 > u_1 > u_2 > \cdots.$$

Proof. Suppose, on the contrary, that one has an infinite descending sequence (1) and write \mathcal{M} for the set of monomials $\{u_0, u_1, u_2, \ldots\}$. It follows from Dickson's lemma that \mathcal{M}^{\min} is a finite set, say $\mathcal{M}^{\min} = \{u_{i_1}, u_{i_2}, \ldots, u_{i_s}\}$ with $i_1 < i_2 < \cdots < i_s$. Then the monomial u_{i_s+1} is divided by u_{i_j} for some $1 \le j \le s$. Thus by Lemma 4 one has $u_{i_j} < u_{i_s+1}$, which contradicts $i_j < i_s + 1$.

Theorem 8. Let I be a nonzero ideal of $S = K[x_1, ..., x_n]$ and $\mathcal{G} = \{g_1, ..., g_s\}$ a Gröbner basis of I with respect to a monomial order < on S. Then $I = (g_1, ..., g_s)$. In other words, every Gröbner basis of I is a system of generators of I.

Proof. (Gordan) Let $0 \neq f \in I$. Since $\operatorname{in}_{<}(f) \in \operatorname{in}_{<}(I)$ and since \mathcal{G} is a Gröbner basis of I, i.e., $\operatorname{in}_{<}(I) = (\operatorname{in}_{<}(g_1), \ldots, \operatorname{in}_{<}(g_s))$, it follows that there is g_{i_0} such that $\operatorname{in}_{<}(g_{i_0})$ divides $\operatorname{in}_{<}(f)$. Let $\operatorname{in}_{<}(f) = w_0 \operatorname{in}_{<}(g_{i_0})$ with $w_0 \in \operatorname{Mon}(S)$. Let $h_0 = f - c_{i_0}^{-1} c_0 w_0 g_{i_0}$, where c_0 is the coefficient of $\operatorname{in}_{<}(f)$ in f and where c_{i_0} is the coefficient of $\operatorname{in}_{<}(g_{i_0})$ in g_{i_0} . Then $h_0 \in I$. Since $\operatorname{in}_{<}(w_0 g_{i_0}) = w_0 \operatorname{in}_{<}(g_{i_0})$ it follows that $\operatorname{in}_{<}(h_0) < \operatorname{in}_{<}(f)$. If $h_0 = 0$, then $f \in (g_1, \ldots, g_s)$.

Let $h_0 \neq 0$. Then the same technique as we used for f can be applied for h_0 . Thus $h_1 = f - c_{i_1}^{-1} c_1 w_1 g_{i_1} - c_{i_0}^{-1} c_0 w_0 g_{i_0}$, where c_1 is the coefficient of $\operatorname{in}_{<}(h_0)$ in h_0 and where c_{i_1} is the coefficient of $\operatorname{in}_{<}(g_{i_1})$ in g_{i_1} . Then $h_1 \in I$ and $\operatorname{in}_{<}(h_1) < \operatorname{in}_{<}(h_0)$. If $h_1 = 0$, then $f \in (g_1, \ldots, g_s)$.

If $h_1 \neq 0$, then we proceed as before. Lemma 7 guarantees that this procedure must terminate. Thus we obtain an expression of the form $f = \sum_{q=0}^{N} c_{i_q}^{-1} c_q w_q g_{i_q}$. In particular, f belongs to (g_1, g_2, \ldots, g_s) . Thus $I = (g_1, g_2, \ldots, g_s)$, as desired.

Corollary 9 (HILBERT BASIS THEOREM). Every ideal of the polynomial ring $S = K[x_1, \ldots, x_n]$ is finitely generated.

It is natural to ask if the converse of Theorem 8 is true or false. That is to say, if $I = (f_1, f_2, \ldots, f_s)$ is an ideal of $S = K[x_1, \ldots, x_n]$, then does there exist a monomial order < on S such that $\{f_1, f_2, \ldots, f_s\}$ is a Gröbner basis of I with respect to <?

Example 10 ([4]). Let $S = K[x_1, x_2, \ldots, x_{10}]$ and I the ideal of S generated by

$$f_1 = x_1 x_8 - x_2 x_6,$$
 $f_2 = x_2 x_9 - x_3 x_7,$ $f_3 = x_3 x_{10} - x_4 x_8,$ $f_4 = x_4 x_6 - x_5 x_9,$ $f_5 = x_5 x_7 - x_1 x_{10}.$

We claim that there exists no monomial order < on S such that $\{f_1, \ldots, f_5\}$ is a Gröbner basis of I with respect to <.

Suppose, on the contrary, that there exists a monomial order $\langle \rangle$ on S such that $\mathcal{G} = \{f_1, \ldots, f_5\}$ is a Gröbner basis of I with respect to $\langle \rangle$. First, note that each of the five polynomials

$$\begin{array}{c} x_1x_8x_9-x_3x_6x_7,\ x_2x_9x_{10}-x_4x_7x_8,\ x_2x_6x_{10}-x_5x_7x_8,\\ x_3x_6x_{10}-x_5x_8x_9,\ x_1x_9x_{10}-x_4x_6x_7 \end{array}$$

belongs to I. Let, say, $x_1x_8x_9 > x_3x_6x_7$. Since $x_1x_8x_9 \in \text{in}_{<}(I)$, there is $g \in \mathcal{G}$ such that $\text{in}_{<}(g)$ divides $x_1x_8x_9$. Such $g \in \mathcal{G}$ must be f_1 . Hence $x_1x_8 > x_2x_6$. Thus $x_2x_6 \notin \text{in}_{<}(I)$. Hence there exists no $g \in \mathcal{G}$ such that $\text{in}_{<}(g)$ divides $x_2x_6x_{10}$. Hence $x_2x_6x_{10} < x_5x_7x_8$. Thus $x_5x_7 > x_1x_{10}$. Continuing these arguments, we obtain

$$x_1x_8x_9 > x_3x_6x_7$$
, $x_2x_9x_{10} > x_4x_7x_8$, $x_2x_6x_{10} < x_5x_7x_8$, $x_3x_6x_{10} > x_5x_8x_9$, $x_1x_9x_{10} < x_4x_6x_7$

and

$$x_1x_8 > x_2x_6$$
, $x_2x_9 > x_3x_7$, $x_3x_{10} > x_4x_8$, $x_4x_6 > x_5x_9$, $x_5x_7 > x_1x_{10}$.

Hence

$$(2) \quad (x_1x_8)(x_2x_9)(x_3x_{10})(x_4x_6)(x_5x_7) > (x_2x_6)(x_3x_7)(x_4x_8)(x_5x_9)(x_1x_{10}).$$

The opposite relation in (2) occurs in case of $x_1x_8x_9 < x_3x_6x_7$. However, both sides of the inequality (2) coincide with $x_1x_2 \cdots x_{10}$.

In high school mathematics, we learn that, given polynomials f and $g \neq 0$ in one variable x, there exist unique polynomials q and r such that f = gq + r, where either r = 0 or deg $r < \deg g$. The division algorithm generalizes this well-known result.

Theorem 11 (DIVISION ALGORITHM). Let $S = K[x_1, ..., x_n]$ denote the polynomial ring in n variables over a field K and fix a monomial order < on S. Let $g_1, g_2, ..., g_s$ be nonzero polynomials of S. Then, given a polynomial $0 \neq f \in S$, there exist polynomials $f_1, f_2, ..., f_s$ and f' of S with

(3)
$$f = f_1 g_1 + f_2 g_2 + \dots + f_s g_s + f'$$

such that the following conditions are satisfied:

- (i) if $f' \neq 0$ and if $u \in \text{supp}(f')$, then none of $\text{in}_{<}(g_1), \ldots, \text{in}_{<}(g_s)$ divides u, i.e., no $u \in \text{supp}(f')$ belongs to $(\text{in}_{<}(g_1), \ldots, \text{in}_{<}(g_s))$;
- (ii) if $f_i \neq 0$, then

$$\operatorname{in}_{<}(f_i g_i) \leq \operatorname{in}_{<}(f).$$

The right hand side of equation (3) is said to be a *standard expression* for f with respect to g_1, g_2, \ldots, g_s , and the polynomial f' is called a *remainder* of f with respect to g_1, g_2, \ldots, g_s .

Instead of giving a detailed proof of Theorem 11, we discuss a typical example which clearly explains the procedure to obtain a standard expression.

Example 12. Let $<_{\text{lex}}$ denote the lexicographic order on S = K[x, y, z] induced by x > y > z. Let $g_1 = x^2 - z$, $g_2 = xy - 1$ and $f = x^3 - x^2y - x^2 - 1$. Each of

$$f = x^{3} - x^{2}y - x^{2} - 1 = x(g_{1} + z) - x^{2}y - x^{2} - 1$$

$$= xg_{1} - x^{2}y - x^{2} + xz - 1 = xg_{1} - (g_{1} + z)y - x^{2} + xz - 1$$

$$= xg_{1} - yg_{1} - x^{2} + xz - yz - 1 = xg_{1} - yg_{1} - (g_{1} + z) + xz - yz - 1$$

$$= (x - y - 1)g_{1} + (xz - yz - z - 1)$$

and

$$f = x^{3} - x^{2}y - x^{2} - 1 = x(g_{1} + z) - x^{2}y - x^{2} - 1$$

$$= xg_{1} - x^{2}y - x^{2} + xz - 1 = xg_{1} - x(g_{2} + 1) - x^{2} + xz - 1$$

$$= xg_{1} - xg_{2} - x^{2} + xz - x - 1 = xg_{1} - xg_{2} - (g_{1} + z) + xz - x - 1$$

$$= (x - 1)g_{1} - xg_{2} + (xz - x - z - 1)$$

is a standard expression of f with respect to g_1 and g_2 , and each of xz - yz - z - 1 and xz - x - z - 1 is a remainder of f.

Example 12 says that a remainder of a nonzero polynomial may not be unique. However, we have the following fact.

Lemma 13. If $\mathcal{G} = \{g_1, \ldots, g_s\}$ is a Gröbner basis of $I = (g_1, \ldots, g_s)$, then for any nonzero polynomial f of S, there is a unique remainder of f with respect to g_1, \ldots, g_s .

Proof. Suppose there exist remainders f' and f'' with respect to g_1, \ldots, g_s with $f' \neq f''$. Since $0 \neq f' - f'' \in I$, the initial monomial $w = \operatorname{in}_{<}(f' - f'')$ must belong to $\operatorname{in}_{<}(I)$. However, since $w \in \operatorname{supp}(f') \cup \operatorname{supp}(f'')$, none of the monomials $\operatorname{in}_{<}(g_1), \ldots, \operatorname{in}_{<}(g_s)$ divides w. Hence $\operatorname{in}_{<}(I) \neq (\operatorname{in}_{<}(g_1), \ldots, \operatorname{in}_{<}(g_s))$.

Given nonzero polynomials f and g of S, the notation $\operatorname{lcm}(\operatorname{in}_{<}(f), \operatorname{in}_{<}(g))$ stands for the least common multiple of $\operatorname{in}_{<}(f)$ and $\operatorname{in}_{<}(g)$. Let c_f denote the coefficient of $\operatorname{in}_{<}(f)$ in f and c_g the coefficient of $\operatorname{in}_{<}(g)$ in g. The polynomial

$$S(f,g) = \frac{\operatorname{lcm}(\operatorname{in}_{<}(f),\operatorname{in}_{<}(g))}{c_f\operatorname{in}_{<}(f)}f - \frac{\operatorname{lcm}(\operatorname{in}_{<}(f),\operatorname{in}_{<}(g))}{c_g\operatorname{in}_{<}(g)}g$$

is called the S-polynomial of f and g.

We say that f has remainder 0 with respect to g_1, g_2, \ldots, g_s if, in the division algorithm, there is a standard expression (3) of f with respect to g_1, g_2, \ldots, g_s with f' = 0.

Lemma 14. Let f and g be nonzero polynomials and suppose that $\operatorname{in}_{<}(f)$ and $\operatorname{in}_{<}(g)$ are relatively prime, i.e., $\operatorname{lcm}(\operatorname{in}_{<}(f), \operatorname{in}_{<}(g)) = \operatorname{in}_{<}(f) \operatorname{in}_{<}(g)$. Then S(f, g) has remainder 0 with respect to f, g.

Proof. To simplify notation we will assume that each of the coefficients of $\operatorname{in}_{<}(f)$ in f and $\operatorname{in}_{<}(g)$ in g is equal to 1. Let $f = \operatorname{in}_{<}(f) + f_1$ and $g = \operatorname{in}_{<}(g) + g_1$. Since $\operatorname{in}_{<}(f)$ and $\operatorname{in}_{<}(g)$ are relatively prime, it follows that

$$S(f,g) = in_{<}(g)f - in_{<}(f)g$$

= $(g - g_1)f - (f - f_1)g$
= $f_1g - g_1f$.

We claim $(\operatorname{in}_{<}(f_1)\operatorname{in}_{<}(g) =)\operatorname{in}_{<}(f_1g) \neq \operatorname{in}_{<}(g_1f) \ (= \operatorname{in}_{<}(g_1)\operatorname{in}_{<}(f))$. In fact, if $\operatorname{in}_{<}(f_1)\operatorname{in}_{<}(g) = \operatorname{in}_{<}(g_1)\operatorname{in}_{<}(f)$, then, since $\operatorname{in}_{<}(f)$ and $\operatorname{in}_{<}(g)$ are relatively prime, it follows that $\operatorname{in}_{<}(f)$ must divide $\operatorname{in}_{<}(f_1)$. However, since $\operatorname{in}_{<}(f_1) < \operatorname{in}_{<}(f)$, this is impossible. Let, say, $\operatorname{in}_{<}(f_1)\operatorname{in}_{<}(g) < \operatorname{in}_{<}(g_1)\operatorname{in}_{<}(f)$. Then $\operatorname{in}_{<}(S(f,g)) = \operatorname{in}_{<}(g_1f)$ and $S(f,g) = f_1g - g_1f$ turns out to be a standard expression of S(f,g) in terms of f and g. Hence S(f,g) has remainder 0 with respect to f and g, and similarly for $\operatorname{in}_{<}(g_1)\operatorname{in}_{<}(f) < \operatorname{in}_{<}(f_1)\operatorname{in}_{<}(g)$.

We now come to the most fundamental theorem in the theory of Gröbner bases.

Theorem 15 (BUCHBERGER CRITERION). Let I be a nonzero ideal of S and $\mathcal{G} = \{g_1, g_2, \ldots, g_s\}$ a system of generators of I. Then \mathcal{G} is a Gröbner basis of I if and only if the following condition is satisfied:

(*) For all $i \neq j$, $S(g_i, g_j)$ has remainder 0 with respect to g_1, \ldots, g_s .

We refer the reader to a standard textbook on Gröbner bases, e.g., [1], [2] and [3] for a proof of the Buchberger criterion. However, for a (general) Gröbner basis "user," it may not be required to understand a detailed proof of the Buchberger criterion.

In Example 6, by using Lemma 14 together with the Buchberger criterion, it follows immediately that the set $\{f, g\}$ is a Gröbner basis of I = (f, g) with respect to the reverse lexicographic order $<_{\text{rev}}$ induced by $x_1 > x_2 > \cdots > x_7$.

The Buchberger criterion supplies an algorithm to compute a Gröbner basis starting from a system of generators of an ideal.

Let $\{g_1, g_2, \ldots, g_s\}$ be a system of generators of a nonzero ideal I of S and suppose that $\{g_1, g_2, \ldots, g_s\}$ is not a Gröbner basis of I. The Buchberger criterion then guarantees that there is an S-polynomial $S(g_i, g_j)$ such that no remainder of $S(g_i, g_j)$ with respect to g_1, g_2, \ldots, g_s is 0. Let $h_{ij} \in I$ be a remainder of a standard expression of $S(g_i, g_j)$ with respect to g_1, g_2, \ldots, g_s . Then $\operatorname{in}_{<}(h_{ij})$ can be divided by none of the monomials $\operatorname{in}_{<}(g_1), \operatorname{in}_{<}(g_2), \ldots, \operatorname{in}_{<}(g_s)$. In other words, the inclusion

$$(in_{\leq}(g_1), in_{\leq}(g_2), \dots, in_{\leq}(g_s)) \subset (in_{\leq}(g_1), in_{\leq}(g_2), \dots, in_{\leq}(g_s), in_{\leq}(h_{ij})).$$

is strict. With setting $g_{s+1} = h_{ij}$, suppose that $\{g_1, g_2, \ldots, g_s, g_{s+1}\}$ is not a Gröbner basis of I. Again, by using the Buchberger criterion, there is a S-polynomial $S(g_k, g_\ell)$ such that no remainder of $S(g_k, g_\ell)$ with respect to $g_1, g_2, \ldots, g_s, g_{s+1}$ is 0. Let $h_{k\ell} \in I$ be a remainder of $S(g_k, g_\ell)$ with respect to $g_1, g_2, \ldots, g_s, g_{s+1}$. Then the inclusion

$$(in_{<}(g_1), in_{<}(g_2), \dots, in_{<}(g_s), in_{<}(g_{s+1}))$$

 $\subset (in_{<}(g_1), in_{<}(g_2), \dots, in_{<}(g_s), in_{<}(g_{s+1}), in_{<}(h_{k\ell})).$

is strict. By virtue of Dickson's lemma, these procedures must terminate after a finite number of steps, and a Gröbner basis of I can be obtained.

The above algorithm to find a Gröbner basis starting from a system of generators of an ideal is said to be the *Buchberger algorithm*.

Example 16. We continue Example 6. Let $S = K[x_1, x_2, ..., x_7]$ and $<_{\text{lex}}$ the lexicographic order on S induced by $x_1 > x_2 > \cdots > x_7$. Let $f = x_1x_4 - x_2x_3$ and $g = x_4x_7 - x_5x_6$. Thus $\inf_{<_{\text{lex}}}(f) = x_1x_4$ and $\inf_{<_{\text{lex}}}(g) = x_4x_7$. Let I = (f, g). Then $\{f, g\}$ is not a Gröbner basis of I with respect to $<_{\text{lex}}$. Now, as a remainder of $S(f, g) = x_7f - x_1g = x_1x_5x_6 - x_2x_3x_7$ with respect to f and g, we choose S(f, g) itself. Let $h = x_1x_5x_6 - x_2x_3x_7$ with $\inf_{<_{\text{lex}}}(h) = x_1x_5x_6$. Then $\inf_{<_{\text{lex}}}(g)$ and $\inf_{<_{\text{lex}}}(h)$ are relatively prime. On the other hand, $S(f, h) = x_2x_3(x_4x_7 - x_5x_6)$ has remainder 0 with respect to f, g, h. It follows from the Buchberger criterion that $\{f, g, h\}$ is a Gröbner basis of I with respect to $<_{\text{lex}}$.

The following theorem is called *Elimination Theorem* and plays an important role when solving a system of equations.

Theorem 17. Let $S' = K[x_{i_1}, \ldots, x_{i_m}]$ be the subring of $S = K[x_1, \ldots, x_n]$ where $1 \leq i_1 < \cdots < i_m \leq n$ and let < a monomial order on S (and S'). Let \mathcal{G} denote a Gröbner basis of a nonzero ideal I of S with respect of <. If < satisfies the condition

$$(\sharp)$$
 $g \in \mathcal{G}$, $\operatorname{in}_{<}(g) \in S' \implies g \in S'$

then $\mathcal{G} \cap S'$ is a Gröbner basis of $I \cap S'$ with respect to <.

Proof. Let u be a monomial belonging to $\operatorname{in}_{<}(I \cap S')$. Then there exists a polynomial $(0 \neq) f \in I \cap S'$ such that $\operatorname{in}_{<}(f) = u$. Since $f \in I$, the initial monomial u belongs to $\operatorname{in}_{<}(I)$. Hence there exists $g \in \mathcal{G}$ such that $\operatorname{in}_{<}(g)$ devides u. Then $\operatorname{in}_{<}(g)$ belongs to S'. Thanks to the condition (\sharp) , we have $g \in S'$ and hence $g \in \mathcal{G} \cap S'$. Thus $\operatorname{in}_{<}(I \cap S')$ is generated by $\{\operatorname{in}_{<}(g) : g \in \mathcal{G} \cap S'\}$ as desired.

Example 18. Let $\mathbf{a} = (a_1, a_2, \dots, a_n)$ and $\mathbf{b} = (b_1, b_2, \dots, b_n)$ be vectors belonging to \mathbb{Z}_+^n . We define the total order $<_{\text{plex}}$ on Mon(S) by setting $\mathbf{x}^{\mathbf{a}} <_{\text{plex}} \mathbf{x}^{\mathbf{b}}$ if the left-most nonzero component of the vector $\mathbf{a} - \mathbf{b}$ is negative. It follows that $<_{\text{plex}}$ is a monomial order on S, which is called the *purely lexicographic order* on S induced by the ordering $x_1 > x_2 > \dots > x_n$. If $S' = K[x_m, x_{m+1}, \dots, x_n]$ is a subring of $S = K[x_1, \dots, x_n]$, then the condition (\sharp) in Theorem 17 holds for a Gröbner basis \mathcal{G} of an arbitrary ideal I of S with respect to $<_{\text{plex}}$.

Let $f_1, \ldots, f_s, g_1, \ldots, g_t \in S$. It is easy to see that, if $(f_1, \ldots, f_s) = (g_1, \ldots, g_t)$ holds, then the set of solutions of $f_1 = \cdots = f_s = 0$ equals to that of $g_1 = \cdots = g_t = 0$. Thus, one can eliminate the variables x_1, \ldots, x_{m-1} from $f_1 = \cdots = f_s = 0$ by computing a system of generators of $I \cap K[x_m, x_{m+1}, \ldots, x_n]$. Thanks to Theorem 8, we can apply Elimination Theorem to eliminate variables from a system of equations.

Example 19 ([3]). Let $f_1 = x^2 + y + z - 1$, $f_2 = x + y^2 + z - 1$ and $f_3 = x + y + z^2 - 1$ and consider the system of equations $f_1 = f_2 = f_3 = 0$. Let $I = (f_1, f_2, f_3)$. Then $\{x + y + z^2 - 1, y^2 - y - z^2 + z, 2yz^2 + z^4 - z^2, z^6 - 4z^4 + 4z^3 - z^2\}$ is a Gröbner basis of I with respect to $<_{\text{plex}}$ induced by x > y > z. Thus, thanks to Theorem 17,

$$I \cap \mathbb{C}[z] = (z^6 - 4z^4 + 4z^3 - z^2)$$

$$I \cap \mathbb{C}[y, z] = (y^2 - y - z^2 + z, 2yz^2 + z^4 - z^2, z^6 - 4z^4 + 4z^3 - z^2)$$
Note that $z^6 - 4z^4 + 4z^3 - z^2 = z^2(z - 1)^2(z^2 + 2z - 1)$.

References

- [1] W. Adams and P. Loustaunau, "An Introduction to Gröbner Bases," Amer. Math. Soc., Providence, RI, 1994.
- [2] T. Becker and V. Weispfenning, "Gröbner Bases," Springer-Verlag, Berlin, Heidelberg, New York, 1993.
- [3] D. Cox, J. Little and D. O'Shea, "Ideals, Varieties and Algorithms," Springer-Verlag, Berlin, Heidelberg, New York, 1992.
- [4] H. Ohsugi and T. Hibi, Toric ideals generated by quadratic binomials, *J. Algebra* **218** (1999), 509–527.

Takayuki Hibi, Department of Pure and Applied Mathematics, Graduate School of Information Science and Technology, Osaka University, Toyonaka, Osaka 560-0043, Japan.

 $E ext{-}mail\ address: hibi@math.sci.osaka-u.ac.jp}$

HIDEFUMI OHSUGI, DEPARTMENT OF MATHEMATICS, COLLEGE OF SCIENCE, RIKKYO UNIVERSITY, TOSHIMA-KU, TOKYO 171-8501, JAPAN

E-mail address: ohsugi@rkmath.rikkyo.ac.jp