INTRODUCTION TO GROBNER BASES

TAKAYUKI HIBI AND HIDEFUMI OHSUGI

Let S = K|xq,...,1,]| denote the polynomial ring in n variables over a field K
with degx; =1 fori=1,2,...,n, and let

Mon(S) = {z{'zy> - 2% 1 a; € Z1,i =1,2,...,n},

n

be the set of monomials of S, where Z, is the set of nonnegative integers. In

particular 1 € Mon(S). For monomials x* = 2{'23> - -2% and x® = 2025 ... zb»
of S, we say that xP divides x2 if b; < a; for i = 1,2,...,n. We write xP |X if xP

divides x®. Let M be a nonempty subset of Mon(S). A monomial x* € M is said
to be a minimal element of M with respect to divisibility if whenever x? | x® with
xP € M, then xP = x®. Let M™" denote the set of minimal elements of M.

Theorem 1 (DICKSON’S LEMMA). Let M be a nonempty subset of Mon(S). Then
M™™ s a finite set.

Proof. We prove Dickson’s lemma by using induction on n, the number of variables
of S = Kl[z1,79,...,7,]. Let n = 1. If d is the smallest integer for which z¢ € M,
then M™in = f24} Thus M™® is a finite set.

Let n > 2 and B = K[x| = K|z, %2,...,2,—1]. We use the notation y instead
of z,. Thus S = Klzy,xs,...,2,_1,y]. Let M be a nonempty subset of Mon(S).
Write N for the subset of Mon(B) which consists of those monomials x®, where
a € Z"', such that x*y® € M for some b > 0. Our induction hypothesis says that
N™n i a finite set. Let N™" = {wu;, uy,...,u;}. By the definition of A, for each
1 < i < s, there is b; > 0 with w;y% € M. Let b = max{by, bs,...,b,}. Now, for
each 0 < & < b, define the subset MV; of N to be

={x* e N : x** ¢ M}.
Again, our induction hypothesis says that, for each 0 < & < b, the set N

"N g finite.

Let /\/’5min = {ugg), uég), cee ugi)} We now show that each monomial belonging to
M is divisible by one of the monomials which appear in the following list:

ulybla u2yb27 e 7usybsa
u§°), ugo), e ,ugg),
1 1
uVy, uMy, . uDy,
b—1 _ b—1 _ _ _
uf ™y g Ty Dy
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In fact, since, for each monomial w = x?y? € M with x* € Mon(B), one has
x® € N, it follows that if v > b, then w is divisible by one of the monomials
ury®t, uay®?, ... ugybe, and that if 0 < v < b, then w is divisible by one of the
monomials u@y”, uy)gﬂ, . ugz)y”’. Clearly, the monomials listed above are in M.
Hence M™" is a subset of the set of monomials listed above. Thus M™?" is finite,

as desired. O

A monomial order on S is a total order < on Mon(S) such that

e 1 <uforall 1 #ue& Mon(S);
e if u,v € Mon(S) and u < v, then uw < vw for all w € Mon(S).

Example 2. (a) Let a = (ay, as, . ..,a,) and b = (by, b, ..., b,) be vectors belonging
to Z". We define the total order <je on Mon(S) by setting x* <jex X if either (i)
Sorai < S0 b, or (i) Yo a; = > b; and the left-most nonzero component
of the vector a — b is negative. It follows that <), is a monomial order on S, which
is called the lexicographic order on S induced by the ordering zy > zo > -+ > x,,.
(b) Let a = (a1, as,...,a,) and b = (b, ba, ..., by) be vectors belonging to Z". We
define the total order <, on Mon(S) by setting x* <,e, x® if either (i) >0, a; <
S b, or (i) Y7 a; = > b; and the right-most nonzero component of the
vector a—b is positive. It follows that <,., is a monomial order on S, which is called
the reverse lexicographic order on S induced by the ordering z; > x9 > --- > x,,.

For example, 2903 <jex 124 and 2124 <pey 223 in K[xq, 29, 3, £4]. Among the
monomials of degree 2 of K|z, x5, x3], one has

2 2 2
T3 <lex T2T3 <lex Tg <lex LT1T3 <lex T1T2 <lex T]
and
2 2 2
1'3 <rev T3 <rev X123 <rev 1'2 <rev T1T2 <rev ZL‘I.

Exercise 3. List the 10 monomials of degree 3 of K|z, x5, 3] with respect to each
of <jox and <,ey.

Lemma 4. Let < be a monomial order on S. Let u,v € Mon(S) with uw # v and
suppose that u divides v. Then u < v.

Proof. Write v = ww with w € Mon(S). Since w # 1, one has 1 < w. Thus
1-u < w-u. Hence u < v, as desired. O

We will work with a fixed monomial order < on S. Let f = - \1,,(s) auu be a
nonzero polynomial of S with each a, € K. The support of f is the finite set

supp(f) = {u € Mon(S) : a, # 0}.

The initial monomial of f with respect to < is the biggest monomial with respect
to < among the monomials belonging to supp(f).
Recall that an ideal of S is a nonempty subset I of S such that
o if fgel, then fEgel;
eif fecland he S, then fhel.
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Given a subset {fy}rea of S, we write ({fr}xea) for the set of polynomials of the
form »° .\ hafa, where {A € A : hy # 0} is finite. Then ({fi}rea) is an ideal
of S, which is called the ideal of S generated by {f\}rxea- When A is finite, say,
A ={1,2,...,s}, we write (f1, f2,..., fs) instead of ({f1, f2,..., fs}). Conversely,
given an ideal I of S, there exists a subset ({fx}xea) of S with I = ({fi}rea). We call
{/x}ren a system of generators of I. We say that an ideal I of S is finitely generated
if I possesses a system of generators consisting of a finite number of polynomials.
Later, we will see that every ideal of S is finitely generated (Corollary 9).

A monomial ideal is an ideal which is generated by a set of monomials. Let I C S
be a monomial ideal. It follows that I is generated by a subset N” C Mon(S) if and
only if (I N Mon(S))™® C N. Hence (I N Mon(S))™" is a unique minimal system
of monomial generators of I. Dickson’s lemma guarantees that (I N Mon(S))™® is
finite. Thus in particular every monomial ideal is finitely generated.

Let I be a nonzero ideal of S. The initial ideal of I with respect to < is the
monomial ideal of S which is generated by {in.(f) : 0# f € I'}. We write in.(I)
for the initial ideal of I. Thus

inc(f) = ({inc(f) : 0# f € 1}).
Since (in.(I) N Mon(S))™™ is a minimal system of monomial generators of in_(I),
and since in. (1) N Mon(S) = ({in<(f) : 0 # f € I}), there exists a finite number
of nonzero polynomials g1, ¢s, . . ., gs belonging to I such that in.(7) is generated by
the set {in.(g1),in<(g2),-..,inc(gs)} of their initial monomials.

Definition 5. Let I be a nonzero ideal of S. A finite set {g1, g2, ..., gs} of nonzero
polynomials with each g; € I is said to be a Grébner basis of I with respect to < if
the initial ideal in.(I) of I is generated by the set {in(g1),in<(g2),...,in<(gs)} of
their initial monomials.

A Grobner basis of I with respect to < exists. If G is a Grobner basis of I with
respect to <, then every finite set G’ with G € G’ C I is also a Grébner basis of
I with respect to <. If G = {g1,...,9s} is a Grobner basis of I with respect to <
and if fi,..., fs are nonzero polynomials belonging to I with each in.(f;) = in(g;),
then {fi,..., fs} is also a Grdbner basis of I with respect to <.

Example 6. Let S = K[z1,2s,...,27] and I = (f, g), where f = x4 — x923 and
g = T4x7 — x5T¢. Let <jex the lexicographic order on S induced by x1 > 29 > --- >
x7. One has ing_ (f) = =124 and inc_(g) = z4x7. We claim that {f, g} is not a
Grobner basis of I with respect to <jex. In fact, the polynomial h = x7f — 219 =
T1T5%T6 — Tox3ry belongs to I, but its initial monomial in., (h) = x1x526 can be
divided by neither in., (f) nor in._(g). Hence in., (h) & (in, (f),inc,(9)).
Thus in.,_ () # (inc, (f),inc, (g)). In other words, {f, ¢} is not a Grobner basis
of I with respect to <jex. Later, we will show that {f, g, h} is a Grobner basis of T
with respect to <jex (Example 16).

Lemma 7. Let < be a monomial order on S = Klxy,...,x,]. Then, for any
monomial w of S, there is no infinite descending sequence of the form

(1) U=1Uy> U > Uy > -+ .
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Proof. Suppose, on the contrary, that one has an infinite descending sequence (1) and
write M for the set of monomials {ug, u1, us,...}. It follows from Dickson’s lemma

that M™® is a finite set, say M™% = {u;  wy, ..., u;, } with iy < dp < -++ < i
Then the monomial u;, 1, is divided by u;, for some 1 < j <'s. Thus by Lemma 4
one has wu;; < u;, 1, which contradicts i; <, + 1. O
Theorem 8. Let I be a nonzero ideal of S = K|x1,...,x,] and G = {g1,...,9s} a
Grébner basis of I with respect to a monomial order < on S. Then I = (g1, ..., gs).

In other words, every Grobner basis of I is a system of generators of I.

Proof. (Gordan) Let 0 # f € I. Since in.(f) € in.(I) and since G is a Grébner
basis of I, i.e., in.(I) = (inc(g1),...,inc(gs)), it follows that there is g;, such
that in.(g;,) divides in.(f). Let in.(f) = wpinc(g;,) with wy € Mon(S). Let
ho = f — ci’olcgwogio, where ¢, is the coefficient of in.(f) in f and where ¢;, is the
coefficient of in(g;,) in g;,. Then hy € I. Since in(wpg;,) = wpin(g;,) it follows
that inc(hg) <inc(f). If hg =0, then f € (g1,...,9s)-

Let hy # 0. Then the same technique as we used for f can be applied for hy. Thus
hiy = f — ci’llclwlgil — ci’olcowogio, where ¢ is the coefficient of in.(hg) in hy and
where ¢;, is the coefficient of in.(g;,) in ¢;,. Then hy € I and in.(hy) < inc(hg). If
hy =0, then f € (g1,...,9s)-

If hy # 0, then we proceed as before. Lemma 7 guarantees that this procedure

must terminate. Thus we obtain an expression of the form f = ij:o G, 1cqwqgiq. In
particular, f belongs to (g1, g2, -..,9s). Thus I = (g1, go,...,9s), as desired. O

Corollary 9 (HILBERT BASIS THEOREM). Fvery ideal of the polynomial ring S =
Klzq,...,x,] is finitely generated.

It is natural to ask if the converse of Theorem 8 is true or false. That is to say, if
I={(f1, f2 ..., fs)isanideal of S = K[x1,...,z,], then does there exist a monomial
order < on S such that {fi, f2,..., fs} is a Grobner basis of I with respect to < ?

Example 10 ([4]). Let S = K[z, 29,...,%10] and I the ideal of S generated by

J1 = T138 — T2, f2 = Taxg — 1377, f3 = T3T10 — T4,
f1= 2476 — T5T0, [5 = x5x7 — 21210,
We claim that there exists no monomial order < on S such that {fi,..., fs} is a

Grobner basis of I with respect to <.
Suppose, on the contrary, that there exists a monomial order < on S such that
G ={fi,...,fs} is a Grobner basis of I with respect to <. First, note that each of
the five polynomials
T1X8T9 — T3TLeL7, T2X9X10 — T4T7Xg, TaXeT1o — T5T7Tg,

T3Tel10 — T5X8L9, T1T9X10 — Talel7
belongs to I. Let, say, xixsrg > x3xery. Since xyrgrg € in.(I), there is g € G
such that in.(g) divides z23x9. Such g € G must be f;. Hence xyxg > x9x¢. Thus
xowe & in(I). Hence there exists no g € G such that in.(g) divides zyx6219. Hence
ToTeX1g < Tsx7rg. Thus xsr; > x1210. Continuing these arguments, we obtain

T1TgT9 > T3TX7, TaX9T10 > T4T7T8, T2TeX10 < TsT7X8,
T3TeT1g > TsTyTg, T1T9T1g < TaTel7
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and
T1Tg > TaXe, ToZy > T3T7, T3Tip > T4Tg,
T4Te > TsTg, TsT7 > T1T10-
Hence
(2) (1‘1!1,’8)(1‘2!1)9)(1‘31‘10)(1‘4$6)(1‘5$7) > ($2I6)(I3$7)(1‘4LE8)(1‘51‘9)($11‘10).
The opposite relation in (2) occurs in case of x1x329 < x37627. However, both sides
of the inequality (2) coincide with z1x5 - - - 1.

In high school mathematics, we learn that, given polynomials f and g # 0 in one
variable x, there exist unique polynomials ¢ and r such that f = gg+r, where either
r =0 or degr < degg. The division algorithm generalizes this well-known result.

Theorem 11 (DIVISION ALGORITHM). Let S = Klx1,...,x,] denote the polyno-
mial ring in n variables over a field K and fix a monomial order < on S. Let
91,92, - - -, gs be nonzero polynomials of S. Then, given a polynomial 0 #= f € S,
there exist polynomials fi, fo,..., fs and " of S with

(3) f=ho+ fag2+ -+ fogs + '
such that the following conditions are satisfied:

(i) if f' # 0 and if u € supp(f'), then none of inc(g1),...,inc(gs) divides u,

i.e., no u € supp(f’) belongs to (in<(g1),...,in<(gs));
(ii) if f; #0, then
inc (figi) < in<(f).

The right hand side of equation (3) is said to be a standard expression for f with
respect to gi, ga, . . ., gs, and the polynomial [’ is called a remainder of f with respect

t0 g1, 92, - -, gs-
Instead of giving a detailed proof of Theorem 11, we discuss a typical example

which clearly explains the procedure to obtain a standard expression.

Example 12. Let <j denote the lexicographic order on S = K|z, y, z] induced by
x>y>z Let gy =2 —2,gp =2y —1and f =23 — 2%y — 22 — 1. Each of
f=a" -2’y -2 —1=a(g+2) -2’y -2 -1
25691—x2y—x2+xz—1:xgl—(91+z)y—x2+xz—1
=29 —yg — 2 +xz—yz—1=xg —yg — (g1 +2) +axz —yz—1
=@@—-—y—1g+ (rz—yz—2—1)
and
f= 2Py -2 —l=a(g +2)—2’y—2"—1
=xg -’y — 2’ +az—1l=xg —x(gp+1) -2’ +zz—1
=g —xg — '+ —r—1=2g9 —2gs — (g1 +2) + 22 —1—1
=(x—1)g —xga+ (r2—1—2—1)

is a standard expression of f with respect to g; and ¢», and each of xz —yz — 2 —1
and zz —x — z — 1 is a remainder of f.
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Example 12 says that a remainder of a nonzero polynomial may not be unique.
However, we have the following fact.

Lemma 13. If G = {g1,...,9s} is a Grébner basis of I = (q1,-..,9s), then for
any nonzero polynomial f of S, there is a unique remainder of f with respect to

gla"'agS'

Proof. Suppose there exist remainders f' and f” with respect to g¢i,...,gs with
f'# f". Since 0 # f' — f" € I, the initial monomial w = in_(f" — f”) must
belong to in. (7). However, since w € supp(f’) U supp(f”), none of the monomials
inc(g1),...,inc(gs) divides w. Hence in.(I) # (in<(g1),...,in<(gs))- O

Given nonzero polynomials f and g of S, the notation lem(in.(f),in(g)) stands
for the least common multiple of in.(f) and in.(g). Let ¢; denote the coefficient of
in.(f) in f and ¢, the coefficient of in.(g) in g. The polynomial

S(f, g) — lcm(in<‘(f), in< (g)) f . 1CII1(iIl<‘(f), in< (g))g
crine(f) cginc(g)
is called the S-polynomial of f and g.
We say that f has remainder 0 with respect to gi,¢s,...,gs if, in the division
algorithm, there is a standard expression (3) of f with respect to g1, 92, ..., gs with

f'=0.
Lemma 14. Let f and g be nonzero polynomials and suppose that in.(f) andin.(g)

are relatively prime, i.e., lem(in.(f),inc(g)) = inc(f)inc(g). Then S(f,g) has
remainder 0 with respect to f,g.

Proof. To simplify notation we will assume that each of the coefficients of in_(f) in
f and in.(g) in ¢ is equal to 1. Let f = in.(f) + f1 and ¢ = in.(g) + ¢g;. Since
in.(f) and in.(g) are relatively prime, it follows that
S(f.g) =inc(g)f —in<(f)g
=g—g)f—(f—F)g
= hg—olf.
We claim (in<(fi)in<(g9) =)in<(fig) # in<(g1f) (= inc(g1)inc(f)). In fact, if

inc(f1)inc(g) = inc(g1) in<(f), then, since in.(f) and in.(g) are relatively prime,
it follows that in (f) must divide in(f;). However, since in.(f1) < in<(f), this is

impossible. Let, say, in.(f1)inc(g) < inc(g1)inc(f). Then in(S(f,g)) = in<(g1f)
and S(f,g) = fig — g1f turns out to be a standard expression of S(f, g) in terms of
f and g. Hence S(f,g) has remainder 0 with respect to f and g, and similarly for

inc(g1) inc(f) <inc(f1)in<(g). O

We now come to the most fundamental theorem in the theory of Grobner bases.

Theorem 15 (BUCHBERGER CRITERION). Let I be a nonzero ideal of S and G =
{91,92,---,9s} a system of generators of I. Then G is a Grébner basis of I if and
only if the following condition is satisfied:

(%) For alli # j, S(gi,g;) has remainder 0 with respect to g1, ..., gs.



INTRODUCTION TO GROBNER BASES 7

We refer the reader to a standard textbook on Grobner bases, e.g., [1], [2] and
[3] for a proof of the Buchberger criterion. However, for a (general) Grobner basis
“user,” it may not be required to understand a detailed proof of the Buchberger
criterion.

In Example 6, by using Lemma 14 together with the Buchberger criterion, it
follows immediately that the set {f, g} is a Grobner basis of I = (f, g) with respect
to the reverse lexicographic order <, induced by xy >z > --- > x7.

The Buchberger criterion supplies an algorithm to compute a Grobner basis start-
ing from a system of generators of an ideal.

Let {g1, go, - - -, gs} be a system of generators of a nonzero ideal I of S and suppose
that {g1,99,...,9s} is not a Grébner basis of I. The Buchberger criterion then
guarantees that there is an S-polynomial S(g;, g;) such that no remainder of S(g;, g;)

with respect to g1, g2, . .., g5 is 0. Let h;; € I be a remainder of a standard expression
of S(gi,g;) with respect to g1, ¢92,...,9s. Then in.(h;;) can be divided by none of
the monomials in.(g1),in<(gz2),...,in<(gs). In other words, the inclusion

(in< (gl)a in< (92)7 ey in< (gs)) C (in< (gl)a in< (92)7 teey in< (gs)a in< (hlj))
is strict. With setting g1 = h;j, suppose that {g1, ga, - . ., gs, gs+1} is not a Grébner
basis of I. Again, by using the Buchberger criterion, there is a S-polynomial S(gx, g¢)
such that no remainder of S (g, g¢) with respect to g1, g2, - - -, gs, gs1115 0. Let hyp € T
be a remainder of S(gy, g¢) with respect to g1, 9, ..., gs, gs+1- Then the inclusion

(in< (gl)a in< (92)7 R in< (gs)v in< (gs-l-l))
C (inc(g1),in<(g2), - - -, inc(gs), inc(gsr1), inc (Pre))-

is strict. By virtue of Dickson’s lemma, these procedures must terminate after a
finite number of steps, and a Grobner basis of I can be obtained.

The above algorithm to find a Grobner basis starting from a system of generators
of an ideal is said to be the Buchberger algorithm.

Example 16. We continue Example 6. Let S = K[z, 2,...,77] and <je, the
lexicographic order on S induced by z; > x5 > -+ > x7. Let f = x124 — 2973
and g = x4x7 — w526. Thus ine(f) = 124 and in._(g) = z4x7. Let I = (f,9).
Then {f, g} is not a Grobner basis of I with respect to <jex. Now, as a remainder
of S(f,9) = x7f —x19 = 112506 — X237 With respect to f and g, we choose S(f, g)
itself. Let h = x12526 — xox327 with ine_ (h) = z12526. Then in._(g) and in.__(h)
are relatively prime. On the other hand, S(f, h) = zox3(z427 — x526) has remainder
0 with respect to f, g, h. It follows from the Buchberger criterion that {f, g, h} is a
Grobner basis of I with respect to <jey.

The following theorem is called Elimination Theorem and plays an important role
when solving a system of equations.

Theorem 17. Let S" = K|x;,,...,x;, ] be the subring of S = K|x1,...,x,] where
1<y < -+ <y <nand let < a monomial order on S (and S'). Let G denote a
Grobner basis of a nonzero ideal I of S with respect ot <. If < satisfies the condition

(1) g€G, inc(g)es = ged
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then GN S" is a Gribner basis of I NS" with respect to <.

Proof. Let u be a monomial belonging to in.(INS"). Then there exists a polynomial
(0#) f € INS such that in.(f) = u. Since f € I, the initial monomial u belongs
to in. (7). Hence there exists g € G such that in.(g) devides u. Then in.(g) belongs
to S’. Thanks to the condition (£), we have g € S” and hence ¢ € GNS". Thus
in. (I NS’ is generated by {inc(g) : g € GNS'} as desired. O

Example 18. Let a = (ay,a9,...,a,) and b = (by, bs, ..., b,) be vectors belonging
to Z". We define the total order < on Mon(S) by setting x* <jjex xP if the
left-most nonzero component of the vector a — b is negative. It follows that <;jex is
a monomial order on S, which is called the purely lexicographic order on S induced
by the ordering ©; > 29 > -+ > x,. If 8" = K|xy, Timy1,- .., Ty is a subring of
S = K|z, ...,x,], then the condition (f) in Theorem 17 holds for a Grobner basis
G of an arbitrary ideal I of S with respect to <pjex.

Let fi,..., fs,01,---,9: € S. It is easy to see that, if (f1,...,fs) = (g1,-.-,9)

holds, then the set of solutions of f; =--- = f;, = 0 equals to that of g; =--- = ¢, =
0. Thus, one can eliminate the variables zy,...,x,,_1 from f; = --- = f;, = 0 by
computing a system of generators of I N K[z, Tmi1,---,2Zy|. Thanks to Theorem 8,

we can apply Elimination Theorem to eliminate variables from a system of equations.

Example 19 ([3]). Let fi = 2 +y+2—1, fo=x+y?’+2—1and fs =z +y+2°—1
and consider the system of equations f; = fo = f3 = 0. Let I = (fi, fo, f3). Then
{x+y+22 =192 —y—22+2,2y2% + 2 — 22,25 — 42" + 423 — 22} is a Grobner
basis of I with respect to <pjex induced by x > y > z. Thus, thanks to Theorem 17,

INClz] = (25 —42"+42° - 2?)
INCly, 2] = (y2—y—22+2,2y22+z4—22,z6—4z4+4z3—z2)
Note that 26 —42* + 423 — 22 = 22(2 — 1)%(2? + 22 — 1).
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