Computation of the error functions erf and erfc in arbitrary precision with correct rounding

Sylvain Chevillard
Arenaire, LIP, ENS-Lyon, France
Sylvain.Chevillard@ens-lyon.fr

Nathalie Revol
INRIA, Arenaire, LIP, ENS-Lyon, France
Nathalie.Revol@ens-lyon.fr

ICMS, Castro Urdiales, Spain 1-3 September 2006
IEEE-754 standard for floating-point arithmetic

Floating-point number: \(s.m.\beta^e \) or 0, a denormal, \(\pm \infty \), NaN.
- \(s \): sign
- \(m \): mantissa \(\in [2^{p-1}/2^p, (2^p - 1)/2^p] \), \(p \) is the precision
- \(e \): exponent \(\in [e_{\text{min}}, e_{\text{max}}] \)
- \(\beta \): basis, usually equal to 2

IEEE-754 standard for floating-point arithmetic:
- fixed formats for single and double precision
- specifies 4 rounding modes
- specifies the arithmetic and algebraic operations \(+, -, \times, \div, \sqrt{\cdot}\).

Advantages:
- well-specified arithmetic, reproducible results
- error bounds can be established and proofs can be done
Desirable extensions of the IEEE-754 standard

correctly rounded elementary functions:
cf. current revision of the standard

arbitrary precision: (software)
cf. MPFR

correctly rounded special functions:

correctly rounded functions in arbitrary precision:
cf. MPFR for elementary functions
How can one return the correctly rounded evaluation of a function f?

To return the correctly rounded evaluation of $f(x)$ in precision p:
1- approximate $f(x)$ with larger precision q, error $< \varepsilon$
2- if can_round $(f(x), \varepsilon, p)$

then return it
3- otherwise increase q, decrease ε and try again.
Outline of this talk

• the error function erf
• algorithm to return the correctly rounded evaluation of erf(x)
• experimental results
• the complementary error function erfc
• conclusion and hints for improvements
• current work on interval arithmetic and algorithms: MPFI
The error function \(\text{erf} \)

\[
\text{erf}(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} dt
\]

The error function is very useful in statistics (cf. Gaussian distribution), diffusion equation (special configurations) and other heat transfer problems. . .

Goal: return the correctly rounded value of \(\text{erf}(x) \) in arbitrary precision.
Possible formulas

\[
\text{erf}(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} dt
\]

\[
= \frac{2}{\sqrt{\pi}} \sum_{n=0}^{+\infty} \frac{(-1)^n x^{2n+1}}{n!(2n+1)}
\]

\[
= \frac{2}{\sqrt{\pi}} e^{-x^2} \sum_{n=0}^{+\infty} \frac{2^n x^{2n+1}}{1.3\cdots(2n+1)}
\]

\[
= \sqrt{2} \sum_{n=0}^{+\infty} (-1)^n \left[I_{2n+1/2}(x^2) - I_{2n+3/2}(x^2) \right]
\]

\[
= e^{-x^2} \frac{1}{\sqrt{\pi}} \frac{1}{x+} \frac{1/2}{x+} \frac{1}{x+} \frac{3/2}{x+} \frac{2}{x+} \cdots
\]
Possible formulas

\[
\text{erf}(x) = \frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-t^2} dt
\]

\[
= \frac{2}{\sqrt{\pi}} \sum_{n=0}^{+\infty} \frac{(-1)^n x^{2n+1}}{n!(2n+1)}
\]

\[
= \frac{2}{\sqrt{\pi}} e^{-x^2} \sum_{n=0}^{+\infty} \frac{2^n x^{2n+1}}{1.3\ldots(2n+1)}
\]

\[
= \sqrt{2} \sum_{n=0}^{+\infty} (-1)^n \left[I_{2n+1/2}(x^2) - I_{2n+3/2}(x^2) \right]
\]

\[
= \frac{e^{-x^2}}{\sqrt{\pi}} \frac{1}{x} \frac{1}{x} \frac{1}{x} \frac{3/2}{x} \frac{2}{x} \ldots
\]

Discussion of the use of quadrature :

• numerous evaluations of \(\exp \) : costly (either in computing time or in development time)
• many sources of error : evaluation of \(\exp \), quadrature, roundoff
Possible formulas

\[
\text{erf}(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} dt
\]

\[
= \frac{2}{\sqrt{\pi}} \sum_{n=0}^{+\infty} \frac{(-1)^n x^{2n+1}}{n!(2n+1)}
\]

\[
= \frac{2}{\sqrt{\pi}} e^{-x^2} \sum_{n=0}^{+\infty} \frac{2^n x^{2n+1}}{1.3\cdots(2n+1)}
\]

\[
= \sqrt{2} \sum_{n=0}^{+\infty} (-1)^n \left[I_{2n+1/2}(x^2) - I_{2n+3/2}(x^2) \right]
\]

\[
= \frac{e^{-x^2}}{\sqrt{\pi}} \frac{1}{x} \frac{1}{x} \frac{1}{x} \frac{3/2}{x} \frac{2}{x} \cdots
\]

Discussion of the use of alternate power series:

- the remainder is easy to bound
- sum of terms of alternate signs: cancellation
Possible formulas

\[\text{erf}(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} dt \]

\((1) \)

\[= \frac{2}{\sqrt{\pi}} \sum_{n=0}^{+\infty} \frac{(-1)^n x^{2n+1}}{n!(2n+1)} \]

\((2) \)

\[= \frac{2}{\sqrt{\pi}} e^{-x^2} \sum_{n=0}^{+\infty} \frac{2^n x^{2n+1}}{1.3\cdots(2n+1)} \]

\((3) \)

\[= \sqrt{2} \sum_{n=0}^{+\infty} (-1)^n \left[I_{2n+1/2}(x^2) - I_{2n+3/2}(x^2) \right] \]

\((4) \)

\[= \frac{e^{-x^2}}{\sqrt{\pi}} \frac{1}{x+} \frac{1/2}{x+} \frac{1}{x+} \frac{3/2}{x+} \frac{2}{x+} \cdots \]

\((5) \)

Discussion of the use of this power series:

- sum of positive terms: numerical stability
- the remainder is less easy to bound
Possible formulas

\[
\text{erf}(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} dt
\]

\[
= \frac{2}{\sqrt{\pi}} \sum_{n=0}^{+\infty} \frac{(-1)^n x^{2n+1}}{n!(2n+1)}
\]

\[
= \frac{2}{\sqrt{\pi}} e^{-x^2} \sum_{n=0}^{+\infty} \frac{2^n x^{2n+1}}{1.3\cdots(2n+1)}
\]

\[
= \sqrt{2} \sum_{n=0}^{+\infty} (-1)^n \left[I_{2n+1/2}(x^2) - I_{2n+3/2}(x^2) \right]
\]

\[
= \frac{e^{-x^2}}{\sqrt{\pi}} \frac{1}{x} \frac{1}{x+} \frac{1}{x+} \frac{3/2}{x+} \frac{2}{x+} \cdots
\]

Discussion of the use of Bessel functions of fractional order:

- the problem is now to evaluate the Bessel functions of fractional order
Possible formulas

\[
erf(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} dt \tag{1}
\]
\[
= \frac{2}{\sqrt{\pi}} \sum_{n=0}^{+\infty} \frac{(-1)^n x^{2n+1}}{n!(2n+1)} \tag{2}
\]
\[
= \frac{2}{\sqrt{\pi}} e^{-x^2} \sum_{n=0}^{+\infty} \frac{2^n x^{2n+1}}{1.3\cdots(2n+1)} \tag{3}
\]
\[
= \sqrt{2} \sum_{n=0}^{+\infty} (-1)^n \left[I_{2n+1/2}(x^2) - I_{2n+3/2}(x^2) \right] \tag{4}
\]
\[
= \frac{e^{-x^2}}{\sqrt{\pi}} \frac{1}{x+} \frac{1/2}{x+} \frac{1}{x+} \frac{3/2}{x+} \frac{2}{x+} \cdots \tag{5}
\]

Discussion of the use of this continued fraction:

- the remainder is less easy to bound
- numerical stability is not ensured
Chosen formula

\[\text{erf}(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} dt \] \hspace{1cm} (1)

\[= \frac{2}{\sqrt{\pi}} \sum_{n=0}^{+\infty} \frac{(-1)^n x^{2n+1}}{n!(2n+1)} \] \hspace{1cm} (2)

\[= \frac{2}{\sqrt{\pi}} e^{-x^2} \sum_{n=0}^{+\infty} \frac{2^n x^{2n+1}}{1.3\ldots(2n+1)} \] \hspace{1cm} (3)

\[= \sqrt{2} \sum_{n=0}^{+\infty} (-1)^n \left[I_{2n+1/2}(x^2) - I_{2n+3/2}(x^2) \right] \] \hspace{1cm} (4)

\[= \frac{e^{-x^2}}{\sqrt{\pi}} \frac{1}{x+} \frac{1/2}{x+} \frac{1}{x+} \frac{3/2}{x+} \frac{2}{x+} \ldots \] \hspace{1cm} (5)

Motivation for the choice of this alternate power series:

- the remainder is easy to bound
- special care to avoid cancellation in the sum of terms of alternate signs
Other useful formulas

\[\operatorname{erf}(-x) = -\operatorname{erf}(x) \]

No argument reduction possible (cf. \(\sin(x + 2\pi) = \sin x \) or \(\exp(2x) = (\exp x)^2 \)).

\[\frac{2}{\sqrt{\pi}} \cdot \frac{e^{-x^2}}{x + \sqrt{x^2 + 2}} < \operatorname{erfc}(x) \leq \frac{2}{\sqrt{\pi}} \cdot \frac{e^{-x^2}}{x + \sqrt{x^2 + \frac{4}{\pi}}} \quad \text{for } x \geq 0. \]
Outline

- the error function erf
- algorithm to return the correctly rounded evaluation of \(\text{erf}(x) \)
- experimental results
- the complementary error function \(\text{erfc} \)
- conclusion and hints for improvements
- current work on interval arithmetic and algorithms: MPFI
Algorithm

Input : x, p
Output : correctly rounded value of erf(x) with p bits

1. handle special cases : $x = 0$, $x = \pm \infty$, $x < 0$
2. check whether the last enclosure gives rapidly the answer
3. determine the truncation rank N needed to have an absolute error $\leq \varepsilon$
4. determine the computing precision q to have roundoff error $\leq \varepsilon$
5. evaluate y that approximates erf(x) using the alternate power series ; bound from above the roundoff error $\varepsilon' \leq \varepsilon$, on the fly
6. if `can_round($y, \varepsilon' + \varepsilon', p$)` then
 return y
 else increase N and q and do steps (5) and (6) again
Algorithm: step (2)

Input: x, p
Output: correctly rounded value of $\text{erf}(x)$ with p bits

1. handle special cases: $x = 0$, $x = \pm\infty$, $x < 0$
2. check whether the last enclosure gives rapidly the answer
3. determine the truncation rank N needed to have an absolute error $\leq \varepsilon$
4. determine the computing precision q to have roundoff error $\leq \varepsilon$
5. evaluate y that approximates $\text{erf}(x)$ using the alternate power series; bound from above the roundoff error $\varepsilon' \leq \varepsilon$, on the fly
6. if can_round($y, \varepsilon + \varepsilon', p$) then
 return y
 else increase N and q and do steps (5) and (6) again
Algorithm : step (2)

Reminder :

\[
\frac{2}{\sqrt{\pi}} \cdot \frac{e^{-x^2}}{x + \sqrt{x^2 + 2}} < \text{erfc}(x) \leq \frac{2}{\sqrt{\pi}} \cdot \frac{e^{-x^2}}{x + \sqrt{x^2 + \frac{4}{\pi}}} \quad \text{for } x \geq 0.
\]

Step (2) :
compute both sides of this enclosure : \(y_L, y_R\)
if \text{can_round}(y_L, y_R - y_L, p) then return it.
Algorithm: step (3)

Input: x, p
Output: correctly rounded value of $\text{erf}(x)$ with p bits

1. handle special cases: $x = 0$, $x = \pm \infty$, $x < 0$
2. check whether the last enclosure gives rapidly the answer
3. determine the truncation rank N needed to have an absolute error $\leq \varepsilon$
4. determine the computing precision q to have roundoff error $\leq \varepsilon$
5. evaluate y that approximates $\text{erf}(x)$ using the alternate power series; bound from above the roundoff error $\varepsilon' \leq \varepsilon$, on the fly
6. if $\text{can_round}(y, \varepsilon + \varepsilon', p)$ then
 return y
 else increase N and q and do steps (5) and (6) again
Algorithm : step (3)

Reminder : power series

\[
\text{erf}(x) = \frac{2}{\sqrt{\pi}} \sum_{n=0}^{+\infty} \frac{(-1)^n x^{2n+1}}{n!(2n+1)} = \sum_{n=0}^{+\infty} a_n \text{ with } a_n = \frac{2}{\sqrt{\pi}} \frac{(-1)^n x^{2n+1}}{n!(2n+1)}
\]

Property : alternate power series \(\sum_{n=0}^{+\infty} a_n \) with non-increasing term \(a_n \) (for \(n \) large enough)
\[\Rightarrow \text{remainder } | \sum_{n=N}^{+\infty} a_n | = | \text{erf}(x) - \sum_{n=0}^{N-1} a_n | \leq |a_N| . \]

Step (3) :
\[\varepsilon = 2^{-p-8} : 8 \text{ extra bits} \]
evaluate \(a_n \) until \(a_N \leq \varepsilon : N \) is the truncation rank.
Algorithm : step (4)

Input : x, p
Output : correctly rounded value of $\text{erf}(x)$ with p bits

1. handle special cases : $x = 0$, $x = \pm\infty$, $x < 0$
2. check whether the last enclosure gives rapidly the answer
3. determine the truncation rank N needed to have an absolute error $\leq \varepsilon$
4. determine the computing precision q to have roundoff error $\leq \varepsilon$
5. evaluate y that approximates $\text{erf}(x)$ using the alternate power series; bound from above the roundoff error $\varepsilon' \leq \varepsilon$, on the fly
6. if can_round($y, \varepsilon + \varepsilon', p$) then
 return y
 else increase N and q and do steps (5) and (6) again
Algorithm : step (4)

Goal : computing precision q such that roundoff error $\leq \varepsilon$.

Step (4) :

$$q = 1 + \log_2 \left(\frac{5N+1}{2\alpha} \right) \text{ where } \alpha = \min \left(\frac{1}{2}, \frac{\varepsilon x}{e^{x^2} - 1 + \frac{\varepsilon x}{2}} \right).$$
Algorithm: step (5)

Input: \(x, p \)
Output: correctly rounded value of \(\text{erf}(x) \) with \(p \) bits

1. handle special cases: \(x = 0, x = \pm \infty, x < 0 \)
2. check whether the last enclosure gives rapidly the answer
3. determine the truncation rank \(N \) needed to have an absolute error \(\leq \varepsilon \)
4. determine the computing precision \(q \) to have roundoff error \(\leq \varepsilon \)
5. evaluate \(y \) that approximates \(\text{erf}(x) \) using the alternate power series; bound from above the roundoff error \(\varepsilon' \leq \varepsilon \), on the fly
6. if \(\text{can_round}(y, \varepsilon + \varepsilon', p) \) then
 return \(y \)
 else increase \(N \) and \(q \) and do steps (5) and (6) again
Algorithm : step (5)

Power series :

\[\text{erf}(x) = \frac{2}{\sqrt{\pi}} \sum_{n=0}^{+\infty} \frac{(-1)^n x^{2n+1}}{n!(2n + 1)} \]

Problem : cancellation \(\Rightarrow\) numerical unstability.

Solution : group the terms by pair (assume \(N\) is odd) :

\[\text{erf}(x) = \sum_{n=0}^{N-1} a_n = a_{N-1} + \frac{2x}{\sqrt{\pi}} \sum_{n=0}^{\frac{N-1}{2}} \frac{x^{4n}}{(2n)!} \left(\frac{1}{4n + 1} - \frac{x^2}{(2n+1)(4n+3)} \right) \]

Step (5) :
sum using Horner-like scheme.
Algorithm: remaining issues

Increase N and q:

cf. Kreinovich and Rump 2006: optimal overhead $= 4$ if the computing time is doubled

$N_{i+1} \simeq (2 - \alpha_i) N_i$ with $\alpha_i = 2/(1 + q_i)$,

q_{i+1} depends on N_{i+1}.

Termination:

if there exists a floating-point number x such that $\text{erf}(x)$ is a floating-point number, then can_round can never answer "yes".

In other words, infinite loop.
Outline

• the error function erf
• algorithm to return the correctly rounded evaluation of erf(x)
• experimental results
• the complementary error function erfc
• conclusion and hints for improvements
• current work on interval arithmetic and algorithms: MPFI
Experimental results: small values of x

<table>
<thead>
<tr>
<th>x</th>
<th>p</th>
<th>mpfr_erf</th>
<th>Maple 6</th>
<th>my_erf</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.25</td>
<td>100</td>
<td>0.21 ms</td>
<td>< 0.10 ms</td>
<td>0.53 ms</td>
</tr>
<tr>
<td>0.25</td>
<td>1000</td>
<td>7.51 ms</td>
<td>20 ms</td>
<td>3.28 ms</td>
</tr>
<tr>
<td>0.25</td>
<td>10000</td>
<td>1020 ms</td>
<td>580 ms</td>
<td>365 ms</td>
</tr>
</tbody>
</table>

(2003: on a Pentium II 400MHz, 64MB RAM)

Comments:
for small precisions, our pre-computations (determination of the truncation rank and of the computing precision) is costly; this cost is compensated by the gain it provides, for larger precisions.
Experimental results: intermediate values of x

<table>
<thead>
<tr>
<th>x</th>
<th>p</th>
<th>mpfr_erf</th>
<th>Maple 6</th>
<th>my_erf</th>
</tr>
</thead>
<tbody>
<tr>
<td>π</td>
<td>100</td>
<td>0.73 ms</td>
<td>< 0.10 ms</td>
<td>1.33 ms</td>
</tr>
<tr>
<td>π</td>
<td>1000</td>
<td>19.3 ms</td>
<td>60 ms</td>
<td>8.7 ms</td>
</tr>
<tr>
<td>π</td>
<td>10000</td>
<td>2040 ms</td>
<td>7320 ms</td>
<td>560 ms</td>
</tr>
<tr>
<td>π</td>
<td>100000</td>
<td>340.7 s</td>
<td>1692 s</td>
<td>149.6 s</td>
</tr>
</tbody>
</table>

(times in seconds, Pentium II 400MHz, 64MB RAM)

Comments: ibidem

for small precisions, our pre-computations (determination of the truncation rank and of the computing precision) is costly; this cost is compensated by the gain it provides, for larger precisions.
Experimental results: large values of x

<table>
<thead>
<tr>
<th>x</th>
<th>p</th>
<th>mpfr_erf</th>
<th>Maple 6</th>
<th>my_erf</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>1 000</td>
<td>0.0022 ms</td>
<td>< 0.10 ms</td>
<td>0.22 ms</td>
</tr>
<tr>
<td>100</td>
<td>10 000</td>
<td>0.0065 ms</td>
<td>< 0.10 ms</td>
<td>0.22 ms</td>
</tr>
<tr>
<td>100</td>
<td>14 446</td>
<td>191 200 ms</td>
<td>0.20 ms</td>
<td>0.22 ms</td>
</tr>
<tr>
<td>100</td>
<td>15 000</td>
<td>196 100 ms</td>
<td>0.40 ms</td>
<td>75 600 ms</td>
</tr>
</tbody>
</table>

(2003: on a Pentium II 400MHz, 64MB RAM)

Comments:
erf(x) is very close to 1;
here, Maple computes erfc(x) and then erf(x) = 1 − erfc(x).
Outline

• the error function erf
• algorithm to return the correctly rounded evaluation of erf(x)
• experimental results
• the complementary error function erfc
• conclusion and hints for improvements
• current work on interval arithmetic and algorithms : MPFI
The complementary error function erfc

\[\text{erfc}(x) = 1 - \text{erf}(x) = \frac{2}{\sqrt{\pi}} \int_{x}^{+\infty} e^{-t^2} dt \]

Why not use \(\text{erf} \) for large \(x \)?
because this would require to compute a large number of bits of \(\text{erf}(x) \) to cancel them

\[1 - \text{erf}(x) = 1.000 \cdots - 0.111 \cdots 10b_1 b_2 \cdots b_p = 0.000 \cdots 01 \cdots \]
Possible formulas

\[\text{erfc}(x) = \frac{2}{\sqrt{\pi}} \int_x^{+\infty} e^{-t^2} dt \]
\[= 1 - \frac{2}{\sqrt{\pi}} \sum_{n=0}^{+\infty} \frac{(-1)^n x^{2n+1}}{n!(2n+1)} \]
\[= 1 - \frac{2}{\sqrt{\pi}} e^{-x^2} \sum_{n=0}^{+\infty} \frac{2^n x^{2n+1}}{1.3\cdots(2n+1)} \]
\[= \frac{e^{-x^2}}{x\sqrt{\pi}} \left(1 + \sum_{n=1}^{+\infty} (-1)^n n \frac{1.3\cdots(2n-1)}{(2x^2)^n} \right) \]
\[= \frac{e^{-x^2}}{\sqrt{\pi}} \frac{1}{x + \frac{1/2}{x + \frac{2/2}{x + \frac{3/2}{x + \cdots}}}} \]

Chosen formula: the continued fraction (5).
Algorithm

Input : x, p
Output : correctly rounded value of $\text{erfc}(x)$ with p bits

1. handle special cases : $x = 0$, $x = \pm \infty$, $x < 0$
2. determine the truncation rank N needed to have an absolute error $\leq \varepsilon$
3. determine the computing precision q to have roundoff error $\leq \varepsilon$
4. evaluate y that approximates $\text{erfc}(x)$ using the continued fraction;
 (two methods : compute the fraction or compute separately the numerator and the denominator)
5. if $\text{can_round}(y, 2\varepsilon, p)$ then
 return y
 else increase N and q and do steps (5) and (6) again
Outline

• the error function erf
• algorithm to return the correctly rounded evaluation of erf(x)
• experimental results
• the complementary error function erfc
• conclusion and hints for improvements
• current work on interval arithmetic and algorithms : MPFI
Conclusion and future work

Realization:
efficient implementation of correctly rounded error functions erf and erfc.
Termination? Table’s Maker Dilemma.

Future work:
• small precisions: avoid costly determination of the truncation rank
• choose between erf and erfc depending on the value of x, to avoid cancellation
• when can_round fails, change the heuristic to increase N to reach an optimal overhead factor of 4
• exceptions (under/overflow) not totally taken care of yet
Current work on interval arithmetic and algorithms: MPFI

MPFI (Multiple Precision Floating-point Interval arithmetic library):
- development of this C library, based on MPFR.
- design of MPFI vs standardization of intervals in C++ (proposal)

Algorithms:
- automatic adaptation of the computing precision
- Newton method for univariate problems
- linear recurrences
- global optimization for univariate problems (approximations of an elementary function by a polynomial)
Bibliography for the evaluation of erf and erfc