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Reflection Rotation Translation Glide Reflection

Definition (Rigid Motion)

Rigid Motions ( = Isometries) are the length-preserving mappings
of the plane onto itself.
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Groups of Rigid Motions

• Group E(2): all euclidean planar isometries
• Discrete Subgroups

Definition (Discreteness)

A group G is discrete if around every point P of the plane there is a
neighborhood devoid of any images of P under the group operations.

The discrete groups of rigid motions in the euclidean plane:

• 17 Wallpaper Groups
• 7 Frieze Groups
• 2 kinds of Rosette Groups
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Anatomy of the Hyperbolic Plane

Definition (Hyperbolic Axiom of Parallels)

Given a point P outside a line `
there exist at least two lines through P that do not intersect `.

• Many facts of euclidean geometry don’t rely on the Axiom of
Parallels and are true in hyperbolic geometry as well.

• The sum of angles in a triangle is less than π.
• Lengths are absolute, scaling is not an automorphism.
• Geometry of constant negative curvature.
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Poincaré Disc Model

• hyperbolic points:
inside of the unit circle

• hyperbolic lines:
lines and circles
perpendicular to the unit circle

• hyperbolic angle:
identical to euclidean angle

• hyperbolic distance:
changes with
distance from center
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Hyperbolic Rigid Motions

Reflection Rotation Translation Glide Reflection

N.B.: translations now have only a single fixed line.
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Tilings by regular Polygons

• Square

• Triangular

• Hexagonal
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From regular Polygons to Triangles

regular heptagons 4(2, 3, 7) regular triangles
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General Tesselations

4(4, 6, 7) 4(2, 5,∞)

Martin von Gagern Hyperbolic Ornaments



Basics
Program

Intuitive Input
Group Calculations
Fast Drawing

Why All Angles are Different

• 4(n, n, n) ⊂ 4(2, 3, 2n)

• 4(n, 2n, 2n) ⊂ 4(2, 4, 2n)

• 4(n, m, m) ⊂ 4(2, m, 2n)

4(k , m, n) :
π

k
+

π

m
+

π

n
< π
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Algebraic Calculations

General triangle reflection group 4(k , m, n)

• Coxeter group (finitely represented group for GAP)〈
a, b, c | a2 = 1, b2 = 1, c2 = 1, (ab)k = 1, (ac)m = 1, (bc)n = 1

〉
• Subgroups with finite index are

non-euclidean crystallographic (N.E.C.) groups
• Orientation preserving subgroups are Fuchsian
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Group Generation

1 Generator entered by user
2 Add inverse operations
3 Find “all” combinations

• Group representation
• Orbit of centerpiece
• Each element starts

a new domain

4 For all triangles that are
not yet part of any orbit

• add triangle to
central domain

• combine triangle with all
group elements to calculate
its orbit, adding to domains
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Fast and Perfect Drawing

Fast draw smooth lines in real time
Perfect image looks as correct as display hardware allows
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Reverse Pixel Lookup

1 Scan convert triangles
Triangle preprocessing

2 Map into central domain
Group preprocessing

3 Update only changes
Realtime drawing

4 Supersampling
Antialiasing
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