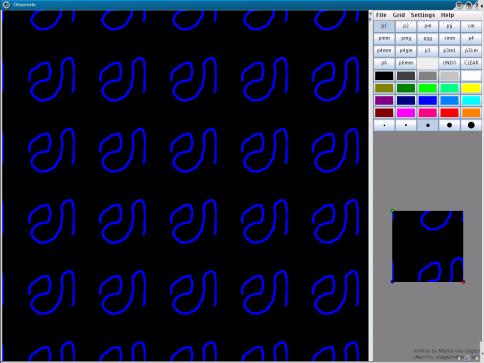
Hyperbolic Ornaments Drawing in Non-Euclidean Crystallographic Groups

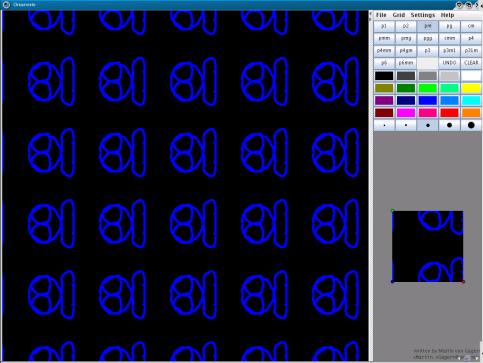
Martin von Gagern joint work with Jürgen Richter-Gebert

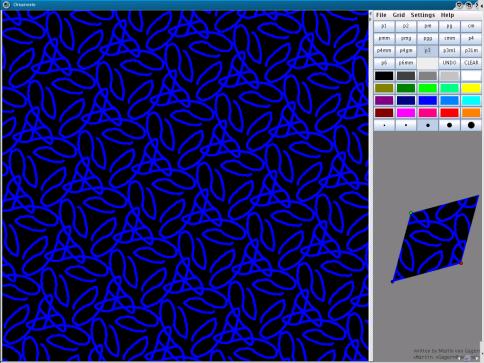
Technische Universität München

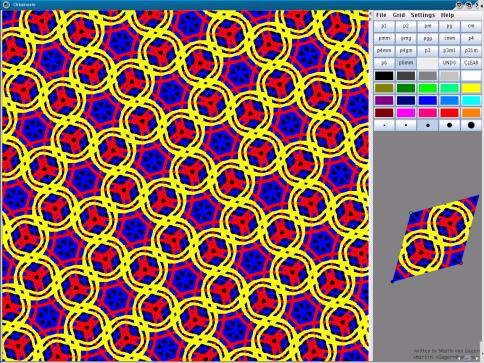
Second International Congress on Mathematical Software, September 1 2006

< 🗗 >



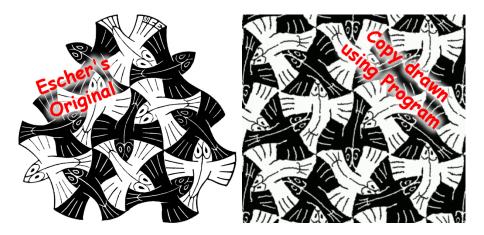






Educational Value

Escher



Hyperbolic Escher

Hyperbolic Escher

Symmetries Hyperbolic Geometry

Outline

Symmetries Hyperbolic Geometry

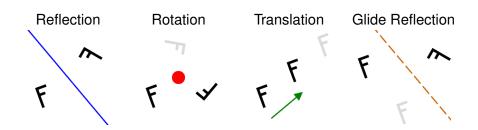
2 Program

Intuitive Input Group Calculations Fast Drawing

Symmetries

Hyperbolic Geometry

Rigid Motions



Definition (Rigid Motion)

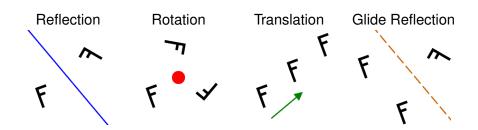
Rigid Motions (= Isometries) are the length-preserving mappings of the plane onto itself.

< 🗇 →

Symmetries

Hyperbolic Geometry

Rigid Motions



Definition (Rigid Motion)

Rigid Motions (= Isometries) are the length-preserving mappings of the plane onto itself.

< 🗗 >

Symmetries Hyperbolic Geometry

Groups of Rigid Motions

• Group *E*(2): all euclidean planar isometries

Discrete Subgroups

Definition (Discreteness)

A group G is discrete if around every point P of the plane there is a neighborhood devoid of any images of P under the group operations.

The discrete groups of rigid motions in the euclidean plane:

- 17 Wallpaper Groups
- 7 Frieze Groups
- 2 kinds of Rosette Groups

< (7) >

Symmetries Hyperbolic Geometry

Groups of Rigid Motions

- Group *E*(2): all euclidean planar isometries
- Discrete Subgroups

Definition (Discreteness)

A group G is discrete if around every point P of the plane there is a neighborhood devoid of any images of P under the group operations.

The discrete groups of rigid motions in the euclidean plane:

- 17 Wallpaper Groups
- 7 Frieze Groups
- 2 kinds of Rosette Groups

Symmetries Hyperbolic Geometry

Groups of Rigid Motions

- Group *E*(2): all euclidean planar isometries
- Discrete Subgroups

Definition (Discreteness)

A group G is discrete if around every point P of the plane there is a neighborhood devoid of any images of P under the group operations.

The discrete groups of rigid motions in the euclidean plane:

- 17 Wallpaper Groups
- 7 Frieze Groups
- 2 kinds of Rosette Groups

Basics Symmetries rogram Hyperbolic Geometry

Anatomy of the Hyperbolic Plane

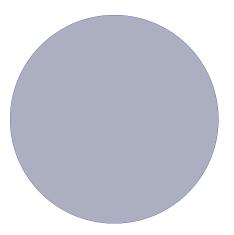
Definition (Hyperbolic Axiom of Parallels)

Given a point *P* outside a line ℓ there exist at least two lines through *P* that do not intersect ℓ .

- Many facts of euclidean geometry don't rely on the Axiom of Parallels and are true in hyperbolic geometry as well.
- The sum of angles in a triangle is less than π .
- Lengths are absolute, scaling is not an automorphism.
- Geometry of constant negative curvature.

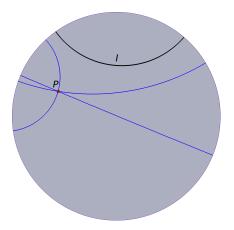
Symmetries Hyperbolic Geometry

- hyperbolic points: inside of the unit circle
- hyperbolic lines: lines and circles perpendicular to the unit circle
- hyperbolic angle: identical to euclidean angle
- hyperbolic distance: changes with distance from center



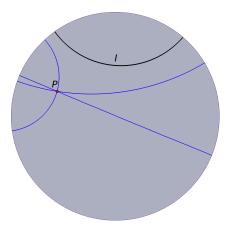
Symmetries Hyperbolic Geometry

- hyperbolic points: inside of the unit circle
- hyperbolic lines: lines and circles perpendicular to the unit circle
- hyperbolic angle: identical to euclidean angle
- hyperbolic distance: changes with distance from center



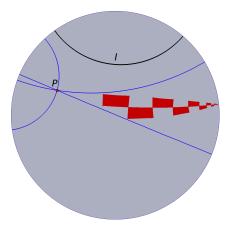
Symmetries Hyperbolic Geometry

- hyperbolic points: inside of the unit circle
- hyperbolic lines: lines and circles perpendicular to the unit circle
- hyperbolic angle: identical to euclidean angle
- hyperbolic distance: changes with distance from center



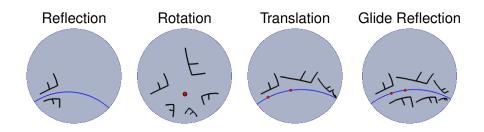
Symmetries Hyperbolic Geometry

- hyperbolic points: inside of the unit circle
- hyperbolic lines: lines and circles perpendicular to the unit circle
- hyperbolic angle: identical to euclidean angle
- hyperbolic distance: changes with distance from center



Symmetries Hyperbolic Geometry

Hyperbolic Rigid Motions



N.B.: translations now have only a single fixed line.

Intuitive Input Group Calculations Fast Drawing

Outline

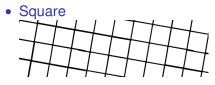
Symmetries Hyperbolic Geometry

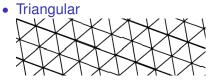
2 Program

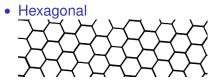
Intuitive Input Group Calculations Fast Drawing

Intuitive Input Group Calculations Fast Drawing

Tilings by regular Polygons

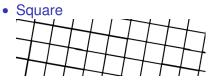




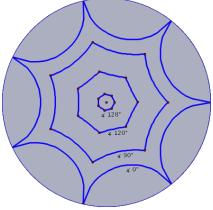


Intuitive Input Group Calculations Fast Drawing

Tilings by regular Polygons

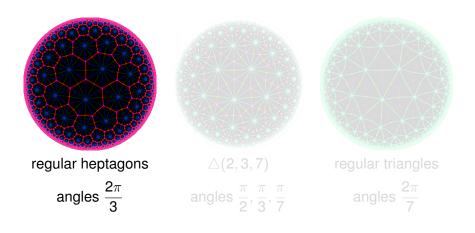


- Triangular
- Hexagonal
 Hexagonal



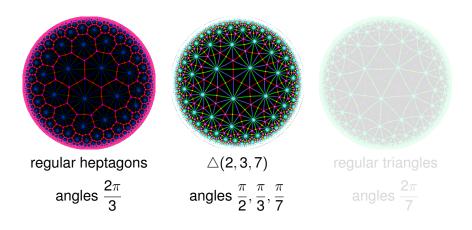
Intuitive Input Group Calculations Fast Drawing

From regular Polygons to Triangles



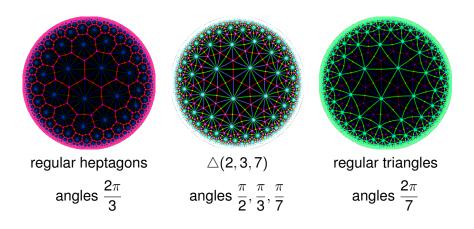
Intuitive Input Group Calculations Fast Drawing

From regular Polygons to Triangles



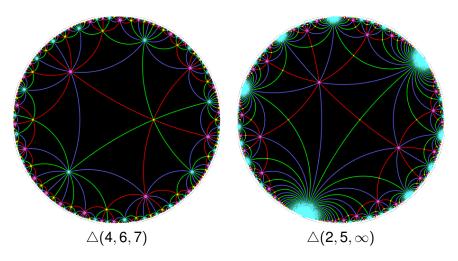
Intuitive Input Group Calculations Fast Drawing

From regular Polygons to Triangles



Intuitive Input Group Calculations Fast Drawing

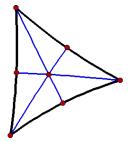
General Tesselations



Intuitive Input Group Calculations Fast Drawing

Why All Angles are Different

• \triangle (*n*, *n*, *n*) $\subset \triangle$ (2, 3,2*n*) • \triangle (*n*,2*n*,2*n*) $\subset \triangle$ (2, 4,2*n*) • \triangle (*n*, *m*, *m*) $\subset \triangle$ (2,*m*,2*n*)

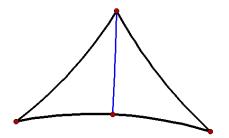


$$\triangle(k,m,n):\frac{\pi}{k}+\frac{\pi}{m}+\frac{\pi}{n}<\pi$$

Intuitive Input Group Calculations Fast Drawing

Why All Angles are Different

- \triangle (*n*, *n*, *n*) $\subset \triangle$ (2, 3,2*n*) • \triangle (*n*,2*n*,2*n*) $\subset \triangle$ (2, 4,2*n*)
- $\triangle(n, m, m) \subset \triangle(2, m, 2n)$



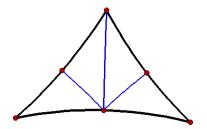
$$\triangle(k,m,n):\frac{\pi}{k}+\frac{\pi}{m}+\frac{\pi}{n}<\pi$$

Intuitive Input Group Calculations Fast Drawing

Why All Angles are Different

•
$$\triangle$$
(*n*, *n*, *n*) \subset \triangle (2, 3, 2*n*)

- \triangle (*n*, 2*n*, 2*n*) \subset \triangle (2, 4, 2*n*)
- \triangle (*n*, *m*, *m*) \subset \triangle (2, *m*, 2*n*)



$$\triangle(k,m,n):\frac{\pi}{k}+\frac{\pi}{m}+\frac{\pi}{n}<\pi$$

Intuitive Input Group Calculations Fast Drawing

Algebraic Calculations

- Coxeter group (finitely represented group for GAP) $\langle a, b, c \mid a^2 = 1, b^2 = 1, c^2 = 1, (ab)^k = 1, (ac)^m = 1, (bc)^n = 1 \rangle$
- Subgroups with finite index are non-euclidean crystallographic (N.E.C.) groups
- Orientation preserving subgroups are Fuchsian

Intuitive Input Group Calculations Fast Drawing

Algebraic Calculations

- Coxeter group (finitely represented group for GAP) $\langle a, b, c \mid a^2 = 1, b^2 = 1, c^2 = 1, (ab)^k = 1, (ac)^m = 1, (bc)^n = 1 \rangle$
- Subgroups with finite index are non-euclidean crystallographic (N.E.C.) groups
- Orientation preserving subgroups are Fuchsian

Intuitive Input Group Calculations Fast Drawing

Algebraic Calculations

- Coxeter group (finitely represented group for GAP)
 ⟨a, b, c | a² = 1, b² = 1, c² = 1, (ab)^k = 1, (ac)^m = 1, (bc)ⁿ = 1⟩
- Subgroups with finite index are non-euclidean crystallographic (N.E.C.) groups
- Orientation preserving subgroups are Fuchsian

Intuitive Input Group Calculations Fast Drawing

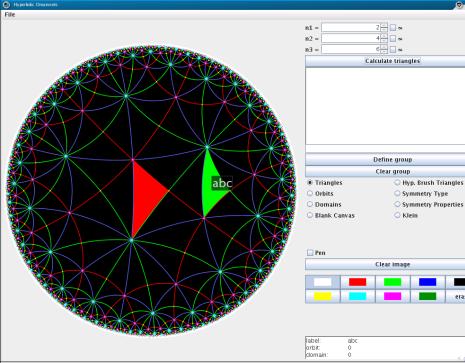
Algebraic Calculations

- Coxeter group (finitely represented group for GAP)
 ⟨a, b, c | a² = 1, b² = 1, c² = 1, (ab)^k = 1, (ac)^m = 1, (bc)ⁿ = 1⟩
- Subgroups with finite index are non-euclidean crystallographic (N.E.C.) groups
- Orientation preserving subgroups are Fuchsian

Intuitive Input Group Calculations Fast Drawing

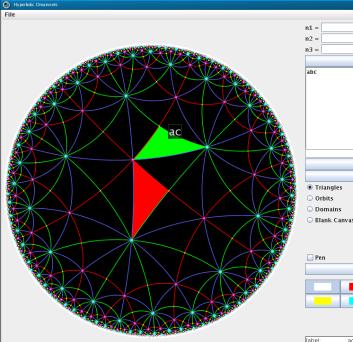
Algebraic Calculations

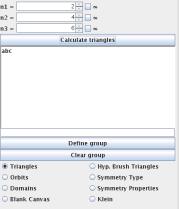
- Coxeter group (finitely represented group for GAP)
 ⟨a, b, c | a² = 1, b² = 1, c² = 1, (ab)^k = 1, (ac)^m = 1, (bc)ⁿ = 1⟩
- Subgroups with finite index are non-euclidean crystallographic (N.E.C.) groups
- Orientation preserving subgroups are Fuchsian



erase

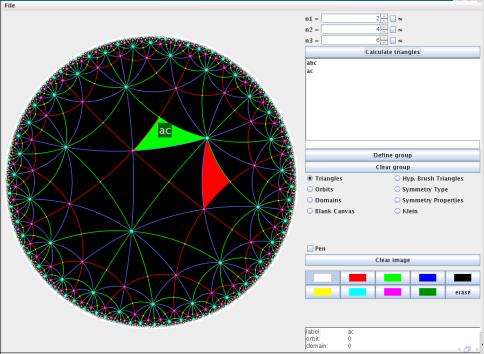
< A >

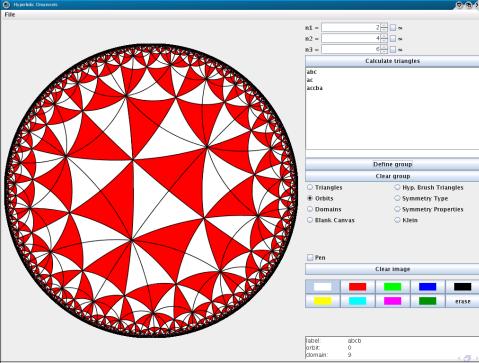




Q. B.

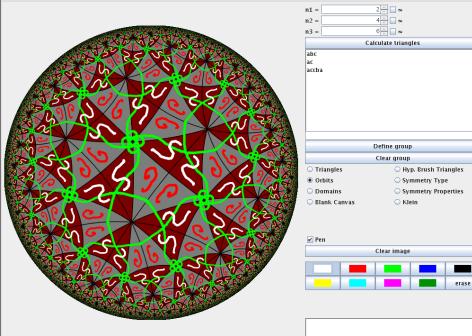
label:	ac	
orbit:	0	
domain:	0	4 - 1

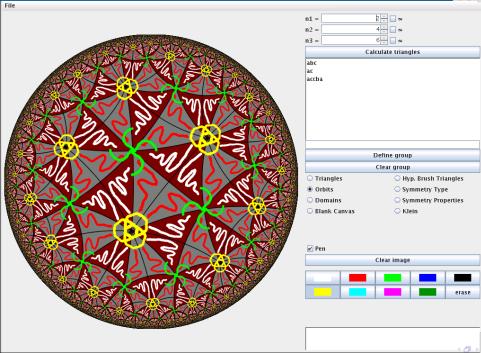


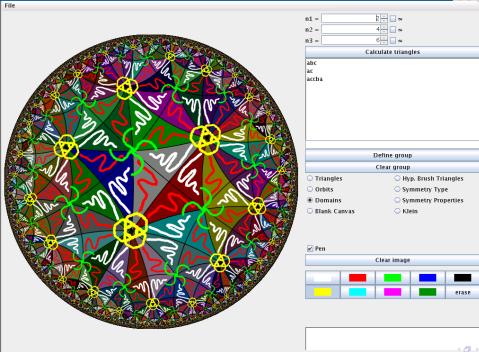


Q. B.

< A >





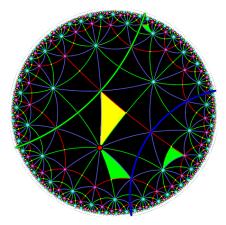


Intuitive Input Group Calculations Fast Drawing

Group Generation

Generator entered by user

- 2 Add inverse operations
- 8 Find "all" combinations
 - Group representation
 - Orbit of centerpiece
 - Each element starts a new domain
- For all triangles that are not yet part of any orbit
 - add triangle to central domain
 - combine triangle with all group elements to calculate its orbit, adding to domains



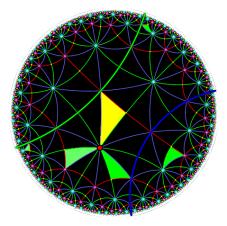
Intuitive Input Group Calculations Fast Drawing

Group Generation

Generator entered by user

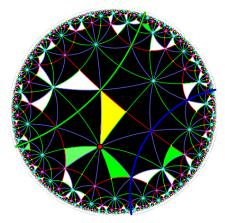
2 Add inverse operations

- 8 Find "all" combinations
 - Group representation
 - Orbit of centerpiece
 - Each element starts a new domain
- For all triangles that are not yet part of any orbit
 - add triangle to central domain
 - combine triangle with all group elements to calculate its orbit, adding to domains



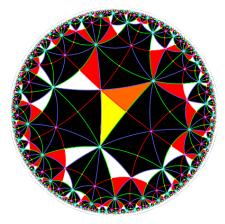
Intuitive Input Group Calculations Fast Drawing

- Generator entered by user
- 2 Add inverse operations
- 3 Find "all" combinations
 - Group representation
 - Orbit of centerpiece
 - Each element starts a new domain
- 4 For all triangles that are not yet part of any orbit
 - add triangle to central domain
 - combine triangle with all group elements to calculate its orbit, adding to domains



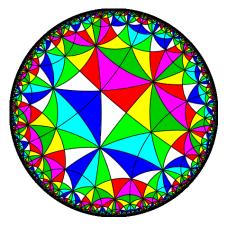
Intuitive Input Group Calculations Fast Drawing

- Generator entered by user
- 2 Add inverse operations
- 3 Find "all" combinations
 - Group representation
 - Orbit of centerpiece
 - Each element starts a new domain
- 4 For all triangles that are not yet part of any orbit
 - add triangle to central domain
 - combine triangle with all group elements to calculate its orbit, adding to domains



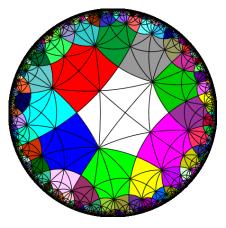
Intuitive Input Group Calculations Fast Drawing

- Generator entered by user
- 2 Add inverse operations
- 3 Find "all" combinations
 - Group representation
 - Orbit of centerpiece
 - Each element starts a new domain
- 4 For all triangles that are not yet part of any orbit
 - add triangle to central domain
 - combine triangle with all group elements to calculate its orbit, adding to domains



Intuitive Input Group Calculations Fast Drawing

- Generator entered by user
- 2 Add inverse operations
- 3 Find "all" combinations
 - Group representation
 - Orbit of centerpiece
 - Each element starts a new domain
- 4 For all triangles that are not yet part of any orbit
 - add triangle to central domain
 - combine triangle with all group elements to calculate its orbit, adding to domains



Intuitive Input Group Calculations Fast Drawing

Group Visualization

Martin von Gagern

Intuitive Input Group Calculations Fast Drawing

Fast and Perfect Drawing

Fast draw smooth lines in real time Perfect image looks as correct as display hardware allows

Intuitive Input Group Calculations Fast Drawing

Fast and Perfect Drawing

Fast draw smooth lines in real time Perfect image looks as correct as display hardware allows

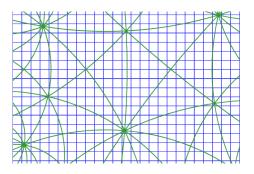
Intuitive Input Group Calculations Fast Drawing

Fast and Perfect Drawing

Fast draw smooth lines in real time Perfect image looks as correct as display hardware allows

Intuitive Input Group Calculations Fast Drawing

- Scan convert triangles *Triangle preprocessing*
- 2 Map into central domain *Group preprocessing*
- Opdate only changes Realtime drawing
- Supersampling
 Antialiasing

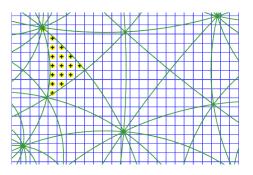


Intuitive Input Group Calculations Fast Drawing

Reverse Pixel Lookup

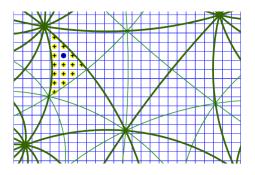
Scan convert triangles Triangle preprocessing

- 2 Map into central domain *Group preprocessing*
- Opdate only changes Realtime drawing
- 4 Supersampling Antialiasing



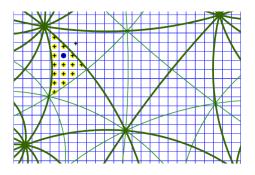
Intuitive Input Group Calculations Fast Drawing

- Scan convert triangles Triangle preprocessing
- 2 Map into central domain *Group preprocessing*
- Opdate only changes Realtime drawing
- 4 Supersampling Antialiasing



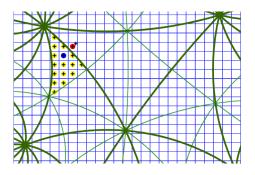
Intuitive Input Group Calculations Fast Drawing

- Scan convert triangles Triangle preprocessing
- 2 Map into central domain *Group preprocessing*
- Opdate only changes Realtime drawing
- 4 Supersampling Antialiasing



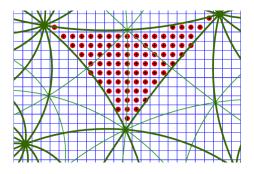
Intuitive Input Group Calculations Fast Drawing

- Scan convert triangles Triangle preprocessing
- 2 Map into central domain *Group preprocessing*
- Opdate only changes Realtime drawing
- 4 Supersampling Antialiasing



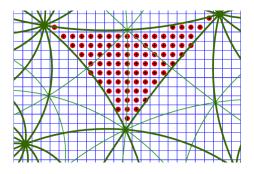
Intuitive Input Group Calculations Fast Drawing

- Scan convert triangles Triangle preprocessing
- 2 Map into central domain *Group preprocessing*
- Opdate only changes Realtime drawing
- Supersampling
 Antialiasing



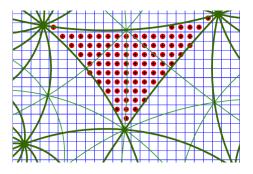
Intuitive Input Group Calculations Fast Drawing

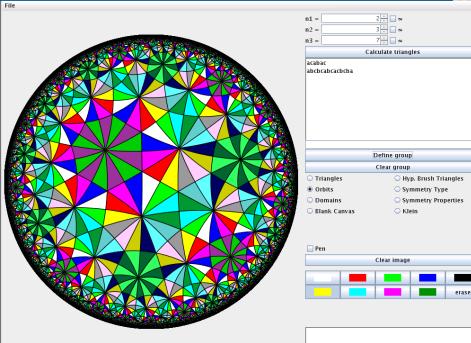
- Scan convert triangles Triangle preprocessing
- 2 Map into central domain *Group preprocessing*
- 3 Update only changes *Realtime drawing*
- 4 Supersampling Antialiasing

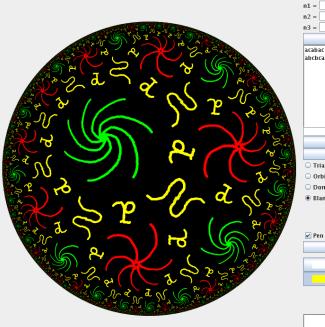


Intuitive Input Group Calculations Fast Drawing

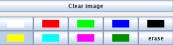
- Scan convert triangles Triangle preprocessing
- 2 Map into central domain *Group preprocessing*
- 3 Update only changes *Realtime drawing*
- 4 Supersampling Antialiasing





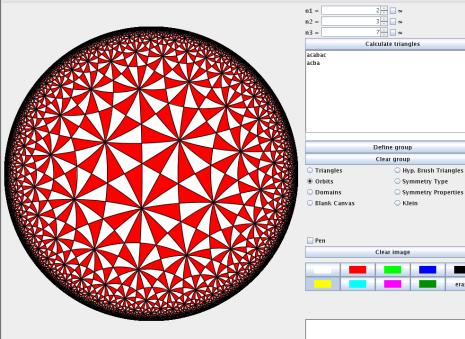


n1 = 2 -	∞	
n2 = 3	<u></u> ∞	
n3 = 7	∞	
Calculate triangles		
acabac abcbcabcacbcba		
Define group		
Clear group		
 Triangles 	🔾 Hyp. Brush Triangles	
Orbits	Symmetry Type	
O Domains	Symmetry Properties	
Blank Canvas	🔾 Klein	

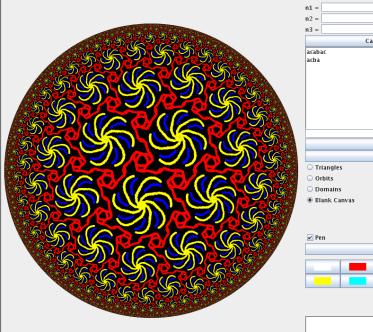


erase

< A →



< 🗗 >



nT =		2
n2 =		3 🕂 🔜 👓
n3 =		7 📩 🗔 👓
Calculate triangles		
acabac		
acba		
Define group		
Clear group		
⊖ Tr	iangles	🔾 Hyp. Brush Triangles
0	rbits	Symmetry Type
O D	omains	Symmetry Properties
🖲 BI	ank Canvas	🔾 Klein

