next | previous | forward | backward | up | top | index | toc | home

equations of the twisted cubic

In this example we create the ring homomorphism corresponding to the parametrization of the twisted cubic and compute its kernel, obtaining the equation in P3 of the twisted cubic.
i1 : R = QQ[s,t]

o1 = R

o1 : PolynomialRing
i2 : S = QQ[w,x,y,z]

o2 = S

o2 : PolynomialRing
i3 : f = map(R,S,{s^3,s^2*t,s*t^2,t^3})

               3   2      2   3
o3 = map(R,S,{s , s t, s*t , t })

o3 : RingMap R <--- S
i4 : kernel f

             2                    2
o4 = ideal (y  - x*z, x*y - w*z, x  - w*y)

o4 : Ideal of S