next | previous | forward | backward | up | top | index | toc | home

Hom(Module,Module) -- module of homomorphisms

Synopsis

Description

If M or N is an ideal or ring, it is regarded as a module in the evident way.

i1 : R = QQ[x,y]/(y^2-x^3);
i2 : M = image matrix{{x,y}}

o2 = image | x y |

                             1
o2 : R-module, submodule of R
i3 : H = Hom(M,M)

o3 = subquotient (| 1 x 0 |, | -y 0  x2 0  |)
                  | 0 0 1 |  | x  0  -y 0  |
                  | 0 y x |  | 0  -y 0  x2 |
                  | 1 0 0 |  | 0  x  0  -y |

                               4
o3 : R-module, subquotient of R
i4 : H1 = prune H

o4 = cokernel {0} | 0  -y |
              {1} | -y x  |

                            2
o4 : R-module, quotient of R
Specific homomorphisms may be obtained using homomorphism.
i5 : f1 = homomorphism H_{0}

o5 = {1} | 1 0 |
     {1} | 0 1 |

o5 : Matrix
i6 : f2 = homomorphism H_{1}

o6 = {1} | x y |
     {1} | 0 0 |

o6 : Matrix
i7 : f3 = homomorphism H_{2}

o7 = {1} | 0 x |
     {1} | 1 0 |

o7 : Matrix
In this example, f1 is the identity map, f2 is multiplication by x, and f3 maps x to y and y to x^2.

See also