ReesAlgebra : Table of Contents
- ReesAlgebra -- for rees algebra and integral closure of ideals
- analyticSpread -- compute the analytic spread
- analyticSpread(..., Strategy => ...) -- Allows the user to define the matrix, ideal, or module over a polynomial ring and then set an ideal to compute the analytic spread over a quotient ring defined by Strategy
- analyticSpread(Ideal) -- compute the analytic spread of an ideal over a quotient ring
- analyticSpread(Matrix) -- compute the analytic spread of the image of a matrix over a quotient ring
- analyticSpread(Module) -- compute the analytic spread of a module over a quotient ring
- distinguished -- compute the distinguished subvarieties of a variety
- distinguished(..., Variable => ...) -- distinguished introduces new variables and the option Variable allows the user to specify a variable name for this purpose, the default is
- distinguishedAndMult -- compute the distinguished subvarieties of a variety along with their multiplicities
- distinguishedAndMult(..., Variable => ...) -- distinguishedAndMult introduces new variables and the option Variable allows the user to specify a variable name for this purpose, the default is
- idealIntegralClosure -- compute the integral closure of an ideal
- isLinearType -- determine if a module is of linear type
- isLinearType(..., Strategy => ...) -- Allows the user to define the matrix, ideal, or module over a polynomial ring and then set an ideal to compute test if it is linear type over a quotient ring defined by Strategy
- isLinearType(Ideal) -- determine if the image of a matrix is of linear type
- isLinearType(Matrix) -- determine if the image of a matrix is of linear type
- isLinearType(Module) -- determine if the image of a matrix is of linear type
- multiplicity -- compute the multiplicty of an ideal
- rees -- compute the rees algebra
- rees(..., Strategy => ...) -- Allows the user to define the matrix, ideal, or module over a polynomial ring and then set an ideal to compute the rees algebra over a quotient ring defined by Strategy
- rees(..., Variable => ...) -- rees introduces new variables and the option Variable allows the user to specify a variable name for this purpose, the default is
- rees(Ideal) -- compute the rees algebra of an ideal over a quotient ring
- rees(Matrix) -- compute the rees algebra of the image of a matrix over a quotient ring
- rees(Module) -- compute the rees algebra of a module over a quotient ring
- reesClassic -- compute the classic Rees algebra of an ideal
- reesClassic(..., Variable => ...) -- reesClassic introduces new variables and the option Variable allows the user to specify a variable name for this purpose, the default is
- specialFiber -- compute the special fiber
- specialFiber(..., Strategy => ...) -- Allows the user to define the matrix, ideal, or module over a polynomial ring and then set an ideal to compute the special fiber over a quotient ring defined by Strategy
- specialFiber(..., Variable => ...) -- specialFiber introduces new variables and the option Variable allows the user to specify a variable name for this purpose, the default is
- specialFiber(Ideal) -- compute the special fiber of the image of a matrix over a quotient ring
- specialFiber(Matrix) -- compute the special fiber of the image of a matrix over a quotient ring
- specialFiber(Module) -- compute the special fiber of the image of a matrix over a
- symmetricKernel -- compute the rees ring for a matrix f over a quotient ring
- symmetricKernel(..., Strategy => ...) -- Allows the user to define the matrix, ideal, or module over a polynomial ring and then set an ideal to compute the symmetric kernel over a quotient ring defined by Strategy
- symmetricKernel(..., Variable => ...) -- symmetricKernel introduces new variables and the option Variable allows the user to specify a variable name for this purpose, the default is
- universalEmbedding -- Compute the universal embedding
- universalEmbedding(..., Strategy => ...) -- Allows the user to define the matrix, ideal, or module over a polynomial ring and then set an ideal to compute a the univeral embedding over a quotient ring defined by Strategy
- universalEmbedding(Ideal) -- compute the universal embedding of an ideal
- universalEmbedding(Matrix) -- compute the universal embedding of a matrix
- universalEmbedding(Module) -- compute the universal embedding of a matrix