An analytic function in 3 complex variables related to the value-distribution of \(\log L \), and the "Plancherel volume"

Yasutaka Ihara

The first subject of the talk is of general and elementary nature. For a continuous density measure \(M(x)|dx| \) on \(\mathbb{R}^d \), let \(\mu_M \) denote the variance and \(\nu_M \) the "Plancherel volume"

\[
\nu_M = \int M(x)^2|dx| = \int |\hat{M}(y)|^2|dy|
\]

(\(|dx| \) the self-dual Haar measure of \(\mathbb{R}^d \), \(\hat{\cdot} \) the Fourier transform). We first focus our attention on the natural numerical invariant \(\mu_M^2 \nu_M \); its meaning, basic examples with parameters, the lower bound, etc.

The second (and the main) subject is a complex analytic function in 3 variables defined explicitly as

\[
\tilde{M}(s; z_1, z_2) = \prod_p F(i z_1/2, i z_2/2; 1; p^{-2s}) \quad (\Re(s) > 1/2)
\]

(\(i = \sqrt{-1} \), \(F(a, b; c; t) \) Gauss’ hypergeometric series). When \(\sigma \) is real > 1/2, \(\tilde{M}(\sigma, z_1, z_2) \) can be interpreted as the mean value of \(\{\zeta(s)^{iz_1/2} \zeta(s)^{iz_2/2}\} \) over the vertical line \(\Re(s) = \sigma \). But we consider \(\tilde{M}(s; z_1, z_2) \) as an analytic function also of the complex variable \(s \). We discuss its analytic continuation to the left of \(\Re(s) > 1/2 \), two other infinite product expansions, and the limit behaviours as \(s \to 1/2, +\infty \). This will be applied to the determination of the corresponding limits of the above invariant \(\mu_M^2 \nu_M \) when \(M = M_\sigma \) is the density measure on \(\mathbb{C} \) for the distribution of \(\{\log \zeta(\sigma + ti)\}_{t \in \mathbb{R}} \) or of \(\{\log L(s, \chi)\}_{\chi} \). The connection with value-distributions is joint work with K. Matsumoto.