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An advantage of using category theory is that it can visualize relations be-
tween different mathematical fields. Further, when we find a relation between
different mathematical fields, it sometimes helps for developings a theory in
a new direction. This fact motivates us to use category theory for studying
probability theory.

One of the most prominent trials of applying category theory to proba-
bility theory so far is Lawvere and Giry’s approach of formulating transition
probabilities in a monad framework ([Lawvere, 1962], [Giry, 1982]). However,
their approach is based on two categories, the category of measurable spaces
and the category of measurable spaces of a Polish space , not a category of
probability spaces. Further, there are few trials of making categories con-
sisting of all probability spaces due to a difficulty of finding an appropriate
condition of their arrows.

Our approach is one of this simple-minded trials. We introduce a cate-
gory Prob of all probability spaces in order to see a possible generalization
of some classical tools in probability theory including conditional expecta-
tions. Actually, [Adachi, 2014] provides a simple category for formulating
conditional expectations, but its objects and arrows are so limited that we
cannot use it as a foundation of categorical probability theory.

Definition 1. A category Prob is the category whose objects are all prob-
ability spaces and the set of arrows between them are defined by

Prob((X,ΣX ,PX), (Y,ΣY ,PY ))

:= {f− | f : (Y,ΣY ,PY )→ (X,ΣX ,PX) : measurable with PY ◦ f
−1 ≪ PX},



where f− is a symbol corresponding uniquely to a measurable function f .

We write (X,ΣX ,PX)
f−

−→ (Y,ΣY ,PY ) in Prob, however, note that the
arrow f− has an opposite direction of the function f .

From now on, f− : (X,ΣX ,PX)→ (Y,ΣY ,PY ) is an arbitrary arrow in
Prob. For any v ∈ L1(Y,ΣY ,PY ), thanks to Radon-Nikodym theorem, we
can find Ef−(v) ∈ L1(X,ΣX ,PX), a (version of) conditional expectation of
v along f−, satisfying ∫

A

Ef−(v) dPX =

∫
f−1(A)

v dPY

for all A ∈ ΣX . This is a generalization of conditional expectation. Because
if f = idΩ : (Ω,F ,P)→ (Ω,G,P) and G ⊂ F , then Eid−

Ω (v) becomes a usual

conditional expectation E(v|G). Since the arrow (Ω,F ,P)
idΩ−−→ (Ω,G,P) is

identified as a sub σ-algebra G of F , we can think of an arrow f− in Prob

as a σ-algebra.
Additionally, one can show the well-definedness of [v]∼PY

7→ [Ef−(v)]∼PX

,
here ∼P is P-a.s. equivalence relation. So we have the first theorem:

Theorem 2. There exists a contravariant functor E from Prob to Set (the
category of all sets and all functions) as following:

X (X,ΣX ,PX)

f−

��

✤

E // E(X,ΣX ,PX) := L1(X,ΣX ,PX) ∋ [Ef−(v)]∼PX

Y

f

OO

(Y,ΣY ,PY )
✤

E // E(Y,ΣY ,PY ) :=

Ef−

OO

L1(Y,ΣY ,PY ) ∋ [v]∼PY

.
❴

Ef−

OO

Continually, we define a concept of measurability.

Definition 3. A random variable v ∈ L∞(Y,ΣY ,PY ) is called f−-measurable
if there exists w ∈ L∞(X,ΣX ,PX) such that v ∼PY

w ◦ f .

It seems natural because f− is a ”σ-algebra”. Due to this definition, our
second theorem is obtained.

Theorem 4. Let u be an element of L1(Y,ΣY ,PY ) and v be a random vari-
able in L∞(Y,ΣY ,PY ), and assume that v is f−-measurable. Then we have

Ef−(v · u) ∼PX
w · Ef−(u),

where w ∈ L∞(X,ΣX ,PX) is a random variable satisfying v ∼PY
w ◦ f .



This theorem shows that our ”conditional expectation” still has a similar
property about measurability.

Next definition is a modification of [Franz, 2003].

Definition 5. We say v ∈ L1(Y,ΣY ,PY ) is independent of f
− if there exists

a measure preserving map q which makes the following diagram commute:

(Y,ΣY ,PY )

v

ss
q

��

f

++
(R,B,PY ◦ v

−1) (R×X,B ⊗ ΣX , (PY ◦ v
−1)⊗ (PY ◦ f

−1))π1

oo
π2

// (X,ΣX ,PX).

By a straightforward calculation, we see that this definition means usual
independence in the case of two σ-algebras.

Finally, we encounter our last theorem.

Theorem 6. Let v ∈ L1(Y,ΣY ,PY ) be a random variable that is independent
of f−. Then we have,

Ef−(v) ∼PX
E
PY [v]Ef−(1Y ).

When f is measure preserving, Ef−(1Y ) ∼PX
1, then the above formula

turns well known formula of conditional expectation with independence since
Ef−(1Y ) is the Radon-Nikodym derivative d(PY ◦ f

−1)/dPX .
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