Linear relations between pattern sequences in a $\langle q, r \rangle$ -numeration system

Yohei Tachiya (Keio University)

Let q and r be fixed integers with $q \ge 2$ and $0 \le r \le q - 2$. Any positive integer n has a unique representation of the form

$$n = \sum_{i=0}^{k} a_i q^i, \quad a_i \in \Sigma_{q,r}, \quad a_k > 0,$$

where $\Sigma_{q,r} := \{-r, 1 - r, \dots, 0, 1, \dots, q - 1 - r\} \supset \{0, 1\}$. The string of $\langle q, r \rangle$ -digits $(n)_{q,r} := a_k a_{k-1} \cdots a_0$ is called the $\langle q, r \rangle$ -expansion of n. The $\langle q, 0 \rangle$ -expansion is the ordinary q-ary expansion. These numeration systems are called $\langle q, r \rangle$ -numeration systems. Let w be a finite string of elements in $\Sigma_{q,r}$. We define $e_{q,r}(w;n)$ to be the number of (possibly overlapping) occurrences of w in the $\langle q, r \rangle$ -expansion of n and define $e_{q,r}(w;0) = 0$. The resulting sequence $\{e_{q,r}(w;n)\}_{n\geq 0}$ is called the *pattern* sequence for the pattern w in the $\langle q, r \rangle$ -numeration system.

We investigate linear relations between pattern sequences in a $\langle q, r \rangle$ -numeration system. We give a basis of the module generated by pattern sequences for words of length not exceeding l and study the expressions of pattern sequences using the basis. Similar results are obtained for the module generated by all pattern sequences.