[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

1.1 Functions


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

1.1.1 phc.start

phc.start()

:: Start ox_sm1_phc on the localhost.

return

Integer

 
P = phc.start()
Reference

ox_launch, phc


[ < ] [ > ]   [ << ] [ Up ] [ >> ]         [Top] [Contents] [Index] [ ? ]

1.1.2 phc.phc

phc.phc(s|proc=p)

:: Ask PHC pack to find all the roots in the complex torus of the given systems of polynomials s

return

Void

p

Number

s

List

Algorithm: Jan Verschelde, PHCpack: A general-purpose solver for polynomial systems by homotopy continuation". ACM Transaction on Mathematical Softwares, 25(2): 251-276, 1999.

 
[232] P = phc.start();
0
[233] phc.phc([x^2+y^2-4,x*y-1]|proc=P);
The detailed output is in the file tmp.output.*
The answer is in the variable Phc.
0
[234] Phc;
[[[-1.93185,0],[-0.517638,0]],
 [[0.517638,0],[1.93185,0]],
 [[-0.517638,0],[-1.93185,0]],
 [[1.93185,0],[0.517638,0]]]

 [[x=[real, imaginary], y=[real,imaginary]],  the first solution
  [x=[real, imaginary], y=[real,imaginary]],  the second solution
  ...
Reference

ox_launch, phc.start, `$(OpenXM_HOME)/bin/lin_phcv2'(original PHC pack binary for linux)


[ < ] [ > ]   [ << ] [ Up ] [ >> ]

This document was generated by Nobuki Takayama on January, 28 2008 using texi2html 1.76.