class GOERITZ_MAT |
---|
const gm,an,ap,bn,bp,mat_num; |
---|
**** | code/ori types |
const gm,an,ap,bn,bp,mat_num; |
---|
**** | code/ori types |
const gm,an,ap,bn,bp,mat_num; |
---|
**** | code/ori types |
const gm,an,ap,bn,bp,mat_num; |
---|
**** | code/ori types |
const gm,an,ap,bn,bp,mat_num; |
---|
**** | code/ori types |
const gm,an,ap,bn,bp,mat_num; |
---|
**** | code/ori types |
Bound(TCode:TCODE, |
---|
Coloring(TCode:TCODE,out Bounds:ARRAY{ARRAY{G_CROSS}},out Sn:INT) |
---|
KnotValue(TCode:TCODE) |
---|
SearchNewColor(TCode:TCODE,Bounds:ARRAY{ARRAY{G_CROSS}}, inout Sn:INT, |
---|
printBound(Bounds:ARRAY{ARRAY{G_CROSS}}) |
---|
printGMat(Graph:ARRAY{MAT_INTI}) |
---|
printKnotValue(kv:INTI) |
---|
sMat(TCode:TCODE,out Graph:ARRAY{MAT_INTI}) |
---|
**** | Graph[code][i,j] is adjacent matrix of oriented and coded graph of the knot. Let A+ , A- , B+ and B- be adjacent matrices of code ap, an, bp and bn (resp.). Goeritz matrix is (A+) + (A+)t - (A-) - (A-)t + (B+) + (B+)t - (B-) - (B-)t: t is transpose. |
sMatSetEdge(TCode:TCODE, inout Graph:ARRAY{MAT_INTI}, |
---|