class REP_STACK
****
1996/10LINUX version

Kouji Kodama 1989/8 kernel of computing the group S(Jn).




Public


Readable Attributes
attr Jn1:INT;
**** Jn+1
attr Jn2:INT;
**** Jn+2
attr Jn:INT;
**** index of permutation
attr bottom:INT;
attr
attr pt:INT;
**** stack pointer. assume that stack.has_ind(pt).
attr st:ARRAY{ARRAY{INT}};
**** stack

Writable Attributes
attr bottom:INT;
attr
attr pt:INT;
**** stack pointer. assume that stack.has_ind(pt).
attr st:ARRAY{ARRAY{INT}};
**** stack

Features
CMul(w:ARRAY{INT})
**** +1
CnvCyclicForm
**** +1: presents a permutation as product of disjoint cycles.in:gen.out:st1:Yang.st0 =top:cyclic form. Cut off st0[] with length of st1[],then each segment is cycle, and it is the product of cycles.

works.st2:g permutationst3:Orbit.st4:start point of orbit.st5:length of orbit.
Conjugate( P,Q :INT)
**** +1 Fetch Q P Q~
Drop
**** -1
Dup
**** +1
Eq1:BOOL
**** -1 check if unit
Eq:BOOL
**** -2 if st[pt]=st[pt-1]
Fetch(i:INT)
**** +1
Gen:BOOL
**** 0/-2 Heap's algorithm.
GenConj:BOOL
**** 0/-5
GenY:BOOL
**** 0/-6
GenYang:BOOL
**** true: +0, false: -2
InitConj
**** +4 Assume thet a Yang-diagram is on the stack.
InitGen
**** +2
InitGenY(Ynum:INT)
****
__+6
InitYang
**** +2
Inv
**** 0
Mul
**** -1 store(a); store(b); Mul implies a b
OrbitC(gn:INT)
****
__-gn+1
make orbit of gn-elements on stack top
OrbitS
**** +1 mark up orbits for stack top
Over
**** +1
Pd
**** -1
Pd(n:INT)
**** -n
Pu
**** +1
Pu(n:INT)
**** +n
Rot
**** 0
Sort
**** 0 sort stack top
Store(i:INT)
**** -1
Swap
**** 0
Unit
**** +1
WriteStackLog
**** -1
Yang
**** +1 Yang diagram(list of length of orbits) format: [ #orbit, length of orbits(sorted)]
create(jn:INT):SAME
get_str(preType:INT):STR
**** -1
get_str:STR
**** -1
resize


Private

CjN(pi,qi:INT)
**** +1 q~ p q. pi,qi>=0
CjP(pi,qi:INT)
**** +1 q p q~. pi,qi>=0
CnvG
**** 0 set st0 from st1 and st2
GenConjCanExg:BOOL
GenConjExg
GenConjGen:BOOL
GenConjRot(on,os,oe:INT):BOOL
attr Jn:INT;
**** index of permutation
attr Jn1:INT;
**** Jn+1
attr Jn2:INT;
**** Jn+2
generate_stack(jn:INT):SAME

The Sather Home Page