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PREFACE

In these notes, we study basic contact processes, diffusive θ-contact processes,
diffusive contact processes, one-sided contact process and discrete-time growth mod-
els. Unfortunately, the rigorous critical values and order parameters for these par-
ticle systems are not known. So these notes mainly restrict attention to upper and
lower bounds on the critical values and order parameters given by the Harris lemma.
In particular, we focus on two typical methods; the Katori-Konno method and the
Holley-Liggett one. In general, the Katori-Konno (resp. Holley-Liggett) method gives
lower (resp. upper) bounds on critical values and upper (resp. lower) bounds on order
parameters. Roughly speaking, the Katori-Konno method corresponds to mean-field
type approximation. On the other hand, the Holley-Liggett method corresponds to
Gibbsian type one. Most results in these notes already appeared in some journals and
books.

The basic contact process is a simple model of a disease with the infection rate λ.

This process is a continuous-time Markov process on state space η ∈ {0, 1}Zd

, where
Zd is the d-dimensional integer lattice. The dynamics are specified by the following
transition rates: at site x ∈ Zd,

1 → 0 at rate 1,

0 → 1 at rate λ
∑

y:|y−x|=1

η(y),

where |x| = |x1|+· · ·+|xd|. Define ρλ as the density of infected individual at a site with
respect to a stationary measure. We take ρλ as an order parameter of this process.
The basic contact process is attractive, so ρλ is a nondecreasing function of λ. Then the
critical value λc is characterized by ρλ in the following way: λc = inf{λ ≥ 0 : ρλ > 0}.
Concerning the processes treated in the rest of these notes, the critical values and
the order parameters can be defined in the similar way, since these processes are also
attractive. In Chapters 1 and 2, we mainly study the one-dimensional case. Chapter
1 is devoted to lower bounds on the critical value and upper bounds on the order
parameter of the basic contact process. In Section 1.3, we give bounds by using the
correlation identities and the Harris-FKG inequality. In Section 1.4, we present the
Harris lemma. By using it, better bounds are obtained by the Katori-Konno method.
In the end of this section, we discuss another derivation of Katori-Konno bounds by
assuming correlation inequalities. Chapter 2 deals with upper bounds on the critical



value and lower bounds on the order parameter of the basic contact process. In Section
2.2, we obtain bounds by the Holley-Liggett method which uses the Harris lemma.
In Section 2.3, we discuss another derivation of Holley-Liggett bounds by assuming
correlation inequalities. We should remark that these inequalities are different from
ones which appeared in Section 1.4.

The diffusive θ-contact process is a generalization of the one-dimensional basic
contact process. Chapter 3 treats bounds on critical values and order parameters for
this process. In Section 3.2, we give bounds by using the Katori-Konno method.
Section 3.3 provides bounds by the Holley-Liggett method for non-diffusive case.
Moreover, in Section 3.4, we discuss another derivation of Holley-Liggett bounds by
assuming correlation inequalities as in the case of Section 2.3.

The diffusive contact process is the basic contact process with stirring mechanism.
In Chapter 4, we study bounds given by the Katori-Konno method.

Chapter 5 is devoted to basic contact processes on homogeneous trees. In this
chapter we obtain both upper and lower bounds on order parameters by the Katori-
Konno method. In particular, the result on the lower bound depends on the property
of trees.

In Chapter 6, we consider the one-sided contact process which is an asymmetric
basic contact process. Section 6.2 gives lower bounds on critical value. In Section 6.3,
we study upper bound.

Chapter 7 is devoted to discrete-time growth models on Z. In Section 7.2, we
present a discrete-time version of the Harris lemma. Section 6.3 is devoted to bounds
by the Katori-Konno method. In Section 6.4, we discuss briefly a derivation of bounds
by the Holley-Liggett method.

Finally, Chapter 8 treats 3-state cyclic particle systems. Section 8.2 is devoted
to master equations and correlation identities in the d-dimensional case. In Sections
8.3 and 8.4, we study the mean-field and pair approximations respectively. Section
8.5 is devoted to the 3-state cyclic particle system with an external field.

These notes developed as a result of an intensive course given at Kobe University,
July 1-5, 1996. They are based on Lecture Notes on Harris Lemma and Particle
Systems (Universidade de São Paulo, 1996). In these notes, I added two chapters on
one-sided contact process (Chapter 6) and 3-state cyclic particle systems (Chapter
8), and 43 exercises for students. Finally I acknowledge gratefully passive and active
assistance of Yasunari Higuchi and Katusi Fukuyama during this period.

N.K.
Yokohama
January 1997
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CHAPTER 1

BASIC CONTACT PROCESSES I

1.1. Introduction

The basic contact process is a continuous-time Markov process on state space η ∈
{0, 1}Zd

, where Zd is the d-dimensional integer lattice. This process was introduced
by Harris1 in 1974. There are two different types of definition of this process. One is
given by the following formal generator

Ωf(η) =
∑

x∈Zd

c(x, η)[f(ηx)− f(η)],

with flip rates
c(x, η) = (1− η(x))× λ

∑

y:|y−x|=1

η(y) + η(x),

where ηx denotes ηx(y) = η(y) for y 6= x and ηx(x) = 1−η(x) and |x| = |x1|+· · ·+|xd|.
The details about this definition were discussed in Chapter I of Liggett.2 In the case
of one dimension, the dynamics of the evolution is as follows:

001 → 011 at rate λ,

100 → 110 at rate λ,

101 → 111 at rate 2λ,

1 → 0 at rate 1.

The other is given by the graphical representation. We consider the state of
process ξt ⊂ Zd, i.e., ξt = {x ∈ Zd : ηt(x) = 1}. The points in ξt are thought of as
being occupied.
(i) If x /∈ ξt, then x becomes occupied at a rate equal to λ times the number of

occupied neighbors.
(ii) If x ∈ ξt, then x becomes vacant at rate 1.

To construct the basic contact process, we introduce the following two Poisson
processes. For each x and y with |x− y| = 1, let {T (x,y)

n , n ≥ 1} be a Poisson process
with rate λ, and let {Ux

n , n ≥ 1} be a Poisson process with rate 1. At times T
(x,y)
n ,
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we draw an arrow from x to y to indicate that if x is occupied then y will become
occupied (if it is not already). At times Ux

n , we put a δ at x. The effect of a δ is to
kill the particle at x (if it is present). We call there is a path from (x, 0) to (y, t) if
there is sequence of times t0 = 0 < t1 < · · · < tn < tn+1 = t and spatial locations
x0 = x, x1, . . . , xn = y so that
(i) for i = 1, 2, . . . , n, there is an arrow from xi−1 to xi at time ti,
(ii) the vertical segments {xi} × (ti, ti−1), i = 0, 1, . . . , n do not contain any δ’s.
The basic contact process starting from A ⊂ Zd is defined by

ξA
t = {y ∈ Zd : for some x ∈ A there is a path from (x, 0) to (y, t)}.

Concerning the graphical representation, see Durrett,3,4 for example. We should
remark that the first definition is equivalent to the second one.

Let ℘ be the collection of all probability measure on {0, 1}Zd

. For µ ∈ ℘, µS(t) ∈
℘ denotes the distribution at time t of the basic contact process for initial distribution
µ where S(t) is a semigroup corresponding to the formal generator Ω. Let = be the
set of all stationary measure µ ∈ ℘ :

= = {µ ∈ ℘ : µS(t) = µ for all t ≥ 0}.

The basic contact process is said to be ergodic if

(a) = = {ν} is a singleton,

or

(b) lim
t→∞

µS(t) = ν for all µ ∈ ℘.

Let δ0 and δ1 denote the pointmass on η ≡ 0 and η ≡ 1 respectively. By Theorem
2.14 in Chapter III of Liggett,2 there is a critical value λc ∈ [ 0,∞ ] so that

if λ < λc, then the basic contact process is ergodic: = = {δ0},

and

if λ > λc, then the basic contact process is not ergodic.

So we have

λc = sup{λ ≥ 0 : the basic contact process is ergodic }
= inf{λ ≥ 0 : the basic contact process is not ergodic }.

Bezuidenhout and Grimmett5 showed

even if λ = λc, then the basic contact process is ergodic: = = {δ0}.
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Exercise 1.1. Show that if we change the infection rate from λ to αλ (α > 0) then
the critical value λc is changed to λc/α. For example, if λ → λ/2d, then λc → 2dλc,
where d is the dimensionality.

Let
νλ = lim

t→∞
δ1S(t),

which is called the upper invariant measure. The well-definedness of this measure is
guaranteed by the attractiveness of this process. In general, the process with rates
c(x, η) is called to be attractive if any η, ζ with η(x) ≤ ζ(x) for any x,

c(x, η) ≤ c(x, ζ) if η(x) = ζ(x) = 0,

c(x, η) ≥ c(x, ζ) if η(x) = ζ(x) = 1.

On the other hand, trivial stationary measure in this model,

δ0 = lim
t→∞

δ0S(t),

is called the lower invariant measure. Moreover Bezuidenhout and Grimmett5 proved
that the stationary measure of the basic contact process is a convex combination of
δ0 and νλ : for all µ ∈ ℘,

lim
t→∞

µS(t) = γδ0 + (1− γ)νλ

where
γ =

∫
Pη(τ < ∞)µ(dη),

and τ is the hitting time of η ≡ 0. Note that the work of Griffeath6 pioneered the
above complete convergence theorem.

Exercise 1.2. Show that the upper invariant measure νλ is translation invariant,
that is,

νλ{η : η(x1) = i1, . . . , η(xn) = in}
= νλ{η : η(x1 + u) = i1, . . . , η(xn + u) = in},

for any n ≥ 1, x1, . . . , xn, u ∈ Zd and i1, . . . , in ∈ {0, 1}.

Exercise 1.3. Verify that the basic contact process is attractive.

Exercise 1.4. δ1 is not the stationary measure of the basic contact process. Explain.

Define ρλ as the density of particle at a site x with respect to νλ :

ρλ = Eνλ
(η(x)) = νλ{η : η(x) = 1}.
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Note that ρλ is independent of x, since νλ is translation invariant. We take ρλ as
an order parameter of the basic contact process. Then the critical value λc can be
characterized by ρλ :

λc = sup{λ ≥ 0 : ρλ = 0} = inf{λ ≥ 0 : ρλ > 0}.

Unfortunately λc and ρλ are not known rigorously !

From now on, we will restrict attention to the one-dimensional case. Here we
present several rigorous results on the critical values and the order parameters of the
basic contact process in one dimension.

Theorem 1.1.1.

(1) ρλ = 0 for λ ≤ λc.

(2) ρλ > 0 for λ > λc.

(3) ρλ is a nondecreasing function of λ.

(4) ρλ is continuous for λ ≥ 0.

(5) 1.539 ≤ λc ≤ 1.942.

Here we would like to give some comments about this theorem. Parts (1) and (2) come
from the definition of λc immediately. Concerning parts (3) and (4), see Chapter VI of
Liggett.2 The continuity of ρλ at λc is given by Bezuidenhout and Grimmett.5 In part
(5), the lower bound 1.539 on λc is a numerical result by Ziezold and Grillenberger.7 As
for upper bounds, Holley and Liggett8 proved λc ≤ 2. Recently an improved upper
bound 1.942 was given by Liggett.9 Some simulations or (non-rigorous) numerical
methods by using computer reported that the critical value is estimated as, λc ≈ 1.649.
(See, for example, Brower, Furman and Moshe,10 Konno and Katori.11) The above
results (1)-(4) hold also for d ≥ 2.

This chapter is mainly devoted to the lower bounds on critical value and upper
bounds on the order parameter of the one-dimensional basic contact process. In
general, there are some methods for getting the lower bounds on critical value and/or
upper bounds on the order parameter as follows;

(i) Harris-FKG inequality method.

(ii) Katori-Konno method.

(iii) Ziezold-Grillenberger method.

(iv) Griffeath method.

In this chapter we will study (i)-(ii). As for (iii) and (iv), see Konno,12 for
example. In Chapter 4, we will consider the case of higher dimensions as a special
case of diffusive contact processes.
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1.2. Correlation Identities

In this section we present the correlation identities on the one-dimensional contact
process. Let Y be the collection of all finite subsets of Z1. We define

ρλ(A) = Eνλ

(∏

x∈A

η(x)

)
= νλ{η : η(x) = 1 for all x ∈ A},

ρλ(A) = Eνλ

(∏

x∈A

(1− η(x))

)
= νλ{η : η(x) = 0 for all x ∈ A},

for any A ∈ Y .
First we consider the correlation identities for ρλ(A). We begin by rewriting the

formal generator of the one-dimensional basic contact process as follows:

Ωf(η) =
∑

x∈Z

[
λ{η(x− 1) + η(x + 1)}(1− η(x)) + η(x)

]
[f(ηx)− f(η)].

The general arguments of the generator of a Markov semigroup give

∂

∂t
Eδ1(f(ηt)) = Eδ1(Ωf(ηt)). (1.1)

Let A = {x1, x2, . . . , xn}, where xi ∈ Z for 1 ≤ i ≤ n. Define n-points correlation
functions at time t as

ρt,λ(A) = ρt,λ(x1x2 . . . xn) = Eδ1(ηt(x1)ηt(x2) . . . ηt(xn)).

Then we have the following system of infinite correlation evolution equations.

Theorem 1.2.1. For any A ∈ Y,

∂

∂t
ρt,λ(A) =− {|A|+ 2λb(A)}ρt,λ(A) + λ

∑

x∈A

∑

y∈4A:
|y−x|=1

ρt,λ((A \ {x}) ∪ {y})

+ λ
∑

x∈A

wA(x)ρt,λ(A \ {x})− λ
∑

y∈4A

wA(y)ρt,λ(A ∪ {y}),

where |A| denotes the number of elements in A, b(A) denotes the number of bonds

inside A, 4A = {y ∈ Z \ A : there is an x ∈ A so that |x − y| = 1} and for x ∈ Z,

wA(x) = |{y ∈ A : |x − y| = 1}| ∈ {0, 1, 2}, i.e., denotes the number of nearest

neighbors of x inside A.

Note that this theorem is satisfied generally in the d-dimensional case by translation:
Z → Zd. By applying Theorem 1.2.1 to A = {0}, {0, 1}, {0, 2}, {0, 1, 2}, and the
translation-invariance of the initial configuration η ≡ 1 and evolution of this process,
we obtain the following differential equations. Let

ρt,λ(•) = ρt,λ({0}), ρt,λ(••) = ρt,λ({0, 1}), ρt,λ(•×•) = ρt,λ({0, 2}), etc.
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Corollary 1.2.2.

∂

∂t
ρt,λ(•) = (2λ− 1)ρt,λ(•)− 2λρt,λ(••).(1)

∂

∂t
ρt,λ(••) = 2λρt,λ(•)− 2(λ + 1)ρt,λ(••) + 2λρt,λ(•×•)− 2λρt,λ(•••).(2)

∂

∂t
ρt,λ(•×•) = 2λρt,λ(••)− 2ρt,λ(•×•)(3)

− 2λρt,λ(•••) + 2λρt,λ(•××•)− 2λρt,λ(••×•).
∂

∂t
ρt,λ(•••) = 2λρt,λ(••) + 2ρt,λ(•×•)(4)

− (4λ + 3)ρt,λ(•••) + 2λρt,λ(••×•)− 2λρt,λ(••••).

Of course, the above corollary is also given by direct computations from the
formal generator. For example, in the case of f(η) = η(0), we see that

Ωf(η) =
[
λ{η(−1) + η(1)}(1− η(0)) + η(0)

]
[1− 2η(0)]

= λη(−1) + λη(1)− η(0)− λη(−1)η(0)− λη(0)η(1),

since η(0)2 = η(0). By using this fact and Eq.(1.1), we have

∂

∂t
Eδ1(ηt(0)) = λEδ1(ηt(−1)) + λEδ1(ηt(1))− λEδ1(ηt(0))

− λEδ1(ηt(−1)ηt(0))− λEδ1(ηt(0)ηt(1))

= (2λ− 1)Eδ1(ηt(0))− 2λEδ1(ηt(0)ηt(1)).

The second equality comes from the translation invariance. Hence we prove part (1).
Similarly parts (2)-(4) are obtained.

Exercise 1.5. Prove Corollary 1.2.2 (2) by calculating Ω(η(0)η(1)).

In the stationary state, that is, in the limit as t →∞, Theorem 1.2.1 gives

Theorem 1.2.3. For any A ∈ Y,

0 = − {|A|+ 2λb(A)}ρλ(A) + λ
∑

x∈A

∑

y∈4A:
|y−x|=1

ρλ((A \ {x}) ∪ {y})

+ λ
∑

x∈A

wA(x)ρλ(A \ {x})− λ
∑

y∈4A

wA(y)ρλ(A ∪ {y}),

where ρλ(A) = νλ{η : η(x) = 1 for any x ∈ A}.
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Let νλ(•) = ρλ({0}), νλ(••) = ρλ({0, 1}), νλ(•×•) = ρλ({0, 2}), etc. From
Theorem 1.2.3, we have

Corollary 1.2.4.

(1) 0 = (2λ− 1)νλ(•)− 2λνλ(••).

(2) 0 = λνλ(•)− (λ + 1)νλ(••) + λνλ(•×•)− λνλ(•••).

(3) 0 = λνλ(••)− νλ(•×•)− λνλ(•••) + λνλ(•××•)− λνλ(••×•).

(4) 0 = 2λνλ(••) + 2νλ(•×•)− (4λ + 3)νλ(•••) + 2λνλ(••×•)− 2λνλ(••••).

Exercise 1.6. Assume that νλ(••) = νλ(•)2 in Corollary 1.2.4 (1), that is, events
{η : η(x) = 1} and {η : η(x + 1) = 1} are independent with respect to the upper
invariant measure νλ. Under this assumption, show that if νλ(•) > 0 then

νλ(•) =
2λ− 1

2λ
= 1− 1

2λ
.

This value is called mean-field value. Unfortunately this assumption is not valid.
Note that this value can be given as the first bounds both ρ

(H,1)
λ by the Harris-FKG

inequality method and ρ
(KK,1)
λ by the Katori-Konno method.

Exercise 1.7. Similarly in Exercise 1.6 above, we assume that νλ(••) = νλ(•×•) =
νλ(•)2 and νλ(•••) = νλ(•)3 in Corollary 1.2.4 (2). Show that if νλ(•) > 0 then

νλ(•) =
−1 +

√
1 + 4λ2

2λ
=

√
1 +

1
4λ2

− 1
2λ

.

Moreover, compare this result with that of Exercise 1.6.

Next we consider the correlation identities for ρλ(A). Let

H(η, A) =
∏

x∈A

(1− η(x)) for any A ∈ Y,

that is, H(η,A) = 1 if η(x) = 0 for any x ∈ A, = 0 otherwise. Remark that the
product over empty set is 1. We compute Ω applied to H(η, A) as a function of η.
We begin by computing

H(ηx, A)−H(η,A)

= (1− ηx(x))
∏

u∈A\{x}
(1− ηx(u))− (1− η(x))

∏

u∈A\{x}
(1− η(u))

=
[
1− (1− η(x))

] ∏

u∈A\{x}
(1− η(u))− (1− η(x))

∏

u∈A\{x}
(1− η(u))

= (2η(x)− 1)H(η, A \ {x}),



8 Lecture Notes on Interacting Particle Systems

whenever x ∈ A. By using this, we see that

ΩH(η,A) =
∑

x∈Z


(1− η(x))× λ

∑

y:|y−x|=1

η(y) + η(x)


 [H(ηx, A)−H(η,A)]

=
∑

x∈A

(1− η(x))(2η(x)− 1)× λ
∑

y:|y−x|=1

η(y)H(η, A \ {x})

+
∑

x∈A

η(x)(2η(x)− 1)H(η, A \ {x})

= −
∑

x∈A

(1− η(x))× λ
∑

y:|y−x|=1

[1− (1− η(y))]
∏

u∈A\{x}
(1− η(u))

+
∑

x∈A

[1− (1− η(x))]
∏

u∈A\{x}
(1− η(u))

=
∑

x∈A

[
λ

∑

y:|y−x|=1

{
H(η, A ∪ {y})−H(η,A)

}
+ H(η, A \ {x})−H(η, A)

]
.

Then we have

Theorem 1.2.5. For any A ∈ Y,

λ
∑

x∈A

∑

y:|y−x|=1

[
ρλ(A ∪ {y})− ρλ(A)

]
+

∑

x∈A

[
ρλ(A \ {x})− ρλ(A)

]
= 0,

where ρλ(A) = νλ{η : η(x) = 0 for any x ∈ A}.

This theorem shows that the basic contact process is coalescing self-dual. See Section
5 in Chapter III of Liggett2 for details.

Let νλ(◦) = ρλ({0}), νλ(◦◦) = ρλ({0, 1}), νλ(◦×◦) = ρλ({0, 2}), etc. From this
theorem, we have

Corollary 1.2.6.

(1) 1− (2λ + 1)νλ(◦) + 2λνλ(◦◦) = 0.

(2) νλ(◦)− (λ + 1)νλ(◦◦) + λνλ(◦◦◦) = 0.

(3) 2νλ(◦◦)− (2λ + 3)νλ(◦◦◦) + νλ(◦×◦) + 2λνλ(◦◦◦◦) = 0.

(4) νλ(◦) + λνλ(◦◦◦)− (2λ + 1)νλ(◦×◦) + λνλ(◦◦×◦) = 0.

(5) νλ(◦◦◦)− (λ + 2)νλ(◦◦◦◦) + νλ(◦◦×◦) + λνλ(◦◦◦◦◦) = 0.

(6)
νλ(◦◦) + νλ(◦×◦)− (4λ + 3)νλ(◦◦×◦) + νλ(◦××◦)

+2λνλ(◦◦◦◦) + λνλ(◦◦◦×◦) + λνλ(◦◦×◦◦) = 0.

(7) νλ(◦)− (2λ + 1)νλ(◦××◦) + λνλ(◦◦×◦) + λνλ(◦◦××◦) = 0.
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For example, applying Theorem 1.2.5 to A = {0}, we get

λ
∑

y:|y|=1

[
ρλ({0} ∪ {y})− ρλ({0})

]
+

[
ρλ(φ)− ρλ({0})

]
= 0.

The translation invariance of ρλ(A) and ρλ(φ) = 1 imply

2λ
[
ρλ({0, 1})− ρλ({0})

]
+

[
1− ρλ({0})

]
= 0.

This equation is equivalent to part (1) of Corollary 1.2.6.

Exercise 1.8. Applying Theorem 1.2.5 to A = {0, 1}, show that Corollary 1.2.6 (2).

Exercise 1.9. Assume that νλ(◦◦) = νλ(◦)2 in Corollary 1.2.6 (1), that is, events
{η : η(x) = 0} and {η : η(x + 1) = 0} are independent with respect to the upper
invariant measure νλ. Under this assumption, show that if νλ(◦) < 1 then

νλ(◦) =
1
2λ

,

and deduce that
νλ(•) =

2λ− 1
2λ

= 1− 1
2λ

.

Remark that this conclusion is the same as that of Exercise 1.6.

Exercise 1.10. Let
ρλ,t = Eδ1(1− ηt(0)).

Show that
d

dt
ρλ,t

∣∣∣∣
t=0

= 1,

d2

dt2
ρλ,t

∣∣∣∣
t=0

= −(2λ + 1),

d3

dt3
ρλ,t

∣∣∣∣
t=0

= 4λ2 + 8λ + 1,

In general, the following result was proved by Belitsky13: for n ≥ 1,

sgn
[

dn

dtn
ρλ,t

∣∣∣∣
t=0

]
= (−1)n+1.

1.3. Harris-FKG Inequality Method

This section is devoted to lower bounds on the critical value and upper bounds on
the order parameter for the one-dimensional basic contact process given by the Harris-
FKG inequality. As for the Harris-FKG inequality, for example, see pages 70-83 in
Liggett.2 Results in this section appeared in Konno and Katori.14 Let M+ and M−

be the collection of all increasing and decreasing functions on {0, 1}Z, respectively.
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Theorem 1.3.1. (Harris-FKG inequality) For any f, g ∈ M+,

Eνλ
(fg) ≥ Eνλ

(f)Eνλ
(g).

By the definitions of increasing and decreasing functions, we have the following
corollary immediately.

Corollary 1.3.2. (Harris-FKG inequality)

Eνλ
(fg) ≥ Eνλ

(f)Eνλ
(g) for any f, g ∈ M−.(1)

Eνλ
(fg) ≤ Eνλ

(f)Eνλ
(g) for any f ∈ M+, g ∈ M−.(2)

Eνλ
(fg) ≤ Eνλ

(f)Eνλ
(g) for any f ∈ M−, g ∈ M+.(3)

Applying the Harris-FKG inequality to ρλ(A) and ρλ(A), we obtain

Corollary 1.3.3. (Harris-FKG inequality) For any A,B ∈ Y,

ρλ(A ∪B) ≥ ρλ(A)ρλ(B)(1)

ρλ(A ∪B) ≥ ρλ(A)ρλ(B),(2)

where ρλ(A) = νλ{η : η(x) = 1for anyx ∈ A} and ρλ(A) = νλ{η : η(x) = 0for anyx ∈
A}.

Proof. For part (1), define

f(η) =
∏

x∈A

η(x), g(η) =
∏

x∈B

η(x).

Since f, g ∈ M+, the desired result follows from Theorem 1.3.1. For part (2), similarly
let

f(η) = 1−
∏

x∈A

(1− η(x)), g(η) = 1−
∏

x∈B

(1− η(x)).

Then f, g ∈ M+, so the proof is complete.

From Corollary 1.3.3 (1), we have the following result.

Corollary 1.3.4.

νλ(••) ≥ νλ(•)2.(1)

νλ(•••) ≥ νλ(•)νλ(••).(2)

νλ(••••) ≥ νλ(•)νλ(•••).(3)

νλ(••×•) ≥ νλ(•)νλ(••).(4)
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In the same way, Corollary 1.3.3 (2) gives

Corollary 1.3.5.

νλ(◦◦) ≥ νλ(◦)2.(1)

νλ(◦◦◦) ≥ νλ(◦)νλ(◦◦).(2)

νλ(◦◦◦◦) ≥ νλ(◦)νλ(◦◦◦).(3)

νλ(◦◦×◦) ≥ νλ(◦)νλ(◦◦).(4)

νλ(◦◦◦◦◦) ≥ νλ(◦)νλ(◦◦◦◦).(5)

νλ(◦×◦◦◦) ≥ νλ(◦)νλ(◦◦◦).(6)

νλ(◦◦×◦◦) ≥ νλ(◦)νλ(◦◦×◦).(7)

νλ(◦◦××◦) ≥ νλ(◦)νλ(◦◦).(8)

We should remark that the definitions of ρλ, νλ(•) and νλ(◦) give

Lemma 1.3.6.
ρλ = νλ(•) = 1− νλ(◦).

1.3.1. First bound by the Harris-FKG inequality method

From Corollaries 1.2.6 (1) and 1.3.5 (1), we have

1− (2λ + 1)νλ(◦) + 2λνλ(◦)2 ≤ 0.

By Lemma 1.3.6, the last inequality can be rewritten as

ρλ

(
ρλ − 2λ− 1

2λ

)
≤ 0.

Combining the last inequality and ρλ ≥ 0 gives

ρλ ≤ 2λ− 1
2λ

for
2λ− 1

2λ
≥ 0,

and

ρλ = 0 for
2λ− 1

2λ
≤ 0.

So we obtain the following result.
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Theorem 1.3.7. Let λ
(H,1)
c = 1/2. Define

ρ
(H,1)
λ =

{
(2λ− 1)/2λ for λ > λ

(H,1)
c ,

0 for λ ≤ λ
(H,1)
c .

Then we have

(1) λ(H,1)
c ≤ λc,

and

(2) ρλ ≤ ρ
(H,1)
λ for λ ≥ 0.

In this way we get a lower bound λ
(H,1)
c on critical value λc and an upper bound

ρ
(H,1)
λ on order parameter ρλ simultaneously. Note that Theorem 1.3.7 can be ob-

tained by a different way. That is, Corollaries 1.2.4 (1) and 1.3.4 (1) imply

(2λ− 1)νλ(•)− 2λνλ(•)2 ≥ 0,

so we have the same conclusion. But, in this case, Corollary 1.2.6 is more suitable than
Corollary 1.2.4 as for using the Harris-FKG inequality, since the number of negative
terms in Corollary 1.2.6 is always one ! So we use Corollary 1.2.6 to improve bounds
instead of Corollary 1.2.4.

1.3.2. Second bound by the Harris-FKG inequality method

As the first bound, Corollaries 1.2.6 (1) (2) and 1.3.5 (2) imply

ρλ[λ(2λ + 1)ρλ − (2λ2 − 1)] ≤ 0.

Using similar arguments, we obtain

Theorem 1.3.8. Let λ
(H,2)
c = 1/

√
2 ≈ 0.707. Define

ρ
(H,2)
λ =

{
(2λ2 − 1)/λ(2λ + 1) for λ > λ

(H,2)
c ,

0 for λ ≤ λ
(H,2)
c .

Then we have

(1) λ(H,1)
c < λ(H,2)

c ≤ λc,

and

(2) ρλ ≤ ρ
(H,2)
λ ≤ ρ

(H,1)
λ for λ ≥ 0.

1.3.3. Third bound by the Harris-FKG inequality method

As the first and second bounds, Corollaries 1.2.6 (1)-(4) and 1.3.5 (3) (4) imply

ρλ[λ(2λ + 1)(4λ + 3λ + 2)ρλ − (8λ4 + 6λ3 − 6λ− 3)] ≤ 0.

In a similar fashion as before, the next result is obtained.
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Theorem 1.3.9. Let

λ(H,3)
c = inf{λ ≥ λ(H,2)

c : 8λ4 + 6λ3 − 6λ− 3 ≥ 0}
≈ 0.859.

Define

ρ
(H,3)
λ =

{
(8λ4 + 6λ3 − 6λ− 3)/λ(2λ + 1)(4λ2 + 3λ + 2) for λ > λ

(H,3)
c ,

0 for λ ≤ λ
(H,3)
c .

Then we have

(1) λ(H,2)
c < λ(H,3)

c ≤ λc,

and

(2) ρλ ≤ ρ
(H,3)
λ ≤ ρ

(H,2)
λ for λ ≥ 0.

Note that as in the case of Corollary 1.3.5 (4) we can get

νλ(◦◦×◦) ≥ νλ(◦)νλ(◦×◦). (1.2)

From Theorem 1.9 (c) in Chapter VI of Liggett2 and the definition of ρλ(A), we have

Theorem 1.3.10. Suppose that, for each n ≥ 1, x1 < x2 < · · · < xn and y1 < y2 <

· · · < yn with xi+1 − xi ≥ yi+1 − yi (i = 1, 2, . . . , n− 1). Then

ρλ({x1, x2, . . . , xn}) ≤ ρλ({y1, y2, . . . , yn}).

So we get
ρλ({0, 2}) ≤ ρλ({0, 1}),

that is,
νλ(◦×◦) ≤ νλ(◦◦).

Therefore we observe that estimation by Corollary 1.3.5 (4) is better than that by
Eq.(1.2). Similar arguments hold in the next bound.

1.3.4. Fourth bound by the Harris-FKG inequality method

As the previous bounds, Corollaries 1.2.6 and 1.3.5 (5)-(8) yield

ρλ[γ1(λ)ρ2
λ + γ2(λ)ρλ + γ3(λ)] ≤ 0,
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where

γ1(λ) = λ2(2λ + 1)(8λ4 + 12λ3 + 9λ2 + 9λ + 3),

γ2(λ) = λ(32λ6 + 120λ5 + 186λ4 + 182λ3 + 148λ2 + 75λ + 15),

γ3(λ) = −2(2λ + 1)(24λ6 + 36λ5 + 20λ4 − 2λ3 − 28λ2 − 30λ− 9).

Since γ1(λ) > 0 for λ > 0, the last inequality can be rewritten as

ρλ

(
ρλ − ρ

(+)
λ

)(
ρλ − ρ

(−)
λ

)
≤ 0, (1.3)

where

ρ
(±)
λ =

−γ2(λ)±
√

γ2(λ)2 − 4γ1(λ)γ3(λ)
2γ1(λ)

.

Note that γ2(λ)2 − 4γ1(λ)γ3(λ) > 0 for λ > 0. Then Eq.(1.3) gives

ρλ ≤ ρ
(+)
λ for ρ

(+)
λ ≥ 0,

and
ρλ = 0 for ρ

(+)
λ ≤ 0.

So we have the following result.

Theorem 1.3.11. Let

λ(H,4)
c = inf{λ ≥ λ(H,3)

c : γ3(λ) ≤ 0}
≈ 0.961.

Define

ρ
(H,4)
λ =

{
ρ
(+)
λ for λ > λ

(H,4)
c ,

0 for λ ≤ λ
(H,4)
c .

Then we have

(1) λ(H,3)
c < λ(H,4)

c ≤ λc,

and

(2) ρλ ≤ ρ
(H,4)
λ ≤ ρ

(H,3)
λ for λ ≥ 0.

As far as the Harris-FKG inequality used for A ⊂ {0, 1, 2, 3} and B = {4}, a
similar discussion in the end of subsection 1.3.3 shows the above bound is the best
one.
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1.3.5. Summary

In this section we obtain the some bounds by using the Harris-FKG inequality:

λ(H,1)
c = 0.5 < λ(H,2)

c ≈ 0.707 < λ(H,3)
c ≈ 0.859 < λ(H,4)

c ≈ 0.961 ≤ λc,

and
ρλ ≤ ρ

(H,4)
λ ≤ ρ

(H,3)
λ ≤ ρ

(H,2)
λ ≤ ρ

(H,1)
λ for λ ≥ 0.

We think this method is one of the simplest one. However, as you will see later,
when compared with the Katori-Konno method, this is not so good.

1.4. Harris Lemma and Katori-Konno Method

In this section we study lower bounds on critical value and upper bounds on
order parameter of the one-dimensional basic contact process by using the Harris
lemma. This method was first studied by Katori and Konno15 in 1991. So we call
it the Katori-Konno method in these notes. The results in this section appeared in
references 14-17. However we will give some new proofs here. For example, Proofs
B in Theorems 1.4.4 and 1.4.6. And this method is more powerful than the former
Harris-FKG inequality one in the case of the basic contact process.

1.4.1. Harris lemma

In this subsection we introduce the Harris lemma which gives lower (resp. upper)
bounds on the critical value and upper (resp. lower) bounds on the order parameter.
Recall that Y is the collection of all finite subsets in Z. For any A ∈ Y , we let

σλ(A) = 1− Eνλ

(∏

x∈A

(1− η(x))

)
= νλ{η : η(x) = 1 for some x ∈ A},

σλ(A) = 1− Eνλ

(∏

x∈A

η(x)

)
= νλ{η : η(x) = 0 for some x ∈ A}.

Note that
σλ(A) = 1− ρλ(A),

σλ(A) = 1− ρλ(A),

ρλ = ρλ({0}) = 1− ρλ({0}) = σλ({0}) = 1− σλ({0}),
where 0 is the origin. From the definition of σλ(A) and Theorem 1.2.5, we have the
same type of the correlation identities immediately:

Theorem 1.4.1. For any A ∈ Y,

λ
∑

x∈A

∑

y:|y−x|=1

[
σλ(A ∪ {y})− σλ(A)

]
+

∑

x∈A

[
σλ(A \ {x})− σλ(A)

]
= 0.

Similarly the definition of σλ(A) and Theorem 1.2.3 give
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Theorem 1.4.2. For any A ∈ Y,

0 = −{|A|+ 2λb(A)}σλ(A) + λ
∑

x∈A

∑

y∈4A:
|y−x|=1

σλ((A \ {x}) ∪ {y})

+ λ
∑

x∈A

wA(x)σλ(A \ {x})− λ
∑

y∈4A

wA(y)σλ(A ∪ {y}).

For example, in order to obtain lower bounds on λc and upper bounds on ρλ, we have
to look for suitable upper bounds hλ(A) on σλ(A). Because ρλ = σλ({0}) ≤ hλ({0})
implies that the critical value of hλ({0}) gives a lower bound on λc. To do this we
use the following lemma by Harris18 in 1976, so we call it the Harris lemma.

Let Y ∗ be the set of all [ 0, 1 ]-valued measurable functions on Y . For any h ∈ Y ∗,
we let

Ω∗h(A) = λ
∑

x∈A

∑

y:|y−x|=1

[
h(A ∪ {y})− h(A)

]
+

∑

x∈A

[
h(A \ {x})− h(A)

]
.

Note that Theorem 1.4.1 implies Ω∗σλ(A) = 0 for any A ∈ Y.

Lemma 1.4.3. (Harris lemma) Let hi ∈ Y ∗ (i = 1, 2) with

(1) hi(φ) = 0,

(2) 0 < hi(A) ≤ 1 for any A ∈ Y with A 6= φ,

(3) lim
|A|→∞

hi(A) = 1,

(4) Ω∗h1(A) ≤ 0 ≤ Ω∗h2(A) for any A ∈ Y.

Then

(5) h2(A) ≤ σλ(A) ≤ h1(A) for any A ∈ Y.

In particular,

(6) h2({0}) ≤ ρλ ≤ h1({0}),

where 0 is the origin.

Proof. We need the following 4 steps.
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Step 1. For any A ∈ Y and N ≥ 1, we see that

σλ(A) = lim
t→∞

P (ξA
t 6= φ)

= lim
t→∞

P (|ξA
t | > N) + lim

t→∞
P (0 < |ξA

t | ≤ N).
(1.4)

The result in pp.168-169 of Liggett2 implies that for fixed N ≥ 1,

lim
t→∞

P (0 < |ξA
t | ≤ N) = 0. (1.5)

Combining Eq.(1.4) with Eq.(1.5) gives

σλ(A) = lim
t→∞

P (|ξA
t | > N). (1.6)

Step 2. From the Markov property and the condition (1),

E(h(ξA
t+s)) = E

(
E(h(ξξA

t
s ))

)

= E
(
E(h(ξξA

t
s )) : |ξA

t | > N
)

+ E
(
E(h(ξξA

t
s )) : 0 < |ξA

t | ≤ N
)
.

(1.7)

By using condition (2) and Eq.(1.5), we see that for fixed s > 0,

lim
t→∞

E
(
E(h(ξξA

t
s )) : 0 < |ξA

t | ≤ N
)

= 0.

Using this result and Eq.(1.7), we have

lim inf
t→∞

E(h(ξA
t+s)) = lim inf

t→∞
E

(
E(h(ξξA

t
s )) : |ξA

t | > N
)
. (1.8)

On the other hand, condition (3) implies that for any ε > 0 there exist N ≥ 1 and
s > 0 such that for any A ∈ Y with |A| > N,

E(h(ξA
s )) ≥ 1− ε.

Therefore combination of Eqs.(1.6), (1.8) and the above inequality implies that for
any ε > 0, there is an N ≥ 1 such that

lim inf
t→∞

E(h(ξA
t+s)) ≥ (1− ε) lim inf

t→∞
P (|ξA

t | > N)

= (1− ε)σλ(A).
(1.9)

Step 3. By using Eq.(1.9), conditions (1) and (2), i.e., h(φ) = 0, h(A) ≤ 1 for
any A ∈ Y and the definition of σ(A), we see that for any ε > 0,

(1− ε)σλ(A) ≤ lim inf
t→∞

E(h(ξA
t ))

= lim inf
t→∞

E
(
h(ξA

t ) : ξA
t 6= φ

)

≤ lim sup
t→∞

E
(
h(ξA

t ) : ξA
t 6= φ

)

≤ lim
t→∞

P (ξA
t 6= φ)

= σλ(A).
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Thus it follows that
σλ(A) = lim

t→∞
E(h(ξA

t )). (1.10)

Step 4. It is enough to show for the condition (4):

Ω∗h(A) ≤ 0 for any A ∈ Y,

since a similar argument holds for

Ω∗h(A) ≥ 0 for any A ∈ Y.

From this condition (4), we obtain

∂

∂t
E(h(ξA

t )) = E(Ω∗h(ξA
t )) ≤ 0.

So Eq.(1.10) and this inequality imply

σλ(A) = lim
t→∞

E(h(ξA
t )) ≤ E(h(ξA

0 )) = h(A),

for any A ∈ Y . Thus the proof of the Harris lemma is complete.

Exercise 1.11. Let h1 ∈ Y ∗ with h1(φ) = 0 and h1(A) = 1 for any non-empty set
A ∈ Y . Show that

Ω∗h1(A) = −1 if |A| = 1,

Ω∗h1(A) = 0 otherwise,

and deduce that this result gives the trivial upper bound on σλ(A), that is, σλ(A) ≤ 1
for any A ∈ Y.

Exercise 1.12. Show that if Ω∗h(A) ≤ 0 for any A ∈ Y then

E(h(ξA
t )) ≤ E(h(ξA

s )) for 0 ≤ s ≤ t.

From now on we consider bounds on ρλ and λc. To get bounds by using the
Harris lemma, we need the following 4 steps.

Step 1. First we choose a suitable form of hi(A).
Step 2. Next we decide hi(A) explicitly.
Step 3. Third we check conditions (1)–(3) in the Harris lemma.
Step 4. Finally we check condition (4) in the Harris lemma.

In this section we consider upper bounds on σλ(A) by using the Katori-Konno method.
On the other hand, the next chapter is devoted to lower bounds on σλ(A) by the
Holley-Liggett method.

1.4.2. First bound by the Katori-Konno method

Let |A| be the cardinality of A. So we have
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Theorem 1.4.4. Let λ
(KK,1)
c = 1/2. Then for λ ≥ λ

(KK,1)
c ,

σλ(A) ≤ h
(KK,1)
λ (A) for all A ∈ Y,

where

h
(KK,1)
λ (A) = 1− α

|A|
∗ and α∗ =

1
2λ

.

Proof.
Step 1. We let h(A) = 1− α|A|.
Step 2. Next we decide 0 < α∗ < 1 as the unique solution of

Ω∗h({0}) = 0,

that is,
−2λα2 + (2λ + 1)α− 1 = (2λα− 1)(1− α) = 0.

So we take α∗ = 1/2λ and let h(A) = 1− α
|A|
∗ for λ > 1/2.

Step 3. We check conditions (1)-(3) as follows. For λ > 1/2, we have 0 <

α∗ = 1/2λ < 1. So conditions (1) and (3) are trivial. Condition (2) is equivalent to
0 ≤ α

|A|
∗ < 1 for any A ∈ Y with A 6= φ. This comes from 0 < α∗ < 1.

Step 4. We will give two different proofs; Proof A and Proof B. They are the
same in essentials. However Proof B is more refined than Proof A. Therefore we can
see the structure of proof of Step 4 explicitly in Proof B.
Proof A. For k = 0, 1, 2 and A ∈ Y , let

Ak =
{
x ∈ A : |{y ∈ A : |y − x| = 1}| = k

}
.

The definitions give A = A0 + A1 + A2. Therefore

Ω∗h(A) =
2∑

k=0

Rk(A),

where

Rk(A) = λ
∑

x∈Ak

∑

y:|y−x|=1

[
h(A ∪ {y})− h(A)

]
+

∑

x∈Ak

[
h(A \ {x})− h(A)

]
.

If Rk(A) ≤ 0 for any A ∈ Y and k = 0, 1, 2, then Ω∗h(A) ≤ 0 for any A ∈ Y , that is,
condition (4) is satisfied. From h(A) = 1− α

|A|
∗ , we have

Rk(A) = λ
∑

x∈Ak

∑

y:|y−x|=1

[
α
|A|
∗ − α

|A∪{y}|
∗

]
+

∑

x∈Ak

[
α
|A|
∗ − α

|A|−1
∗

]

= λ
∑

x∈Ak

(2− k)
[
α
|A|
∗ − α

|A|+1
∗

]
+

∑

x∈Ak

[
α
|A|
∗ − α

|A|−1
∗

]

= |Ak|
{

(2− k)λ
[
α
|A|
∗ − α

|A|+1
∗

]
+

[
α
|A|
∗ − α

|A|−1
∗

]}

= |Ak|α|A|−1
∗

{
(2− k)λ[α∗ − α2

∗] + [α∗ − 1]
}

= |Ak|α|A|−1
∗ (1− α∗)

{
(2− k)λα∗ − 1

}
.
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So, by using λα∗ = 1/2, we obtain

Rk(A) = |Ak|α|A|−1
∗ (1− α∗)(−k/2),

where k = 0, 1, 2. Then 0 ≤ α∗ ≤ 1 gives Rk(A) ≤ 0 for any A ∈ Y and k = 0, 1, 2.
Therefore the proof for condition (4) is complete.
Proof B. First we let

A◦•◦ = {x ∈ A : x− 1, x + 1 /∈ A},
A◦•• = {x ∈ A : x− 1 /∈ A, x + 1 ∈ A},
A••◦ = {x ∈ A : x− 1 ∈ A, x + 1 /∈ A},
A••• = {x ∈ A : x− 1, x + 1 ∈ A}.

Remark that these definitions give

A = A◦•◦ + A◦•• + A••◦ + A••• ,

and
A0 = A◦•◦ , A1 = A◦•• + A••◦ , A2 = A••• .

As in the case of Proof A, by h(A) = 1− α
|A|
∗ , we have

Ω∗h(A) =α
|A|−1
∗

[
|A0|Ω∗h({0}) + |A1|

{
Ω∗h({0}) + λα∗(α∗ − 1)

}
+ |A2|(α∗ − 1)

]
,

=α
|A|−1
∗

[
|A◦•◦ |Ω∗h({0})

+ {|A◦•• |+ |A••◦ |}
{

Ω∗h({0}) + λα∗(α∗ − 1)
}

+ |A••• |(α∗ − 1)
]
,

for any A ∈ Y . Then Ω∗h({0}) = 0 gives

Ω∗h(A) = α
|A|−1
∗

[
{|A◦•• |+ |A••◦ |}λα∗(α∗ − 1) + |A••• |(α∗ − 1)

]
.

So α∗ ∈ (0, 1) gives Ω∗h(A) ≤ 0 for any A ∈ Y . Therefore we obtain the desired
conclusion.

Applying Theorem 1.4.4 to A = {0} gives

Corollary 1.4.5.

λc ≥ λ(KK,1)
c =

1
2
,

ρλ ≤ ρ
(KK,1)
λ = 1−

(
1
2λ

)
=

2λ− 1
2λ

for λ ≥ 1
2
.

This corollary is equivalent to Theorem 1.3.7 which is the first bound by the Harris-
FKG inequality method.
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Exercise 1.13. If we decide α∗ ∈ (0, 1) as the unique solution of Ω∗h({0, 1}) = 0
instead of Ω∗h({0}) = 0, then we take α∗ = 1/λ. Show that in this choice, the
condition (4) in the Harris lemma does not hold.

1.4.3. Second bound by the Katori-Konno method

Let b(A) be the number of neighboring pairs of points in A, that is,
b(A) =

∣∣{x ∈ Z : {x, x + 1} ⊂ A
}∣∣. Then we have

Theorem 1.4.6. Let λ
(KK,2)
c = 1. Then for λ ≥ λ

(KK,2)
c ,

σλ(A) ≤ h
(KK,2)
λ (A) for all A ∈ Y,

where

h
(KK,2)
λ (A) = 1− α

|A|
∗ β

b(A)
∗ ,

and

α∗ =
1

2λ− 1
, β∗ =

2λ− 1
λ

.

Proof.
Step 1. We let h(A) = 1− α|A|βb(A).

Step 2. Next we decide 0 < α∗ < 1 and β∗ > 1 as the unique solutions of

Ω∗h({0}) = 0,

Ω∗h({0, 1}) = 0,

that is,
−2λα2β + (2λ + 1)α− 1 = 0,

2
[
−λα3β2 + (λ + 1)α2β − α

]
= 0.

Let w = αβ. Then the above equations can be written as

(2λw − 1)(w − 1) = 1− β,

(λw − 1)(w − 1) = 0.

Let w∗ = 1/λ and β∗ = (2λ − 1)/λ for λ > 1. So w∗ and β∗ satisfy the above
equations with 0 < w∗ < 1 and β∗ > 1. By the definition of w, we let α∗ = w∗/β∗.
This gives 0 < α∗ = 1/(2λ − 1) < 1 for λ > 1. Remark that a simple computation
gives α∗β2

∗ < 1 for λ > 1. Therefore we decide

h(A) = 1− α
|A|
∗ β

b(A)
∗

with
α∗ =

1
2λ− 1

and β∗ =
2λ− 1

λ
.
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Step 3. We check conditions (1)-(3) as follows. Assume that λ > 1. Condition
(1) and h(A) ≤ 1 in condition (2) are trivial. The positivity of h(A) for non-empty
set A ∈ Y is equivalent to α

|A|
∗ β

b(A)
∗ < 1. On the other hand, we have b(A) ≤ 2|A|

for any A ∈ Y . By β∗ > 1, α∗β2
∗ < 1 and b(A) ≤ 2|A|, we get

α
|A|
∗ β

b(A)
∗ ≤ (α∗β2

∗)
|A| < 1,

for non-empty A ∈ Y . Similarly, concerning condition (3), we obtain

h(A) = 1− α
|A|
∗ β

b(A)
∗ ≥ 1− (α∗β2

∗)
|A|.

Then h(A) goes to 1 as |A| goes to infinity, since α∗β2
∗ < 1 and h(A) ≤ 1.

Step 4. We will also give two proofs; Proof A and Proof B.
Proof A. As in the Proof A of the first bound, for k = 0, 1, 2 and A ∈ Y , we let

Ak =
{
x ∈ A : |{y ∈ A : |y − x| = 1}| = k

}
.

Remark that A = A0 + A1 + A2. Therefore

Ω∗h(A) =
2∑

k=0

Rk(A),

where

Rk(A) = λ
∑

x∈Ak

∑

y:|y−x|=1

[
h(A ∪ {y})− h(A)

]
+

∑

x∈Ak

[
h(A \ {x})− h(A)

]
.

To prove Ω∗h(A) ≤ 0 for any A ∈ Y , it suffices to show that Rk(A) ≤ 0 for any A ∈ Y

and k = 0, 1, 2. Recall that h(A) = 1− α
|A|
∗ β

b(A)
∗ .

(i) R0(A) : We see that

R0(A) = λ
∑

x∈A0

∑

y:|y−x|=1

[
α
|A|
∗ β

b(A)
∗ − α

|A|+1
∗ β

b(A∪{y})
∗

]

+
∑

x∈A0

[
α
|A|
∗ β

b(A)
∗ − α

|A|−1
∗ β

b(A)
∗

]

≤ λ
∑

x∈A0

2
[
α
|A|
∗ β

b(A)
∗ − α

|A|+1
∗ β

b(A)+1
∗

]
+

∑

x∈A0

[
α
|A|
∗ β

b(A)
∗ − α

|A|−1
∗ β

b(A)
∗

]

= |A0|α|A|−1
∗ β

b(A)
∗

[
2λ(α∗ − α2

∗β∗) + (α∗ − 1)
]

= |A0|α|A|−1
∗ β

b(A)
∗ Ω∗h({0}).

The first equality comes from |A∪{y}| = |A|+1, |A\{x}| = |A|−1 and b(A\{x}) =
b(A) for x ∈ A0 and y ∈ Z with |y− x| = 1. The second inequality is given by β∗ > 1
and b(A ∪ {y}) ≥ b(A) + 1 in the same condition for x and y. By Ω∗h({0}) = 0, we
have that R0(A) ≤ 0 for any A ∈ Y.
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(ii) R1(A) : Similarly we have

R1(A) ≤ λ
∑

x∈A1

[
α
|A|
∗ β

b(A)
∗ − α

|A|+1
∗ β

b(A)+1
∗

]
+

∑

x∈A1

[
α
|A|
∗ β

b(A)
∗ − α

|A|−1
∗ β

b(A)−1
∗

]

= |A1|α|A|−2
∗ β

b(A)−1
∗

[
λ(α2

∗β∗ − α3
∗β

2
∗) + (α2

∗β∗ − α∗)
]

= |A1|α|A|−2
∗ β

b(A)−1
∗ Ω∗h({0, 1}).

Therefore Ω∗h({0, 1}) = 0 gives R1(A) ≤ 0 for any A ∈ Y.

(iii) R2(A) : As in the previous cases, we see that

R2(A) = λ
∑

x∈A2

∑

y:|y−x|=1

[
α
|A|
∗ β

b(A)
∗ − α

|A|
∗ β

b(A)
∗

]
+

∑

x∈A2

[
α
|A|
∗ β

b(A)
∗ − α

|A|−1
∗ β

b(A)−2
∗

]

= |A2|α|A|−1
∗ β

b(A)−2
∗

(
α∗β2

∗ − 1
)
.

By using α∗β2
∗ < 1, we obtain that R2(A) ≤ 0 for any A ∈ Y.

Therefore we can check condition (4).

Remark. The above Proof A implies that

Ω∗h(A) ≤|A0|α|A|−1
∗ β

b(A)
∗ Ω∗h({0})

+ |A1|α|A|−2
∗ β

b(A)−1
∗ Ω∗h({0, 1})

+ |A2|α|A|−1
∗ β

b(A)−2
∗

(
α∗β2

∗ − 1
)
.

Proof B. As in the Proof B of the first bound, we divide A into the following 9 disjoint
subsets:

A◦◦•◦◦ = {x ∈ A : x− 2, x− 1, x + 1, x + 2 /∈ A},
A◦◦•◦• = {x ∈ A : x− 2, x− 1, x + 1 /∈ A, x + 2 ∈ A},
A•◦•◦◦ = {x ∈ A : x− 2 ∈ A, x− 1, x + 1, x + 2 /∈ A},
A•◦•◦• = {x ∈ A : x− 2 ∈ A, x− 1, x + 1 /∈ A, x + 2 ∈ A},
A◦◦••× = {x ∈ A : x− 2, x− 1 /∈ A, x + 1 ∈ A},
A×••◦◦ = {x ∈ A : x− 1 ∈ A, x + 1, x + 2 /∈ A},
A•◦••× = {x ∈ A : x− 2 ∈ A, x− 1 /∈ A, x + 1 ∈ A},
A×••◦• = {x ∈ A : x− 1 ∈ A, x + 1 /∈ A, x + 2 ∈ A},
A×•••× = {x ∈ A : x− 1 ∈ A, x + 1 ∈ A}.
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A direct computation gives

Ω∗h(A) =|A◦◦•◦◦ |α|A|−1
∗ β

b(A)
∗ Ω∗h({0})

+
{
|A◦◦•◦• |+ |A•◦•◦◦ |

}
α
|A|−1
∗ β

b(A)
∗

[
Ω∗h({0}) + λα2

∗β∗(1− β∗)
]

+ |A•◦•◦• |α|A|−1
∗ β

b(A)
∗

[
Ω∗h({0}) + 2λα2

∗β∗(1− β∗)
]

+
{
|A◦◦••× |+ |A×••◦◦ |

}
α
|A|−2
∗ β

b(A)−1
∗

Ω∗h({0, 1})
2

+
{
|A•◦••× |+ |A×••◦• |

}
α
|A|−2
∗ β

b(A)−1
∗

[Ω∗h({0, 1})
2

+ λα3
∗β

2
∗(1− β∗)

]

+ |A×•••× |α|A|−1
∗ β

b(A)−2
∗

(
α∗β2

∗ − 1
)
.

Therefore Ω∗h({0}) = Ω∗h({0, 1}) = 0 implies that

Ω∗h(A) =
{
|A◦◦•◦• |+ |A•◦•◦◦ |

}
α
|A|+1
∗ β

b(A)+1
∗ λ(1− β∗)

+ |A•◦•◦• |α|A|+1
∗ β

b(A)+1
∗ 2λ(1− β∗)

+
{
|A•◦••× |+ |A×••◦• |

}
α
|A|+1
∗ β

b(A)+1
∗ λ(1− β∗)

+ |A×•••× |α|A|−1
∗ β

b(A)−2
∗

(
α∗β2

∗ − 1
)

=
{
|A◦◦•◦• |+ |A•◦•◦◦ |+ 2|A•◦•◦• |+ |A•◦••× |+ |A×••◦• |

}

× α
|A|+1
∗ β

b(A)+1
∗ λ(1− β∗)

+ |A×•••× |α|A|−1
∗ β

b(A)−2
∗

(
α∗β2

∗ − 1
)
.

By β∗ > 1 and α∗β2
∗ < 1, we have Ω∗h(A) ≤ 0 for any A ∈ Y , that is, condition (4)

is satisfied.

Applying Theorem 1.4.6 to A = {0} gives

Corollary 1.4.7.

λc ≥ λ(KK,2)
c = 1,

ρλ ≤ ρ
(KK,2)
λ = 1−

(
1

2λ− 1

)
=

2(λ− 1)
2λ− 1

for λ ≥ 1.

Compared with the second bound by the Harris-FKG inequality method (see
Theorem 1.3.8), this result is better than that one.

1.4.4. Third bound by the Katori-Konno method

Let
c(A) =

∣∣{x ∈ Z : {x, x + 1, x + 2} ⊂ A
}∣∣,

d(A) =
∣∣{x ∈ Z : {x, x + 2} ⊂ A

}∣∣.
Then we have
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Theorem 1.4.8. Let λ
(KK,3)
c =

(
1 +

√
37

)
/6. Then for λ ≥ λ

(KK,3)
c ,

σλ(A) ≤ h
(KK,3)
λ (A) for all A ∈ Y,

where

h
(KK,3)
λ (A) = 1− α

|A|
∗ β

b(A)
∗ γ

c(A)
∗ δ

d(A)
∗ ,

α∗ =
λ(2λ + 3) +

√
D

(2λ + 1)(6λ2 − 3λ− 1)
,

β∗ =
−(24λ4 + 16λ3 + 8λ2 + λ + 1) + (6λ− 1)(λ + 1)

√
D

2λ(λ− 1)2
,

γ∗ =
24λ3 + 16λ2 − 2λ− 3) + (4λ + 3)

√
D

8λ(2λ + 1)2
,

δ∗ =
(λ + 1){12λ3 − 2λ2 − λ + 1− (3λ− 1)

√
D}

2λ2(λ− 1)
,

D = 16λ4 + 4λ2 + 4λ + 1.

Compared with previous proofs, this proof is more complicated, so we will omit
the proof. See Katori and Konno16 for details. We should remark that α∗, β∗, γ∗ and
δ∗ are unique solutions of

Ω∗h({0}) = Ω∗h({0, 1}) = Ω∗h({0, 1, 2}) = Ω∗h({0, 2}) = 0,

with 0 < α∗ < 1 and β∗, γ∗, δ∗ > 1.
Furthermore, applying Theorem 1.4.8 to A = {0} gives

Corollary 1.4.9.

λc ≥ λ(KK,3)
c =

1 +
√

37
6

≈ 1.180,

ρλ ≤ ρ
(KK,3)
λ =

4λ(3λ2 − λ− 3)
12λ3 − 2λ2 − 8λ− 1 +

√
D

for λ ≥ 1 +
√

37
6

.

3.4.5. Summary and discussions

In this section we obtained the bounds by using the Harris lemma:

λ(KK,1)
c = 0.5 < λ(KK,2)

c = 1 < λ(KK,3)
c ≈ 1.180 ≤ λc,

and
ρλ ≤ ρ

(KK,3)
λ ≤ ρ

(KK,2)
λ ≤ ρ

(KK,1)
λ for λ ≥ 0.

We should remark that Corollary 1.4.7 (resp. 1.4.9) can be also obtained by
using Corollary 1.2.6 (1), (2) (resp. (1)-(4)) and the following conjecture (1) (resp.
(2), (3)). This argument appeared in Chapter 3 of Konno.12
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Conjecture 1.4.10.

νλ(◦)νλ(◦◦◦) ≥ νλ(◦◦)2.(1)

νλ(◦◦)νλ(◦◦◦◦) ≥ νλ(◦◦◦)2.(2)

νλ(◦)νλ(◦◦×◦) ≥ νλ(◦◦)νλ(◦×◦).(3)

That is, we obtain

Theorem 1.4.11. Assume that

νλ(◦)νλ(◦◦◦) ≥ νλ(◦◦)2.
Then we have

λc ≥ λ(KK,2)
c = 1,

ρλ ≤ ρ
(KK,2)
λ = 1−

(
1

2λ− 1

)
=

2(λ− 1)
2λ− 1

for λ ≥ 1.

Furthermore

Theorem 1.4.12. Assume that

νλ(◦◦)νλ(◦◦◦◦) ≥ νλ(◦◦◦)2,
νλ(◦)νλ(◦◦×◦) ≥ νλ(◦◦)νλ(◦×◦).

Then we have

λc ≥ λ(KK,3)
c =

1 +
√

37
6

≈ 1.180,

ρλ ≤ ρ
(KK,3)
λ =

4λ(3λ2 − λ− 3)
12λ3 − 2λ2 − 8λ− 1 +

√
D

for λ ≥ 1 +
√

37
6

.

We should remark that Conjecture 1.4.10 can be rewritten as

Conjecture 1.4.13.

νλ(◦◦◦)
νλ(◦◦) ≥ νλ(◦◦)

νλ(◦) .(1)

νλ(◦◦◦◦)
νλ(◦◦◦) ≥ νλ(◦◦◦)

νλ(◦◦) .(2)

νλ(◦◦×◦)
νλ(◦×◦) ≥ νλ(◦◦)

νλ(◦) .(3)

From Conjecture 1.4.10, we will extend to the following one which was conjectured
by Konno12 (Conjecture 3.4.13).
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Conjecture 1.4.14. For any A,B ∈ Y,

ρλ(A ∩B)ρλ(A ∪B) ≥ ρλ(A)ρλ(B),

where ρλ(A) = νλ{η : η(x) = 0 for any x ∈ A}.

For example, Conjecture 1.4.14 for A = {0, 1} and B = {1, 2} gives Conjecture
1.4.10 (1). If A ∩ B = φ, this inequality is equivalent to the Harris-FKG inequality
in Corollary 1.3.3 (2):

ρλ(A ∪B) ≥ ρλ(A)ρλ(B).

So it obviously refines the Harris-FKG inequality in this meaning. This approach is
called the Markov extension method. (See more details in Katori and Konno.17) The
reason is as follows. First we choose a subset Y (n) ⊂ Y and define h

(n)
λ on Y (n) by a

suitable way. Next for the rest of sets in Y \Y (n), the function h
(n)
λ is constructed from

a quotient of simple products of h
(n)
λ ’s previously defined on Y (n). The formula used

in the latter procedure is similar to the relation found among probability measures
in generalized Markov processes, so this extension procedure is called the Markov
extension. For example, see Schlijper.19 Recently Conjecture 1.4.14 was proved by
Belitsky, Ferrari, Konno and Liggett.20

Finally we would like to discuss the relation between the Katori-Konno method
and probability measures νλ

(n) (n = 1, 2, 3) on X = {0, 1}Z.

We define a probability measure νλ
(1) on X which corresponds to the first bound

of the Katori-Konno method by

νλ
(1){η : η(x) = 0 for any x ∈ A} = α|A|,

where 0 ≤ α ≤ 1 which will be determined later. From this definition, the following
equality can be easily checked:

νλ
(1)(◦◦) = νλ

(1)(◦)2, (1.11)

where νλ
(1)(◦◦) = νλ

(1){η : η(0) = η(1) = 0} and νλ
(1)(◦) = νλ

(1){η : η(0) = 0}. As
in the case of Corollary 1.2.6 (1), we assume that the following equation holds:

1− (2λ + 1)νλ
(1)(◦) + 2λνλ

(1)(◦◦) = 0. (1.12)

Combining Eq.(1.11) with Eq.(1.12) gives

νλ
(1)(◦) = α∗ =

( 1
2λ

)
∧ 1,

where a ∧ b is the minimum of a and b. This result implies that if λ ≤ 1/2, then
νλ

(1) = δ0.

Similarly we define a probability measure νλ
(2) on X which corresponds to the

second bound of the Katori-Konno method by

νλ
(2){η : η(x) = 0 for any x ∈ A} = α|A|βb(A).
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From this, we have

νλ
(2)(◦◦◦) =

νλ
(2)(◦◦)2

νλ
(2)(◦) , (1.13)

where νλ
(2)(◦◦◦) = νλ

(2){η : η(0) = η(1) = η(2) = 0}. As in the case of Corollary
1.2.6 (1) and (2), we assume that the following equations hold:

1− (2λ + 1)νλ
(2)(◦) + 2λνλ

(2)(◦◦) = 0. (1.14)

νλ
(2)(◦)− (λ + 1)νλ

(2)(◦◦) + λνλ
(2)(◦◦◦) = 0. (1.15)

By Eqs.(1.13-15), we have

νλ
(2)(◦) = α∗ =

( 1
2λ− 1

)
∧ 1 and β∗ =

(2λ− 1
λ

)
∨ 1,

where a ∨ b is the maximum of a and b. This result implies that if λ ≤ 1, then
νλ

(2) = δ0. Furthermore we can compute νλ
(2)(A) for any A ∈ Y , for example,

νλ
(2)(◦◦×◦) =

νλ
(2)(◦◦)νλ

(2)(◦×)νλ
(2)(×◦)

νλ
(2)(◦)νλ

(2)(×)

=
νλ

(2)(◦◦)νλ
(2)(◦)2

νλ
(2)(◦)

= νλ
(2)(◦◦)νλ

(2)(◦).

Moreover we define a probability measure νλ
(3) on X which corresponds to the

third bound of the Katori-Konno method by

νλ
(3){η : η(x) = 0 for any x ∈ A} = α|A|βb(A)γc(A)δd(A).

From this, we have

νλ
(3)(◦◦◦◦) =

νλ
(3)(◦◦◦)2

νλ
(3)(◦◦)

νλ
(3)(◦◦×◦) =

νλ
(3)(◦◦×)νλ

(3)(◦×◦)
νλ

(3)(◦×)
=

νλ
(3)(◦◦)νλ

(3)(◦×◦)
νλ

(3)(◦) .

where νλ
(3)(◦◦×◦) = νλ

(3){η : η(0) = η(1) = η(3) = 0}, etc. As in the case of
Corollary 1.2.6 (1), (2), (3) and (4), we assume that the following equations hold:

1− (2λ + 1)νλ
(3)(◦) + 2λνλ

(3)(◦◦) = 0.

νλ
(3)(◦)− (λ + 1)νλ

(3)(◦◦) + λνλ
(3)(◦◦◦) = 0.

2νλ
(3)(◦◦)− (2λ + 3)νλ

(3)(◦◦◦) + νλ
(3)(◦×◦) + 2λνλ

(3)(◦◦◦◦) = 0.

νλ
(3)(◦) + λνλ

(3)(◦◦◦)− (2λ + 1)νλ
(3)(◦×◦) + λνλ

(3)(◦◦×◦) = 0.
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By the above 6 equations, we have νλ
(3)(◦) = α∗∧1, β∗, γ∗ and δ∗ which appeared in

Theorem 1.4.8. This implies that if λ ≤ (
1 +

√
37

)
/6, then νλ

(3) = δ0. Furthermore
we can compute νλ

(3)(A) for any A ∈ Y , for example,

νλ
(3)(◦◦◦×◦) =

νλ
(3)(◦◦◦)νλ

(3)(◦◦×)νλ
(3)(◦×◦)

νλ
(3)(◦◦)νλ

(3)(◦×)

=
νλ

(3)(◦◦◦)νλ
(3)(◦◦)νλ

(3)(◦×◦)
νλ

(3)(◦◦)νλ
(3)(◦)

=
νλ

(3)(◦◦◦)νλ
(3)(◦×◦)

νλ
(3)(◦) .

In a similar way, we hope that we will extend this argument to the general nth
bounds.

Exercise 1.14. Show that for any n ≥ 1, x1 < x2 < · · · < xn and y1 < y2 < · · · < yn

with xi+1 − xi ≥ yi+1 − yi (i = 1, 2, . . . n− 1),

h
(KK,2)
λ ({x1, x2, . . . , xn}) ≥ h

(KK,2)
λ ({y1, y2, . . . , yn}),

for λ ≥ λ
(KK,2)
c = 1. By using the notation

νλ
(2){η : η(x) = 0 for any x ∈ A} = α|A|βb(A),

this can be rewritten as

νλ
(2){η : η(u) = 0 for any u ∈ {x1, x2, . . . , xn}}
≤ νλ

(2){η : η(u) = 0 for any u ∈ {y1, y2, . . . , yn}}.

Compare this result with Theorem 1.3.10, that is,

νλ{η : η(u) = 0 for any u ∈ {x1, x2, . . . , xn}}
≤ νλ{η : η(u) = 0 for any u ∈ {y1, y2, . . . , yn}}.
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CHAPTER 2

BASIC CONTACT PROCESSES II

2.1. Introduction

In this chapter we consider upper bounds on the critical value and lower bounds
on the order parameter of the basic contact process in one dimension. By choosing a
suitable renewal measure and using the Harris lemma, Holley and Liggett1 gave the
first upper bound on the critical value:

λc ≤ λ(HL,1)
c = 2,

and lower bound on the order parameter:

ρλ ≥ ρ
(HL,1)
λ =

1
2

+

√
1
4
− 1

2λ
for λ ≥ 2.

By an extension of the Holley-Liggett method, Liggett2 gave an improved upper bound

λc ≤ λ(HL,2)
c ≈ 1.942,

where
λ(HL,2)

c = sup{λ ≥ 0 : 4λ3 − 7λ2 − 2λ + 1 ≤ 0}.
Moreover this argument implies that for λ ≥ λ

(HL,2)
c ,

ρλ ≥ ρ
(HL,2)
λ =

λ + α− 1 +
√

(λ + α− 1)2 − α
[
2λ + α− 2 + 2λF1(2)

]

2λ + α− 2 + 2λF1(2)
,

where

α =
4λ− 2
4λ− 1

and F1(2) =
4λ− 1

(4λ + 1)(2λ− 1)
.

The formalism of the general nth approximation is also discussed in Liggett.2
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This chapter is organized as follows. In Section 2.2, we will consider bounds
by the Holley-Liggett method. Section 2.3 is devoted to correlation identities and
inequalities which correspond to this method.

2.2. Holley-Liggett Method

2.2.1. First bound by the Holley-Liggett method

We introduce the following renewal measure µ on {0, 1}Z with density f

µ(•
n1︷ ︸︸ ︷◦ · · · ◦ •

n2︷ ︸︸ ︷◦ · · · ◦ •◦ . . . ◦•
nk︷ ︸︸ ︷◦ · · · ◦ •) =

f(n1 + 1)f(n2 + 1) · · · f(nk + 1)
∞∑

m=1
mf(m)

.

By using the Harris lemma, we have

Theorem 2.2.1. Let λ
(HL,1)
c = 2. Then for λ ≥ λ

(HL,1)
c ,

h
(HL,1)
λ (A) ≤ σλ(A) for all A ∈ Y,

where

h
(HL,1)
λ (A) = µ{η : η(x) = 1 for some x ∈ A},

for a renewal measure µ on {0, 1}Z whose density f is given by Ω∗h(HL,1)
λ (A)= 0 for

all A of the form {1, 2, . . . , n} (n ≥ 1).

Applying Theorem 2.2.1 to A = {1} gives

Corollary 2.2.2.

λc ≤ λ(HL,1)
c = 2.

ρλ ≥ ρ
(HL,1)
λ =

1
2

+

√
1
4
− 1

2λ
(λ ≥ 2).

Sketch of Proof of Theorem 2.2.1. As in the case of Chapter 1, we need the
following 4 steps.

Step 1. First we choose a suitable form of h
(HL,1)
λ (A).

Step 2. Next we choose h
(HL,1)
λ (A) explicitly.

Step 3. Thirdly we check conditions (1)-(3) in the Harris lemma.
Step 4. Finally we check condition (4) in the Harris lemma.

In this sketch, we will show only Steps 1 and 2. Concerning Steps 3 and 4, see Chapter
VI of Liggett.3
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Step 1. We choose h of the form

h(A) = µ{η : η(x) = 1 for some x ∈ A}
= 1− µ{η : η(x) = 0 for any x ∈ A},

for a renewal measure µ on {0, 1}Z.
Step 2. We define the density f so that

Ω∗h({1, 2, . . . , n}) = 0,

for any n ≥ 1, where

Ω∗h(A) = λ
∑

x∈A

∑

y:|y−x|=1

[
h(A ∪ {y})− h(A)

]
+

∑

x∈A

[
h(A \ {x})− h(A)

]
.

The definition of Ω∗ gives

Ω∗h({1, 2, . . . , n}) =
n∑

k=1

{
λ
[
h({1, 2, . . . , n} ∪ {k − 1})− h({1, 2, . . . , n})

]

+ λ
[
h({1, 2, . . . , n} ∪ {k + 1})− h({1, 2, . . . , n})

]

+
[
h({1, 2, . . . , n} \ {k})− h({1, 2, . . . , n})

]}
.

So we have

Ω∗h({1, 2, . . . , n}) = λ
[
h({0, 1, 2, . . . , n})− h({1, 2, . . . , n})

]

+ λ
[
h({1, 2, . . . , n, n + 1})− h({1, 2, . . . , n})

]

+
n∑

k=1

[
h({1, 2, . . . , n} \ {k})− h({1, 2, . . . , n})

]
.

We should remark the following relations:

h({1, 2, 3}) = 1− µ(◦◦◦),
h({1, 3}) = 1− µ(◦×◦),

h({1, 2, 3})− h({1, 3}) = µ(◦×◦)− µ(◦◦◦) = µ(◦•◦),
...

For λ ≥ 0 with µ(•) > 0, we let

F (n) =
µ(•

n−1︷ ︸︸ ︷◦ · · · ◦)
µ(•) (n ≥ 1).

The density f is given by

f(n) =
µ(•

n−1︷ ︸︸ ︷◦ · · · ◦ •)
µ(•) (n ≥ 1).
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So f(n) = F (n)− F (n + 1). Then we see that

h({0, 1, 2, . . . , n})− h({1, 2, . . . , n}) = µ(
n︷ ︸︸ ︷◦ · · · ◦)− µ(

n+1︷ ︸︸ ︷◦ · · · ◦)

= µ(•
n︷ ︸︸ ︷◦ · · · ◦)

= F (n + 1)µ(•).
Similarly we have

h({1, 2, . . . , n, n + 1})− h({1, 2, . . . , n}) = µ(
n︷ ︸︸ ︷◦ · · · ◦ •)

= F (n + 1)µ(•).
On the other hand

h({1, 2, . . . , n} \ {k})− h({1, 2, . . . , n})

= µ(
n︷ ︸︸ ︷◦ · · · ◦)− µ(

k−1︷ ︸︸ ︷◦ · · · ◦ ×
n−k︷ ︸︸ ︷◦ · · · ◦)

= −µ(
k−1︷ ︸︸ ︷◦ · · · ◦ •

n−k︷ ︸︸ ︷◦ · · · ◦)

= −µ(
k−1︷ ︸︸ ︷◦ · · · ◦ •)
µ(•) × µ(•

n−k︷ ︸︸ ︷◦ · · · ◦)
µ(•) × µ(•)

= −F (k)F (n + 1− k)µ(•).
The third equality comes from the property of the renewal measure µ. Therefore we
have

Ω∗h({1, 2, . . . , n}) = µ(•)
[
2λF (n + 1)−

n∑

k=1

F (k)F (n + 1− k)
]
,

for n ≥ 1. Then Ω∗h({1, 2, . . . , n}) = 0 implies

Lemma 2.2.3. For λ ≥ 0 with µ(•) > 0,

2λF (n + 1) =
n∑

k=1

F (k)F (n + 1− k) (n ≥ 1),

F (1) = 1.

We introduce the following generating function to get F (n) explicitly:

φ(u) =
∞∑

n=1

F (n)un.

By using Lemma 2.2.3, we have the following quadratic equation:

φ2(u)− 2λφ(u) + 2λu = 0. (2.1)
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The nonnegativity of the discriminant of this equation with u = 1 is equivalent to
λ(λ− 2) ≥ 0. So we let λ

(HL,2)
c = 2. By Eq.(2.1) and φ′(0) = F (1) = 1, we get

φ(u) = λ−
√

λ2 − 2λu = λ− λ

√
1− 2u

λ
. (2.2)

Here we present a formula to expand Eq.(2.2) in a power series in u:

√
1− s = 1−

∞∑
n=1

bnsn,

where

bn =
(2n)!

4n(n!)2(2n− 1)
.

Therefore we obtain the explicit form of F (n) as follows.

Lemma 2.2.4. For λ ≥ λ
(HL,2)
c = 2,

F (n) =
(2(n− 1))!
(n− 1)! n!

( 1
2λ

)n−1

(n ≥ 1).

We should remark that the density f can be given by f(n) = F (n) − F (n + 1)
for n ≥ 1. By Lemma 2.2.4 and a direct computation, we can show the positivity of
f(n) easily. So Step 2 is complete.

In this way, we have f(n) and F (n) explicitly. By Eq.(2.2), we have

φ(1) =
∞∑

n=1

F (n) = λ−
√

λ(λ− 2).

Note that
ρ
(HL,1)
λ = µ(•) =

1
∞∑

n=1
nf(n)

=
1

∞∑
n=1

F (n)
=

1
φ(1)

,

since the second equality comes from the definition of µ. So we have the following
first bounds by using the Holley-Liggett method:

λc ≤ λ(HL,1)
c = 2.

ρλ ≥ ρ
(HL,1)
λ =

1
2

+

√
1
4
− 1

2λ
(λ ≥ 2).

Exercise 2.1. In the first bound, the stationary renewal measure with density f is
a reversible measure for the nearest-particle system with birth rates

β(l, r) =
f(l)f(r)
f(l + r)

.
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On the other hand, the one-dimensional contact process is β(1, 1) = 2λ, β(l, 1) =
β(1, r) = λ for l, r ≥ 2 and β(l, r) = 0 otherwise. Concerning the nearest-particle
system, see Chapter VII of Liggett.3 We assume that λ ≥ 2.

(a) Show that

f(1) =
2λ− 1

2λ
, f(2) =

λ− 1
2λ2

, f(3) =
4λ− 5
8λ3

,

β(1, 1) =
(2λ− 1)2

2(λ− 1)
, β(2, 1) = β(1, 2) =

2(λ− 1)(2λ− 1)
4λ− 5

.

(b) Show that
β(1, 1) ≥ 2λ, β(1, 2) = β(2, 1) ≤ λ.

(c) Verify that the above result (b) implies that the nearest-particle system ξt and the
basic contact process ηt can not be constructed on the same probability space with

ξt(x) ≤ ηt(x) for any x ∈ Z and t ≥ 0.

However
µ{η : η(x) = 1} ≤ νλ{η : η(x) = 1},

for any λ ≥ 2.

Exercise 2.2. Show that

(1) ρλ → 1 as λ →∞,

moreover,

(2) 2λ(1− ρλ) → 1 as λ →∞.

2.2.2. Second bound by the Holley-Liggett method

As in the previous subsection, we will consider the second bound which was
obtained by Liggett.2

Theorem 2.2.5. Let λ
(HL,2)
c ≈ 1.942 be the largest root of the cubic equation of

λ3 − 7λ2 − 2λ + 1 = 0.

Then for λ ≥ λ
(HL,2)
c ,

h
(HL,2)
λ (A) ≤ σλ(A) for all A ∈ Y,

where

h
(HL,2)
λ (A) = µ{η : η(x) = 1 for some x ∈ A},

for a generalized renewal measure µ on {0, 1}Z whose density is given by

Ω∗h(HL,2)
λ (A) = 0 for all A of the form {1, 2, . . . , n} (n ≥ 1) and {1, 3}.

Concerning the exact definition of µ, see Liggett.2 Applying Theorem 2.2.5 to A = {1}
gives
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Corollary 2.2.6.

λc ≤ λ(HL,2)
c .

ρλ ≥ ρ
(HL,2)
λ =

λ + α− 1 +
√

(λ + α− 1)2 − α
[
2λ + α− 2 + 2λF1(2)

]

2λ + α− 2 + 2λF1(2)

for λ ≥ λ
(HL,2)
c , where

α =
4λ− 2
4λ− 1

and F1(2) =
4λ− 1

(4λ + 1)(2λ− 1)
.

As in the case of the first bound, we will discuss only Steps 1 and 2. So Steps 3
and 4 will be omitted.

Step 1. We choose the form of

h(A) = µ{η : η(x) = 1 for some x ∈ A},
for a generalized renewal measure µ on {0, 1}Z.

Step 2. We define the density so that

Ω∗h({1, 2, . . . , n}) = 0,

for any n ≥ 1 and
Ω∗h({1, 3}) = 0,

where

Ω∗h(A) = λ
∑

x∈A

∑

y:|y−x|=1

[
h(A ∪ {y})− h(A)

]
+

∑

x∈A

[
h(A \ {x})− h(A)

]
.

We should remark the next relations:

h({1, 2, 3}) = 1− µ(◦◦◦),
h({1, 3}) = 1− µ(◦×◦),

h({1, 2, 3})− h({1, 3}) = µ(◦×◦)− µ(◦◦◦) = µ(◦•◦),
...

Moreover, following notations of Liggett,2 we introduce

F1(n) =
µ(••

n−1︷ ︸︸ ︷◦ · · · ◦)
µ(••) ,

f1(n) =
µ(••

n−1︷ ︸︸ ︷◦ · · · ◦ •)
µ(••) ,

F0(n) =
µ(◦•

n−1︷ ︸︸ ︷◦ · · · ◦)
µ(◦•) ,

f0(n) =
µ(◦•

n−1︷ ︸︸ ︷◦ · · · ◦ •)
µ(◦•) ,
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for n ≥ 1. The above definitions give

F1(1) = F0(1) = 1,

F1(n) =
∞∑

k=n

f1(k), F0(n) =
∞∑

k=n

f0(k).

We recall that

Ω∗h({1, 2, . . . , n}) = λ
[
h({0, 1, 2, . . . , n})− h({1, 2, . . . , n})

]

+ λ
[
h({1, 2, . . . , n, n + 1})− h({1, 2, . . . , n})

]

+
n∑

k=1

[
h({1, 2, . . . , n} \ {k})− h({1, 2, . . . , n})

]
.

From now on we consider two cases; Case A and Case B.
Case A. By using definitions of F0(n) and F1(n), we see that

h({0, 1, 2, . . . , n})− h({1, 2, . . . , n})

= µ(
n︷ ︸︸ ︷◦ · · · ◦)− µ(

n+1︷ ︸︸ ︷◦ · · · ◦)

= µ(•
n︷ ︸︸ ︷◦ · · · ◦)

= µ(••
n︷ ︸︸ ︷◦ · · · ◦) + µ(◦•

n︷ ︸︸ ︷◦ · · · ◦)

=
µ(••

n︷ ︸︸ ︷◦ · · · ◦)
µ(••) × µ(••) +

µ(◦•
n︷ ︸︸ ︷◦ · · · ◦)

µ(◦•) × µ(◦•)

= F1(n + 1)µ(••) + F0(n + 1)µ(◦•).

On the other hand, the definition of a measure µ implies there is an α such that

α =
F0(n)
F1(n)

for n ≥ 1.

Note that α is independent of n. Ω∗h({1}) = 0 gives

µ(••) = (2λ− 1)µ(◦•).

Moreover Ω∗h({1, 2}) = Ω∗h({1, 3}) = 0 yields

α =
4λ− 2
4λ− 1

and F1(2) =
4λ− 1

(4λ + 1)(2λ− 1)
.

From these, we have

h({0, 1, 2, . . . , n})− h({1, 2, . . . , n}) = (2λ− 1)µ(◦•)F1(n + 1) + αµ(◦•)F1(n + 1)

= (2λ− 1 + α)µ(◦•)F1(n + 1).



Basic Contact Processes II 39

We let

δ = 2λ− 1 + α =
(4λ + 1)(2λ− 1)

4λ− 1
.

Remark that

δ =
1

F1(2)
.

From the above observations, we have

h({0, 1, 2, . . . , n})− h({1, 2, . . . , n}) = µ(•
n︷ ︸︸ ︷◦ · · · ◦) = δµ(◦•)F1(n + 1).

Similarly

h({1, 2, . . . , n, n + 1})− h({1, 2, . . . , n}) = µ(•
n︷ ︸︸ ︷◦ · · · ◦) = δµ(◦•)F1(n + 1).

Therefore we obtain

λ
∑

x∈A

∑

y:|y−x|=1

[
h(A ∪ {y})− h(A)

]
= 2λδµ(◦•)F1(n + 1),

where A = {1, . . . , n}.
Case B. For k ∈ {2, . . . , n− 1}, we see

h({1, 2, . . . , n} \ {k})− h({1, 2, . . . , n}) =µ(
n︷ ︸︸ ︷◦ · · · ◦)− µ(

k−1︷ ︸︸ ︷◦ · · · ◦ ×
n−k︷ ︸︸ ︷◦ · · · ◦)

=− µ(
k−1︷ ︸︸ ︷◦ · · · ◦ •

n−k︷ ︸︸ ︷◦ · · · ◦)

=− µ(
k−1︷ ︸︸ ︷◦ · · · ◦ •◦)
µ(•◦) × µ(•

n−k︷ ︸︸ ︷◦ · · · ◦)

=− F0(k)× δµ(◦•)F1(n + 1− k)

=− αF1(k)× δµ(◦•)F1(n + 1− k).

The third equality comes from the definition of a generalized renewal measure µ. The
fourth equality is given by the definition of F0(k) and a similar argument of Case A.
The definition of α gives the last equality. So we have

h({1, 2, . . . , n} \ {k})− h({1, 2, . . . , n}) = −αδµ(◦•)F1(k)F1(n + 1− k).

For k = 1 or k = n, a similar argument in Case A implies

h({1, 2, . . . , n} \ {k})− h({1, 2, . . . , n}) = −δµ(◦•)F1(n).
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Therefore
n∑

k=1

h({1, 2, . . . , n} \ {k})− h({1, 2, . . . , n})

= −2δµ(◦•)F1(n)− αδµ(◦•)
n−1∑

k=2

F1(k)F1(n + 1− k)

= −δµ(◦•)
[
2F1(n) + α

n−1∑

k=2

F1(k)F1(n + 1− k)
]
.

From these results, we see that

Ω∗h({1, 2, . . . , n}) = δµ(◦•)
[
2λF1(n + 1)−

{
2F1(n) + α

n−1∑

k=2

F1(k)F1(n + 1− k)
}]

,

for n ≥ 2. Then Ω∗h({1, 2, . . . , n}) = 0 (n ≥ 1) and Ω∗h({1, 3}) = 0 give

Lemma 2.2.7. Let α = (4λ− 2)/(4λ− 1). Then

2λF1(n + 1) = 2F1(n) + α

n−1∑

k=2

F1(k)F1(n + 1− k) (n ≥ 2),

F1(1) = 1.

We introduce the generating function to get F1(n) explicitly:

φ(u) =
∞∑

n=1

F1(n)un.

By using Lemma 2.2.7, we have the following quadratic equation:

αφ2(u)− 2[λ + (α− 1)u]φ(u) + 2λu +
[
α− 2 + 2λF1(2)

]
u2 = 0. (2.3)

The nonnegativity of the discriminant of this equation with u = 1 is equivalent to

(λ + α− 1)2 − α
[
2λ + α− 2 + 2λF1(2)

]
=

4λ3 − 7λ2 − 2λ + 1
4λ + 1

≥ 0.

So we let λ
(HL,2)
c be the largest root of the following cubic equation:

4λ3 − 7λ2 − 2λ + 1 = 0.

From Eq.(2.3) and the definitions of α and F1(2), we have

α
[
φ(u)− u

]
= λ− u− λ

√
1− 2u

λ
+

u2

λ2(4λ + 1)
. (2.4)
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Here we present a useful formula to expand Eq.(2.4) in a power series in u:
√

1− s +
[ 1− β

2(1 + β)

]2

s2 = 1−
∞∑

n=1

cnsn, (2.5)

with c1 = 1/2 and

cn =
β

2n−1(1 + β)n
v(n, β) (n ≥ 2),

where v(n, β) is Gauss’s hypergeometric series of the form

v(n, β) = F (−(n− 2),−(n− 1), 2;β) (n ≥ 2).

Let

s =
2u

λ
and β =

2λ + 1−√4λ + 1
2λ

,

for λ > λ
(HL,2)
c . It is remarked that 0 < β < 1 for λ > λ

(HL,2)
c . By using Eqs.(2.4)

and (2.5), we have

Lemma 2.2.8. For λ ≥ λ
(HL,2)
c ,

F1(n) =
2λβ

α

v(n, β)
[λ(1 + β)]n

for any n ≥ 2,

F1(1) = 1,

where

α =
4λ− 2
4λ− 1

, β =
2λ + 1−√4λ + 1

2λ
, and

v(n, β) = F (−(n− 2),−(n− 1), 2;β).

Next we will show here the positivity of f1(n)(= F1(n)−F1(n+1)) by the explict
form of F1(n) in the above lemma. (A different approach appeared in pp.708-711 in
Liggett.2) A similar proof is applicable to the case of θ-contact process. See Katori
and Konno.4

The hypergeometric series v(n, β) satisfies the following iterative equation: for
n ≥ 1,

(n + 2)v(n + 2, β)− (2n + 1)(1 + β)v(n + 1, β) + (n− 1)(1− β)2v(n, β) = 0, (2.6)

with v(1, β) = v(2, β) = 1. Let

an(β) =
v(n + 1, β)

v(n, β)
.

By Eq.(2.6) and the definition of an(β), we have

(n + 2)an+1(β)− (2n + 1)(1 + β) + (n− 1)(1− β)2
1

an(β)
= 0 (n ≥ 1), (2.7)

with a1(β) = 1. Then we have
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Lemma 2.2.9. For λ ≥ λ
(HL,2)
c ,

(1) a1(β) = 1 ≤ a2(β) ≤ · · · ≤ an(β) ≤ an+1(β) ≤ · · · ,

(2) lim
n→∞

an(β) = a∗(β) < λ(1 + β),

(3) an(β) < λ(1 + β) for any n ≥ 1.

Proof. Using Eq.(2.7), we begin by computing

an+1(β)− 1 =
1

n + 2

[
(2n + 1)(1 + β)− (n− 1)(1− β)2

1
an(β)

− (n + 2)
]

=
1

(n + 2)λan(β)

[
λ
{

(n− 1) + (2n + 1)β
}(

an(β)− 1
)

+ (n− 1)λ + (2n + 1)β
{

λ− n− 1
2n + 1

}]
.

Noting that λ ≥ (n− 1)/(2n + 1) for n ≥ 1 and λ ≥ λ
(HL,2)
c , we see that if an(β) ≥ 1

then an+1(β) ≥ 1 for n ≥ 1. Then we have

an(β) ≥ 1 for any n ≥ 1, (2.8)

since a1(β) = 1. Next we use again Eq.(2.7) to get

an+2(β)− an+1(β) =
1

n + 3

[
(2n + 3)(1 + β)− n(1− β)2

1
an+1(β)

]

− 1
n + 2

[
(2n + 1)(1 + β)− (n− 1)(1− β)2

1
an(β)

]

=
n(1− β)2

n + 3

[
an+1(β)− an(β)

]

an(β)an+1(β)

+
3(1 + β)

(n + 2)(n + 3)an(β)

[{
an(β)− 1

}
+

{
1− (1− β)2

1 + β

}]
.

(2.9)
Noting an(β) ≥ 1, i.e., Eq.(2.8), and 1 ≥ (1 − β)2/(1 + β) for λ ≥ λ

(HL,2)
c , we prove

that if an+1(β) − an(β) ≥ 0, then an+2(β) − an+1(β) ≥ 0 for any n ≥ 1. Applying
Eq.(2.8) to n = 2 gives a2(β) ≥ 1. Combining this result with a1(β) = 1 implies
a2(β)− a1(β) ≥ 0. Therefore we have an+1(β)− an(β) ≥ 0 for any n ≥ 1. The proof
of part (1) is complete.

Using part (1), we let a∗(β) = limn→∞ an(β) ∈ [ 1,∞ ]. Then Eq.(2.7) implies
that a∗(β) satisfies the following quadratic equation:

f(x) = λx2 − 2λ(1 + β)x + β = 0, (2.10)
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since λ(1−β)2 = β. We should remark f(0) = β > 0 and f(1) = −[λ+(2λ−1)β] < 0
for λ ≥ λ

(HL,2)
c ( > 1/2). So a∗(β)( > 1) is larger root of Eq.(2.10). On the other

hand, a direct computation shows λ(1 + β) > 1 and f(λ(1 + β)) > 0. From these
facts, we obtain a∗(β) < λ(1 + β) for λ ≥ λ

(HL,2)
c , immediately. So the proof of part

(2) is complete. Part (3) comes from parts (1) and (2).

From now on we will turn to the proof of the positivity of f1(n)(= F1(n)−F1(n+
1)). By using the explicit form of F1(n) (see Lemma 2.2.8), we see that f1(n) > 0
is equivalent to an(β) < λ(1 + β) for any n ≥ 2. So from Lemma 2.2.9 (3), we have
f1(n) > 0 (n ≥ 2). On the other hand, a direct computation gives

f1(1) = F1(1)− F1(2) =
2λ(4λ− 3)

(2λ− 1)(4λ + 1)
> 0 (λ > λ(HL,2)

c >
3
4
).

Therefore we obtain the desired conclusion: f1(n) > 0 for any n ≥ 1.

Here we present the lower bound ρ
(HL,2)
λ on ρλ in an explicit fashion. By using

φ(1), ρ
(HL,2)
λ can be given by

ρ
(HL,2)
λ =

1
∞∑

n=1
F1(n)

=
1

φ(1)
,

for λ > λ
(HL,2)
c . From this and Eq.(2.3), we obtain

ρλ ≥ ρ
(HL,2)
λ =

λ + α− 1 +
√

(λ + α− 1)2 − α
[
2λ + α− 2 + 2λF1(2)

]

2λ + α− 2 + 2λF1(2)

for λ ≥ λ
(HL,2)
c .

2.3. Correlation Identities and Inequalities

In Sections 1.2 and 1.4 we gave some correlation identities. (See Theorems 1.2.3,
1.2.5, 1.4.1 and 1.4.2.) This section is devoted to other types of correlation identities.
So using them and assuming some correlation inequalities which appear in this section,
we obtain easily the first Holley-Liggett bounds. Moreover we consider a similar story
concerning the second ones.

2.3.1. First bound

For k ≥ 2 and ni ≥ 0 (i = 1, . . . , k), we let J(n1, n2, . . . , nk) be the probability of
having 1’s at n1 + 1, n1 + n2 + 2, . . . , n1 + n2 + · · ·+ nk−1 + k− 1 and 0’s at all other
sites in [ 1, n1 + n2 + · · · + nk + k − 1 ] with respect to the upper invariant measure
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νλ. That is,

J(n1,n2, . . . , nk)

=νλ

( n1︷ ︸︸ ︷◦ · · · ◦ •
n2︷ ︸︸ ︷◦ · · · ◦ •◦ . . . ◦•

nk︷ ︸︸ ︷◦ · · · ◦
)

=Eνλ

(k−1∏

i=1

{ ni∏
qi=1

[1− η(n1 + · · ·+ ni−1 + qi + i− 1)]× η(n1 + · · ·+ ni + i)
}

×
{ nk∏

qk=1

[1− η(n1 + · · ·+ nk−1 + qk + k − 1)]
})

.

For example,

J(0, 0) = νλ{η : η(1) = 1} = νλ(•) = ρλ,

J(1, 2) = νλ{η : η(1) = 0, η(2) = 1, η(3) = η(4) = 0} = νλ(◦•◦◦),

J(1, 2, 3) = νλ

{
η :

η(1) = 0, η(2) = 1, η(3) = η(4) = 0,

η(5) = 1, η(6) = η(7) = η(8) = 0

}

= νλ(◦•◦◦•◦◦◦).

Using Theorem 1.2.5 for A = {1, 2, . . . , n}, we have

λ
[
ρλ({0, 1, . . . , n})− ρλ({1, . . . , n})

]
+ λ

[
ρλ({1, . . . , n, n + 1})− ρλ({1, . . . , n})

]

+
n∑

k=1

[
ρλ({1, . . . , n} \ {k})− ρλ({1, . . . , n})

]
= 0.

So the definition of J(n1, n2) gives the following correlation identities.

Lemma 2.3.1. For n ≥ 1,

2λJ(n, 0) =
n∑

k=1

J(k − 1, n− k),

that is,

2λνλ(
n︷ ︸︸ ︷◦ · · · ◦ •) =

n∑

k=1

νλ(
k−1︷ ︸︸ ︷◦ · · · ◦ •

n−k︷ ︸︸ ︷◦ · · · ◦).

Exercise 2.3. Show that, when n = 1, this lemma gives

2λνλ(◦•) = νλ(•). (2.11)

Exercise 2.4. By using
νλ(◦•) = νλ(•)− νλ(••),
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and Eq.(2.11), show that

(2λ− 1)νλ(•)− 2λνλ(••) = 0.

This equation is equivalent to Corollary 1.2.4 (1) in Chapter 1.

Next we introduce the following conjecture to get the first bound by the Holley-
Liggett method.

Conjecture 2.3.2. For m, n ≥ 1,

J(0, 0)J(m, n) ≤ J(m, 0)J(n, 0),

that is,

νλ(•)νλ(
m︷ ︸︸ ︷◦ · · · ◦ •

n︷ ︸︸ ︷◦ · · · ◦) ≤ νλ(
m︷ ︸︸ ︷◦ · · · ◦ •)νλ(

n︷ ︸︸ ︷◦ · · · ◦ •).

Remark. Liggett5 gave the following argument: if for any m, n ≥ 1,

νλ(•)νλ(
m︷ ︸︸ ︷◦ · · · ◦ •

n︷ ︸︸ ︷◦ · · · ◦) ≥ νλ(
m︷ ︸︸ ︷◦ · · · ◦ •)νλ(

n︷ ︸︸ ︷◦ · · · ◦ •),

then the Holley-Liggett method does not hold. So he concluded that there are m,
n ≥ 1 such that

νλ(•)νλ(
m︷ ︸︸ ︷◦ · · · ◦ •

n︷ ︸︸ ︷◦ · · · ◦) ≤ νλ(
m︷ ︸︸ ︷◦ · · · ◦ •)νλ(

n︷ ︸︸ ︷◦ · · · ◦ •).

Compared with his conclusion, our conjecture is very strong. Moreover our recent
results based on Monte Carlo simulations suggest that the above conjecture is correct
for small m and n,6 for example, (m, n) = (1, 1), (2, 1), (1, 2), (2, 2).

Exercise 2.5. Show that
J(0, 0)J(1, 1) ≤ J(1, 0)2

is equivalent to
ρλ(0)ρλ(012) ≤ ρλ(01)2.

That is,
νλ(•)νλ(◦•◦) ≤ νλ(◦•)2

is equivalent to
νλ(•)νλ(•••) ≤ νλ(••)2.
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In fact, even when m = n = 1, the correlation inequality in Conjecture 2.3.2 is
interesting. The reason is as follows. From the Harris-FKG inequality, we have

νλ(••) ≥ νλ(•)2, (2.12)

and
νλ(◦◦) ≥ νλ(◦)2. (2.13)

Concerning the Harris-FKG inequality, see Chapter II in Liggett,3 or page 21 in
Konno.8 We can rewrite Eqs.(2.12) and (2.13) by using the conditional probability:

νλ(•|•) ≥ νλ(•), (2.14)

and
νλ(◦|◦) ≥ νλ(◦), (2.15)

where
νλ(•|•) = νλ{η : η(1) = 1 | η(0) = 1},
νλ(◦|◦) = νλ{η : η(1) = 0 | η(0) = 0}.

Moreover, in our setting, the following correlation inequalities were proved by Belitsky,
Ferrari, Konno and Liggett recently:7 for any A, B ⊂ Z,

ρλ(A ∩B)ρλ(A ∪B) ≥ ρλ(A)ρλ(B), (2.16)

where ρλ(A) = νλ{η(x) = 0 for any x ∈ A}. In particular, if we take A = {−1, 0}
and B = {0, 1}, then we have

νλ(◦)νλ(◦◦◦) ≥ νλ(◦◦)2, (2.17)

so this becomes
νλ(◦|◦◦) ≥ νλ(◦|◦), (2.18)

where
νλ(◦|◦◦) = νλ{η : η(1) = 0 | η(0) = η(−1) = 0}.

On the other hand, when m = n = 1 for the correlation inequalities in Conjecture
2.3.2, we have

νλ(•)νλ(•••) ≤ νλ(••)2, (2.19)

that is,
νλ(•|••) ≤ νλ(•|•), (2.20)

where
νλ(•|••) = νλ{η : η(1) = 1 | η(0) = η(−1) = 1}.

The interesting thing is that direction of inequality (2.20) is different from those of in-
equalities (2.14), (2.15) and (2.18). From the attractiveness (see page 72 in Liggett3),
we can easily expect that inequalities (2.14) and (2.15) hold, moreover, inequality
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(2.18) also holds. However, concerning inequality (2.20), we can not easily conclude
which sign of inequality is correct. Our estimation by Monte Carlo simulation suggests
that inequality (2.20) holds.

For λ > λc and m,n ≥ 0, define

J(m, n) =
νλ(

m︷ ︸︸ ︷◦ · · · ◦ •
n︷ ︸︸ ︷◦ · · · ◦)

νλ(•) =
J(m,n)
J(0, 0)

.

Note that the definition of λc gives J(0, 0) = νλ(•) = ρλ > 0 for λ > λc. By using
J(m, n), we can rewrite the above conjecture as follows.

Conjecture 2.3.3. For λ > λc and m,n ≥ 1,

J(m,n) ≤ J(m, 0)J(n, 0).

Let

ϕ(u) =
∞∑

n=0

J(n, 0)un+1.

In the previous section we intoduced

φ(u) =
∞∑

n=0

F (n + 1)un+1.

We should remark that

J(n, 0) =
νλ(

n︷ ︸︸ ︷◦ · · · ◦ •)
νλ(•) and F (n + 1) =

µ(
n︷ ︸︸ ︷◦ · · · ◦ •)

µ(•) .

Lemma 2.3.1 can be rewritten as

2λJ(n, 0) =
n∑

k=1

J(k − 1, n− k). (2.21)

By the definition of ϕ(u), we see that

∞∑
n=1

[
J(n, 0)un+1

]
= ϕ(u)− u. (2.22)

Assuming Conjecture 2.3.3, we have

∞∑
n=1

n∑

k=1

J(k − 1, n− k)un+1 ≤
∞∑

n=1

n∑

k=1

J(k − 1, 0)J(n− k, 0)un+1. (2.23)
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Eq.(2.23) gives
∞∑

n=1

n∑

k=1

J(k − 1, n− k)un+1 ≤ ϕ(u)2. (2.24)

By Eqs.(2.21), (2.22) and (2.24), we have

ϕ2(u)− 2λϕ(u) + 2λu ≥ 0. (2.25)

Note that if λ > λc, then

ϕ(1) =
∞∑

n=0

J(n, 0) =
1

J(0, 0)
=

1
ρλ

. (2.26)

Because, for λ > λc, the second equality follows from

∞∑
n=0

νλ(
n︷ ︸︸ ︷◦ · · · ◦ •) =

∞∑
n=0

{
νλ(

n︷ ︸︸ ︷◦ · · · ◦)− νλ(
n+1︷ ︸︸ ︷◦ · · · ◦)

}
= 1− lim

n→∞
νλ(

n︷ ︸︸ ︷◦ · · · ◦) = 1.

From Eq.(2.25) with u = 1 and Eq.(2.26), we have

2λρ2
λ − 2λρλ + 1 ≥ 0. (2.27)

So the continuity and monotonicity of ρλ (see Theorem 1.1.1 (3) and (4)) implies

ρλ ≥ 1
2

+

√
1
4
− 1

2λ
for λ ≥ 2. (2.28)

Note that this lower bound on ρλ is nothing but the Holley-Liggett one. So if we
assume Conjecture 2.3.3, then Eq.(2.28) gives upper bound on the critical value:

λc ≤ λ(HL)
c = 2.

Therefore we have the following theorem which corresponds to Theorems 1.4.11 and
1.4.12. This argument appeared in Chapter 4 of Konno.8

Theorem 2.3.4. Assume that for any m, n ≥ 1,

νλ(•)νλ(
m︷ ︸︸ ︷◦ · · · ◦ •

n︷ ︸︸ ︷◦ · · · ◦) ≤ νλ(
m︷ ︸︸ ︷◦ · · · ◦ •)νλ(

n︷ ︸︸ ︷◦ · · · ◦ •).

Then we have
λc ≤ λ(HL,1)

c = 2,

ρλ ≥ ρ
(HL,1)
λ =

1
2

+

√
1
4
− 1

2λ
(λ ≥ 2).

2.3.2. Second bound
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First we recall Lemma 2.3.1: For n ≥ 1,

2λνλ(•
n︷ ︸︸ ︷◦ · · · ◦) =

n∑

k=1

νλ(
k−1︷ ︸︸ ︷◦ · · · ◦ •

n−k︷ ︸︸ ︷◦ · · · ◦). (2.29)

Next we let

J(n, 0, 0) =
νλ(••

n︷ ︸︸ ︷◦ · · · ◦)
νλ(••) and γ(n) =

νλ(◦•
n︷ ︸︸ ︷◦ · · · ◦)

νλ(•• ◦ · · · ◦︸ ︷︷ ︸
n

)
.

Remark the difference between J(n, 0, 0) and

J(n, 0) =
νλ(•

n︷ ︸︸ ︷◦ · · · ◦)
νλ(•) .

On the other hand, Ω∗h({1}) = 0 gives νλ(••) = (2λ− 1)νλ(◦•). By using these, we
have

νλ(•
n︷ ︸︸ ︷◦ · · · ◦) =

νλ(••
n︷ ︸︸ ︷◦ · · · ◦)

νλ(••) × νλ(••) +
νλ(◦•

n︷ ︸︸ ︷◦ · · · ◦)
νλ(◦•) × νλ(◦•)

= J(n, 0, 0)(2λ− 1)νλ(◦•) + γ(n)J(n, 0, 0)(2λ− 1)νλ(◦•).

So we have

νλ(•
n︷ ︸︸ ︷◦ · · · ◦) = (2λ− 1)νλ(◦•)[1 + γ(n)]J(n, 0, 0). (2.30)

By using Eq.(2.30), the left-hand side of Eq.(2.29) is equal to

2λ(2λ− 1)νλ(◦•)[1 + γ(n)]J(n, 0, 0). (2.31)

In the above argument, we used the following relation:

νλ(◦•
n︷ ︸︸ ︷◦ · · · ◦)

νλ(◦•) = (2λ− 1)γ(n)J(n, 0, 0). (2.32)

Next we consider the right-hand side of Eq.(2.29). To do this, we present the following
conjecture which is similar to Conjecture 2.3.2:

Conjecture 2.3.5. For m,n ≥ 1,

J(1, 0)J(m, n) ≤ J(m, 1)J(n, 0),

that is,

νλ(◦•)νλ(
m︷ ︸︸ ︷◦ · · · ◦ •

n︷ ︸︸ ︷◦ · · · ◦) ≤ νλ(
m︷ ︸︸ ︷◦ · · · ◦ •◦)νλ(

n︷ ︸︸ ︷◦ · · · ◦ •).
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From now on we assume this conjecture. For k ∈ {2, . . . , n− 1}, we see

νλ(
k−1︷ ︸︸ ︷◦ · · · ◦ •

n−k︷ ︸︸ ︷◦ · · · ◦) ≤ νλ(
k−1︷ ︸︸ ︷◦ · · · ◦ •◦)

νλ(•◦) × νλ(•
n−k︷ ︸︸ ︷◦ · · · ◦)

= (2λ− 1)2ν(◦•)γ(k − 1)

× [1 + γ(n− k)]J(k − 1, 0, 0)J(n− k, 0, 0).

The first inequality comes from Conjecture 2.3.5. The second equality can be obtained
by Eqs.(2.30) and (2.32). On the other hand, for k = 1 or n, Eq.(2.30) gives

νλ(•
n−1︷ ︸︸ ︷◦ · · · ◦) = (2λ− 1)νλ(◦•)[1 + γ(n− 1)]J(n− 1, 0, 0).

Therefore by using these facts we have

2λ[1 + γ(n)]J(n, 0, 0) ≤ 2[1 + γ(n− 1)]J(n− 1, 0, 0)

+ (2λ− 1)
n−1∑

k=2

γ(k − 1)[1 + γ(n− k)]

× J(k − 1, 0, 0)J(n− k, 0, 0).

Then we obtain the following lemma:

Lemma 2.3.6. Assume Conjecture 2.3.5. Then for n ≥ 3,

2λJ(n, 0, 0) ≤ 2
[1 + γ(n− 1)

1 + γ(n)

]
J(n− 1, 0, 0)

+
n−1∑

k=2

[
(2λ− 1)

γ(k − 1)[1 + γ(n− k)]
1 + γ(n)

]
J(k − 1, 0, 0)J(n− k, 0, 0),

λJ(2, 0, 0) = J(1, 0, 0),

λJ(1, 0, 0) = J(0, 0, 0),

J(0, 0, 0) = 1.

In the previous section, we obtained

2λF1(n + 1) = 2F1(n) + α

n−1∑

k=2

F1(k)F1(n + 1− k).

Comparing with this equation, we present the following two assumptions:

(A1)
1 + γ(n− 1)

1 + γ(n)
≤ 1, i.e., γ(n− 1) ≤ γ(n) for any n ≥ 3.
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(A2)

(2λ− 1)
γ(k − 1)[1 + γ(n− k)]

1 + γ(n)
≤ α =

2(2λ− 1)
4λ− 1

for any 2 ≤ k ≤ n− 1 and n ≥ 3.

The assumption (A2) is equivalent to

(A2′)
γ(k − 1)[1 + γ(n− k)]

1 + γ(n)
≤ 2

4λ− 1
for any 2 ≤ k ≤ n− 1 and n ≥ 3.

Under these assumptions (A1) and (A2), Lemma 2.3.6 gives

2λJ(n, 0, 0) ≤ 2J(n− 1, 0, 0) + α

n−1∑

k=2

J(k − 1, 0, 0)J(n− k, 0, 0). (2.33)

Let

ϕ(u) =
∞∑

n=0

J(n, 0, 0)un+1. (2.34)

In the previous section, we introduced

φ(u) =
∞∑

n=0

F1(n + 1)un+1.

By Eqs.(2.33) and (2.34),

αϕ2(u)− 2
[
λ + (α− 1)u

]
ϕ(u) + 2λu +

[
α− 2 + 2λJ(1, 0, 0)

]
u2 ≥ 0. (2.35)

Here we add the following assumption:

(A3) J(1, 0, 0) ≤ F1(2) =
4λ− 1

(4λ + 1)(2λ− 1)
.

Therefore, under this assumption, Eq.(2.35) gives

αϕ2(u)− 2
[
λ + (α− 1)u

]
ϕ(u) + 2λu +

[
α− 2 + 2λF1(2)

]
u2 ≥ 0. (2.36)

On the other hand, we consider the relation between ρλ and ϕ(1). For λ > λc, we
begin by computing

1
ρλ

=
1

νλ(•) =
1

νλ(•)
∞∑

n=0

νλ(•
n︷ ︸︸ ︷◦ · · · ◦),

since

∞∑
n=0

νλ(•
n︷ ︸︸ ︷◦ · · · ◦) =

∞∑
n=0

{
νλ(

n︷ ︸︸ ︷◦ · · · ◦)− νλ(
n+1︷ ︸︸ ︷◦ · · · ◦)

}
= 1− lim

n→∞
νλ(

n︷ ︸︸ ︷◦ · · · ◦) = 1,
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for λ > λc. From this and Eq.(2.30),

1
ρλ

=
(2λ− 1)νλ(◦•)

νλ(•) ×
∞∑

n=0

[1 + γ(n)]J(n, 0, 0)

=
2λ− 1

2λ
×

∞∑
n=0

[1 + γ(n)]J(n, 0, 0),

(2.37)

since the second equality comes from νλ(•) = 2λνλ(◦•). Finally we present the next
assumption:

(A4) γ(n) ≤ 1
2λ− 1

for any n ≥ 0.

Under assumption (A4), Eq.(2.37) and the definition of ϕ(1) give

1
ρλ

≤ 2λ− 1
2λ

× 2λ

2λ− 1

∞∑
n=0

J(n, 0, 0) = ϕ(1). (2.38)

Taking u = 1 in Eq.(2.36) implies

[
α− 2 + 2λF1(2)

][ 1
ϕ(1)

]2

− 2[λ + α− 1]
[ 1
ϕ(1)

]
+ α ≥ 0.

Then [ 1
ϕ(1)

− ξ1

][ 1
ϕ(1)

− ξ2

]
≥ 0 with ξ1 = ρ

(HL,2)
λ ≥ ξ2.

From this and Eq.(2.38), we have

ρλ ≥ 1
ϕ(1)

≥ ξ1 = ρ
(HL,2)
λ .

Therefore, under Conjecture 2.3.5 and assumptions (A1)-(A4), we have

ρλ ≥ ρ
(HL,2)
λ .

Exercise 2.6. Show that
γ(0) =

1
2λ− 1

. (2.39)

Exercise 2.7. Verify that the assumption (A3) is equivalent to

2
4λ− 1

≤ γ(1). (2.40)

By using Eqs.(2.39) and (2.40) in exercises above, the following result is obtained:
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Theorem 2.3.7. Assume that for λ ≥ λc,

(1) νλ(◦•)νλ(
m︷ ︸︸ ︷◦ · · · ◦ •

n︷ ︸︸ ︷◦ · · · ◦) ≤ νλ(
m︷ ︸︸ ︷◦ · · · ◦ •◦)νλ(

n︷ ︸︸ ︷◦ · · · ◦ •) for any m, n ≥ 1,

(2) γ(2) ≤ γ(3) ≤ · · · ≤ γ(n) ≤ γ(n + 1) ≤ · · · ≤ 1
2λ− 1

,

(3)
γ(k − 1)[1 + γ(n− k)]

1 + γ(n)
≤ 2

4λ− 1
for any 2 ≤ k ≤ n− 1 and n ≥ 3,

(4)
2

4λ− 1
≤ γ(1) ≤ 1

2λ− 1
,

where

γ(n) =
νλ(◦•

n︷ ︸︸ ︷◦ · · · ◦)
νλ(•• ◦ · · · ◦︸ ︷︷ ︸

n

)
(n ≥ 0).

Then we have

λc ≤ λ(HL,2)
c ≈ 1.942,

where

λ(HL,2)
c = sup{λ ≥ 0 : 4λ3 − 7λ2 − 2λ + 1 ≤ 0},

and for λ ≥ λ
(HL,2)
c ,

ρλ ≥ ρ
(HL,2)
λ =

λ + α− 1 +
√

(λ + α− 1)2 − α
[
2λ + α− 2 + 2λF1(2)

]

2λ + α− 2 + 2λF1(2)
,

where

α =
4λ− 2
4λ− 1

and F1(2) =
4λ− 1

(4λ + 1)(2λ− 1)
.

Exercise 2.7. Show that the condition (1) in this theorem with m = 1 and n = 2 is
equivalent to γ(1) ≥ γ(2).
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CHAPTER 3

DIFFUSIVE θ-CONTACT PROCESSES

3.1. Introduction

The one-dimensional diffusive θ-contact process is a continuous-time Markov pro-
cess on state space {0, 1}Z1

. The formal generator is given by

Ωf(η) =
∑

x∈Z1

λ(1− η(x))

×
[
η(x− 1) + η(x + 1)− (2− θ)η(x− 1)η(x + 1)

]
[f(ηx)− f(η)]

+
∑

x∈Z1

η(x)[f(ηx)− f(η)]

+
∑

x∈Z1

∑

y:|y−x|=1

Dη(x)(1− η(y))[f(ηxy)− f(η)],

where λ, θ, D ≥ 0, ηx(y) = η(y) for y 6= x, ηx(x) = 1 − η(x), and ηxy(x) = η(y),
ηxy(y) = η(x), ηxy(u) = η(u) otherwise. That is,

001 → 011 at rate λ,

100 → 110 at rate λ,

101 → 111 at rate θλ,

1 → 0 at rate 1,

01 → 10 at rate D,

10 → 01 at rate D.

Exercise 3.1. Verify that when θ = 2 and D = 0 this process is equivalent to the
basic contact process which was discussed in Chapters 1 and 2.

When θ = 2 and D ≥ 0, this process will be called the diffusive contact process
in one dimension and considered in next chapter.

The diffusive θ-contact process with λ, D ≥ 0 and θ ≥ 1 is attractive, so the
upper invariant measure is well defined:

νλ,θ,D = lim
t→∞

δ1S(t),
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where δ1 is the pointmass on η ≡ 1 and S(t) is the semigroup given by Ω. Then the
order parameter ρλ(θ, D) and the critical value λc(θ, D) are defined as follows:

ρλ(θ, D) = νλ,θ,D{η : η(x) = 1},
λc(θ, D) = inf{λ ≥ 0 : ρλ(θ, D) > 0}.

Exercise 3.2. Verify that if λ, D ≥ 0 and θ ≥ 1 then the diffusive θ-contact process
is attractive.

Let Y be the collection of all finite subsets of Z1. We define

σλ,θ,D(A) = νλ,θ,D{η : η(x) = 1 for some x ∈ A},

for any A ∈ Y . Next we consider the coalescing duality of the diffusive θ-contact
process. The generator of the coalescing dual process is given by

Ω∗h(A) = (2− θ)λ
∑

x∈A

[
h(A ∪ {x− 1, x + 1})− h(A)

]

+ (θ − 1)λ
∑

x∈A

∑

y:|y−x|=1

[
h(A ∪ {y})− h(A)

]

+
∑

x∈A

[
h(A \ {x})− h(A)

]

+ D
∑

x∈A

∑

y/∈A:|y−x|=1

[
h((A ∪ {y}) \ {x})− h(A)

]
,

for any h ∈ Y ∗, where Y ∗ is the set of all [ 0, 1 ]-valued measurable functions on Y .
Therefore if 1 ≤ θ ≤ 2, then coalescing dualities exist. Remark that Ω∗σλ,θ,D(A) = 0
for any A ∈ Y . From now on we assume that 1 ≤ θ ≤ 2.

Exercise 3.3. Verify that the above Ω∗ is the generator of the coalescing dual process.

3.2. Katori-Konno Method

As in the section 1.4, we will give lower bounds on critical values and upper
bounds on order parameters for diffusive θ-contact processes in one dimension by the
Katori-Konno method. Some parts of results in this section were given by Sato and
Konno.1

3.2.1. First bound by the Katori-Konno method

Let |A| be the cardinality of A. So we have
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Theorem 3.2.1. Assume that 1 ≤ θ ≤ 2 and D ≥ 0. Let λ
(KK,1)
c (θ, D) = 1/2. Then

for λ ≥ λ
(KK,1)
c (θ, D),

σλ,θ,D(A) ≤ h
(KK,1)
λ,θ,D (A) for all A ∈ Y,

where

h
(KK,1)
λ,θ,D (A) = 1−

(
α

(1)
∗ (θ, D)

)|A|
and α

(1)
∗ (θ,D) =

2
θλ +

√
θ2λ2 + 4(2− θ)λ

.

In particular, for any λ ≥ 0,

ρλ,θ,D ≤ ρ
(KK,1)
λ,θ,D =

2(2λ− 1)
(4− θ)λ +

√
θ2λ2 + 4(2− θ)λ

∨ 0,

where x ∨ y is the maximum of x and y.

Exercise 3.4. Verify that when θ = 2 this result is equivalent to Theorem 1.4.4 in
Chapter 1.

Notice that these results are independent of stirring rate D. From now on we will
sometimes omit θ and D, and superscript (1) as follows; α∗ = α

(1)
∗ (θ, D).

Proof. First we should remark that the Harris lemma holds for diffusive θ-contact
processes when 1 ≤ θ ≤ 2.

Step 1. We let h(A) = 1− α|A|.
Step 2. Next we define 0 < α∗ < 1 as the unique solution of

Ω∗h({0}) = 0,

that is, [
(2− θ)λα2 + θλα− 1

]
(1− α) = 0.

Then f(0) = −1 and f(1) = 2λ− 1 implies 0 < α∗ < 1 for λ > 1/2. In fact we have

α∗ =
2

θλ +
√

θ2λ2 + 4(2− θ)λ

and let h(A) = 1− α
|A|
∗ .

Step 3. We check conditions (1)-(3) as follows. For λ > 1/2, we have 0 < α∗ < 1.
So conditions (1) and (3) are trivial. Condition (2) is equivalent to 0 ≤ α

|A|
∗ < 1 for

any A ∈ Y with A 6= φ. This comes also from 0 < α∗ < 1.

Step 4. We will give two different proofs; Proof A and Proof B.
Proof A. For k = 0, 1, 2 and A ∈ Y , let

Ak = {x ∈ A : |{y ∈ A : |y − x| = 1}| = k}.
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The definitions give A = A0 + A1 + A2. Therefore

Ω∗h(A) =
2∑

k=0

Rk(A),

where

Rk(A) = (2− θ)λ
∑

x∈Ak

[
h(A ∪ {x− 1, x + 1})− h(A)

]

+ (θ − 1)λ
∑

x∈Ak

∑

y:|y−x|=1

[
h(A ∪ {y})− h(A)

]

+
∑

x∈Ak

[
h(A \ {x})− h(A)

]

+ D
∑

x∈Ak

∑

y/∈A:|y−x|=1

[
h((A ∪ {y}) \ {x})− h(A)

]
.

If Rk(A) ≤ 0 for any A ∈ Y and k = 0, 1, 2, then Ω∗h(A) ≤ 0 for any A ∈ Y , that is,
condition (4) is satisfied. From h(A) = 1− α

|A|
∗ , we have

Rk(A) = (2− θ)λ
∑

x∈Ak

[
α
|A|
∗ − α

|A∪{x−1,x+1}|
∗

]

+ (θ − 1)λ
∑

x∈Ak

∑

y:|y−x|=1

[
α
|A|
∗ − α

|A∪{y}|
∗

]
+

∑

x∈Ak

[
α
|A|
∗ − α

|A|−1
∗

]

= (2− θ)λ
∑

x∈Ak

[
α
|A|
∗ − α

|A|+2−k
∗

]

+ (θ − 1)λ
∑

x∈Ak

(2− k)
[
α
|A|
∗ − α

|A|+1
∗

]
+

∑

x∈Ak

[
α
|A|
∗ − α

|A|−1
∗

]

= |Ak|
{

(2− θ)λ
[
α
|A|
∗ − α

|A|+2−k
∗

]

+ (2− k)(θ − 1)λ
[
α
|A|
∗ − α

|A|+1
∗

]
+

[
α
|A|
∗ − α

|A|−1
∗

]}

= |Ak|α|A|−1
∗

{
(2− θ)λ[α∗ − α3−k

∗ ] + (2− k)(θ − 1)λ[α∗ − α2
∗] + [α∗ − 1]

}
.

Therefore we have

R0(A) = |A0|α|A|−1
∗

{
(2− θ)λ[α∗ − α3

∗] + 2(θ − 1)λ[α∗ − α2
∗] + [α∗ − 1]

}

= |A0|α|A|−1
∗ Ω∗h({0}),

R1(A) = |A1|α|A|−1
∗

{
(2− θ)λ[α∗ − α2

∗] + (θ − 1)λ[α∗ − α2
∗] + [α∗ − 1]

}

= |A1|α|A|−1
∗

[
Ω∗h({0}) + λα∗(α∗ − 1){(2− θ)α∗ + θ − 1}

]
,

R2(A) = |A2|α|A|−1
∗ [α∗ − 1].
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From these, we see that

Ω∗h(A) =
2∑

k=0

Rk(A)

= |A0|α|A|−1
∗ Ω∗h({0})

+ |A1|α|A|−1
∗

[
Ω∗h({0}) + λα∗(α∗ − 1){(2− θ)α∗ + θ − 1}

]

+ |A2|α|A|−1
∗ [α∗ − 1].

By Ω∗h({0}) = 0,

Ω∗h(A) = |A1|α|A|−1
∗ λα∗(α∗ − 1)

{
(2− θ)α∗ + θ − 1

}
+ |A2|α|A|−1

∗ (α∗ − 1)

= α
|A|−1
∗ (α∗ − 1)

[
|A1|λα∗{(2− θ)α∗ + θ − 1}+ |A2|

]
.

Therefore 0 < α∗ < 1 and 1 ≤ θ ≤ 2 imply Ω∗h(A) ≤ 0 for any A ∈ Y . So the desired
result is obtained.

Proof B. This proof is the almost same as Proof A. We let

A◦•◦ = {x ∈ A : x− 1, x + 1 /∈ A},
A◦•• = {x ∈ A : x− 1 /∈ A, x + 1 ∈ A},
A••◦ = {x ∈ A : x− 1 ∈ A, x + 1 /∈ A},
A••• = {x ∈ A : x− 1, x + 1 ∈ A}.

Remark that
A0 = A◦•◦ , A1 = A◦•• + A••◦ , A2 = A••• .

By using these and a similar computation in Proof A, we have

Ω∗h(A) = |A◦•◦ |α|A|−1
∗ Ω∗h({0})

+
{
|A◦•• |+ |A◦•• |

}
α
|A|−1
∗

[
Ω∗h({0}) + λα∗(α∗ − 1){(2− θ)α∗ + θ − 1}

]

+ |A••• |α|A|−1
∗ [α∗ − 1].

The rest of proof is the same as Proof A, so we will omit it.

3.2.2. Second bound by the Katori-Konno method

Let b(A) be the number of neighboring pairs of points in A, that is,
b(A) = |{x ∈ Z : {x, x + 1} ⊂ A}|. Then we have

Theorem 3.2.2. Assume that 1 ≤ θ ≤ 2 and D ≥ 0. Let

λ(KK,2)
c (θ,D) =

D + 1
2D + 1

.
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Then for λ ≥ λ
(KK,2)
c (θ,D),

σλ,θ,D(A) ≤ h
(KK,2)
λ,θ,D (A) for all A ∈ Y,

where

h
(KK,2)
λ,θ,D (A) = 1−

(
α

(2)
∗ (θ, D)

)|A| (
β

(2)
∗ (θ, D)

)b(A)

,

with 0 < α
(2)
∗ (θ, D) < 1, β

(2)
∗ (θ, D) > 1, and α

(2)
∗ (θ,D), β

(2)
∗ (θ, D) are the unique

solutions of

Ω∗h({0}) = −(2− θ)λα3β2 − 2(θ − 1)λα2β + (θλ + 1)α− 1 = 0,

Ω∗h({0, 1}) = λα3β2 −
[
λ + D + 1

]
α2β + α

[
1 + Dα

]
= 0.

In particular, for any λ ≥ 0,

ρλ(θ, D) ≤ ρ
(KK,2)
λ (θ, D) = (1− α

(2)
∗ (θ,D)) ∨ 0,

where x ∨ y is the maximum of x and y.

Unfortunately, the explicit forms of α
(2)
∗ (θ, D) and β

(2)
∗ (θ, D) are complicated, so

we omit them. As a special case of this theorem, when D = 0, we get the following
result;

Corollary 3.2.3. Assume that 1 ≤ θ ≤ 2 and D = 0. Let λ
(KK,2)
c (θ) = 1. Then for

λ ≥ λ
(KK,2)
c (θ),

σλ,θ(A) ≤ h
(KK,2)
λ,θ (A) for all A ∈ Y,

where

h
(KK,2)
λ,θ (A) = 1−

[
λ

θλ2 + (3− 2θ)λ− (2− θ)

]|A|[
θλ2 + (3− 2θ)λ− (2− θ)

λ2

]b(A)

.

In particular, for any λ ≥ 0,

ρλ(θ) ≤ ρ
(KK,2)
λ (θ) =

(λ− 1)(θλ + 2− θ)
θλ2 + (3− 2θ)λ− (2− θ)

∨ 0.

Exercise 3.5. Verify that when θ = 2 this result is equivalent to Theorem 1.4.6 in
Chapter 1.

In the non-diffusive case (D = 0), combining this corollary (upper bound) with
Corollary 3.3.2 (lower bound) implies that for any λ ≥ λ̄c,

λ(θλ + 2− θ)
2θλ2 + 3(2− θ)λ− (2− θ)

[
1 +

1
λ

√
θλ3 − (3θ − 2)λ2 − 3(2− θ)λ + (2− θ)

θλ + (2− θ)

]

≤ ρλ(θ) ≤ (λ− 1)(θλ + 2− θ)
θλ2 + (3− 2θ)λ− (2− θ)

,
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where λ̄c is the largest root of the cubic equation:

θλ3 − (3θ − 2)λ2 − 3(2− θ)λ + (2− θ) = 0.

Proof of Theorem 3.2.2.
Step 1. We let h(A) = 1− α|A|βb(A).

Step 2. Next we define 0 < α∗ < 1 and β∗ > 1 as the unique solutions of

Ω∗h({0}) = 0,

Ω∗h({0, 1}) = 0,

that is,
(2− θ)λα3β2 + 2(θ − 1)λα2β − (θλ + 1)α + 1 = 0, (3.1)

λα3β2 −
[
λ + D + 1

]
α2β + α

[
1 + Dα

]
= 0, (3.2)

for λ ≥ λ
(2)
c (θ, D). First we consider the definitions of α∗ and β∗. To do so, we let

w = αβ. Eqs.(3.1) and (3.2) can be rewritten as
[
(2− θ)λw2 + θλw − 1

]
(w − 1) = 1− β, (3.3)

(λw − 1)(w − 1) = Dα(β − 1), (3.4)

respectively. Combining Eq.(3.3) with Eq.(3.4) implies that w satisfies the following
equation of fourth order: (w − 1)f(w) = 0, where

f(w) = (2− θ)λ2w3 + [2(θ − 1)λ + (θ − 2)(1 + D)]λw2

− [θλ + (2θ − 1) + θD]λw + θλ + 1 + D.
(3.5)

So it is easily checked that

f(1) < 0 ⇐⇒ λ > λ(KK,2)
c (θ,D) =

D + 1
2D + 1

,

where A ⇐⇒ B means that A is equivalent to B. Note that f(0) > 0. So if λ >

λ
(2)
c (θ, D), we see that there must be only one root in the interval (0,1). We will use

w∗ for this root. The definition of it gives 0 < w∗ < 1 for λ > λ
(2)
c (θ,D). Using

Eq.(3.3) and w∗, we define β∗ as follows:

β∗ = [λ{(2− θ)w∗ + θ}(1− w∗) + 1]w∗. (3.6)

Since 0 < w∗ < 1 and Eq.(3.6), we see β∗ > 0. So from w = αβ, we let

α∗ =
w∗
β∗

. (3.7)

Since β∗, w∗ > 0 and Eq.(3.7), we have α∗ > 0. To prove Theorem 3.2.2, we prepare
the following results.
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Lemma 3.2.4. We assume 1 ≤ θ ≤ 2 and D > 0. Let λ > λ
(KK,2)
c (θ, D) =

(D + 1)/(2D + 1). Then

(1) 0 < α∗ < 1,

(2) β∗ > 1,

(3) 0 < w∗ ≤
( 1

λ

)
∧ 1,

where x ∧ y is the minimum of x and y,

(4) 0 < α∗β2
∗ < 1.

Proof of Lemma 3.2.4. Eq.(3.1) can be rewritten as

λw[(2− θ)w + θ](w − 1) = β(α− 1). (3.8)

By Eq.(3.8), if w, β > 0, then

sgn(1− w) = sgn(1− α), (3.9)

where sgn(x) = 1 if x > 0, = 0 if x = 0, = −1 if x < 0. By Eqs.(3.3) and (3.4),

λw[(2− θ)w + θ − 1](w − 1) = [1 + Dα](1− β). (3.10)

So, by Eq.(3.10), if w, α > 0, then

sgn(1− w) = sgn(β − 1). (3.11)

Combining Eq.(3.9) with Eq.(3.11) implies that if α, β > 0, then

sgn(1− w) = sgn(1− α) = sgn(β − 1). (3.12)

So the proofs of parts (1) and (2) follow from α∗, β∗ > 0 and w∗ < 1. Next, by the
assumptions and a direct computation, we get

f

(
1
λ

)
= − (2− θ) + (θ − 1)λ

λ
D < 0.

From this fact and w∗ < 1, part (3) is obtained. To show part (4), we observe that
Eq.(3.3) gives

1− αβ2 = 1− wβ = [w − 1]
[
(2− θ)λw3 + θλw2 − w − 1

]
.
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Let g(w) = (2− θ)λw3 + θλw2 −w − 1. So it is enough to show g(w∗) < 0. Then we
have

g

(
1
λ

)
=

(1− λ)(λ + 2− θ)
λ2

,

and
g(1) = 2(λ− 1).

In the case of λ ≥ 1, from part (3), g(1/λ) ≤ 0, and g(1) ≥ 0, we get g(w∗) < 0. On
the other hand, when λ

(2)
c (θ,D) < λ < 1, we see that g(w∗) < 0 follows from part

(3), g(1/λ) > 0 and g(1) < 0. So the proof of part (4) is complete.

This lemma (1) and (2) complete Step 2.
Step 3. We check conditions (1)-(3) in the Harris lemma by using Lemma 3.2.4.

Assume that λ > λ(KK,2)(θ, D). Condition (1) and h(A) ≤ 1 in condition (2) are
trivial from Lemma 3.2.4 (1) and (2). The positivity of h(A) for non-empty set
A ∈ Y is equivalent to α

|A|
∗ β

b(A)
∗ < 1. This also comes from Lemma 3.2.4 (1) and (2).

On the other hand, we have b(A) ≤ 2|A| for any A ∈ Y . Combining this result with
Lemma 3.2.4 (2) and (4) gives

α
|A|
∗ β

b(A)
∗ ≤ (α∗β2

∗)
|A| < 1,

for non-empty set A ∈ Y . Similarly, for condition (3), we get

h(A) ≥ 1− α
|A|
∗ β

b(A)
∗ ≥ 1− (α∗β2

∗)
|A|.

So h(A) → 1 as |A| → ∞ is due to Lemma 3.2.4 (4) and h(A) ≤ 1.

Step 4. As usual, we will give two proofs; Proof A and Proof B.
Proof A. For any A ∈ Y , we let

Ak =
{
x ∈ A : |{y ∈ A : |y − x| = 1}| = k

}
,

where k = 0, 1, 2. Then

Ω∗h(A) =
2∑

k=0

Rk(A),

where
Rk(A) = (2− θ)λ

∑

x∈Ak

[
h(A ∪ {x− 1, x + 1})− h(A)

]

+ (θ − 1)λ
∑

x∈Ak

∑

y:|y−x|=1

[
h(A ∪ {y})− h(A)

]

+
∑

x∈Ak

[
h(A \ {x})− h(A)

]

+ D
∑

x∈Ak

∑

y/∈A:|y−x|=1

[
h((A ∪ {y}) \ {x})− h(A)

]
.
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To check condition (4) in the Harris lemma, it is enough to show that Rk(A) ≤ 0
for k = 0, 1, 2 and A ∈ Y .
(i) R0(A) : Using Eq.(4.1) and b((A ∪ {y}) \ {x}) ≥ b(A) + 1 for x ∈ A0 and y /∈ A

with |y − x| = 1, we have

R0(A) ≤ |A0|α|A|∗ β
b(A)
∗ (1−β∗)

[
λα∗β∗

{
(2− θ)α∗β∗(2+β∗)+3(θ−1)

}
+3D

]
. (3.13)

Combining Eq.(3.13) with Lemma 3.2.4 (2) gives R0(A) ≤ 0.
(ii) R1(A) : Similarly we have

R1(A) ≤ |A1|α|A|∗ β
b(A)−1
∗ (1− β∗)(λα∗β2

∗ + D). (3.14)

Combining Eq.(3.14) with Lemma 3.2.4 (2) gives R1(A) ≤ 0.
(iii) R2(A) : As in the previous cases, we have

R2(A) = |A2|α|A|−1
∗ β

b(A)−2
∗ (α∗β2

∗ − 1). (3.15)

So R2(A) ≤ 0 follows from Eq.(3.15) and Lemma 3.2.4 (4).
Proof B. As in the Proof B of the basic contact process, we divide A into the following
9 disjoint subsets:

A◦◦•◦◦ = {x ∈ A : x− 2, x− 1, x + 1, x + 2 /∈ A},
A◦◦•◦• = {x ∈ A : x− 2, x− 1, x + 1 /∈ A, x + 2 ∈ A},
A•◦•◦◦ = {x ∈ A : x− 2 ∈ A, x− 1, x + 1, x + 2 /∈ A},
A•◦•◦• = {x ∈ A : x− 2 ∈ A, x− 1, x + 1 /∈ A, x + 2 ∈ A},
A◦◦••× = {x ∈ A : x− 2, x− 1 /∈ A, x + 1 ∈ A},
A×••◦◦ = {x ∈ A : x− 1 ∈ A, x + 1, x + 2 /∈ A},
A•◦••× = {x ∈ A : x− 2 ∈ A, x− 1 /∈ A, x + 1 ∈ A},
A×••◦• = {x ∈ A : x− 1 ∈ A, x + 1 /∈ A, x + 2 ∈ A},
A×•••× = {x ∈ A : x− 1 ∈ A, x + 1 ∈ A}.

We begin by computing

Ω∗h(A) = |A◦◦•◦◦ |α|A|−1
∗ β

b(A)
∗ Ω∗h({0})

+
{
|A◦◦•◦• |+ |A•◦•◦◦ |

}
α
|A|−1
∗ β

b(A)
∗

×
[
Ω∗h({0}) + λα2

∗β∗(1− β∗)
{

(2− θ)α∗β∗ + θ − 1
}

+ Dα∗(1− β∗)
]

+ |A•◦•◦• |α|A|−1
∗ β

b(A)
∗

[
Ω∗h({0}) + 2(θ − 1)λα2

∗β∗(1− β∗)

+ (2− θ)λα3
∗β

2
∗(1− β2

∗) + 2Dα∗(1− β∗)
]

+
{
|A◦◦••× |+ |A×••◦◦ |

}
α
|A|−2
∗ β

b(A)−1
∗

1
2
Ω∗h({0, 1})

+
{
|A•◦••× |+ |A×••◦• |

}
α
|A|−2
∗ β

b(A)−1
∗

×
[1
2
Ω∗h({0, 1}) + α2

∗(1− β∗)(λα∗β2
∗ + D)

]

+ |A×•••× |α|A|−1
∗ β

b(A)−2
∗

(
α∗β2

∗ − 1
)
.
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Therefore Ω∗h({0}) = Ω∗h({0, 1}) = 0 implies that

Ω∗h(A) =
{
|A◦◦•◦• |+ |A•◦•◦◦ |

}
α
|A|−1
∗ β

b(A)
∗

×
[
λα2

∗β∗(1− β∗)
{

(2− θ)α∗β∗ + θ − 1
}

+ Dα∗(1− β∗)
]

+ |A•◦•◦• |α|A|−1
∗ β

b(A)
∗

×
[
2(θ − 1)λα2

∗β∗(1− β∗) + (2− θ)λα3
∗β

2
∗(1− β2

∗) + 2Dα∗(1− β∗)
]

+
{
|A•◦••× |+ |A×••◦• |

}
α
|A|−2
∗ β

b(A)−1
∗

[
α2
∗(1− β∗)(λα∗β2

∗ + D)
]

+ |A×•••× |α|A|−1
∗ β

b(A)−2
∗

(
α∗β2

∗ − 1
)
.

By Lemma 3.2.4 (2) and (4), i.e., β∗ > 1 and α∗β2
∗ < 1, we have Ω∗h(A) ≤ 0 for any

A ∈ Y . So Proof B is complete.

3.3. Holley-Liggett Method

In this section we consider non-diffusive θ-contact process, i.e., D = 0. So in the
rest of this section we assume that D = 0. By using the Holley-Liggett method, we
will get lower bounds on survival probability σλ(A) for the coalescing dual process of
the θ-contact process. From now on we will omit θ in some notations, for example,
λ

(HL)
c = λ

(HL)
c (θ).

The following result is obtained by Katori and Konno.2

Theorem 3.3.1. Let λ
(HL)
c be the largest root of the cubic equation:

θλ3 − (3θ − 2)λ2 − 3(2− θ)λ + (2− θ) = 0.

Then for λ ≥ λ
(HL)
c ,

h
(HL)
λ (A) ≤ σλ(A) for all A ∈ Y,

where

h
(HL)
λ (A) = µ{η : η(x) = 1 for some x ∈ A},

for a renewal measure µ on {0, 1}Z whose density f is given by Ω∗h(HL)
λ (A) = 0 for

all A of the form {1, 2, . . . , n} (n ≥ 1).

This result corresponds to the first bound by the Holley-Liggett method in the case
of the basic contact process (see Section 2.2). So when θ = 2, Theorem 3.3.1 is
equivalent to Theorem 2.2.1.
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Sketch of Proof. As in the case of Chapter 2, we need the following 4 steps.

Step 1. First we choose a suitable form of h
(HL)
λ (A).

Step 2. Next we decide h
(HL)
λ (A) explicitly.

Step 3. Third we check conditions (1)-(3) in the Harris lemma.
Step 4. Finally we check condition (4) in the Harris lemma.

In this sketch, we will show only Steps 1 and 2. Concerning Steps 3 and 4, see Katori
and Konno.2

Step 1. We choose h of the form

h(A) = µ{η : η(x) = 1 for some x ∈ A},
for a renewal measure µ on {0, 1}Z.

Step 2. We decide the density f so that

Ω∗h({1, 2, . . . , n}) = 0,

for any n ≥ 1, where

Ω∗h(A) = (2− θ)λ
∑

x∈A

[
h(A ∪ {x− 1, x + 1})− h(A)

]

+ (θ − 1)λ
∑

x∈A

∑

y:|y−x|=1

[
h(A ∪ {y})− h(A)

]

+
∑

x∈A

[
h(A \ {x})− h(A)

]
.

The definition of Ω∗ gives

Ω∗h({1, 2, . . . , n})

=
n∑

k=1

(2− θ)λ
[
h({1, 2, . . . , n} ∪ {k − 1, k + 1})− h({1, 2, . . . , n})

]

+
n∑

k=1

(θ − 1)λ
[
h({1, 2, . . . , n} ∪ {k − 1})− h({1, 2, . . . , n})

]

+
n∑

k=1

(θ − 1)λ
[
h({1, 2, . . . , n} ∪ {k + 1})− h({1, 2, . . . , n})

]

+
n∑

k=1

[
h({1, 2, . . . , n} \ {k})− h({1, 2, . . . , n})

]
.

Then we consider two cases, that is, A = {1} and A = {1, . . . , n} for n ≥ 2.

(i) A = {1}. We see that

Ω∗h({1}) = (2− θ)λ
[
h({0, 1, 2})− h({1})

]

+ 2(θ − 1)λ
[
h({1, 2})− h({1})

]

+
[
h(φ)− h({1})

]
.
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Remark the following relations as in the case of Chapter 2:

h({1, 2, 3}) = 1− µ(◦◦◦),
h({1, 3}) = 1− µ(◦×◦),

h({1, 2, 3})− h({1, 3}) = µ(◦×◦)− µ(◦◦◦) = µ(◦•◦),
...

Then we have

Ω∗h({1}) = (2− θ)λµ(◦◦•) + θλµ(◦•)− µ(•) = 0. (3.16)

Furthermore, for λ ≥ 0 with µ(•) > 0, we let

F (n) =
µ(

n−1︷ ︸︸ ︷◦ · · · ◦ •)
µ(•) (n ≥ 1).

By using this and Eq.(3.16), we have

(2− θ)λF (3) + θλF (2) = F (1). (3.17)

(ii)A = {1, 2, . . . , n} for n ≥ 2. As in the case of the basic contact process in Chapter
2, we have

Ω∗h({1, 2, . . . , n}) = µ(•)
[
2λF (n + 1)−

n∑

k=1

F (k)F (n + 1− k)
]
,

for n ≥ 2.
Therefore Ω∗h({1, 2, . . . , n}) = 0 for any n ≥ 1 implies

Lemma 3.3.2.

(2− θ)λF (3) + θλF (2) = F (1).

2λF (n + 1) =
n∑

k=1

F (k)F (n + 1− k) (n ≥ 2).

F (1) = 1.

Next we introduce the following generating function to get F (n) explicitly;

φ(u) =
∞∑

n=1

F (n)un.

Note that F (1) = 1 is equivalent to

dφ(u)
du

∣∣∣∣
u=0

= 1.
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Let
x =

2− θ

λ
+ (θ − 1),

y = (2− θ) + θλ.
(3.18)

So φ(u) satisfies

φ2(u)− 2y

1 + x
φ(u) +

2y

1 + x
u +

1− x

1 + x
u2 = 0. (3.19)

Exercise 3.6. Verify that this equation is equivalent to

φ2(u)− 2λφ(u) + 2λu +
[
2λF (2)− 1

]
u2 = 0. (3.20)

The unique solution of Eq.(3.19) is given by

φ(u) =
y

1 + x


1−

√
1− 2

1 + x

y
u− 1− x

4(1 + x)

(
2
1 + x

y
u

)2

 . (3.21)

From now on we assume that 0 ≤ x ≤ 1 and y > 0. Let

u± =
y

1 + x±
√

2(1 + x)
,

so u− < 0 < u+. In fact the function (3.21) is real analytic only when u− < u < u+.
This implies that if u+ < 1 then there is no real solution F (n) which is summable,
since

∑∞
n=1 F (n) = φ(1). On the other hand if u+ ≥ 1, i.e.,

y ≥ 1 + x +
√

2(1 + x), (3.22)

then we can obtain a real solution F (n) by expanding Eq.(3.21) in a power series in
u, which satisfies

∞∑
n=1

F (n)un =
y

1 + x

[
1−

√
1− 2

1 + x

y
u− 1− x2

y2
u2

]
. (3.23)

We should remark that u+ ≥ 1, i.e., y ≥ 1 + x +
√

2(1 + x) is equivalent to
(

λ +
2− θ

θ

) [
θλ3 − (3θ − 2)λ2 − 3(2− θ)λ + (2− θ)

] ≥ 0. (3.24)

This inequality is equivalent to the nonnegativity of the discriminant of Eq.(3.19) (or
Eq.(3.20)). If λ > 0 and 1 ≤ θ ≤ 2, then Eq.(3.24) gives the following cubic equation
in Theorem 3.3.1:

θλ3 − (3θ − 2)λ2 − 3(2− θ)λ + (2− θ) ≥ 0.



Diffusive θ-Contact Processes 69

So we take λ
(HL)
c as the largest root of the above cubic equation.

Exercise 3.7. Verify that when θ = 2 the above inequality becomes λ(λ− 2) ≥ 0.

Here we present useful formula to expand Eq.(3.23) in a power series in u. If
0 ≤ x, s ≤ 1, then √

1− s− 1− x

4(1 + x)
s2 = 1−

∞∑
n=1

dnsn,

with

d1 =
1
2

and dn =
1

22n−1

(
2

1 + x

)n/2

ei(n−2)ϕv(n, e−2iϕ) (n ≥ 2),

where

eiϕ =

√
1 + x

2
+ i

√
1− x

2
,

and v(n, z) is Gauss’s hypergeometric series of the form

v(n, z) = F (−(n− 2),−(n− 1), 2; z) (n ≥ 2).

Let w(1, x) = 1 and

w(n, x) =
(

1 + x

2

)n/2−1

ei(n−2)ϕv(n, e−2iϕ) (n ≥ 2).

Applying the above formula to Eq.(3.23), we have

Lemma 3.3.3. If 0 ≤ x ≤ 1 and y ≥ 1 + x +
√

2(1 + x), then

F (n) =
w(n, x)
yn−1

(n ≥ 1).

Therefore we can obtain the density f(n)(= F (n) − F (n + 1)) by Lemma 3.3.3
immediately. The proof of the positivity of f(n) comes from the explicit form of F (n)
in Lemma 3.3.3. See Katori and Konno2 for details. So Steps 1 and 2 are complete.

To get ρ
(HL)
λ , we return to Eq.(3.20):

φ2(u)− 2λφ(u) + 2λu +
[
2λF (2)− 1

]
u2 = 0.

Using Lemma 3.3.3, we get

F (2) =
1
y

=
1

θλ + (2− θ)
. (3.25)
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Combining Eq.(3.20) with Eq.(3.25) gives

φ2(u)− 2λφ(u) + 2λu +
(2− θ)(λ− 1)
θλ + (2− θ)

u2 = 0. (3.26)

We should remark that the above equation can be also given by Eq.(3.19). Noting

ρ
(HL)
λ = µ(•) =

1
∞∑

n=1
F (n)

=
1

φ(1)
, (3.27)

we have [
2λ +

(2− θ)(λ− 1)
θλ + (2− θ)

]{
ρ
(HL)
λ

}2

− 2λρ
(HL)
λ + 1 = 0.

In this way we obtain the following corollary of Theorem 3.3.1.

Corollary 3.3.4. Let λ
(HL)
c be the largest root of the cubic equation:

θλ3 − (3θ − 2)λ2 − 3(2− θ)λ + (2− θ) = 0.

Then for λc ≤ λ
(HL)
c , we have ρλ ≥ ρ

(HL)
λ , where

ρ
(HL)
λ =

λ(θλ + 2− θ)
2θλ2 + 3(2− θ)λ− (2− θ)

×
[
1 +

1
λ

√
θλ3 − (3θ − 2)λ2 − 3(2− θ)λ + (2− θ)

θλ + (2− θ)

]
.

Exercise 3.8. Verify that when θ = 2 this lower bound ρ
(HL)
λ becomes the first

bound for the basic contact process:

1
2

+

√
1
4
− 1

2λ
.

3.4. Correlation Identities and Inequalities

As in Section 2.3, we obtain easily the first Holley-Liggett bound by using corre-
lation identities and assuming correlation inequalities for non-diffusive case (D = 0).
Recall that for k ≥ 2 and ni ≥ 0 (i = 1, . . . , k), we let J(n1, n2, . . . , nk) be the prob-
ability of having 1’s at n1 + 1, n1 + n2 + 2, . . . , n1 + n2 + · · ·+ nk−1 + k − 1 and 0’s
at all other sites in [ 1, n1 + n2 + · · ·+ nk + k− 1 ] with respect to the upper invariant
measure νλ. That is,

J(n1,n2, . . . , nk)

=νλ

( n1︷ ︸︸ ︷◦ · · · ◦ •
n2︷ ︸︸ ︷◦ · · · ◦ •◦ . . . ◦•

nk︷ ︸︸ ︷◦ · · · ◦
)

=Eνλ

(k−1∏

i=1

{ ni∏
qi=1

[1− η(n1 + · · ·+ ni−1 + qi + i− 1)]× η(n1 + · · ·+ ni + i)
}

×
{ nk∏

qk=1

[1− η(n1 + · · ·+ nk−1 + qk + k − 1)]
})

.
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For example,

J(0, 0) = νλ{η : η(1) = 1} = νλ(•) = ρλ,

J(1, 2) = νλ{η : η(1) = 0, η(2) = 1, η(3) = η(4) = 0} = νλ(◦•◦◦),

J(1, 2, 3) = νλ

{
η :

η(1) = 0, η(2) = 1, η(3) = η(4) = 0,

η(5) = 1, η(6) = η(7) = η(8) = 0

}

= νλ(◦•◦◦•◦◦◦).

So the definition of J(n1, n2) gives the following correlation identities.

Lemma 3.4.1. For n ≥ 2,

(1) 2λJ(n, 0) =
n∑

k=1

J(k − 1, n− k),

that is,

2λνλ(
n︷ ︸︸ ︷◦ · · · ◦ •) =

n∑

k=1

νλ(
k−1︷ ︸︸ ︷◦ · · · ◦ •

n−k︷ ︸︸ ︷◦ · · · ◦).

And

(2) (2− θ)λJ(2, 0) + θλJ(1, 0) = J(0, 0),

that is,

(2− θ)λνλ(◦◦•) + θλνλ(◦•) = νλ(•).

For λ > λc and m, n ≥ 0, define

J(m,n) =
νλ

( m︷ ︸︸ ︷◦ · · · ◦ •
n︷ ︸︸ ︷◦ · · · ◦

)

νλ(•)
=

J(m,n)
J(0, 0)

.

Note that the definition of λc gives J(0, 0) = νλ(•) = ρλ > 0 for λ > λc. Here
we present the following conjecture as in the case of the basic contact process (see
Conjecture 2.3.3):

Conjecture 3.4.2. For m, n ≥ 0,

J(m,n) ≤ J(m, 0)J(n, 0).
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Let

ϕ(u) =
∞∑

n=0

J(n, 0)un+1.

In the previous section we introduced

φ(u) =
∞∑

n=0

F (n + 1)un+1.

We should remark that

J(n, 0) =
νλ(

n︷ ︸︸ ︷◦ · · · ◦ •)
νλ(•) and F (n + 1) =

µ(
n︷ ︸︸ ︷◦ · · · ◦ •)

µ(•) .

Combining Lemma 3.4.1 with Conjecture 3.4.2 gives

ϕ2(u)− 2λϕ(u) + 2λu +
[
2λJ(1, 0)− 1

]
u2 ≥ 0.

On the other hand, if λ > λc, then

ϕ(1) =
∞∑

n=0

J(n, 0) =
1

J(0, 0)
=

1
ρλ

.

From these we have
[
2λ +

{
2λJ(1, 0)− 1

}]
ρ2

λ − 2λρλ + 1 ≥ 0. (3.28)

Next we obtain J(1, 0) explicitly. Lemma 3.4.1 (2) is equivalent to

(2− θ)λJ(2, 0) + θλJ(1, 0) = 1. (3.29)

Applying Lemma 3.4.1 (1) to n = 2, we have

λJ(2, 0) = J(1, 0). (3.30)

Combining Eq.(3.29) with Eq.(3.30) gives

J(1, 0) =
1

θλ + (2− θ)

(
=

1
y

= F (2)
)
. (3.31)

By using Eqs.(3.28) and (3.31), we have

[
2λ +

(2− θ)(λ− 1)
θλ + (2− θ)

]
ρ2

λ − 2λρλ + 1 ≥ 0. (3.32)
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We should remark that ρ
(HL)
λ satisfies the equality of Eq.(3.32). By the continuity

and monotonicity of ρλ in λ, we have

ρλ ≥ λ(θλ + 2− θ)
2θλ2 + 3(2− θ)λ− (2− θ)

[
1 +

1
λ

√
θλ3 − (3θ − 2)λ2 − 3(2− θ)λ + (2− θ)

θλ + (2− θ)

]
.

Note that this lower bound on ρλ is nothing but the Holley-Liggett bound which given
in the previous section. So if we assume Conjecture 3.4.2, then this lower bound gives
upper bound on the critical value:

λc ≤ λ(HL)
c ,

where λ
(HL)
c be the largest root of the cubic equation:

θλ3 − (3θ − 2)λ2 − 3(2− θ)λ + (2− θ) = 0.

Therefore the following result is newly obtained in these notes.

Theorem 3.4.3. Assume that

νλ(•)νλ(
m︷ ︸︸ ︷◦ · · · ◦ •

n︷ ︸︸ ︷◦ · · · ◦) ≤ νλ(
m︷ ︸︸ ︷◦ · · · ◦ •)νλ(

n︷ ︸︸ ︷◦ · · · ◦ •) for any m,n ≥ 0.

Then we have

λc ≤ λ(HL)
c and ρλ ≥ ρ

(HL)
λ (λ ≥ λ(HL)

c ),

where λ
(HL)
c be the largest root of the cubic equation:

θλ3 − (3θ − 2)λ2 − 3(2− θ)λ + (2− θ) = 0,

and

ρ
(HL)
λ =

λ(θλ + 2− θ)
2θλ2 + 3(2− θ)λ− (2− θ)

×
[
1 +

1
λ

√
θλ3 − (3θ − 2)λ2 − 3(2− θ)λ + (2− θ)

θλ + (2− θ)

]
.
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CHAPTER 4

DIFFUSIVE CONTACT PROCESSES

4.1. Introduction

The diffusive contact process is a continuous-time Markov process on {0, 1}Zd

,
where Zd is the d-dimensional integer lattice. The formal generator is given by

Ωf(η) =
∑

x∈Zd

[
(1− η(x))λ×

∑

y∈Zd:|y−x|=1

η(y) + η(x)
]
[f(ηx)− f(η)]

+ D
∑

x∈Zd

η(x)
∑

y∈Zd:|y−x|=1

(1− η(y))[f(ηxy)− f(η)],

where λ, D ≥ 0, η ∈ {0, 1}Zd

, ηx(y) = η(y) if y 6= x, ηx(x) = 1 − η(x), and
ηxy(x) = η(y), ηxy(y) = η(x), ηxy(u) = η(u) if u 6= x, y. Here |x| = |x1| + · · · + |xd|
for x = (x1, . . . , xd) ∈ Zd. We should remark that the first term of right-hand side is
equivalent to the formal generator of the basic contact process and the second one is
that of the exclusion process. As for exclusion processes, see Chapter VIII of Liggett,1

for example.
This process is attractive, so the upper invariant measure is well defined: for λ,

D ≥ 0,
νλ,D = lim

t→∞
δ1S(t),

where δ1 is the pointmass on η ≡ 1 and S(t) is the semigroup given by Ω. Then the
order parameter ρλ(D) and the critical value λc(D) are defined as follows:

ρλ(D) = νλ,D{η : η(x) = 1},
λc(D) = inf{λ ≥ 0 : ρλ(D) > 0}.

Let Y be the collection of all finite subsets of Zd. We define

σλ,D(A) = 1− Eνλ,D

(∏

x∈A

(1− η(x))

)
= νλ,D{η : η(x) = 1 for some x ∈ A},
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for any A ∈ Y . We let |A| be the cardinality of A and b(A) =
∣∣{{x, y} ⊂ A : |x−y| =

1
}∣∣. Note that b(A) is the number of neighboring pairs of sites in A. When D = 0, i.e.,

basic contact process case, Katori and Konno2 obtained the following second upper
bounds on order parameters by using the Harris lemma. When D = 0, we sometimes
omit D in some notations, for example, σλ(A), ρλ, λc. Furthermore this chapter is
devoted to just the Katori-Konno method, so we will omit superscript KK as follows:
λ

(2)
c = λ

(KK,2)
c .

Theorem 4.1.1. Assume that D = 0. Let λ
(2)
c = 1/(2d− 1). Then for λ ≥ λ

(2)
c ,

σλ(A) ≤ h
(2)
λ (A) for all A ∈ Y,

where

h
(2)
λ (A) = 1−

(
2d− 1

2d(2d− 1)λ− 1

)|A|(2d(2d− 1)λ− 1
(2d− 1)2λ

)b(A)

.

Remark that σλ(A) ≤ h
(2)
λ (A) ≤ h

(1)
λ (A) for all A ∈ Y and λ

(1)
c ≤ λ

(2)
c ≤ λc, where

the first bound is

h
(1)
λ (A) = 1−

(
1

2dλ

)|A|
and λ(1)

c =
1
2d

.

Noting ρλ = σλ({0}), we have

Corollary 4.1.2. For λ ≥ 0,

ρλ ≤ ρ
(2)
λ =

(
2d[(2d− 1)λ− 1]
2d(2d− 1)λ− 1

)
∨ 0,

where x ∨ y is the maximum of x and y.

We should remark that

ρ
(2)
λ ≤ ρ

(1)
λ =

(
2dλ− 1

2dλ

)
∨ 0.

The first bound ρ
(1)
λ (D) of the diffusive contact process is equal to that of the basic

contact process, since the stirring mechanisms preserve the cardinality of the set A.
So we have ρλ(D) ≤ ρ

(1)
λ (D) = ρ

(1)
λ = [(2dλ− 1)/2dλ] ∨ 0. In this chapter we extend

the above second bounds, h
(2)
λ (A) and ρ

(2)
λ , to the diffusive case, i.e., D > 0. The

following result is obtained by Konno and Sato.3
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Theorem 4.1.3. Assume that D ≥ 0. Let

λ(2)
c (D) =

(2d− 1)D + 1
(2d− 1)(2dD + 1)

.

Then for λ ≥ λ
(2)
c (D),

σλ,D(A) ≤ h
(2)
λ,D(A) for all A ∈ Y,

where

h
(2)
λ,D(A) = 1− α

|A|
∗ β

b(A)
∗ ,

and α∗ and β∗ are the unique solutions of

Ω∗h({0}) = −2dλα2β + (2dλ + 1)α− 1 = 0,

Ω∗h({0, 1}) = −2
[
(2d− 1)λα3β2 − {(2d− 1)(λ + D) + 1}α2β + α{1 + (2d− 1)Dα}

]

= 0,

with 0 < α∗ ≤ 1, β∗ ≥ 1. In particular, for λ, D ≥ 0, we have

ρλ(D) ≤ ρ
(2)
λ (D) = (1− α∗) ∨ 0 ≤ ρ

(1)
λ (D) =

(
2dλ− 1

2dλ

)
∨ 0.

This theorem corresponds to the second bound by the Katori-Konno method.
Unfortunately the explicit forms of α∗ and β∗ are complicated, so we omit them.
If we consider non-diffusive case (D = 0), then α∗ and β∗ in Theorem 4.1.3 are
equal to those in Theorem 4.1.1: that is, α∗ = (2d − 1)/[ 2d(2d − 1)λ ] and β∗ =
[ 2d(2d− 1)λ− 1 ]/[ (2d− 1)2λ ].

On the other hand, De Masi, Ferrari and Lebowitz4 and Durrett and Neuhauser5

studied mean field theorem on more general interacting particle systems with the
stirring mechanisms. In our setting, as for critical values and order parameters, the
following results were obtained by Durrett and Neuhauser:5 λc(D) → 1/2d, ρλ(D) →
(2dλ − 1)/2dλ as D → ∞ for d ≥ 1. Then, from Theorem 4.1.3, Konno and Sato3

gave

Theorem 4.1.4. Let d ≥ 1. There is a constant D0 > 0 so that if D ≥ D0, C ≥
1/(2d)2(2d− 1) and

λ− 1
2d

=
C

D
,

then

ρλ(D) ≤
[(

1− 1
(2d)2(2d− 1)C

)2dλ− 1
2dλ

]
∨ 0.

We should remark that Theorem 1.2 of Konno6 showed that if d ≥ 3, then λc(D) −
1/2d ≈ C/D, where ≈ means that if C is small (large) then right-hand side is a lower
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(upper) bound for large D. Moreover Theorem 1.3 of Konno6 is as follows: there are
positive constants D1, C1 and θ(d) (depending only on the dimensionality d) so that
if D ≥ D1, C ≥ C1 and λ− 1/2d = C/D, then

[(
1− 1

θ(d)C

)2dλ− 1
2dλ

]
∨ 0 ≤ ρλ(D).

Therefore combining this with Theorem 4.1.4, we have the following corollary imme-
diately:

Corollary 4.1.5. Let d ≥ 3. There are positive constants D2, C2 and θ(d) (depend-

ing only on the dimensionality d) so that if D ≥ D2, C ≥ C2 and

λ− 1
2d

=
C

D
,

then

[(
1− 1

θ(d)C

)2dλ− 1
2dλ

]
∨ 0 ≤ ρλ(D) ≤

[(
1− 1

(2d)2(2d− 1)C

)2dλ− 1
2dλ

]
∨ 0,

for any λ ≥ 0.

Here we present an interesting open problem:

Open Problem 4.1. If 0 ≤ D1 ≤ D2 then λc(D1) ≥ λc(D2) in any dimension. (Of
course, if D is large then λc(D) < λc(D = 0).)

Exercise 4.1. Explain that why we expect the above statement holds.

Finally we would like to discuss about the Holley-Liggett method in the diffusive
contact process in one dimension. By a similar computation as in the case of the basic
contact process, we have

2λF (n + 1) + 2DF (n + 1) =
n∑

k=1

F (k)F (n + 1− k) + 2DF (2)F (n) (n ≥ 2),

2λF (2) = F (1).

Let φ(u) =
∞∑

n=1
F (n)un. By using these,

φ(u)2 − 2 [(λ + D)−DF (2)u]φ(u) + 2(λ + D)u = 0.

So the nonnegativity of the discriminant of this equation with u = 1 is equivalent to

1
(2λ)2

[
4λ4 + 8(D − 1)λ3 + 4D(D − 3)λ2 − 4D2λ + D2

] ≥ 0.
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(When D = 0, this becomes λ(λ− 2) ≥ 0.) From this, we let λ
(HL)
c (D) is the largest

root of
4λ4 + 8(D − 1)λ3 + 4D(D − 3)λ2 − 4D2λ + D2.

Then λ
(HL)
c (D) converges to 1/2 as D →∞. However the condition (4) in the Harris

lemma does not hold for large D.

Exercise 4.2. Verify that F (n) satisfy the above two equations.

This chapter is organized as follows. In Section 4.2, we will prove Theorem 4.1.3.
Section 4.3 is devoted to proof of Theorem 4.1.4.

4.2. Proof of Theorem 4.1.3.

In this section we will prove Theorem 4.1.3 by using the following Harris lemma.
For simplicity, we assume that λ, D > 0 in the rest of this chapter. Let Y ∗ denote
the set of all [ 0, 1 ]-valued measurable functions on Y . For any h ∈ Y ∗, we let

Ω∗h(A) = λ
∑

x∈A

∑

y:|y−x|=1

[
h(A ∪ {y})− h(A)

]
+

∑

x∈A

[
h(A \ {x})− h(A)

]

+ D
∑

x∈A

∑

y/∈A:|y−x|=1

[
h((A ∪ {y}) \ {x})− h(A)

]
.

Note that Ω∗σλ,D(A) = 0 for any A ∈ Y.

Lemma 4.2.1. (Harris lemma) Let h ∈ Y ∗ with

h(φ) = 0,(1)

0 < h(A) ≤ 1 for any A ∈ Y with A 6= φ,(2)

lim
|A|→∞

h(A) = 1,(3)

Ω∗h(A) ≤ 0 for any A ∈ Y.(4)

Then

σλ,D(A) ≤ h(A) for any A ∈ Y.(5)

In particular,

ρλ(D) ≤ h({0}).(6)

In order to obtain upper bound on ρλ(D), we need to look for a suitable upper
bound h(A) satisfying conditions (1)-(4) in the Harris lemma. To do this, we will
need the following 4 steps.



80 Lecture Notes on Interacting Particle Systems

Step 1. First we let h(A) = 1− α|A|βb(A).
Step 2. Next we decide 0 < α∗ < 1 and β∗ > 1 as the unique solutions of

Ω∗h({0}) = Ω∗h({0, 1}) = 0,

that is,
2dλα2β − (2dλ + 1)α + 1 = 0, (4.1)

(2d− 1)λα3β2 − [(2d− 1)(λ + D) + 1] α2β + α [1 + (2d− 1)Dα] = 0, (4.2)

for λ > λ
(2)
c (D). To do so, we let w = αβ. Eqs.(4.1) and (4.2) can be rewritten as

(2dλw − 1)(w − 1) = 1− β, (4.3)

[(2d− 1)λw − 1](w − 1) = (2d− 1)Dα(β − 1), (4.4)

respectively. Combining Eq.(4.3) with Eq.(4.4) implies that w satisfies the following
cubic equation: (w − 1)f(w) = 0, where

f(w) = 2d(2d−1)λ2w2−λ[2d(2d−1)(λ+D)+4d−1]w+2dλ+1+(2d−1)D. (4.5)

So it is easily checked that

f(1) < 0 ⇐⇒ λ > λ(2)
c (D) =

(2d− 1)D + 1
(2d− 1)(2dD + 1)

,

where A ⇐⇒ B means that A is equivalent to B. Note that f(0) > 0. So if λ >

λ
(2)
c (D), we see that there must be only one root in the interval (0, 1). We will use w∗

for this root. The definition of it gives 0 < w∗ < 1 for λ > λ
(2)
c (D). Using Eq.(4.3)

and w∗, we define β∗ as follows:

β∗ = [2dλ(1− w∗) + 1)]w∗. (4.6)

Since 0 < w∗ < 1 and Eq.(4.6), we see β∗ > 0. So from w = αβ, we let

α∗ =
w∗
β∗

. (4.7)

Since β∗, w∗ > 0 and Eq.(4.7), we have α∗ > 0. To prove Theorem 4.1.3, we prepare
the following results.

Lemma 4.2.2. We assume D > 0. Let

λ > λ(2)
c (D) =

(2d− 1)D + 1
(2d− 1)(2dD + 1)

> 0.
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Then

0 < α∗ < 1,(1)

β∗ > 1,(2)

1
2dλ

< w∗ <

[
1

(2d− 1)λ

]
∧ 1,(3)

where x ∧ y is the minimum of x and y,

(4) α∗β2d
∗ < 1.

Proof of Lemma 4.2.2. Eq.(4.1) can be rewritten as

2dλw(w − 1) = β(α− 1). (4.8)

By Eq.(4.8), if w, β > 0, then

sgn(w − 1) = sgn(α− 1), (4.9)

where sgn(x) = 1 if x > 0, = 0 if x = 0, = −1 if x < 0. On the other hand,
combining Eq.(4.3) with Eq.(4.4) gives

λw(w − 1) = [1 + (2d− 1)Dα](1− β). (4.10)

So, by Eq.(4.10), if w, α > 0, then

sgn(w − 1) = sgn(1− β). (4.11)

Combining Eq.(4.9) with Eq.(4.11) implies that if α, β > 0, then

sgn(w − 1) = sgn(α− 1) = sgn(1− β). (4.12)

Since α∗, β∗ > 0 and w∗ < 1, parts (1) and (2) follow from Eq.(4.12). Next by the
assumptions and a direct computation, we get

f

(
1

2dλ

)
= λ > λ(2)

c (D) > 0, f

(
1

(2d− 1)λ

)
= −D < 0.

From these facts and w∗ < 1, part (3) is obtained. To show part (4), we observe that
Eq.(4.3) gives

1− αβ2d = 1− wβ2d−1 = 1− w2d[(2dλ + 1)− 2dλw]2d−1.

Let g(w) = w2d[(2dλ + 1)− 2dλw]2d−1. So it is enough to show g(w∗) < 1. Then we
have

g′(w) = 2dw2d−1[(2dλ + 1)− 2dλw]2d−2[2dλ + 1− (4d− 1)λw].
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So we see that 0, w1 = (2dλ + 1)/[(4d − 1)λ] and w2 = (2dλ + 1)/(2dλ) are the
solutions of g′(w) = 0. Note that 0 < w1 < w2. Moreover we should remark that

w1 ≥ 1 ⇐⇒ λ ≤ 1
2d− 1

.

So the above facts, g(1) = 1 and w∗ < 1 imply that if λ ≤ 1/(2d−1), then g(w∗) < 1.
Next we consider the case of λ > 1/(2d − 1). In this case, w1 < 1. Noting that
g(1) = 1 and w∗ < 1/[(2d− 1)λ] in part (3), it is enough to show

g

(
1

(2d− 1)λ

)
≤ 1. (4.13)

Then Eq.(4.13) is equivalent to

[2d(2d− 1)λ− 1]2d−1 ≤ (2d− 1)2d−1[(2d− 1)λ]2d for λ > 1/(2d− 1). (4.14)

Let z = 2d, u = (z − 1)λ and

G(u) = uz −
(

zu− 1
z − 1

)z−1

.

So Eq.(4.14) is equivalent to G(u) ≥ 0 for u ≥ 1. Note that G(1) = 0 and

G′(u) = z

[
uz−1 −

(
zu− 1
z − 1

)z−2
]

.

If z = 2, then G′(u) = 2[u− 1] ≥ 0 (u ≥ 1). Therefore, when z = 2, we have G(u) ≥ 0
for u ≥ 1. Next define

H(u) = uz−1 −
(

zu− 1
z − 1

)z−2

.

Note that G′(u) = zH(u) and H(1) = 0. Then we have

H ′(u) = (z − 1)uz−2 − (z − 2)
(

zu− 1
z − 1

)z−3

× z

z − 1

≥ (z − 1)uz−2 − (z − 2)
(

zu− 1
z − 1

)z−3

× z − 1
z − 2

= (z − 1)

[
uz−2 −

(
zu− 1
z − 1

)z−3
]

If z = 3, then H ′(u) ≥ 2[u − 1] ≥ 0 (u ≥ 1), so H(u) ≥ 0 (u ≥ 1). Noting G′(u) =
zH(u), when z = 3, we see that G(u) ≥ 0 for u ≥ 1. In a similar way, we can prove
that if z ≥ 4, then G(u) ≥ 0 for u ≥ 1. So the proof of part (4) is complete.

Lemma 4.2.2 (1) and (2) complete Step 2.
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Step 3. We check conditions (1)-(3) in the Harris lemma by using Lemma 4.2.2.
Assume that λ > λ

(2)
c (D). Condition (1) and h(A) ≤ 1 in condition (2) are trivial

from Lemma 4.2.2 (1) and (2). The positivity of h(A) for non-empty set A ∈ Y is
equivalent to α

|A|
∗ β

b(A)
∗ < 1. This also comes from Lemma 4.2.2 (1) and (2). On the

other hand, we have b(A) ≤ 2d|A| for any A ∈ Y . Combining this result with Lemma
4.2.4 (2) and (4) gives

α
|A|
∗ β

b(A)
∗ ≤ (α∗β2d

∗ )|A| < 1,

for non-empty set A ∈ Y . Similarly, for condition (3), we get

h(A) ≥ 1− α
|A|
∗ β

b(A)
∗ ≥ 1− (α∗β2d

∗ )|A|.

So h(A) → 1 as |A| → ∞, since Lemma 4.2.2 (4) and h(A) ≤ 1.

Step 4. In this case we will give just Proof A, because Proof B is complicated
compared with Proof A. For any A ∈ Y , we let

Ak =
{
x ∈ A : |{y ∈ A : |y − x| = 1}| = k

}
,

where k ∈ {0, 1, . . . , 2d}. Then

Ω∗h(A) =
2d∑

k=0

Rk(A),

where

Rk(A) = λ
∑

x∈Ak

∑

y:|y−x|=1

[
h(A ∪ {y})− h(A)

]
+

∑

x∈Ak

[
h(A \ {x})− h(A)

]

+ D
∑

x∈Ak

∑

y/∈A:|y−x|=1

[
h((A ∪ {y}) \ {x})− h(A)

]
.

To check condition (4) in the Harris lemma, it is enough to show that Rk(A) ≤ 0
for k ∈ {0, 1, . . . , 2d} and A ∈ Y. To do so, first we show

Lemma 4.2.3. Let d ≥ 1. Then R0(A), R1(A), R2d(A) ≤ 0 for any A ∈ Y.

Proof of Lemma 4.2.3.
(i) R0(A) : Using Eq.(4.1) and b((A ∪ {y}) \ {x}) ≥ b(A) + 1 for x ∈ A0 and y /∈ A

with |y − x| = 1, we have

R0(A) ≤ 2dD|A0|α|A|∗ β
b(A)
∗ (1− β∗). (4.15)

Combining Eq.(4.15) with Lemma 4.2.2 (2) gives R0(A) ≤ 0 for any A ∈ Y.
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(ii) R1(A) : In a similar fashion we have

R1(A) ≤ |A1|α|A|−1
∗ β

b(A)−1
∗ [{(2d− 1)λw∗ − 1}(1− w∗) + (2d− 1)Dw∗(1− β∗)] .

(4.16)
Combining Eq.(4.16) and Lemma 4.2.2 (2), (3) gives R1(A) ≤ 0 for any A ∈ Y.

(iii) R2d(A) : As in the case of R1, we have

R2d(A) = |A2d|α|A|−1
∗ β

b(A)−2d
∗ (α∗β2d

∗ − 1). (4.17)

So R2d(A) ≤ 0 follows from Eq.(4.17) and Lemma 4.2.2 (4).

We should remark that by Lemma 4.2.3 we can check the condition (4) of the
Harris lemma for d = 1, since R0(A), R1(A), R2(A) ≤ 0 for any A ∈ Y . So in the
rest of this section, we assume d ≥ 2.

Lemma 4.2.4. Let d ≥ 2. Then Rk(A) ≤ 0 for any k ∈ {2, 3, . . . , 2d−1} and A ∈ Y.

Proof of Lemma 4.2.4. As in the proof of Lemma 4.2.3, for k ∈ {2, 3, . . . , 2d− 1},
we have

Rk(A) ≤ |Ak|α|A|∗ β
b(A)
∗ ϕ(k),

where A ∈ Y and

ϕ(k) = (2d− k)[λ(1− w∗) + D(1− β∗)] + 1− 1
α∗βk∗

.

Then we get

ϕ(k + 1)− ϕ(k) = −
[
λ(1− w∗) +

(
D +

1
α∗βk+1∗

)
(1− β∗)

]
. (4.18)

By Eq.(4.18) and Lemma 4.2.2 (2), we see that ϕ(k + 1) − ϕ(k) ≤ ϕ(1) − ϕ(0). So
if ϕ(1) − ϕ(0) ≤ 0, then ϕ(2d − 1) ≤ ϕ(2d − 2) ≤ · · · ≤ ϕ(1) ≤ 0. The inequality:
ϕ(1) ≤ 0 comes from the proof of R1(A) in Lemma 4.2.3. Therefore, to prove Rk(A) ≤
0 (k ∈ {2, . . . , 2d − 1}), it is enough to show ϕ(1)− ϕ(0) ≤ 0. By using Eq.(4.3), we
observe that ϕ(1)− ϕ(0) ≤ 0 is equivalent to

(Dw∗ + 1)(2dλw∗ − 1)− λw∗ ≤ 0. (4.19)

To prove Eq.(4.19), we let I(w) = (Dw + 1)(2dλw − 1) − λw. That is, our objective
is to show I(w∗) ≤ 0. In the rest of this proof, define z = 2d, for simplicity. Let w3

and w4 with w3 < 0 < w4 be the two roots of I(w) = 0. On the other hand, Eq.(4.5)
can be rewritten as

f(w) = z(z − 1)λ2w2 − λ[z(z − 1)(λ + D) + 2z − 1]w + zλ + 1 + (z − 1)D.
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Recall that f(w∗) = 0 and 0 < w∗ < 1. Therefore, noting I(0) = −1 and I(w4) = 0,
we know that if w∗ ≤ w4, then the proof is complete. To check w∗ ≤ w4, it is enough
to show f(w4) ≤ 0, since f(0) > 0, f(w∗) = 0, f(1) < 0 and 0 < w∗ < 1. Let
J(w) = Df(w)− (z − 1)λI(w). Then

J(w) = −[
(z−1)(zD+z−1)λ+zD+z(z−1)D2

]
λw+(zD+z−1)λ+D+(z−1)D2.

By D > 0, I(w4) = 0 and the definitions of J(w) and w4, we obtain

f(w4) ≤ 0 ⇐⇒ J(w4) ≤ 0

⇐⇒ 2zDK + [(z − 1)λ−D][zK − (z − 1 + zD)λ]
≤ [zK − (z − 1 + zD)λ]

√
L

where K = (z − 1 + zD)λ + D + (z − 1)D2 and L = (z − 1)2λ2 + 2(z + 1)Dλ + D2.
By a direct computation, we see that the last inequality is equivalent to

(z2 − 3z + 1)(z − 1 + zD)λ + [1 + (z − 1)D][1 + z(z − 2)D] ≥ 0.

Note that if z = 2d ≥ 4, then z2 − 3z + 1 ≥ 0. So when d ≥ 2, we have f(w4) ≤ 0.
The proof of Lemma 4.2.4 is complete.

By using Lemma 4.2.4, we can check condition (4) in the case of d ≥ 2. So the
proof of Theorem 4.1.3 is complete.

4.3. Proof of Theorem 4.1.4.

In this section we will give the proof of Theorem 4.1.4. By w∗ = α∗β∗ and
Eq.(4.1), we have

1− α∗ =
β∗ − w∗

β∗
=

2dλ(1− w∗)
2dλ(1− w∗) + 1

.

Using the explicit form of w∗, a direct computation gives

1− α∗ =
2(2d)2(2d− 1)λD + 2d(2d− 1)(λ−D)− 1−√M

2(2d)2(2d− 1)λD
, (4.20)

where M = [2d(2d− 1)(λ−D)− 1]2 + 4(2d)2(2d− 1)2λD. Then

√
M = 2d(2d− 1)(λ + D) + 1 + o

(
1
D

)
, (4.21)

where f(D) is o(1/D) as D →∞means Df(D) → 0 as D →∞. Combining Eq.(4.20)
with Eq.(4.21) gives

1− α∗ =
2dλ− 1

2dλ

[
1− 1

(2dλ− 1)2d(2d− 1)
1
D

+ o

(
1
D

)]
.
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If λ− 1/2d = C/D, then

1− α∗ =
2dλ− 1

2dλ

[
1− 1

(2d)2(2d− 1)
1
C

+ o

(
1
D

)]
.

So the proof of Theorem 4.1.4 is complete.
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CHAPTER 5

BASIC CONTACT PROCESSES ON TREES

5.1. Introduction

We consider the contact process on the homogeneous tree, T, which is also called
the Bethe lattice. This is an infinite graph without cycles, in which each vertex has
the same number of nearest neighbors, which we will denote by κ ≥ 3. Let o be a
distinguished vertex of T, which we call the origin. For x, y ∈ T, the natural distance
between x and y, |x− y|, is defined by the number of edges in the unique path of T
joining x to y.

We introduce the contact process, ξt, on T, which is a continuous-time Markov
process on T. The dynamics of this process are given by the following transition
rates: for x ∈ ξ with ξ ⊂ T,

ξ → ξ ∪ {y} at rate λ for y with |y − x| = 1,

ξ → ξ \ {x} at rate 1.

Let ξo
t denote the contact process starting from the origin. Define the global

survival probability ρg(λ) by

P (ξo
t 6= φ for all t ≥ 0).

The critical value of the global survival probability is defined by

λg
c = inf{λ ≥ 0 : ρg(λ) > 0}.

For contact processes on T, the following local survival probability ρl(λ) is also in-
troduced:

ρl(λ) = P (lim sup
t→∞

ξo
t (o) = 1) = P (o ∈ ξo

t infinitely often).

Using this, we define the critical value of the local survival probability in the following
way:

λl
c = inf{λ ≥ 0 : ρl(λ) > 0}.
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We should remark that the above definitions give λg
c ≤ λl

c. In the case of the d-
dimensional integer lattice, Zd, Bezuidenhout and Grimmett1 showed that λg

c = λl
c.

On the other hand, in the case of T, Pemantle2 (κ ≥ 4), Liggett3 and Stacey4 (κ = 3)
proved that λg

c < λl
c. Unfortunately the rigorous values of both critical values are not

known.
From now on we consider only λg

c and ρg(λ). As regards bounds on λg
c , Pemantle2

proved that for κ ≥ 3,

1
κ− 1

≤ λg
c ≤

√
9 + 16

κ−2 − 1

2κ
. (5.1)

When κ = 3 (binary tree case), this gives 1/2 = 0.5 ≤ λg
c ≤ 2/3 ≈ 0.667. In this

case, better bounds were obtained by Griffeath5 (lower bound) and Liggett3 (upper
bound) as follows:

√
109− 1

18
≈ 0.524 ≤ λg

c ≤ 0.605.

The lower bound comes from the submodulality of the survival probability. On the
other hand, the upper bound is derived by the Holley-Liggett method. Recently the
following estimate of this critical value was given by the time dependent simulations,
see Tretyakov and Konno:6

λg
c = 0.5420± 0.0005.

Exercise 5.1. Estimate λl
c by using simulations when κ = 3. Rigorous lower bound

is 0.609 given by Liggett.3

Next we consider the critical exponent for the global survival probability. Results
on the continuity of ρg(λ) at λg

c were given by Pemantle2 for κ ≥ 4 and by Morrow,
Schinazi and Zhang7 for κ = 3. That is, ρg(λg

c) = 0 (κ ≥ 3). As regards the critical
exponent, the following is conjectured that for κ ≥ 3,

β = lim
λ↓λg

c

log ρg(λ)
log(λ− λg

c)

exists and β = 1. Note that β = 1 is the mean field value. Concerning this conjecture,
recently Wu8 proved that for κ ≥ 6,

lim inf
λ↓λg

c

ρg(λ)
λ− λg

c
> 0 and lim sup

λ↓λg
c

ρg(λ)
λ− λg

c
< ∞.

This result proves that β = 1 for κ ≥ 6. Tretyakov and Konno6 reported that the
time dependent simulations gave β = 0.95 ± 0.15 for κ = 3. That is, this estimation
indicates that β takes the mean field value of 1 for a tree with κ = 3. Assuming that
increase of the coordination number increases the tendency of a system to exhibit
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mean field behavior, we would expect mean field values for the exponents for any
k ≥ 3.

From now on we write just ρλ = ρg(λ) and λc = λg
c for simplicity. In this chapter

we discuss bounds on ρλ and λc by using the Harris lemma. Let Y = {A ⊂ T : |A| <
∞} and

σλ(A) = P (ξA
t 6= φ for all t ≥ 0) = νλ{η : η(x) = 1 for some x ∈ A},

for any A ∈ Y , where νλ is the upper invariant measure of the basic contact process
on trees. The first result is as follows:

Theorem 5.1.1. Assume κ ≥ 3. For any λ ≥ 0 and A ∈ Y , we have

[
1−

( 1
(κ− 2)λ

)|A|]
∨ 0 ≤ σλ(A) ≤

[
1−

( 1
κλ

)|A|]
∨ 0,

where a ∨ b is the maximum of a and b.

Applying Theorem 5.1.1 to A = {0} gives

Corollary 5.1.2. Assume κ ≥ 3. For any λ ≥ 0,

(κ− 2)λ− 1
(κ− 2)λ

∨ 0 ≤ ρλ ≤ κλ− 1
κλ

∨ 0,

and
1
κ
≤ λc ≤ 1

κ− 2
.

The both bounds on σλ(A) in Theorem 5.1.1 correspond to the first bounds by
the Katori-Konno method. However the proof of the lower bound on σλ(A) depends
on the property of trees. So we do not have similar results in the case of Zd. Parts of
these results are already known, see Liggett,3 for example. When κ = 3, this corollary
gives

1
3
≤ λc ≤ 1.

Compared with Eq.(5.1), the above first bounds are not so good.

Exercise 5.2. Try to obtain an improved lower bound on σλ(A) by using the form
h(A) = 1 − α|A|βb(A) where b(A) is the number of neighboring pairs of points in A.
Concerning upper bound for the same form, the story is almost the same as in the
case of the basic contact process, so it is not interesting.

Next by choosing another type of h(A) in the Harris lemma, the following result
is obtained in Konno.9
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Theorem 5.1.3. Assume κ ≥ 3. For any A ∈ Y and

λ ≥
[ √

κ + 1
κ +

√
κ− 2

]2

,

we have

1− κ− 2
|A|+ κ− 2

≤ σλ(A).

From this theorem, we obtain

Corollary 5.1.4. Assume κ ≥ 3.

(1) ρλ ≥ 1
κ− 1

for any λ ≥
[ √

κ + 1
κ +

√
κ− 2

]2

,

and

(2) λc ≤
[ √

κ + 1
κ +

√
κ− 2

]2

.

The above results also depend on the property of trees, so we do not get similar
results in the case of Zd.

Here we consider bounds on ρλ in the case of κ = 3. Corollary 5.1.2 gives

λ− 1
λ

∨ 0 ≤ ρλ ≤ 3λ− 1
3λ

∨ 0 for any λ ≥ 0.

Moreover Corollary 5.1.4 implies

ρλ ≥ 1
2

for any λ ≥ 1.

Therefore we see that when 1 ≤ λ ≤ 2, the result of Corollary 5.1.4 is better than
that of Corollary 5.1.2 concerning ρλ. In particular, if we take λ = 1, then

1
2
≤ ρ1 ≤ 2

3
.

This chapter is organized as follows. In Section 5.2, we will prove Theorem 5.1.1.
Section 5.3 gives the proof of Theorem 5.1.3.

5.2. Proof of Theorem 5.1.1.

In this section we will prove Theorem 5.1.1 by using the Harris lemma. Let
Y = {A ⊂ T : |A| < ∞} and Y ∗ be the set of all [ 0, 1 ]-valued measurable functions
on Y . For any h ∈ Y ∗, we let

Ω∗h(A) = λ
∑

x∈A

∑

y:|y−x|=1

[
h(A ∪ {y})− h(A)

]
+

∑

x∈A

[
h(A \ {x})− h(A)

]
.
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As in the case of Zd, we consider the following 4 steps.
Step 1. First we let h(A) = 1− α|A| with 0 ≤ α ≤ 1.
Here we need some observations. Let

N(A) =
∣∣{(x, y) : |x− y| = 1, x ∈ A, y /∈ A

}∣∣.

By using this, we have

Ω∗h(A) = λ
∑

x∈A

∑

y/∈A:|y−x|=1

[
α|A| − α|A|+1

]
+

∑

x∈A

[
α|A| − α|A|−1

]

= λN(A)
[
α|A| − α|A|+1

]
+ |A|

[
α|A| − α|A|−1

]

= (1− α)α|A|−1
[
αN(A)λ− |A|

]
.

(5.2)

On the other hand, the definition of N(A) gives the following result: for any A ∈ Y

and κ ≥ 3,

(κ− 2)|A|+ 2 ≤ N(A) ≤ κ|A|. (5.3)

Remark that this lower bound on N(A) depends on the property of trees. Combining
Eq.(5.2) with Eq.(5.3), we have

(1− α)α|A|−1|A|
[
(κ− 2)αλ− 1

]
≤ Ω∗h(A) ≤ (1− α)α|A|−1|A|

[
καλ− 1

]
, (5.4)

for any A ∈ Y and κ ≥ 3.

First we consider the lower bound on σλ(A).
Step 2. We take α∗ = 1/(κ− 2)λ for λ > 1/(κ− 2). So we have 0 < α∗ < 1 for

λ > 1/(κ− 2).
Step 3. The proof of Step 3 is trivial.
Step 4. Using Eq.(5.4) and (κ− 2)λα∗ = 1, we have

Ω∗h(A) ≥ 0 for any A ∈ Y.

Therefore we finish the proof of the lower bound on σλ(A). Concerning the upper
bound, we take α∗ = 1/κλ for λ > 1/κ. The rest is the almost same as the previous
proof. So we will omit it.

Exercise 5.3. Verify that α∗ = 1/κλ is the solution of Ω∗h({0}) = 0 as in the case
of the basic contact process on Zd with κ = 2d.

Next we will give another proof of Step 4 concerning the lower bound on σλ(A)
which corresponds to Proof B in the basic contact process on Zd. As for Proofs A
and B, see Chapter 1 in these notes. On the other hand, the above proofs in Step 4
correspond to Proof A. Moreover Proof B for the upper bound on σλ(A) is the almost
same as Proof B of Theorem 1.4.4, so we do not present here. From now on we will
discuss about Proof B in the case of the lower bound on σλ(A).
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Let An = {x1 = o, x2, . . . , xn} with |xi+1−xi| = 1 (1 ≤ i ≤ n−1) and xi+1 6= xi−1

(2 ≤ i ≤ n− 1). Then we see that for n ≥ 1

Ω∗h(An) = λ
∑

x∈An

∑

y∈An:|y−x|=1

[
α|An| − α|An∪{y}|

]
+

∑

x∈An

[
α|An| − α|An|−1

]

= λ
[
(κ− 2)|An|+ 2

][
α|An| − α|An|+1

]
+ |An|

[
α|An| − α|An|−1

]

= (1− α)α|An|−1
[{

(κ− 2)|An|+ 2
}

αλ− |An|
]

= (1− α)α|An|−1
{

(κ− 2)|An|+ 2
}

λ

×
[{

α− 1
(κ− 2)λ

}
+

2
(κ− 2)[(κ− 2)|An|+ 2]λ

]
.

If we take α∗ = 1/(κ − 2), then Ω∗h(An) ≥ 0 for any n ≥ 1. Next we consider the
general case of A. For any A ∈ Y , we let A =

∑N
k=1 Bk where Bk is a connected

component of A. Define bn = |{Bk : |Bk| = n}|. Then we have

Ω∗h(A) =
N∑

k=1

[
λ

∑

x∈Bk

∑

y:|y−x|=1

[
h(A ∪ {y})− h(A)

]
+

∑

x∈Bk

[
h(A \ {x})− h(A)

]]

≥
|A|∑
n=1

bn

[
λ

∑

x∈An

∑

y:|y−x|=1

[
h(A ∪ {y})− h(A)

]
+

∑

x∈An

[
h(A \ {x})− h(A)

]]

= (1− α)α|A|−1

|A|∑
n=1

bn

[{
(κ− 2)|An|+ 2

}
αλ− |An|

]

= α|A|−1

|A|∑
n=1

bn

αn−1
Ω∗h(An),

since the second inequality comes from the property of trees. Therefore we have

Ω∗h(A) ≥
|A|∑
n=1

α|A|−nbnΩ∗h(An).

This inequality implies that Ω∗h(An) ≥ 0 for any n ≥ 1 gives Ω∗h(A) ≥ 0 for any
A ∈ Y . So the Proof B is complete.

5.3. Proof of Theorem 5.1.3.

In this section we will prove Theorem 5.1.3 by using the Harris lemma. We
assume that κ ≥ 3.

Steps 1 and 2. We take

h(A) = 1− κ− 2
|A|+ κ− 2

.
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This choice appears for the first time in these notes.
Step 3. By the definition of h(A), we can check conditions (1)-(3) immediately.
Step 4. We begin by computing

Ω∗h(A) = λ
∑

x∈A

∑

y/∈A:|y−x|=1

[
h(A ∪ {y})− h(A)

]
+

∑

x∈A

[
h(A \ {x})− h(A)

]

= λN(A)
[ κ− 2
|A|+ κ− 2

− κ− 2
|A|+ κ− 1

]
+ |A|

[ κ− 2
|A|+ κ− 2

− κ− 2
|A|+ κ− 3

]

= (κ− 2)
[ λN(A)
(|A|+ κ− 2)(|A|+ κ− 1)

− |A|
(|A|+ κ− 2)(|A|+ κ− 3)

]
.

By using N(A) ≥ (κ− 2)|A|+ 2,

Ω∗h(A) ≥ (κ− 2)
[ λ{(κ− 2)|A|+ 2}
(|A|+ κ− 2)(|A|+ κ− 1)

− |A|
(|A|+ κ− 2)(|A|+ κ− 3)

]
. (5.5)

Let x = |A|. So Eq.(5.5) can be written as

Ω∗h(A) ≥
(κ− 2)

[
{(κ− 2)x + 2}(x + κ− 3)λ− x(x + κ− 1)

]

(x + κ− 3)(x + κ− 2)(x + κ− 1)
(5.6)

We define

λ∗(κ) = sup
x≥1

x(x + κ− 1)
[(κ− 2)x + 2](x + κ− 3)

.

Eq.(5.6) implies that if λ ≥ λ∗(κ), then Ω∗h(A) ≥ 0 for any A ∈ Y . By a direct
computation, we have

λ∗(κ) =
[ √

κ + 1
κ +

√
κ− 2

]2

.

Therefore we can check condition 4 and have the desired conclusion.

We should remark that this proof does not hold in the case of Zd, since we use
the following inequality to get Eq.(5.5): N(A) ≥ (κ− 2)|A|+ 2, which holds only in
the case of trees.
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CHAPTER 6

ONE-SIDED CONTACT PROCESS

6.1. Introduction

We consider the one-sided contact process ξt which is a continuous-time Markov
process on Z1. The dynamics of this process are given by the following transition
rates: for x ∈ ξ with ξ ⊂ Z1,

ξ → ξ \ {x} at rate 1,

ξ → ξ ∪ {x− 1} at rate λ.

Concerning the one-sided contact process for details, see Griffeath1 and Schonmann.2

Let ξ0
t denote the one-sided contact process starting from the origin. Define the

survival probability ρλ by
P (ξ0

t 6= φ for all t ≥ 0).

The critical value of the survival probability is defined by

λc = inf{λ ≥ 0 : ρλ > 0}.

As for bounds on λc, Griffeath1 showed

√
6 = 2.449... ≤ λc ≤ 4.

This lower bound is obtained by submodulality for the survival probability. On the
other hand, this upper bound can be given by the Holley-Liggett method.

Exercise 6.1. Verify that 4 is the upper bound on λc as in the sketch of proof of
Theorem 2.2.1 in Chapter 2.

Improved bounds were given by Konno3 as follows:

λc = 2.577... ≤ λc ≤ λc = 3.882...,



96 Lecture Notes on Interacting Particle Systems

where λc = sup{λ ≥ 0 : 8λ7+126λ5+55λ6−53λ4−902λ3−1945λ2−1958λ−756 < 0}
and λc = sup{λ ≥ 0 : 2λ3 − 7λ2 − 4λ + 4 < 0}. As for the lower bound, we get it by
using the Ziezold and Grillenberger method. The upper bound can be obtained by
a generalization of the Holley-Liggett method. In the case of basic contact process,
Liggett4 used this method and gave an improved upper bound. See subsection 2.2.2
in these notes.

Concerning the estimated value on λc, Tretyakov, Inui and Konno5 obtained the
following numerical result by using Monte Carlo simulation and power series expansion
techniques:

λc = 3.306± 0.002.

The interesting thing is that this estimated value is slightly different from the best
estimation of the critical value λbcp

c for the basic contact process with the same total
infection rate λ given by Jensen and Dickman6:

λbcp
c = 3.297824.

Unfortunately we can not use a usual coupling technique when we try to compare
these critical values.

Open Problem 6.1.1. Which is correct in the following three possibilities ?

a) λc > λbcp
c , b) λc = λbcp

c , c) λc < λbcp
c .

As for critical exponent of the survival probability, numerical results by Tretyakov,
Inui and Konno5 suggest that both exponents are expected as same. That is, the one-
sided contact process and basic contact process belong to the same universality class.
This conclusion is not so surprising from the physical point of view.

This chapter is organized as follows. In Section 6.2, we give lower bounds on
critical value of the one-sided contact process. Section 6.3 is devoted to upper bounds.

6.2. Lower Bound

In this section, we will give a lower bound on the critical value of the one-sided
contact process by the Ziezold-Grillenberger method. Let ξ−t and ξ+

t denote the one-
sided contact process starting from {. . . ,−1, 0} and {0, 1, . . .}, respectively. Here we
introduce edge processes of the one-sided contact process as follows:

rt = max ξ−t , lt = min ξ+
t .

Let α1
t (λ) = E(rt) and α2

t (λ) = −E(lt). Shonmann2 showed

lim
t→∞

rt

t
= α1(λ) a.s.

lim
t→∞

lt
t

= −α2(λ) a.s.
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where

α1(λ) = lim
t→∞

α1
t (λ)
t

= inf
t>0

α1
t (λ)
t

∈ [−∞,∞),

α2(λ) = lim
t→∞

α2
t (λ)
t

= inf
t>0

α2
t (λ)
t

∈ [−∞,∞).

Now we can define the edge speed α(λ) by

α(λ) =
α1(λ) + α2(λ)

2
.

The critical value of the one-sided contact process can be characterized by the edge
speed: λc = inf{λ ≥ 0 : α(λ) > 0}.

Next we modify ξ−t by keeping all coordinates which lie strictly to left of rt − n

identically equal to one, where n is a fixed nonnegative integer. Similarly, we modify
ξ+
t by keeping all coordinates which lie strictly to left of lt + n identically equal to

one. Let r
(n)
t (resp. l

(n)
t ) be the position of rightmost (resp. leftmost) one in the

modified process. Define α
1,(n)
t (λ) = E(r(n)

t ) and α
2,(n)
t (λ) = −E(l(n)

t ). In a similar
fashion, we have

lim
t→∞

r
(n)
t

t
= α

(n)
1 (λ) a.s.

lim
t→∞

l
(n)
t

t
= −α

(n)
2 (λ) a.s.

where

α
(n)
1 (λ) = lim

t→∞
α

1,(n)
t (λ)

t
= inf

t>0

α
1,(n)
t (λ)

t
∈ [−∞,∞),

α
(n)
2 (λ) = lim

t→∞
α

2,(n)
t (λ)

t
= inf

t>0

α
2,(n)
t (λ)

t
∈ [−∞,∞).

So we can define the edge speed α(n)(λ) by

α(n)(λ) =
α

(n)
1 (λ) + α

(n)
2 (λ)

2
.

From r
(n)
t ≥ rt and l

(n)
t ≤ lt, we have α(n) ≥ α(λ), for n = 0, 1, 2, . . . Moreover, the

definition of the modified one-sided contact process gives α(n)(λ) ≥ α(n+1)(λ). Then
the critical value λ

(n)
c of the modified one-sided contact process is introduced by the

edge speed as follows: λ
(n)
c = inf{λ ≥ 0 : α(n)(λ) > 0}. Following the argument in

Ziezold and Grillenberger, we see that λ
(n)
c ↗ λc as n ↗ ∞. Concerning the next

computation, see Chapter 3 of Konno7 for details.

6.2.1. n = 0

In this case, α
(0)
1 (λ) = −1 and α

(0)
2 (λ) = λ− 1. So we have

α(0)(λ) =
α

(0)
1 (λ) + α

(0)
2 (λ)

2
=

λ− 2
2

.
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Then λ
(0)
c = 2. This gives 2 ≤ λc.

6.2.2. n = 1

In this case,

α
(1)
1 (λ) = −λ + 3

λ + 2
, α

(1)
2 (λ) =

2λ2 − 3
2(λ + 1)

.

So we have

α(1)(λ) =
α

(1)
1 (λ) + α

(1)
2 (λ)

2
=

2λ3 + 2λ2 − 11λ− 12
4(λ + 1)(λ + 2)

.

Then λ
(1)
c = 2.376 . . . This gives 2.376 ≤ λc.

6.2.3. n = 2

Similarly,

α
(2)
1 (λ) = −λ3 + 7λ2 + 21λ + 27

λ3 + 6λ2 + 14λ + 14
, α

(2)
2 (λ) =

8λ4 + 15λ3 + 3λ2 − 34λ− 27
8λ3 + 23λ2 + 30λ + 14

.

So we have

α(2)(λ) =
α

(2)
1 (λ) + α

(2)
2 (λ)

2

=
8λ7 + 55λ6 + 126λ5 − 53λ4 − 902λ3 − 1945λ2 − 1958λ− 756

8λ6 + 71λ5 + 280λ4 + 628λ3 + 826λ2 + 616λ + 196
.

Then λ
(2)
c = 2.577 . . . This gives 2.577 ≤ λc.

6.3. Upper Bound

In this section, we consider upper bounds on the critical value of the one-sided
contact process. Here we review the case of the basic contact process in one dimension.
By the Holley-Liggett method, the first upper bound 4 on the critical value of the basic
contact process was given, as you saw in Chapter 2 in these notes. This argument
holds in the case of the one-sided contact process and Griffeath1 showed that 4 is also
the first upper bound on λc for the one-sided contact process. For the basic contact
process, using the Holley-Liggett method, Liggett4 gave an improved upper bound
which is the largest root of the cubic equation of 2λ3 − 7λ2 − 4λ + 4 = 0. In this
section, we will consider the second bound for the one-sided contact process.

Theorem 6.3.1. Let λ
(HL,2)
c ≈ 3.882 be the largest root of the cubic equation of

2λ3 − 7λ2 − 4λ + 4 = 0.
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Then for λ ≥ λ
(HL,2)
c ,

h
(HL,2)
λ (A) ≤ σλ(A) for all A ∈ Y,

where

h
(HL,2)
λ (A) = µ{η : η(x) = 1 for some x ∈ A},

for a generalized renewal measure µ on {0, 1}Z whose density is given by

Ω∗h(HL,2)
λ (A) = 0 for all A of the form {1, 2, . . . , n} (n ≥ 1) and {1, 3}.

First we choose the form of

h(A) = µ{η : η(x) = 1 for some x ∈ A},
for a generalized renewal measure µ on {0, 1}Z whose density is given by

Ω∗h({1, 2, . . . , n}) = 0,

for any n ≥ 1 and
Ω∗h({1, 3}) = 0,

where

Ω∗h(A) = λ
∑

x∈A

∑

y:|y−x|=1

[
h(A ∪ {y})− h(A)

]
+

∑

x∈A

[
h(A \ {x})− h(A)

]
.

We should remark the next relations:

h({1, 2, 3}) = 1− µ(◦◦◦),
h({1, 3}) = 1− µ(◦×◦),

h({1, 2, 3})− h({1, 3}) = µ(◦×◦)− µ(◦◦◦) = µ(◦•◦),
...

Moreover, following notations of Liggett,4 we introduce

F1(n) =
µ(••

n−1︷ ︸︸ ︷◦ · · · ◦)
µ(••) , F0(n) =

µ(◦•
n−1︷ ︸︸ ︷◦ · · · ◦)

µ(◦•) ,

f1(n) =
µ(••

n−1︷ ︸︸ ︷◦ · · · ◦ •)
µ(••) , f0(n) =

µ(◦•
n−1︷ ︸︸ ︷◦ · · · ◦ •)

µ(◦•) ,

for n ≥ 1. The above definitions give

F1(1) = F0(1) = 1,

F1(n) =
∞∑

k=n

f1(k), F0(n) =
∞∑

k=n

f0(k).
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We recall that

Ω∗h({1, 2, . . . , n}) = λ
[
h({0, 1, 2, . . . , n})− h({1, 2, . . . , n})

]

+ λ
[
h({1, 2, . . . , n, n + 1})− h({1, 2, . . . , n})

]

+
n∑

k=1

[
h({1, 2, . . . , n} \ {k})− h({1, 2, . . . , n})

]
.

From now on we consider two cases; Case A and Case B.
Case A. By using definitions of F0(n) and F1(n), we see that

h({0, 1, 2, . . . , n})− h({1, 2, . . . , n}) = µ(
n︷ ︸︸ ︷◦ · · · ◦)− µ(

n+1︷ ︸︸ ︷◦ · · · ◦)

= µ(•
n︷ ︸︸ ︷◦ · · · ◦)

= µ(••
n︷ ︸︸ ︷◦ · · · ◦) + µ(◦•

n︷ ︸︸ ︷◦ · · · ◦)

=
µ(••

n︷ ︸︸ ︷◦ · · · ◦)
µ(••) × µ(••) +

µ(◦•
n︷ ︸︸ ︷◦ · · · ◦)

µ(◦•) × µ(◦•)

= F1(n + 1)µ(••) + F0(n + 1)µ(◦•).

On the other hand, the definition of a measure µ implies there is an α such that

α =
F0(n)
F1(n)

for n ≥ 1.

Note that α is independent of n. Ω∗h({1}) = 0 gives

µ(••) = (λ− 1)µ(◦•).

Moreover Ω∗h({1, 2}) = Ω∗h({1, 3}) = 0 yields

α =
2(λ− 1)
2λ− 1

and F1(2) =
2λ− 1

(λ− 1)(2λ + 1)
.

From these, we have

h({0, 1, 2, . . . , n})− h({1, 2, . . . , n}) = (λ− 1)µ(◦•)F1(n + 1) + αµ(◦•)F1(n + 1)

= (λ− 1 + α)µ(◦•)F1(n + 1).

We let

δ = λ− 1 + α =
(λ− 1)(2λ + 1)

2λ− 1
.

Remark that δ = 1/F1(2). From the above observations, we have

h({0, 1, 2, . . . , n})− h({1, 2, . . . , n}) = µ(•
n︷ ︸︸ ︷◦ · · · ◦) = δµ(◦•)F1(n + 1).
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Similarly

h({1, 2, . . . , n, n + 1})− h({1, 2, . . . , n}) = µ(•
n︷ ︸︸ ︷◦ · · · ◦) = δµ(◦•)F1(n + 1).

Therefore we obtain

λ
∑

x∈A

∑

y:|y−x|=1

[
h(A ∪ {y})− h(A)

]
= 2λδµ(◦•)F1(n + 1),

where A = {1, . . . , n}.
Case B. For k ∈ {2, . . . , n− 1}, we see

h({1, 2, . . . , n} \ {k})− h({1, 2, . . . , n}) =µ(
n︷ ︸︸ ︷◦ · · · ◦)− µ(

k−1︷ ︸︸ ︷◦ · · · ◦ ×
n−k︷ ︸︸ ︷◦ · · · ◦)

=− µ(
k−1︷ ︸︸ ︷◦ · · · ◦ •

n−k︷ ︸︸ ︷◦ · · · ◦)

=− µ(
k−1︷ ︸︸ ︷◦ · · · ◦ •◦)
µ(•◦) × µ(•

n−k︷ ︸︸ ︷◦ · · · ◦)

=− F0(k)× δµ(◦•)F1(n + 1− k)

=− αF1(k)× δµ(◦•)F1(n + 1− k).

The third equality comes from the definition of a generalized renewal measure µ. The
fourth equality is given by the definition of F0(k) and a similar argument of Case A.
The definition of α gives the last equality. So we have

h({1, 2, . . . , n} \ {k})− h({1, 2, . . . , n}) = −αδµ(◦•)F1(k)F1(n + 1− k).

For k = 1 or k = n, a similar argument in Case A implies

h({1, 2, . . . , n} \ {k})− h({1, 2, . . . , n}) = −δµ(◦•)F1(n).

Therefore
n∑

k=1

h({1, 2, . . . , n} \ {k})− h({1, 2, . . . , n})

= −2δµ(◦•)F1(n)− αδµ(◦•)
n−1∑

k=2

F1(k)F1(n + 1− k)

= −δµ(◦•)
[
2F1(n) + α

n−1∑

k=2

F1(k)F1(n + 1− k)
]
.

From these results, we see that

Ω∗h({1, 2, . . . , n}) = δµ(◦•)
[
2λF1(n + 1)−

{
2F1(n) + α

n−1∑

k=2

F1(k)F1(n + 1− k)
}]

,

for n ≥ 2. Then Ω∗h({1, 2, . . . , n}) = 0 (n ≥ 1) and Ω∗h({1, 3}) = 0 give
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Lemma 6.3.2. Let α = 2(λ− 1)/(2λ− 1). Then

λF1(n + 1) = 2F1(n) + α

n−1∑

k=2

F1(k)F1(n + 1− k) (n ≥ 2),

F1(1) = 1.

We introduce the following generating function to get F1(n) explicitly:

φ(u) =
∞∑

n=1

F1(n)un.

By using Lemma 6.3.2, we have the following quadratic equation:

αφ2(u)− [λ + 2(α− 1)u]φ(u) + λu +
[
α− 2 + λF1(2)

]
u2 = 0.

The nonnegativity of the discriminant of this equation with u = 1 is equivalent to

[λ + 2(α− 1)]2 − 4α
[
λ + α− 2 + λF1(2)

]
≥ 0.

This becomes 2λ3−7λ2−4λ+4 ≥ 0. So we let λ
(2)
c be the largest root of the following

cubic equation which is the same as the case of basic contact process:

2λ3 − 7λ2 − 4λ + 4 = 0.
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CHAPTER 7

DISCRETE-TIME GROWTH MODELS

7.1. Introduction

We consider the discrete-time growth model ξA
n at time n starting from A ∈ Y

which is a Markov chain on {0, 1}Z1
, where Y is the collection of all finite subsets of

Z1. The dynamics of this model is as follows. We write ξA
n as a union of maximal

subintervals

ξA
n =

k⋃

i=1

Ii,

where Ii = {mi + 1, mi + 2, . . . , ni} and mi < ni < mi+1. Then ξA
n+1 is obtained by

choosing points in {mi + 1,mi + 2, . . . , ni − 1} each with probability q, and points
mi and ni each with probability p. The choices are made independently. Throughout
this chapter, we assume that

0 ≤ p ≤ q ≤ 1,

so this process is attractive; that is, if ξA
n ⊂ ξB

n , then we can guarantee that ξA
n+1 ⊂

ξB
n+1 by using appropriate coupling.

Exercise 7.1. Show that if q = p (resp. q = p(2− p)) then this process is equivalent
to the oriented site (resp. bond) percolation in two dimension.

We define the survival probability by

σ(A) = P (ξA
n 6= φ for all n ≥ 0),

for any A ∈ Y . Then the order parameter is defined as ρ(p, q) = σ({0}), where 0 is
the origin. For given q, define the critical value pc(q) by

pc(q) = inf{p ≥ 0 : ρ(p, q) > 0}.
The above-mentioned models were recently studied by Liggett1 who gave the

following bounds on critical values.
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Theorem 7.1.1. Let 0 ≤ q ≤ 1. Then

1− q

2
≤ pc(q)− 1

2
≤
√

1− q

2
.

In particular, the upper bound in this theorem is obtained by the Holley-Liggett
method. As for it, we will discuss in Section 7.4. Concerning the above theorem, we
present the following open problem which appeared in page 98 of Durrett.2

Open Problem 7.1.2. Find θ ∈ [ 0, 1 ] satisfying that there exist C1, C2 > 0 such
that

C1(1− q)θ ≤ pc(q)− 1
2
≤ C2(1− q)θ

as q goes to 1.

Theorem 7.1.1 implies 1/2 ≤ θ ≤ 1.

This chapter is organized as follows. In Section 7.2, we will present the discrete-
time version of the Harris lemma. Section 7.3 gives results by the Katori-Konno
method. Section 7.4 treats the Holley-Liggett method.

7.2. Harris Lemma

Here we present discrete-time version of the Harris lemma which appeared in
Konno.3 Let Y ∗ denote the set of all [ 0, 1 ]-valued measurable functions on Y .

Lemma 7.2.1. (Harris lemma) Let hi ∈ Y ∗ (i = 1, 2) with

(1) hi(φ) = 0,

(2) 0 < hi(A) ≤ 1 for any A ∈ Y with A 6= φ.

For any ε > 0, there is an N ≥ 1 such that if |A| ≥ N , then

(3) E
(
hi(ξA

1 )
) ≥ 1− ε,

(4) E
(
h1(ξA

1 )− h1(A)
) ≤ 0 ≤ E

(
h2(ξA

1 )− h2(A)
)

for any A ∈ Y.

Then

(5) h2(A) ≤ σ(A) ≤ h1(A) for any A ∈ Y.

In particular,

(6) h2({0}) ≤ ρ(p, q) ≤ h1({0}),
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where 0 is the origin.

In the rest of this section, we assume that p ≤ q < 1. When q = 1, the proof
is almost trivial, so we will omit them. To prove Lemma 7.2.1, we require some
preliminary lemmas. Write A as a union of maximal subintervals

A =
k⋃

i=1

Ii, (7.1)

where Ii = {mi + 1,mi + 2, . . . , ni} and mi < ni < mi+1. Define

L = |{m1 + 1, . . . , n1 − 1,m2 + 1, . . . , n2 − 1, . . . ,mk + 1, . . . , nk − 1}|,
M = |{m1, n1,m2, n2, . . . , mk, nk}|.

The definitions of L and M give

L + M = |A|+ k, (7.2)

M = 2k. (7.3)

Then the following is easily shown by the property of binomial distribution.

Lemma 7.2.2. For any A ∈ Y and n ∈ {0, 1, . . . , |A|+ k},

P (|ξA
1 | = n) =

L∑

l=0

M∑
m=0

1n(l + m)
(

L

l

)
ql(1− q)L−l

(
M

m

)
pm(1− p)M−m,

where 1x(y) = 1 if y = x, and = 0 otherwise and

(
i

j

)
=

i!
j! (i− j)!

for 0 ≤ j ≤ i.

Exercise 7.2. Prove Lemma 7.2.2.

Furthermore we require the next lemma.

Lemma 7.2.3. For any A ∈ Y and N ≥ 1,

lim
n→∞

P (0 < |ξA
n | ≤ N) = 0.

Proof. It is enough to show that for any A ∈ Y and r ≥ 1,

lim
n→∞

P (|ξA
n | = r) = 0.
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By the Markov property,

P (|ξA
n+1| = r − 1) =

∞∑
m=0

E
(
P (|ξξA

n
1 | = r − 1) : |ξA

n | = m
)

≥ E
(
P (|ξξA

n
1 | = r − 1) : |ξA

n | = r
)

≥ c(r)P (|ξA
n | = r),

where
c(r) = inf

B:|B|=r
P (|ξB

1 | = r − 1) > 0.

Note that the positivity of c(r) follows from Lemma 7.2.2. Therefore it suffices to
prove that for any A ∈ Y,

lim
n→∞

P (|ξA
n | = 1) = 0.

To do so, we will show that
∞∑

n=1

P (|ξA
n | = 1) < ∞.

By the Markov property,

P (|ξA
n+1| = 0)− P (|ξA

n | = 0) = P (|ξA
n+1| = 0)− P (|ξA

n | = 0, |ξA
n+1| = 0)

=
∞∑

k=1

P (|ξA
n | = k, |ξA

n+1| = 0)

≥ P (|ξA
n | = 1, |ξA

n+1| = 0)

= E
(
P (|ξξA

n
1 | = 0) : |ξA

n | = 1
)

= (1− p)2P (|ξA
n | = 1).

Then we see that p < 1 gives
∞∑

n=1

P (|ξA
n | = 1) ≤ 1

(1− p)2
< ∞.

Thus the proof is complete.

Exercise 7.3. Verify that for r ≥ 1,

c(r) = inf
B:|B|=r

P (|ξB
1 | = r − 1) > 0.

From now on we will consider the proof of Lemma 7.2.1. For any A ∈ Y and
N ≥ 1, Lemma 7.2.3 gives

σ(A) = lim
n→∞

P (ξA
n 6= φ)

= lim
n→∞

P (|ξA
n | > N) + lim

n→∞
P (0 < |ξA

n | ≤ N)

= lim
n→∞

P (|ξA
n | > N).

(7.4)
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From the Markov property and condition (1),

E(h(ξA
n+1)) = E

(
E(h(ξξA

n
1 ))

)

= E
(
E(h(ξξA

n
1 )) : |ξA

n | > N
)

+ E
(
E(h(ξξA

n
1 )) : 0 < |ξA

n | ≤ N
)
.

(7.5)

By using h(A) ≤ 1 for any A ∈ Y and Lemma 7.2.3, we have

lim
n→∞

E
(
E(h(ξξA

n
1 )) : 0 < |ξA

n | ≤ N
)

= 0.

Using this result and Eq.(7.5), we have

lim inf
n→∞

E(h(ξA
n+1)) = lim inf

n→∞
E

(
E(h(ξξA

n
1 )) : |ξA

n | > N
)
. (7.6)

Therefore combination of Eqs.(7.4), (7.6) and condition (3) implies that for any ε > 0,
there is an N ≥ 1 such that

lim inf
n→∞

E(h(ξA
n+1)) ≥ (1− ε) lim inf

n→∞
P (|ξA

n | > N)

= (1− ε)σ(A).
(7.7)

By using Eq.(7.7), h(φ) = 0, h(A) ≤ 1 for any A ∈ Y and the definition of σ(A), we
see that for any ε > 0,

(1− ε)σ(A) ≤ lim inf
n→∞

E(h(ξA
n ))

= lim inf
n→∞

E
(
h(ξA

n ) : ξA
n 6= φ

)

≤ lim sup
n→∞

E
(
h(ξA

n ) : ξA
n 6= φ

)

≤ lim
n→∞

P (ξA
n 6= φ)

= σ(A).

Thus it follows that
σ(A) = lim

n→∞
E(h(ξA

n )). (7.8)

From the Markov property and condition (4), we obtain

E(h(ξA
2 )) = E

(
E(h(ξξA

1
1 ))

)
≤ E(h(ξA

1 )) ≤ h(A).

Using a similar argument repeatedly, we see that for any n ≥ 1,

E(h(ξA
n )) ≤ h(A). (7.9)

Combining Eqs.(7.8) and (7.9) gives

σ(A) ≤ h(A),
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for any A ∈ Y . Thus the proof of part (5) in Lemma 7.2.1 is complete. Part (6)
follows from taking A = {0} in part (5).

Exercise 7.4. Verify that for A ∈ Y,

E(h(ξA
n+1)) ≤ E(h(ξA

n )) (n ≥ 0).

Exercise 7.5. Let ξ0
n = ξ

{0}
n . Show that for 1/2 ≤ p ≤ 1,

(1) E(h(ξ0
0)) = E(h(ξ0

1)) = − 1
p2

+
2
p
,

(2) E(h(ξ0
2)) = −4

p
+ 14− 16p + 9p2 − 2p3.

Exercise 7.6. Check the following fact:

E(h(ξ0
2)) ≤ E(h(ξ0

1)).

7.3. Katori-Konno Method

In this section, we will give the upper bound on σ(A) by the Katori-Konno
method. Let |A| be the cardinality of A ∈ Y. Then the following result was obtained
by Konno.3

Theorem 7.3.1. Let 1/2 ≤ p ≤ q ≤ 1.

(1) σ(A) ≤ σ(KK)(A) = 1−
(

1− p

p

)2|A|
for all A ∈ Y.

In particular,

(2) ρ(p, q) ≤ ρ(KK)(p, q) = 1−
(

1− p

p

)2

.

This result corresponds to the first bound by the Katori-Konno method. Part (2)
can be also obtained from the result on page 97 of Durrett2 in the following way.
Observing the behavior of edge processes of this model gives

ρ(p, 1) = 1−
(

1− p

p

)2

.

Therefore part (2) follows from ρ(p, q) ≤ ρ(p, 1) for q ≤ 1.
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In the rest of this section, we assume q < 1. When q = 1, the proof is almost
trivial, so we will omit them.

To prove this theorem, we need the following 4 steps.
Step 1. First we let h(A) = 1− α|A| with 0 ≤ α ≤ 1.

Step 2. Next we decide 0 < α∗ < 1 as the unique solution of

E(h(ξ{0}1 )) = h({0}),

that is, [
p2α− (1− p)2

]
[α− 1] = 0. (7.10)

Here we assume that
1
2

< p ≤ q < 1. (7.11)

From Eq.(7.10), we take

α∗ =
(

1− p

p

)2

, (7.12)

and let h(A) = 1− α
|A|
∗ . Remark that Eq.(7.11) gives

0 < α∗ < 1. (7.13)

Step 3. Now we will check conditions (1)-(3) in Lemma 7.2.1 (Harris lemma).
Condition (1) and h(A) ≤ 1 in condition (2) are trivial. The positivity of h(A) for
a non-empty set A ∈ Y is equivalent to α

|A|
∗ < 1. The last inequality comes from

Eq.(7.13). As for (3), it is sufficient to show that

lim
|A|→∞

E(α|ξ
A
1 |∗ ) = 0, (7.14)

when q = p. By Lemma 7.2.2, in the case of general p and q, we obtain

E(α|ξ
A
1 |∗ ) = [α∗q + 1− q]L[α∗p + 1− p]M . (7.15)

By using Eq.(7.15), q = p, and k ≥ 1, we see that

E(α|ξ
A
1 |∗ ) = [α∗p + 1− p]|A|+k ≤ [α∗p + 1− p]|A|+1

.

Therefore Eq.(7.14) follows from the last result, since 0 < α∗p + 1− p < 1.
Step 4. Finally we will check condition (4). Note that Eq.(7.10) gives

α∗ = [α∗p + 1− p]2 . (7.16)

By Eq.(7.16), condition (4) is equivalent to

[α∗p + 1− p]2|A| ≤ E(α|ξ
A
1 |∗ ). (7.17)
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From Eq.(7.15), we see that Eq.(7.17) can be rewritten as

[α∗p + 1− p]2|A| ≤ [α∗q + 1− q]L [α∗p + 1− p]M . (7.18)

By Eqs.(7.2) and (7.3), we see that Eq.(7.18) is equivalent to

[α∗p + 1− p]2L ≤ [α∗q + 1− q]L . (7.19)

Then Eq.(7.16) implies that Eq.(7.19) is equivalent to

αL
∗ ≤ [α∗q + 1− q]L .

The last inequality holds, since (1− q)α∗ ≤ 1− q. Therefore we can check condition
(4), and thus the proof of Theorem 7.3.1 (1) is complete. Part (2) follows from taking
A = {0} in part (1).

7.4. Holley-Liggett Method

In this section we will discuss the Holley-Liggett method briefly. The argument
of Liggett1 implies

Theorem 7.4.1. Let

p(HL)
c (q) =

1 +
√

1− q

2
and ρ(HL)(p, q) =

2p− q +
√

q[q − 4p(1− p)]
2p2

.

Then we have

pc(q) ≤ p(HL)
c (q) for 0 ≤ q ≤ 1,

and

ρ(p, q) ≥ ρ(HL)(p, q) for
1
2
≤ p ≤ 1 and q ≥ 4p(1− p).

In this section, we will show just how to get these bounds as in the case of the
basic contact process in one dimension. Let µ be a renewal measure on {0, 1}Z whose
density f(n)(= F (n)− F (n + 1)) is given by

E(h(ξA
1 )) = h(A),

for all A of the form {1, 2, . . . , n} (n ≥ 1), where

h(A) = µ{η : η(x) = 1 for some x ∈ A}.

Remark that

f(n) =
µ(•

n−1︷ ︸︸ ︷◦ · · · ◦ •)
µ(•) and F (n) =

µ(•
n−1︷ ︸︸ ︷◦ · · · ◦)

µ(•) for n ≥ 1.
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The definition of F (n) gives F (1) = 1. A direct computation implies that

E(h(ξ{1}1 )) = h({1})

gives

F (2) =
(1− p

p

)2

.

Similarly, for n ≥ 2,

E(h(ξ{1,2,...,n}
1 )) = h({1, 2, . . . , n})

gives

p2F (n + 1) = (1− q)
n−1∑

k=1

F (k)F (n + 1− k) + (1− p)2F (n). (7.20)

We introduce the generating function

φ(u) =
∞∑

n=1

F (u)un.

Multiplying Eq.(7.20) by un+1, summing by n ≥ 2 and using the value of F (2) leads
to the following quadratic equation of φ:

(1− q)φ2(u)−
[
p2 +

{
1− q − (1− p)2

}
u
]
φ(u) + p2u = 0.

The nonnegativity of the discriminant of this equation with u = 1 is equivalent to

q
[
q − 4p(1− p)

]
≥ 0.

The last inequality gives the upper bound p
(HL)
c (q) on pc(q). Let M = 1/{φ(1)}. So

M satisfies the following equation:

(1− q)M2 + (q − 2p)M + p2 = 0. (7.21)

Note that

ρ(HL)(p, q) = µ(•) =
1

φ(1)
= M. (7.22)

Combining Eq.(7.21) with Eq.(7.22) gives the lower bound on ρ(p, q) :

ρ(HL)(p, q) =
2p− q +

√
q[q − 4p(1− p)]
2p2

.
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CHAPTER 8

3-STATE CYCLIC PARTICLE SYSTEMS

8.1. Introduction

In this chapter we consider 3-state interacting particle systems, in particular,
cyclic type models. Until the previous chapter we consider just 2-state models, i.e., 0
and 1. Here we mainly study the next cyclic model. The dynamics is as follows: for
x ∈ Zd and η ∈ {0, 1, 2}Zd

,

0 → 1 at rate n(1; x, η),

1 → 2 at rate n(2; x, η),

2 → 0 at rate n(0; x, η),

where n(i;x, η) = |{y : |x − y| = 1 and η(x) = i − 1, η(y) = i mod 3}|. We
call this model cyclic particle system for short in these notes. In general, the N -
state cyclic particle system can be considered in the following way; for x ∈ Zd and
η ∈ {0, 1, . . . , N − 1}Zd

,

i → i + 1 mod N at rate n(i + 1; x, η).

where n(i; x, η) = |{y : |x − y| = 1 and η(x) = i − 1, η(y) = i mod N}|. When
N = 2, the cyclic model is equivalent to the standard two-state voter model, see
Chapter V of Liggett,1 for example. Our process is N = 3. This model can be
considered as the biological model for three competing species. In other words, it is
a lattice version of the Lotka-Volterra model. It is easy to see that there are three
trivial invariant measures; δ0, δ1, and δ2. In the case of one dimension, considering
the walls made by two different species, we can easily show that the above three
measures are only extreme measures, that is, any invariant measure can be written as
a convex combination of δ0, δ1 and δ2. Since the number of walls just decrease. So the
interesting phenomena would appear in higher dimensions. The case of most biological
interest is d = 2. On the other hand, concerning many-state cyclic particle system
(N ≥ 3) in one dimension, Bramson and Griffeath2 studied the results on fixation.
The many-state cyclic particle system (N ≥ 3) is not reversible, additive or even



114 Lecture Notes on Interacting Particle Systems

attractive, so they restricted attention to the one dimensional case. Recently Tainaka
and Yamasaki3 considered the case N = 4 to introduce vortices in two dimensions
and strings in three dimensions by using Monte Carlo simulations.

Cyclic particle systems (i.e. N = 3) in one and two dimensions were first studied
by Tainaka4 by Monte Carlo simulations. He reported that the two-dimensional cyclic
particle system approaches the nontrivial stable state regardless of initial conditions.
On the other hand, by the mean-field theory, the d-dimensional cyclic particle system
reveals a neutrally stable center; the density of each species oscillates around the fixed
points where three species coexists with equal densities, for example, see Itoh.5−7

Moreover Tainaka8 showed fixed point for the dynamics of pair-approximation be-
comes unstable. So, following Tainaka’s statements8, in the case of two dimensions
(probably also higher dimensions,) one of the interesting things is as follows: for
nontrivial fixed point,

1. Monte Carlo simulations show it becomes stable focus.
2. Mean-field approximation (the first approximation) shows it becomes neutrally

stable center.
3. Pair-approximation (the second approximation) shows it becomes unstable point.

That is, the second approximation is not better than the first one for the stability of
the cyclic particle system in two dimensions.

This chapter is organized as follows. Section 8.2 is devoted to master equations
and correlation identities for the d-dimensional cyclic particle systems. In Sections 8.3
and 8.4, we consider the mean-field and pair approximations for this system respec-
tively. Finally Section 8.5 is devoted to the cyclic particle system with an external
field.

8.2. Correlation Identities

In this section, we consider the correlation identities for the d-dimensional cyclic
particle system. To do so, first we introduce the following formal generator of this
process as in the case of the basic contact process. Let y ∼ x denote that y is a
nearest neighbor of x.

Ωf(η) =
∑

x

I0(η(x))
∑
y∼x

I1(η(y))[f(ηx,0→1)− f(η)]

+
∑

x

I1(η(x))
∑
y∼x

I2(η(y))[f(ηx,1→2)− f(η)]

+
∑

x

I2(η(x))
∑
y∼x

I0(η(y))[f(ηx,2→0)− f(η)],

where Ii(j) = 1 if j = i, = 0 if j 6= i, and ηx,i→j(k) = η(k) if k 6= x, = η(x) if
η(x) 6= i, = j if η(x) = i.

From now on we assume the initial measures we consider here are translation,
rotation and reflection invariant. Let ρt(i) be the density of i species for a site at time
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t, that is, ρt(i) = E[Ii(ηt(0))], where ηt is the cyclic particle system at time t and 0
is the origin. If we take f(η) = I0(η(0)), then

Ωf(η) = −
∑
y∼0

I0(η(0))I1(η(y)) +
∑
y∼0

I2(η(0))I0(η(y)).

Hence translation, rotation and reflection invariance for initial measure give

dρt(0)
dt

= z [ρt(20)− ρt(01)] .

where z = 2d (d is the dimensionality) and ρt(ij) = E [Ii(ηt(0))Ij(ηt(e1))] where
e1 = (1, 0, . . . , 0) be a unit vector.

Exercise 8.1. Verify the following differential equations;

dρt(1)
dt

= z [ρt(01)− ρt(12)] ,

dρt(2)
dt

= z [ρt(12)− ρt(20)] .

Next we will compute the differential equations for two-point correlation functions
ρt(ij). In a similar way, if f(η) = I0(η(0))I1(η(e1)), then

Ωf(η) = I0(η(0))
∑
y∼0

I1(η(y))[I0(1)I1(η(e1))− I0(η(0))I1(η(e1))]

+ I0(η(e1))
∑
y∼e1

I1(η(y)) [I0(η(0))I1(1)− I0(η(0))I1(η(e1))]

+ I1(η(0))
∑
y∼0

I2(η(y)) [I0(2)I1(η(e1))− I0(η(0))I1(η(e1))]

+ I1(η(e1))
∑
y∼e1

I2(η(y)) [I0(η(0))I1(2)− I0(η(0))I1(η(e1))]

+ I2(η(0))
∑
y∼0

I0(η(y)) [I0(0)I1(η(e1))− I0(η(0))I1(η(e1))]

+ I2(η(e1))
∑
y∼e1

I0(η(y)) [I0(η(0))I1(0)− I0(η(0))I1(η(e1))]

= −I0(η(0))I1(η(e1))−
∑

y∼0,y 6=e1

I0(η(0))I1(η(e1))I1(η(y))

+
∑

y∼e1,y 6=0

I0(η(0))I0(η(e1))I1(η(y))

−
∑

y∼e1,y 6=0

I0(η(0))I1(η(e1))I2(η(y))

+
∑

y∼0,y 6=e1

I2(η(0))I1(η(e1))I0(η(y)).
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Therefore we have

dρt(01)
dt

= −ρt(01) +
∑

y∼e1,y 6=0

[ρt(00, 1) + ρt(12, 0)− ρt(10, 1)− ρt(01, 2)],

where ρt(ij, k) = E [Ii(ηt(0))Ij(ηt(e1))Ik(ηt(y))] for y with y ∼ e1 and y 6= 0. Note
that we omit y in ρt(ij, k) for simplicity. Similarly we have differential equations for
other ρt(ij). Hence the following result can be obtained.

Theorem 8.2.1. Let z = 2d. For any initial measure with translation, rotation and

reflection invariances, we have

dρt(0)
dt

= z [ρt(20)− ρt(01)] .(1)

dρt(1)
dt

= z [ρt(01)− ρt(12)] .(2)

dρt(2)
dt

= z [ρt(12)− ρt(20)] .(3)

dρt(00)
dt

= 2ρt(20) + 2
∑

y∼e1,y 6=0

[ρt(02, 0)− ρt(00, 1)].(4)

dρt(11)
dt

= 2ρt(01) + 2
∑

y∼e1,y 6=0

[ρt(10, 1)− ρt(11, 2)].(5)

dρt(22)
dt

= 2ρt(12) + 2
∑

y∼e1,y 6=0

[ρt(21, 2)− ρt(22, 0)].(6)

dρt(01)
dt

= −ρt(01) +
∑

y∼e1,y 6=0

[ρt(00, 1) + ρt(12, 0)− ρt(10, 1)− ρt(01, 2)].(7)

dρt(12)
dt

= −ρt(12) +
∑

y∼e1,y 6=0

[ρt(11, 2) + ρt(20, 1)− ρt(21, 2)− ρt(12, 0)].(8)

dρt(20)
dt

= −ρt(20) +
∑

y∼e1,y 6=0

[ρt(22, 0) + ρt(01, 2)− ρt(02, 0)− ρt(20, 1)].(9)

Exercise 8.2. Verify Theorem 8.2.1 (4)-(6), (8) and (9).

In the stationary state, we have

Corollary 8.2.2.

ρ(01) = ρ(12) = ρ(20).(1)
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−ρ(01) =
∑

y∼e1,y 6=0

[ρ(02, 0)− ρ(00, 1)] =
∑

y∼e1,y 6=0

[ρ(10, 1)− ρ(11, 2)](2)

=
∑

y∼e1,y 6=0

[ρ(21, 2)− ρ(22, 0)].

ρ(01) =
∑

y∼e1,y 6=0

[ρ(00, 1) + ρ(12, 0)− ρ(10, 1)− ρ(01, 2)](3)

=
∑

y∼e1,y 6=0

[ρ(11, 2) + ρ(20, 1)− ρ(21, 2)− ρ(12, 0)]

=
∑

y∼e1,y 6=0

[ρ(22, 0) + ρ(01, 2)− ρ(02, 0)− ρ(20, 1)]

8.3. Mean-Field Approximation

In this section we consider the mean-field approximation for the cyclic particle
system. Let It = ρt(0) + ρt(1) + ρt(2) and Jt = ρt(0)ρt(1)ρt(2). Then It = 1 for
any t, so it is trivial conservative quantity. In the mean-field theory, Jt also becomes
conservative quantity. That is, if we assume ρt(ij) = ρt(i)ρt(j) for any t and i, j,
(mean-field approximation,) then Theorem 8.2.1 (1)-(3) give

dJt

dt
= 0.

Concerning the stationary density, if we assume ρ(ij) = ρ(i)ρ(j) for any i, j, (mean-
field approximation), then Corollary 8.2.2 (1) implies

(ρ(0), ρ(1), ρ(2)) = (1, 0, 0), (0, 1, 0), (0, 0, 1), (1/3, 1/3, 1/3).

Next we discuss the stability for the cyclic particle system by mean-field approx-
imation. For simplicity, we assume z = 1. Let

ρt(0) = ρ∗t (0) + xt,

ρt(1) = ρ∗t (1) + yt,

ρt(2) = ρ∗t (2) + zt,

where (ρ∗t (0), ρ∗t (1), ρ∗t (2)) is a stationary density and (xt, yt, zt) is a fluctuation with
xt + yt + zt = 0.

(i) (ρ∗t (0), ρ∗t (1), ρ∗t (2)) = (1, 0, 0). In this case, we begin with

dxt

dt
=

dρt(0)
dt

= ρt(0)ρt(2)− ρt(0)ρt(1)

= (ρ∗t (0) + xt)(ρ∗t (2) + zt)− (ρ∗t (0) + xt)(ρ∗t (1) + yt)

= (1 + xt)zt − (1 + xt)yt
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Here we neglect xtzt and xtyt and use zt = −xt−yt, so we have the following linearized
equation:

dxt

dt
= −xt − 2yt.

Similarly we get
dyt

dt
= yt.

Therefore
d

dt

(
xt

yt

)
=

(−1 −2
0 1

)(
xt

yt

)
.

The eigenvalues of this matrix are −1 and 1. So we conclude that (1, 0, 0) is unstable.
In a similar way, we see that (0, 1, 0) and (0, 0, 1) are also unstable.
(ii) (ρ∗t (0), ρ∗t (1), ρ∗t (2)) = (1/3, 1/3, 1/3). In this case, we obtain

d

dt

(
xt

yt

)
=

1
3

(−1 −2
2 1

) (
xt

yt

)
.

The eigenvalues of this matrix are ±√3i. So we conclude that (1/3, 1/3, 1/3) is
neutrally stable.

8.4. Pair-Approximation

This section is devoted to pair-approximation. In the stationary states, if we
assume ρ(j)ρ(ij, k) = ρ(ij)ρ(jk) for any i, j, k, (pair-approximation), then Corollary
8.2.2 (1)-(3) give a nontrivial stationary density;

ρ(i) =
1
3
, ρ(ii) =

z + 1
9(z − 1)

, ρ(ij) =
z − 2

9(z − 1)
(i 6= j), (8.1)

where z = 2d. When d = 1, Eq.(8.1) becomes

ρ(i) = ρ(ii) =
1
3
, ρ(ij) = 0 (i 6= j). (8.2)

So it suggests any invariant measure in one dimension is a convex combination of
δ0, δ1 and δ2. In any dimension, we see that ρ(ii) > 1/9 and ρ(ij) < 1/9 (i 6= j).
Furthermore, if d goes to infinity, both ρ(ii) and ρ(ij) with i 6= j approach to 1/9,
that is, mean-field limit. However, as Tainaka8 pointed out, pair-approximation does
not explain the stability for the cyclic particle system.

8.5. Cyclic Particle System with External Field

In this section we consider the cyclic particle system with an external field from
1 → 0 as follows; for x ∈ Zd and η ∈ {0, 1, 2}Zd

,

0 → 1 at rate n(1; x, η),

1 → 2 at rate n(2; x, η),

2 → 0 at rate n(0; x, η),

1 → 0 at rate δ,
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where n(i, x; η) = |{y : |x − y| = 1 and η(y) = i}|. This system was first studied by
Tainaka.9 The formal generator is given by

Ωf(η) =
∑

x

I0(η(x))
∑
y∼x

I1(η(y))[f(ηx,0→1)− f(η)]

+
∑

x

I1(η(x))
∑
y∼x

I2(η(y))[f(ηx,1→2)− f(η)]

+
∑

x

I2(η(x))
∑
y∼x

I0(η(y))[f(ηx,2→0)− f(η)]

+
∑

x

I1(η(x))[f(ηx,1→0)− f(η)],

where Ii(j) = 1 if j = i, = 0 if j 6= i, and ηx,i→j(k) = η(k) if k 6= x, = η(x) if
η(x) 6= i, = j if η(x) = i. As in the cyclic particle system, we obtain

Theorem 8.5.1. Let z = 2d. For any initial measure with translation, rotation and

reflection invariances, we have

dρt(0)
dt

= z [ρt(20)− ρt(01)] + δρt(1).(1)

dρt(1)
dt

= z [ρt(01)− ρt(12)]− δρt(1).(2)

dρt(2)
dt

= z [ρt(12)− ρt(20)] .(3)

dρt(00)
dt

= 2ρt(20) + 2
∑

y∼e1,y 6=0

[ρt(02, 0)− ρt(00, 1)] + 2δρt(01).(4)

dρt(11)
dt

= 2ρt(01) + 2
∑

y∼e1,y 6=0

[ρt(10, 1)− ρt(11, 2)]− 2δρt(11).(5)

dρt(22)
dt

= 2ρt(12) + 2
∑

y∼e1,y 6=0

[ρt(21, 2)− ρt(22, 0)].(6)

dρt(01)
dt

= −ρt(01) +
∑

y∼e1,y 6=0

[ρt(00, 1) + ρt(12, 0)− ρt(10, 1)− ρt(01, 2)](7)

+ δρt(11)− δρt(01).

dρt(12)
dt

= −ρt(12) +
∑

y∼e1,y 6=0

[ρt(11, 2) + ρt(20, 1)− ρt(21, 2)− ρt(12, 0)](8)

− δρt(02).

dρt(20)
dt

= −ρt(20) +
∑

y∼e1,y 6=0

[ρt(22, 0) + ρt(01, 2)− ρt(02, 0)− ρt(20, 1)](9)

+ δρt(12).
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In a stationary state, if we assume ρ(ij) = ρ(i)ρ(j) for any i, j (mean-field
approximation), then Theorem 8.5.1 gives

ρ(0) = ρ(1) =
z + δ

3z
, ρ(2) =

z − 2δ

3z
.

Then, one of the interesting open problems presented by Tainaka9 is as follows:

Open Problem 8.5.2. Let d = 2. Suppose that η0(x), x ∈ Z2 are independent and
P (η0(x) = i) = 1/3 for any x and i = 0, 1, 2. Then there exists δc > 0 such that for
any 0 < δ < δc,

ρ(1) >
1
3
.
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