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0. Introduction

The aim of these notes is to consider the following problems in various
cases.

Problem 1. Given two manifolds of the same dimension in a projec-
tive space, how can we decide that they are projectively equivalent to
each other?

Let f: M — P™ and g: N — P™ be immersions. The problem is to
look for conditions that enable us to find a diffeomorphism ¢p: M — N
and a projective transformation p of P™ such that po f = g o . This
is in general of global nature and seems more difficult than the next

Problem 2. Let fi and fo be two immersions of a manifold M into
P™. Find conditions so that fo = po fi for some projective transfor-
mation p.

This is in principle a local problem and the main concern of these
notes. The relation with a system of differential equations is seen by
the following rough arguments. Let (z!,...,2™) be local coordinates
of M and make a set of vectors { f,0f/0x",0%f/0x'0x7,...}. Since
the maximum possible number of independent vectors are n + 1, there
will be a linear relation among each n + 2 vectors of this set. These
relations make a system of linear homogeneous differential equations
satisfied by f. By the linearity, each set of independent solutions, the
number of which is assumed to be n + 1, define an immersion projec-
tively equivalent to f. Conversely, given such a system whose rank, the
dimension of solution space, is n + 1, the fundamental set of solutions
define an immersion.

The method we now take for the above problems is to draw some
geometrical information out of this system, that is sufficient to charac-
terize immersion. This method originates in Halphen’s study of ordi-
nary linear differential equations and in Wilczynski’s work for curves
and surfaces among others.



2 0. Introduction

In Chapter 1 we deal with a mapping from M™ to a same-dimensional
P™. Such a mapping when n = 1 is called a projective motion by E.
Cartan. The aim is to review Schwarzian derivatives from a geometric
point of view. Main references are [CAR| and [Y]. Chapter 2 treats
curves in a projective plane and recalls the theory by Laguerre-Forsyth.
We give some applications to linear ordinary differential equations. In
Chapter 3 we recall the theory of ruled surfaces and give a generalization
of treatments of plane curves and ruled surfaces. References for these
two chapters are [W1], [LAN] and [BOL] among other many volumes.

Chapter 4 reformulates the theory of hypersurfaces in a projective
space. The main emphasis is laid on the definition of several invariants
and on the formulation of a fundamental theorem. Chapter 5 is an
application in the study of a system of linear differential equations with
n variables of rank n + 2. The principal role is played by the conformal
geometry. The case n = 2 is separately treated. In Chapter 6 we discuss
the projective minimality. Transforms of surfaces due to Demoulin will
be formulated in our point of view. References for these four chapters
will be given in the context.

Notations: Throughout these notes, P" denotes an n-dimensional pro-
jective space over R. The coefficient field is R. Functions are assumed
to be C'*°. However, the most of arguments holds also for the complex
case: P" over C, the coeflicient field C and the holomorphic functions.
Some parts are valid only for the complex case, which will be stated
explicitly.
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1. Motion of Points in P"

We treat a mapping from an n-dimensional manifold into P”. When
n = 1, it is called a projective motion. The projective equivalence class
of such a mapping is described by Schwarzian derivatives. Sections 1—4
treat the case n = 1 and Section 5 the case n > 2.

§1. Schwarzian derivative

M denotes a 1-dimensional manifold with a coordinate t. A map-
ping from M to Pl:t — p(t) is called a motion of points in PL. We
forget sometimes to mention M saying “a motion p(t)”. General prob-
lem concerning the projective equivalence is now stated for motions as
follows.

Problem. Given two motions p(t) and q(t), decide whether they are
projectively equivalent or not. In other words when s the one trans-
formed to the other by a projective transformation?

Recall first the euclidean case: let x(t) and y(t) be motions in R!.
Then they are equivalent under a rigid motion, i.e. z(t) = y(t) + b for
a constant b, if and only if 2'(¢) = y'(¢). So in the projective case we
should ask for the condition replacing the derivative x’. To make the
discussion easier we fix an affine coordinate of P! as

p(t) =[1,f(t)] and q(t) =[1,q()].

Then the above problem is reduced to the problem to find a condition
that assures

_af+b
(1.1) g_cf+d'

Assume first this identity and take derivatives successively to get

, (ad — ec) f’
G ETIE

3



4 1. Motion of Points in P™

g// B f‘// 2f/

g f cf+d

£_<9_”>2:ﬂ_(f_”>2_ 2" AL
g \¢g f f cf +d = (cf +d)*

The last two terms are equal to
1 f// 2f/ 2 1 f// 2 1 g// 2 f// 2
(7 ama) (7)) 2 ((5) (7))
Hence, if we put
1 f/// 3 f// 2 1 f// / 1 f// 2
2 (-2 (8) =2 (L) -2 (L
2 f1 4ANf 2\ f 4\ f
and similarly for g, then we have an identity

{f;t} ={g;t}.

Here we have assumed f’ and ¢’ do not vanish; such a motion is called
a regular motion.

and

Proposition 1.1. If two regular motions p and q are projectively equiv-
alent, then {f;t} = {g;t} and conversely.

To see the converse statement we need

Lemma 1.2. 1°{(at+b)/(ct +d);t} = 0.

2° If t is a mon-constant function of s, then {f;t}dt? = {f;s}ds* +
{s;t} dt>.

3°{t; s} ds? = —{s;t} dt>.

A°If {f;t} =0, then f = (at +b)/(ct + d).

Assuming Lemma 1.2, we prove the converse. Replacing s in 2° by
g, we get {f;g}dg® = [{f;t} — {g;t}]dt? = 0. Hence, by 4°, f =
(ag +b)/(cg + d).



§2. Ordinary linear differential equation of order 2 5

Proof of Lemma 1.2. The assertion 1° follows from the first part of
Proposition 1.1, since {t;t} = 0. 2° is shown by computation. 3° is
a special case of 2° when f = t. The assertion 4° is seen by a simple
integration.

Definition. We call {f;t} the Schwarzian derivative of f with re-
spect to t.

We notice here that Proposition 1.1 says
S@t) ={f;t}

is defined independently of a choice of coordinates of P'. This is an
(differential) invariant of a projective equivalence class of motions. Fur-
thermore the quadratic differential S(t) dt? is invariant under any pro-
jective coordinate change of ¢.

§2. Ordinary linear differential equation of order 2

We next associate with every motion a linear differential equation
and understand the invariant S(¢) in terms of this equation. We write
the motion p(t) in homogeneous coordinates as p(t) = (z1(t),x2(1)).
Assume p(t) is regular, i.e.,

(2.1) Tixe — ;179 # 0.

Functions x;(t) satisfy the differential equation with unknown z(t):

' =z

f ) x| =0.
R N )

This can be written, by the assumption (2.1), as

(2.2) z" + p1a’ + pax =0,

which is the equation associated with the motion p. Let y; and y2

be a set of independent solutions. Then y; = > alz; for a constant
J



6 1. Motion of Points in P™

matrix (a;;) with det a;; # 0. Hence a motion (y1,y2) is equivalent to
the original p. Namely the differential equation of type (2.2) gives a
projective equivalence class of motions. Then, by referring the result in
§1, the invariant S(t) may have some relation with p; and ps. In fact
the explicit form is given in the following way.

First note that the equation (2.2) is not the only one associated with
the motion, since the choice of z; is not unique. Put y; = A(t)z; for a
non-vanishing function A\. Then y; also represent the same motion and
satisfy the differential equation

2)\/ 1 )\/2 )\/
(2.3) "+ <_T +p1> x’ + (—T—FQV—plX —|—p2>:z::0.

Hence for any A this equation may be considered as the same equa-
tion in our viewpoint. To kill the freedom of choice of A, we impose
that (2.3) should have a special form. This is done by choosing A so
that

2)\
p1 — B 0
and (2.3) turns out to be
(2.4) " + Q(t)x =0,
where
1 1
(2.5) Q(t) =p2 — ZP? - 519/1-

Proposition 1.3. Q(t) = S(t).

Proof. Let p(t) be a motion. It is represented by functions x;(t) of the
form

z1(t) = AQ@)f(t),  22(t) = A().
Let us find A so that x; satisfies (2.4). From equations (Af)” +Q(\f) =
0 and A 4+ QX = 0 follows 2\ f' + Af” = 0. Hence

(2.6) A= ()72



§3. Normal form of a motion 7

Then A
Q) =~ = {f:1} = 50),

which is the desired identity.

The equality (2.6) implies that, for a given f,
x1 = f(f/)—1/2 and To = (f/)—1/2
satisty (2.4) for Q = {f;t}.

§3. Normal form of a motion

We now try to find a normal form of the function f(t) relating with
value of ). Assume Q(t) is defined around ¢t = 0 and compute approx-
imate solutions of (2.4). Let

Q(t) =Q(0) + Q' (0)t + - - -
and put

=1+ =24+ 284+
x + 5 + 6 +

Inserting these expressions into (2.4), we get
0= (az+a3t+~--)+(Q(0)+Q’(0)t+...)<1+%tQJr...)
= (a2 + Q(0)) + (a3 + Q'(0))t + - --

Hence one approximate solution is

0
xl(t):1_¥t2+...
Another is obtained similarly by putting
— 4 23
x + 6 +
The result is 0
o (t) :t—%t“"ur--- .

. L2 . . .
Since f = — is an affine coordinate function, we have
I
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Proposition 1.4. For any reqular motion around t = 0, there is an
affine coordinate such that the motion is written as (1, f(t)) where

f(t):t+@t3+---

84. Example by H. A. Schwarz

We will in this section explain how the invariant was used by H. A.
Schwarz himself. For details and further results refer the books [F-K],
[Y].

The coefficient field is now C and the category is that of holomorphic
functions. Consider the Gauss hypergeometric differential equation

c a+b+1l-c ab
y' | =+ y +——=y=0
x x—1 x(x—1)

where a, b, ¢ are real parameters. This equation is defined on P!(z) and
has regular singularities at x = 0, 1, co. Let y; and y» be independent
solutions and put z = y1/y2. We are interested in the multivalued
mapping from Pl(z) to P!(z). The behavior of this mapping near
singularities are seen by the next

Lemma 1.5. Let z be a non-constant function around r = 0 and of
the form z = x°h(x) or z = (log x)h(x), where h(x) is a non-vanishing

holomorphic function. Then lim; ¢ 4x?{z;2} = 1—e? or 1 respectively.

To find the value e, let us compute the invariant Q(z). Since

1, ¢ c
of1 = o2 T 9w —1)2
1, cc c'?
=t + ,
4 422 2x(x—1)  4(x—1)2
where ¢ =a+b+ 1 — ¢, we get
22— 2d — (2 cc + 2ab

QW) = T -1 T e
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Then, by Lemma 1.5, the values e at x = 0, 1, oo are £(1 — ¢),
+(c—a—"b), £(a — b) respectively (for x = 0o, rewrite the equation by
introducing a new coordinate ¢ = 1/x and compute @ at t = 0). For
simplicity assume these numbers are not integers. Then Lemma 1.5
shows that around each singularity the mapping z behaves like z!*—¢l,
(1 — 2)le=e=® and (1/x)l*~b up to a projective transformation. From
this fact we can prove that the mapping z restricted to the upper half-
plane has its image in the inside of the triangle whose sides are circular
arcs and that the angles at the edge of the triangle are w|1—c¢|, m|c—a—b|
and m|a — b|.

This mapping is continued analytically to the lower half plane through
the intervals (0, 1), (1,00), and (00,0) and we obtain the multi-valued
mapping z. Put

\ 1 1 1
= — e V= ——
- "Tle—a—u a — b

and assume A, p and v are integers. Then Schwarz found the following
fact.

(H. A. Schwarz, 1872). The image of P1(z) is P!, C! or the unit disc

according as

1 1 1 .
—+—+—>1, =1 or <1 respectively.
A uv

§5. Schwarzian derivatives of several variables

Let M be an n-dimensional manifold with local coordinates (z°).
A motion of M on a projective space P" is now understood to be a
non-degenerate mapping

M > (z) — z(x) € P".

Problem in §1 can be read similarly. We need Schwarzian derivatives
of several variables defined below.
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Let (2%,...,2") be affine coordinates of z and j(z, z) be the jacobian:

k
iea) = ) 3 = 0

Its inverse is written

k
JF(z, 1) = 88:; :
Put
o(z,x) = log det j(z,x),
n
oi(z,x) = g;.,
82Z£
]

Then Schwarzian derivatives Sfj are defined by

(5.1) Sfj(z; x) = vfj(z, x) — 5;‘“03-(,2, x) — 5;?01-(,2, T).

Remark that these expressions are given by derivatives up to order 2.
When n = 1, this is trivial. So assume n > 2. The next is an analogue
of Lemma 1.2.

Lemma 1.6. 1° S}(z;2) = S§;(2;2).
2° > St =

3° S (Az; ) = SJi(2; ) for any projective transformation A € PGLy ;.
In particular, Sfj (Az;x) = 0.

4° Let x be a non-degenerate map of y. Then

SE(23y) — Spy (21 2)57 (1 9)59 (259) TF (2, ) = S (2;)

5¢ If SZ(z,x) = 0 for all i, 7 and k, then z = Az for a projective
transformation A € PG Ly, 1.
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Proof. 1° is trivial. 3° and 5° will be shown later. 4° is verified by a
direct calculation. 2° is seen as follows:

Z 0%z0 OxF
k: . — — A —
k Sulze) = — Ox' Ox 02 (n+1)oi =0

by definition of o.
From this lemma follows an analogue of Proposition 1.1:

Proposition 1.7. Two non-degenerate mappings z1 and zo are projec-
tively equivalent if and only if

Sfj(zl;x) = Sfj(zz;x) for all i, j and k.

The differential equations satisfied by the mapping z will next be
derived. Let y be a vector in A”*! representing z. Consider n+1 vectors
Y, Y1, Y2, - - - » Yn (ys = Oy/Ox"). They are linearly independent by non-
degeneracy. Hence the second-order derivatives z;; = 0%2/9z'0x’ are
linear combinations of these vectors; we have

(5.2) zij =Y Afz + AYz,
k

for some functions A’fj and A?j. These are equations defining a non-
degenerate mapping into P". If we take w = A\~!y instead of y for a
scalar function A, then new equations are

A sk Me Ay
wiy = <AZ‘ _5fy—5fyj> wy, + (A?jJrZAij’“—Tj)w
k

This verifies that we can choose y so that
(5.3) > Af =0
k

When this condition is satisfied we call (5.2) a normalized system.
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Proposition 1.8. Assume (5.2) is normalized. Then

o) k _ ok . o k

Proof. The components of y are A, Az!, ..., Az" for some \; they
satisfy (5.2). So

Z Al Xe + ADN
(Az") ”_ZA +AO()\Z)
whence we have
A
Ak = 5’“ +or2L A +Zszg

Then the normalization condition implies

)\.
0= AF = 1)o;
> A= )5+ (n+ Do

Hence we get 1°. To see 2°, differentiate (5.2) once getting

DAY,

szg—ZAmzk;g—l—Z B ”zk—i-A Zy + Dt Z]

2 DAY
zz(a$;J+ZA;?; +A05£)z+<8x”+214 )

Since this expression does not change by interchange of j and ¢, we
have the identity

k
(Z;ilj +ZA AO _ M +ZA 5k

whence follows easily the identity 2° by use of the condition (5.3).

We now give
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Proof of 3° and 5° of Lemma 1.6. We have seen that, for some A,
y = M1,2%,...,2") satisfies the normalized equation (5.2). Let A €
PGL, 1. Then y1 = p(1, (A2)L, ..., (A2)") is a linear transformation
of y for some p. Hence y; also satlsﬁes the same equations. This implies

SZ-(AZ;LU) — Ai?’j — S’f}(z;x); ie. 3°.

Next assume Sfj(z; r) = 0. Then y = A(1,21,...,2") satisfies a system
of equations y;; = 0 for some A. Then every component of y must
be a linear combination of 1, z!, ..., ™. Hence (2%) is a projective

transformation of (x*). This shows 5°.

As we have defined Schwarzian derivatives, it will be better to men-
tion projective structure and projective connection.

Definition. An n-dimensional manifold is said to admit a projective
structure if it is covered by a coordinate system {U,, z,} such that z,
maps U, diffeomorphically into an open set of P and the coordinate
change zg o 2, lis a projective transformation so far as it is defined.

Definition. A normal projective connection on an n-dimensional man-
ifold is a pair of a local coordinate system {U,, z,} and a system of
functions {Pf;;} attached to every U, so that they satisfy

1) P*.. = Pk,

at) ajir

2) Pl — Ph,dt (28, 20)77 (28, 20) J¥ (28, 2a) = S5(28; 2a)-

By these definitions, a projective structure is seen to be a normal
projective connection where Pk’ = 0. We call a projective connection
is flat if it arises from a pI'OJeCtIVG structure, in other words, if there
exists a coordinate system such that the projective connection is given
by Pk’ = 0 (more precisely, is compatible with the connection defined

by P"“ = 0). We cite a following characterization of flatness. Proof can
be glven by use of Lemma 1.6, 4°.

Proposition 1.9. A projective connection {z,, a”} 1s flat of and only
iof the system of equations
Z ] 2k + P, onj
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has n + 1 independent solutions. Here Pgij s given by
k k k k
(n—1)Py;; = Z(Paik,j — Phijr + Z Pl Poam; — Pg;jpamk)'

Remark. As for the role of holomorphic projective structures, refer
[GUN] and [K-O]. A system of differential equations called Appell-
Lauricella’s system is one of important examples of type (5.2). See
[Y] and references therein.



2. Plane curves

A plane curve is an immersion p of a 1-dimensional manifold into P?2.
This chapter treats the equivalence problem of plane curves. The funda-
mental invariant of a plane curve is Laguerre-Forsyth cubic differential
invariant defined in §1. If this invariant does not vanish, then we can
define the projective curvature, by use of which the projective Frenet
formula of a plane curve is given in §3. Since a plane curve is described
by an ordinary linear homogeneous differential equation of degree 3,
the theory of plane curves can be seen as a projective treatment of such
equations. Notions such as symmetric product and exterior product of
linear differential equations will be introduced.

§1. Plane curves

Let p(t) be a plane curve, i.e. an immersion of a 1-dimensional
manifold with a coordinate ¢ into P2. We denote by (z1,z2,73) a
system of homogeneous coordinates of P? and express the immersion p
as

p(t) = (z1(t), z2(1), 23(t)).

Each coordinate function x;(t) satisfies a differential equation

i x i i
111 1/ / - *
332 :L'Q .CUQ x2

24

We assume the coefficient of "/ does not vanish:

)
12 /
xe Xy x| #0.

xf zh w3

The point where this determinant vanishes is called an inflection point.
When this determinant vanishes everywhere, then, as is easily seen, the

15



16 2. Plane curves

curve is contained in a projective line. Under the assumption that the
curve has no inflection points, the equation reduces to

(1.1) 2"+ prax” + pox’ 4+ psz = 0.

Conversely, similarly as in the case of motions in P!, each set of
independent solutions defines a curve that is equivalent to the original
curve p. Hence (1.1) represents one and only one class of plane curves.
The equation (1.1) is not, however, the unique equation associated to
the curve p because, if we replace z with y = A\~'z, we arrive at another
equation also corresponding to this curve. By calculation we see that y
satisfies

MY+ BN+ pi Ny + (BN 4+ 2p1 N + pa )y
+(N"" + pr N+ pa X + p3N)y = 0.

Now we choose A\ by the condition
(1.2) 3X+p1)\:O

so that the equation becomes (rewrite x for y)

(1.3) 2" + Pyx’ + Pyz =0,
where
1
Py =ps —p| — gp%
(1.4)
Py=ps — 2pl + op} — <pip
3 —=DP3 3171 o7 P1 312-

We next want to see how the form (1.3) changes under a transfor-
mation of variables

(1.5) (t,x) — (s = f(t),y = g(t) '),
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§

(see Remark below). Denoting by “-” derivations with respect to s, we
get

' =g'y+9f'y

x// — g//y+ (29/]('/ +gf//)y+g(f/)2y
x/// — g///y + (3gllf/ _|_ 3g/f‘// _|_ gf///)y + 3<gl(f/)2 _|_ gf/f//):lj _I_ g(f/)-?)'y'.
Hence, to keep the vanishing of the coefficient of §j as (1.3), it is neces-
sary to assume

g +gf =0, e g=c/f.
In this case y satisfies
(f)?Y + (P — 4{f:t})y
[P/ = f P/ (F)? = £ /()2 + 205"/ (f1)°) ]y = 0.
So, letting f be a solution of

(1.6) itk =1P

we have, again replacing y with x and s with ¢,
(1.7) 2"+ Rx =0,
where

(1.8) R= (P~ 5P) /(1)

We define for later use

1
2
which is called Laguerre-Forsyth invariant of the original equation (1.1).
And the equation of form (1.7) is called a Laguerre-Forsyth canonical
form of (1.1). Now arises a question: which transformation (1.5) keeps

this form? Repeating the above process, we know such a transformation
is given by

(1.9) P=P;— =P,

g=c/f and {f;t}=0.
By Lemma 1.2, f is a linear fractional transformation. So we have
proved
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Proposition 2.1. 1° The differential equation (1.1) is transformed
by a change of variables to the equation of Laguerre-Forsyth canoni-
cal form.
2° Any change of variables (t,x) — (s,y) preserving this form is given
by

at + b

S= and y = C(ct + d) 2.

These transformations form a group isomorphic to R* x SLs.
3° Under this group the differential form P dt3 is invariant.

Definition. We call P dt? the Laguerre-Forsyth cubic differential in-
variant and ds = P'/3 dt the projective arc length element of the curve.

Proposition 2.2. Assume the invariant P vanishes everywhere. Then
the curve is a conic.

Proof. The associated equation of such a curve is normalized as 2"/ = 0
for an appropriate choice of a coordinate t. The independent solutions
are 1, t and t?. Hence the given curve is projectively equivalent to the
curve (1,t,t?) which is a conic.

Example. Let Y = f(X) be a plane curve in inhomogeneous coordi-
nate (X,Y). The associated equation, in case f” # 0, is

///_ﬂ " _

f/,x 0.

Then the invariant P is computed to yield

B 1 f/// " 9 f/// 3 1 f/// f/// /
r-—(7) -z (%) +:(7) (&)
Or, if we put &€ = (f”)~2/3, then

5///

P=->
§

| =
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Hence we have the curve Y = f(X) is a conic if and only if

9(f//)2f(5) _ 45f//f///f(4) + 40(f///)3 —0.

Remark. Consider a transformation ¢ in (¢, x)-space given by (¢, x) —
(1,&) = (7(t,x),&(t,z)) where I(7,£)/0(t,x) # 0. We can prove that
the equation (1.1) is transformed into a linear homogeneous differential
equation with unknown ¢ and the variable 7 if and only if ¢ has a form

£ =g(t)xr and T = f(t) as (1.5).
§2. Sextactic points and normal form of curves

So far we have normalized equations to define the invariant P. We
next see the role of P in a local representation of a curve.

Let p(t) be a plane curve defined around ¢ = 0. Under the gener-
ality assumption in §1 three vectors p(0), p’(0) and p”(0) are linearly
independent. Hence any point p(t) is written as

p(t) = zp(0) + = p'(0) +y p"(0)

for scalar functions z, y and z. We want to express these functions in
terms of the invariant P around ¢t = 0. Expand p(t) at ¢ = 0, then

p(t) = p(0) +tp'(0) + %tzp"(()) + %t3p’”(0) 4

Assume the parameter t is already chosen so as
p" +Pp=0.

Then, by a simple computation, we see that

p(t) = (1 — éat?’ —|—---)p(0) + (t— iat‘l —|—---)p'(0)

1 1
+<§t2 — antB + .- >p”(0),
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therefore
( 1
—1—Zqgt3+...
z 6a +
1
2.1 —t— —att4...
(2.1) < x 240, +
1 1
— 2 ah 4.
(Y=t Tt T

where a = P(0). Let X = z/z and Y = y/z be inhomogeneous coordi-
nates. Then

1
X:t+§at4+---

1 1
Y=-t?+_—at’ +---.
ol gttt

We have shown

Proposition 2.3. Any plane curve has a local expression

1 1
2.2 Y =-X2_ —gX5%4+...
(22) 2 '
at a non-inflectional point for an appropriate choice of inhomogeneous

coordinates (X,Y).

The value a that was the value P(0) for variable ¢t has no absolute
meaning by the ambiguity explained in Proposition 2.1, 2°. Whether
a is 0 or not is however projectively invariant and has a geometrical
meaning: consider the conic defined by Y = %X 2 (in homogeneous
coordinates p(0) 4+ ¢p'(0) + 1¢2p”(0)). Proposition 2.3 says that this
conic tangents to the curve at ¢ = 0 to the highest order of contact
unless a = 0 and to the order higher by at least one if a = 0. This
conic is called an osculating conic of the curve. Be careful that conics
Y = %bX 2 (b # 0) are also osculating conics. We have no invariant way
about how to choose b. The quantity which measures the difference of
a curve with its associated osculating conics will be given in the next

section.

Definition. We call a point where P vanishes a sextactic point.
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This notion resembles that of inflection points in the euclidean theory
of plane curves. In fact we have an analogue of the four-vertex theorem.

Theorem 2.4. (G. Herglotz-J. Radon) The number of sextactic points
of a strictly convex simply closed smooth curve is at least six.

We first prepare a lemma:

Lemma 2.5. Let p(t) be a closed smooth curve in P? without inflection
points. Let (x1(t),z2(t), x3(t)) be one of closed lifts. The coordinate
functions x; are periodic with period, say, 1 and satisfy ¥’ + p1x”’ +
pox’ +p3x = 0. Let P be the Laguerre-Forsyth invariant of this equation.
Then

1 9 [t
(2.3) / Px;x; exp (5/ p1(u) du) dt =0 for 1<4i,j<3.
0

Proof. Define a new parameter s = f(t) by f'(t) = exp(—3 ft p1(u) du).
Then the new differential equation is @ + ¢2@ + q3x = 0; (- = d/ds).
Let @Q be the invariant of this equation: Q) = q3 — %qz. We have seen
the identity Q ds® = P dt3. Hence

/P:ci:cj exp (; /tpl du) dt = /Qxia:j ds.
Now Stokes’s theorem proves Lemma as follows.
2/@@95]- ds = /(2q3 — Go)zixj ds
= - /{mz + @) + (T + o) T; + Goxixj } ds
= — /{(xzxj + 2,7 j) + (qezixy) } ds

= 0.
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Remark. Any closed curve in P? without inflection points is homo-
topically trivial ([SS]).

Proof of Theorem 2.4. Since the curve is assumed to be simply closed
and convex, it is contained in one affine plane. So we can take z3(t) = 1
throughout. The strong convexity implies that the curve has no inflec-
tion points. Assume first P has no zeros or has only one zero; P must
be of constant sign. Then taking a line outside the curve and denoting
this line by a linear equation ¢(x;) = 0, we see

/PE exp (;/pldu> dt # 0.

This contradicts to (2.3). We next assume that P has only two or three
zeros and changes sign. Then take a line through two zeros where P
changes sign. This also leads a contradiction as above. Hence P has
at least four zeros. But, if only four, then it is seen that the sign of P
on each arc changes alternately. Then we can find two lines, given by
linear functions ¢1 and /5, through zeros so that

2
/Pflfg exp <§ /p1 dt) du # 0,

which contradicts to (2.3). The five-zero case is also cleared by this
argument. Hence we have the theorem.

The first part of this proof shows also

Proposition 2.6. The number of sextactic points of a locally strongly
convexr smooth closed curve that is contained in one affine plane is at
least two.

The following two examples show that the numbers six and two above
are best possible.

Example. Define a curve (z,y) in A% by
sin2t  sin4t
4 * 8
cos2t  cos4t

= t _
Yy =acost+ 1 3

r = —asint +
0 <t < 27.
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This is simply closed and strongly convex when o > 1. Its sextactic
points are given by

sin 3t(7a cos 3t + 8 — a?) = 0.

So, when a > 8, the number of sextactic points is six (see Figure 1;
sectactic points are marked by quadrangles).

Example. Consider a curve (x,y) in A? given by

{ x = cost - cos(t/3)

y =sint - cos(t/3)

;0 <t <Am.

This is closed and locally strongly convex. Its sextactic points are (1,0)
and (0,0) (see Figure 2).

>

Figure 1 Figure 2

§3. Projective curvature

We have seen that P itself is not a scalar invariant. So, assuming
P = 0, we restart the normalization process with the projective length
s as a parameter. Then the equation (1.3) in §1 is written as

d3

d
Frs 3x+2kd—:1:—|—hx:().
s S
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Since P is now equal to 1, h = 1 + dk/ds. Namely
(3.1) "+ 2k +(1+Kk)x=0
is the equation with respect to the projective length parameter.

Definition. We call the coefficient k the projective curvature of a plane
curve. It is defined outside the set of sextactic points.

Since k is uniquely determined, we have

Theorem 2.7. Let p1 and ps be two connected plane curves with pa-
rameters t1 and to respectively and without sextactic points. Let ds;
and k; denote the projective length element and the projective curvature
of pi fori =1, 2.

1°. Assume p1 and po are projectively equivalent. Then there exists a
mapping ¢ between parameters, to = @(t1), such that

ds1 = ¢ dsy and ki = @ ks.

2°. Conwversely, if there exists a mapping ¢ satisfying these conditions,
then p1 and po are projectively equivalent.

We here remark that the equation (3.1) provides us a formula called
the projective Frenet formula. Define vector valued functions eg(s),
e1(s) and ex(s) by

€op =T
(3.2) er =a
eo =1a" + k.

Then (3.1) yields

€0 €0
(33) d €1 =w €1 ’
€9 €2
where
0 1 0
(3.4) w=|—-k 0 1]|ds
-1 —k 0
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This set of vectors (eg, €1, €2) is called a projective frame along a curve.
Theorem 2.7 says that this matrix-valued 1-form w describes a projec-
tive equivalence class of plane curves uniquely.

Proposition 2.8. The projective curvature k of the curve (1.1) is given
by

1 1P" 7 [(P\?
. —p23(-p -2 L L () ).
(3.5) k (22 : +18(P))

Proof. We denote by ’ the derivation with respect to the original param-
eter t. The parameter used for the normalization (1.7) is denoted by w.
It is determined by {u;s} = 1k. Since {u;s}ds® = [{u;t} — {s;¢}] dt?
by Lemma 1.2 ; we have

o ut} —{s;t}
b= s

By the identity ds = P/3 dt,

Hence, combined with (1.6) in §1, the formula follows.

Remark. Wilczynski has used other expressions ©3 and ©g to denote
the invariants. They are defined by

Q3 =P
Qg = 6PP" — 7(P')? — 9P,(P)>.

Subindices means the weight showing the order of relative invariance:
by a transformation (t,z) — (at,z), ©; changes into a~'©;. And it
is shown that, in case P = O3 # 0, ©3/03% is an absolute invariant,.
The formula (3.5) says that this ratio is equal to k3 up to a constant
multiple.
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Example. Let us find curves whose projective curvatures are constant.
Let \ be one of roots of the characteristic equation A3 + 2kXA +1 = 0.
Then e*® is a solution of (3.1). Following three cases occur.

1. Different three real roots: the curve is (e?*, €25, e*3%) equivalent to
Y = X™. Here m takes values other than +1, £2 and £1/2.

2. Different roots but two complex conjugates: the curve is
(e, el 4 eFs i(ets — ef)). In inhomogeneous coordinates,
X =ecosv'sand Y = e”*sinv's; v, vV are constants. This curve
is called a logarithmic spiral.

3. Double roots: the curve is Y = XeX.

These are all projectively homogeneous: the action of R > ¢ is given by
a projective transformation

t 0 0 e Yteosv't e Visinv't 0 1 0 t
.10 t™ 0 2. | —e “'sinv/t e %tcost/t 0] 3.10 et 0
0 O 1 0 0 1 0O 0 1

If a curve is projectively homogeneous and if it is not a conic nor a
line, then it is equivalent to one of above curves; because the projective
curvature of such a curve is constant.

Example. Consider an equation with a regular singularity at the ori-
gin:

a b
y///_|__2y/_|__3y20.
T T

By a computation, P = (a + b)/x3. Hence, if a + b = 0, this generates
a conic. Assume a + b # 0. Then the projective curvature of the
corresponding curve is seen to be k = 2(a —1)(a+b)~%3. So, if a = 1,
this belongs to the case 2 of the above Example.

84. Symmetric product of differential equations

We will consider the condition P = 0 in the different view point
introducing a new notion.
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Let us treat first a second-order equation.
2 +qx =0.

We choose two independent solutions 1 and x5. Their symmetric prod-
ucts y1 = (21)%, y2 = (z172) and y3 = (z2)* satisfy

y" +4qy +2¢'y = 0.

Then, by the definition (1.9), P vanishes. Since y; satisfies a quadratic
relation y193 = (y2)?2, this is obvious by the meaning of P. But in some
cases, this process gives non-trivial examples. See an example in the
end of this section.

We next treat a third-order equation

(4.1) 2" + pax’ + p3z = 0.
We try to find the equation satisfied by y = %x2. Successive derivations
yield
y/ .
y// — (x/)2 _|_ xm//
y/// = 3zz" + zx'" = 3z’ " _pr/ — s
Define

Y =y + pay + 2psy = 3a'a”".

Taking derivations further we get

Y = 32 2" + 3(33//)2 — _3p3y/ _ 3P2(x/)2 + 3(x//)2

(Y/ + 3p3y/) — 633/,%”/ _ 6p2$/$/, _ 3p/2(x/)2
= —4paY — 6p3(y" — (2')?) — 3pn ().

Hence

1

(42) (Y +3p3y’) +4p2Y + 6psy” = 6(p3 - 51"2) (x")?.
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The left side contains only derivatives of y. Taking one more derivation
and cancelling derivatives of x, we will obtain a six-order equation with
respect to y. This is the equation satisfied by any product of solutions
of (4.1). We call this equation the symmetric product. Note that this
definition can be generalized for higher order case or for several variables
case (see [HSY] and cf. Chapter 8).

Our concern here is, however, the fifth-order equation (4.2). If the
coefficient of the right side, that is the invariant P of the equation
(4.1), vanishes, then y satisfies a homogeneous fifth-order equation.
This phenomenon is observed also in view of the meaning of P. If P
vanishes, then independent solutions satisfy a quadratic relation as we
have seen in §1. This, in turn, imples that there holds a linear relation
between products. So the number of independent products reduces at
least by one and, hence, they satisty a fifth-order equation given by the
left hand side of (4.2). Conversely, if there is a linear relation between
solutions of the symmetric product of (4.1), that is, if solutions satisfy a
fifth-order equation, then there holds a relation such as ) a;;(z;z;) =0
for a non-trivial matrix a;;, x; being solutions. This means that the
mapping (z;) has image in a conic, and P = 0. So we have proved

24

Proposition 2.9. The symmetric product of x'" + pox’ + psx = 0
reduces to a fifth-order equation if and only if 2ps — ph, = 0.

This seems very simple but has important applications. One ap-
plication is an explanation of the following fact due to L. Fuchs. He
has considered the problem how to integrate the equation (4.1). In
other words, he treated the structure of the automorphism group of the
equation now called Picard-Vessiot group. Fuchs reduced this problem
to the problem to consider algebraic relations between solutions. Let
f € C[X1, X5, X3] be a polynomial satisfying f(z1,x2,23) = 0 for a set
of independent solutions z;. Define d = the minimum of degree (f) for
such polynomials. Then

(L. Fuchs, 1882) If d > 3, then the automorphism group is finite and
the equation is integrated by algebraic operations and by quadrature.
If d = 2, then the integration reduces to solving an equation of second
order.
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The latter half follows from Proposition 2.9. G. Fano has solved this
problem for fourth- and fifth-order equations (cf. [Fan]).

Example. Let us define a function ,F}, by a series

ala q n)ﬁ
|

qu(ala"' ,qu;ﬁl,"‘ 7ﬁp; zz: ﬁla (ﬁp,n) n

Here (a,n) = a(a+1)---(a+n—1). Parameters o; and 3; are complex
numbers. Assume (3, are not negative integers. We define a differential
operator § = xd/dx. Then z = ,F), satisfies

(¢Ep):00+061—1)--- 04+ 06y —1z—z(@+ay) - (0 +ay)z=0.

This equation is called the generalized hypergeometric equation and the
function ,F}, is called the generalized hypergeometric functions. When
(p,q) = (1,2), they are Gauss hypergeometric equation and Gauss hy-
pergeometric functions. (see [E]). We here quote an identity found by
Clausen, 1828:

1 2 1
2F1(a,ﬁ;a+ﬁ+§;x> :3F2<204725704+5;2(04+5),04+5+5;513)-

This can be proved by making the symmetric product of Gauss equation
and by connecting it with (3E52).

§5. Dual curve and exterior product of differential equations

The dual vector space of P2, denoted by P2*, is defined as the set of
all lines in P2. Since each line is determined by two points (z;) and (y;)
on it, we associate a vector (§;) by &1 = zays — x3Y2, &2 = T3y1 — T1Y3
and &3 = x1y2 — x2y1 called the Pluiicker coordinates of a line. We
express these coordinates simply by

E=xNy.

Let now p(t) be a plane curve. Then two vectors p(t) = (x;(t)) and
P (t) = (x;(t)) span a line 7(t) = (&) (recall the generality assumption
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in §1). 7 is a curve in P?* and is called the dual curve of P. We are
interested in relations between p and w. By the above convention

(5.1) E=x ANz

Assume p is defined by the equation (1.1):
x" + plx” + pgx/ + psx = 0.

Then taking derivations of (5.1) and making use of this equation, we
get

5/ = /\ x//

= AN taAa =3 Ax" — i€ — pot

5/// — x/ A x/// _ (plg/ _|_p2€)/

Hence & satisfies

(5.2) "+ 2p1&" + (p) + p3 + p2)€ + (ph + pip2 — p3)€ = 0.

Recall here the definition of the adjoint equation of (1.1). It is by
definition

(5.3) §" = (p1€)" + (p28)’ — p3& = 0.

Although these two equations seem different, it is easy to see that both
are projectively equivalent to

(5.4)

1 2 2 1 2
&+ <P2 —pi— gp%)ﬁl + (plg - gp/f —p3— 2—7]?? + 3P1P2 = gplpﬁ)f = 0.
This fact clarifies the meaning of the adjointness in our viewpoint. We
call the (projective equivalent class of) equation (5.2) the exterior prod-
uct of the given equation (1.1).

We have defined P», P; and P in §1 to denote coefficients of nor-
malized equations. Let Py, P and P* denote those for 7. Then (5.4)

shows
Py = P;, Py = —P3+P2'
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and hence
(5.5) P =—-P.

We say a curve p is self-dual if the immersion p and its dual im-
mersion 7 is projectively equivalent. Here we identify P?* and P? by
identifying respective homogeneous coordinates. Though this identifi-
cation has ambiguity up to a projective automorphism, this does not
affect the definition of self-duality. Then from (5.5) and Proposition
2.2, we have

Proposition 2.10. A curve is self-dual if and only if it is a conic
curve.

Assume next P # 0 and that the equation is given by

(5.6) 2" 4+ 2k’ + (1 +kz =0
Then the equation of the dual curve is
(5.7) &M+ 2k —(1-K)E=0

with respect to the same parameter. Hence

Proposition 2.11. The projective length element of the dual curve is
the minus of that of the original curve. The projective curvature is the
same at the corresponding points.

Example. The exterior product of the generalized hypergeometric
equation 3FEs(a, 3,7;9,¢;2) (see Example in §4) is equivalent to the
equation 3Fy(1 — a,1 — 3,1 — ;2 — 0,2 — ¢;2). This was first shown
by Darling (1932). From this identity follows a remarkable formula:
3F2(Oé,ﬂ,’}/;(5,€;2)3F2(1 - 0471 _6a1 _,-%2 - 572 _672)
—1
T RO ta—6148-8147—8;2—814¢c—0d;2)

3P0 —a,0 — 3,0 — ;0,1 4+ —¢;2)
0—1
d—¢
- gFy(e —a,e — Be—y; 146 —d,¢;2).

+ sFh(l+a—e,1+0—¢e,1+v—e;1+66—¢,2—¢;2)
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We say a surface in P? is ruled if through each point of the surface
passes one straight line lying entirely on the surface or, equivalently, if
the surface is paved with one parameter family of lines. In other words,
a ruled surface is a curve in a Grassman manifold Gy 4 of lines in P3.
In this chapter we present some of fundamentals on ruled surfaces.

§1. System of differential equations associated with a ruled
surface

To write differential equations for ruled surfaces it will be convenient
to understand that a ruled surface is given by a pair of curves in P3
with a common parameter u: Let x1(u) and x2(u) be such curves.
The ruling is given by lines connecting two points zi(u) and xs(u)
and the surface is a mapping (u,v) — x(u,v) = x1(u) + vaa(u) or
x(u,v) = x2(u) + vy (u). By abuse of notation we denote this surface
sometimes by (z1,z2).

A typical example of ruled surfaces is a quadratic surface. It is
the surface where 1 = (1,4,0,0) and x5 = (0,0,1,u). Then x =
(1,u,v,uv). This is doubly ruled. As an another example, z(u,v) =
(1+av)xy(u) for o = axy. This looks like a cone and is a developable
surface. In the following consideration we avoid the latter case: Assume

(1.1) det |z, 29, 27, 25| # 0.

namely assume that four vectors z1, xo, x| and z, are linearly indepen-
dent. Under this assumption, the second derivatives of x; are linearly
dependent on z; and z}. Hence we have

(1.2) o (w) = plaj+ ) dzy.
for some functions pg and ql‘-j . Conversely, if we are given a system of
differential equations of type (1.2), then the number of independent

solutions are four and they define a ruled surface. Hence we can regard

32
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(1.2) as a system of differential equations for a ruled surface (x1,z2)
with condition (1.1).

§2. Normalization of a system

As we have seen for curves, the system (1.2) is not unique for a given
ruled surface. Even if we change variables (u,z) — (w,y) by

w = f(u)

21) yi=Yal(wa;,  det(al) #0,

the surface is unchanged. Let us first see that p‘z may be assumed to
vanish. For this purpose we here employ a geometrical reasoning.

Definition. Let z(u,v) be a surface. A curve on this surface defined
by v = u(t) and v = v(t) is said an asymptotic curve if four vectors z,
Ty, Ty, and x4 are linearly dependent.

Since first three vectors generate the tangent plane of the surface,
this definition is equivalent to say the second osculating vector x;; of
the curve is included in this tangent plane along the curve. For the sake
of simplicity we write this condition as

(2.2) TNANTy NTy N\ Ter = 0.

(A means the wedge product in R*.) Apply this definition to a ruled
surface (r1,x2). By differentiation, we have

T ATy ATy = (x1 +v32) A (2] +025) A 2o

/ /
=11 Ny Nxg+v21 NIy A\ Ta.

Denote by “-” the derivation with respect to t. Then
xy = (2] +vah)u+ zo0
Ty = (2] +vab)ii+ () +val)(0)? + 22500 + xo9,

hence
TNATy N Ty ATy = 20027 /\a:’l/\nga:’Q—u2A,
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where

A=z ANza ANy N2 +o(mi Ao Aab AN + a1 Axg Ax) Axsy)

+ vz A 29 ATy A\ xh.
Therefore the condition (2.2) is

(2.3) wW{20x1 Nxy ANz ANah, —a A} = 0.

Since we have assumed x1 A 2} A x2 A x5 # 0, the equation (2.3) has
always two different solutions; through each point pass two asymptotic
curves. One is a ruling line and the other is given by a differential
equation of Riccati type

(2.4) 211 A x) A xo A zhdv — Adu = 0.

Now we reparametrize the surface assuming both x; and z, are as-
ymptotic curves. Then from (2.4) we see

(2.5) T1 Ao ATy AT =21 Ao Axh Azl = 0.

This says p? = p3 = 0 as asserted. We next replace x; and z3 by
Az1 and pzo for scalars A, u. Then the coefficients pi and p3 vary by
N /X and p'/p respectively. So we can always find A and p so that

pl = p2 = 0. Hence we have proved

Proposition 3.1. A ruled surface with condition (1.1) is given by a
system of differential equations

] =pr1+ g
(2.6)

i
Ty =TT1+ STa.

This has the following
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Corollary 3.2. If two curves defining a ruled surface satisfy (2.6), then
asymptotic curves through each point are a ruling line (v-curve) and a
w-curve through this point.

Proof. Because the equation (2.3) becomes dudv = 0.

Consider next a surface x ruled by two ways. Let (x1,z2) give one
ruling such that curves x; are asymptotic. Since only v-curves and u-
curves are asymptotic, x; must be lines of another ruling. Hence x; are
assumed to be linear in u. Then we see x = a+bu+cv+duwv for some
constant vectors a, b, ¢ and d; hence, x is a quadratic surface:

Proposition 3.3. If a surface is ruled in two ways both with condition
(1.1), then the surface is a quadratic surface.

Examples. (1) The system for a quadratic surface is z{ = x5 = 0.
(2) The surface defined by (22)3+a!(z'2* +2%2%) = 0 in P3 in homoge-
neous coordinates (z) is called a Cayley’s cubic scroll. This is a ruled
surface with generating curves z; = (1, —u, —u?,0) and x5 = (0,0, 1, u).
Hence the equations are

r] = —2x9 + 2u x4
zy =0,
The asymptotic curves other than ruling lines are given by 2x; A 2] A

roAxh dv = 1 Axo A2y AxY du, i.e. dv = —udu. Hence they are twisted

cubics defined by x3 = xl—%uzxg—i—a Ty = (1, —u, —%uz—i—a, —%u?’—l—a u)

for a constant a. Then, the system of equations with respect to (z2,x3)
is

rh = —3x9
(2.7)

7
x9 = 0.

63. Fundamental invariant

We will continue to normalize systems further.
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Lemma 3.4. FEvery change of variables (2.1) that preserves the form
(2.6) is given by

w=f(u), yi= """z +bxs), and yo=(f)"*(cx1+dzs)

where a,b, c,d are constants.

Proof. Put X = (x1,22). The transformation (2.1) is written as
w=f(u); Y=AX, A=(a))

in matrix notation, A being non-singular. Similarly (2.5) is written as

(3.1) X"=QX, Q= (p q) .
ros
Then, denoting by “-” the w-derivation, we have

fY = A'X + AX'

(f2Y + f'Y = A"X +24'X" + AX".

These yield

(f/)2}"/ _ (2f/A/A—1 . f//)Y
(3.2) B B B B
F(ATAT 4 AQATT — 24 AT A ALY,

To preserve the form (3.1), 2f’A’A~1 — f”" = 0 is necessary. Putting
B = (f")"Y2A, we see B’ = 0. This proves the lemma.

From (3.2), more can be said. If we put A = (f')'/2B, where B is
constant, then the coefficient of Y is h”/h — 2(h’/h)? + BQB~! where
h = (f)'/2. Now note that h”/h — 2(h'/h)? = {f;u}. Then the trace
of this coefficient is equal to tr @ + 2{ f;u}. So, we can assume tr@Q =0
by an appropriate choice of f. We have
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Proposition 3.5. 1°. Each system (1.2) representing a ruled surface
can be normalized to have a form

r S

X'=QX; X="'(w,1), Q= (p q)
with the condition
(3.3) tr@ = 0.
2°. The transformation (2.1) preserving this normalization is given by

(3.4) w = ?‘yz j: ?, Y = (yu+0)"'BX,

where a, 3, v, 0 and B are constant.

3°. The matriz-valued quadratic form Q du?® changes, under a trans-
formation (3.4), into B(Qdu?)B~t. In particular the quartic form
(det Q) du* is a differential invariant of the surface.

Proof. 1° is shown already. 2° follows from the condition {f;u} = 0.
Then 3° is seen by (3.2).

Definition. We call Q du? the fundamental invariant of a ruled surface.

Theorem 3.6. Let x and y be two ruled surfaces with condition (1.1)
given respectively by curves (x1(u), z2(u)) and by curves (y1(w), y2(w)).
Let Q du? and R dw? denote fundamental invariants of x and y, respec-
tively.

1°. Assume x and y are projectively equivalent. Then there exists a
diffeomorphism between parameters, w = f(u), and a non-singular con-
stant matrix B such that

(3.5) f*(Rdw?) = B(Qdu*)B™".

2°. Conversely, if there exists a mapping f and a matriz B satisfying
this tdentity, then ruled surfaces x and y are projectively equivalent.

Proof. If one of surfaces is a quadratic surface, then the other is also a
quadratic surface and (3.5) holds trivially. So we assume both x and
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y are not quadratic surfces. Then, letting ¢ be a projective transfor-
mation mapping x to y, we have a mapping f such that the line with
parameter u is mapped by ¢ to the line with parameter w = f(u) (see
Proposition 3.3). Then Proposition 3.5 implies 1°. Conversely, if (3.5)
holds, then we can find new curves defining the same surfaces so that
these curves satisfy the same system of differential equations under the
identification of parameters by f. This proves the theorem.

We put, after Wilczynski,
(3.6) 0, = —4 det Q.
This relative invariant for the system (3.1), is given by

(3.7) 04 = (p— 5)° + 4rq.

This invariant has the following geometrical meaning. Let x(u,v) =
x1(u) +vxe(u) be a ruled surface. Fixing v to a certain value, consider
the curve c(u) = z(u,v) of u. Then the point z(u, v) is called a flecnodal
point of the surface if it is a flecnodal point of the space curve c, i.e.

cN\cyNCyy =0
Since ¢y = (p+v71)x1 + (¢ + v 8)x2, this condition is equivalent to
rv’+(p—sv—q=0.

Hence, on each line, there are generally two flecnodal points. The in-
variant 6, is the discriminant of this quadratic equation of v. Therefore
0, = 0 means that two flecnodal points coincide. For later use we in-
troduce one more terminology. The flecnodal points on each line draw
curves on the surface. We call these curves flecnodal curves.

§4. Scalar differential invariants

Wilczynski has shown that, other than 64, there exist three basic
scalar invariants denoted by 64.1, 69 and 615. We will reproduce them
in our notation.
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We have seen that the fundamental invariant changes under the rule
(4.1) (f")?Qu = BQ.B™'

by the transformation (3.4), the suffices being used to denote the pa-

rameter of curve. Let I,, be a differential polynomial of components of

Q. and I, the corresponding value for Q.. We say I (or I, by abuse
of language) is a (relative) scalar invariant of weight a if

(4.2) I, = L(f) "

The invariant 64 is of weight 4.

Lemma 3.7. If I is an tnvariant of weight a, then its derivatives satisfy

(43) jw — I;L(f’)—a—l _ aIu(f/)—a—2f//

and

(4.4)

Ly = I}(f)7*7% = Qa+ DI,(f) " f" +ala+ §>1u<f’>—a—4<f">2.

(+ and - denote derivations with respect to u and w respectively.)
Proof. Differentiate (4.2) and use the identity f'f” = 3(f")>.
From this lemma follows

Lemma 3.8. 1°. If I is an invariant of weight a, then 2al”l
— (2a + 1)(I")? is an invariant of weight 2a + 2.
2°. If I and J are invariants of weight a and b respectively, then
alJ' — bl'J is an invariant of weight a + b+ 1.

By this lemma

(4.5) 041 = 32(det Q)" det Q — 36((det Q))?
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is an invariant of weight 10. Lemma 3.7 applied to det ) yields
(det Qu) = (det Qu)'(f) > — 4(det Qu)(f")~°f"
(det Qu)" = (det Qu)"(f)7° — 9(det Qu)'(f)~"f"
+18(det Qu)(f) 2 (f")%.
On the other hand
B7'Q,B = Q, (/) —2Qu(/") ",

whence we have

det(Q)) = () det (Q’ - ng>

f/
f// f,, 2
— () (det@’) 22 ey 44 (7) det @).

These identities show easily

(4.6) 9 det(Q,,) — 2(det Qu)" = (f)7° {9 det(Q,) — 2(det Q.)"}.

Hence,

(4.7) 0 := 9 det(Q') — 2(det Q)"
is an invariant of weight six. He has also introduced
(4.8) 010 = —4 det Q det(Q’) + ((det Q)').

These are not independent as he claimed. They satisfy

04.1 + 36010 — 40,05 = 0.

Let <]; 1 > be components of () as before and define

p q T
(4.9) Og=det | p ¢ 1’
p// q// ,r//

This is an invariant of weight 9; due to three identities (4.1), (4.6) and
(4.10)  BTQuB=Q"(f) " =5Q' (/)" +5Q(f)°(f")”.

The geometrical meaning of fy is given in
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Proposition 3.9. ([W1, Chapter VIII]). 69 = 0 if and only if the
associated curve in Ga 4, which is considered as a curve in P° by the
Pliicker embedding of G 4 into P®, is included in a hyperplane of P°.

Proof. Let us denote by y the associated curve in P°. It is given by
y = x1 A x2. Differentiation gives

Yy =z Nzo+ 3 A b

y" = Nwo + 227 Nah + 21 Azl

=2z ANzl (by (2.6) and p + s = 0)

Then successively we have

1 1/ / / / /
(4.11) 5Y +py =2px1 Nxy+qro ATy — 121 A2
(4.12)

1 /
<§y’” + py’) =2p'wy Aah+q wa AN —r'zy Axh +py” —2(p* +q1)y.

/

1 /
(4.13) ((59’” + py’) —py" +2(p* + qr)y)

=2p"xy Nah + ¢ xg A — "z A2+ "y —2((0)? + ¢y

These equalities (4.11)—(4.13) show that if 89 = 0, then y satisfies
an equation of order 5, which means that there exists a linear relation
among coordinates of y and that the curve y is included in a hyperplane.
Conversely, if y is included in a hyperplane, then vectors y, v/, ..., y®
are linearly dependent and we obtain a linear relation among six vectors
given by the right hand sides of above equalities. But, if 09 # 0, they
span a six-dimensional vector space by the generality assumption (1.1).
This proves Lemma.

Remark. If 6, # 0, then we have absolute invariants, say (64.1)*/(04)'°,
(09)%/(04)°, ... Moreover, if 84 # 0, we can normalize the system fur-
ther so that |04] = 4, i.e. det Q@ = +1, and reduce the transformation
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(3.4) to that composed of a translation of u and a multiplication by
B. Hence the procedure to get invariants is completely reduced to the
PG Ls-invariant theory. Then, generally speaking, two invariants suffice
to determine () because tr () = 0 and det Q = +1. Wilcyznski showed
that we can take 0y and 61g for these invariants assuming 619 # 0. (see
[W1, p. 120-121]).

§5. A generalization of plane curves and ruled surfaces

Recall that a ruled surface is defined as a pair of two curves in P3.
This situation may be generalized to that for a certain number of curves
in PY. We here treat the case of r curves in P* 1, because similar
arguments are possible. Namely, we consider a one-parameter family of
(r — 1)-plane in P*" =1, When r = 1, this is the case of a single curve;
Chapter 1 for n = 2 and Chapter 2 for n = 3. When r = n = 2, the
case of ruled surfaces.

Let x1(t),...,z.(t) be curves in P =1, They define an (r — 1)-
plane z(t, ug,...,u,) = x1(t)+>_ u;z;(t). We assume that the vectors
Ty ooy Ty Ty ooy Thy e xgn_l), e 2"V are linearly indepen-

dent. Then we have a system of differential equations

n—1
(5.1) ot =" Pl
k=0

We define matrices P by P, = (pfk) By putting X = ¥z1,...,2,)
this system is written

(5.2) XM =3%"px®.
The ambiguity to determine the planes z (¢, us, . .., u,) lies in the choice
of parameter ¢t and the choice of generating curves x1,...,x,. So trans-
formations that we should consider have the form

s = f(t)
(5.3)

yi =y al(ta;(t) ; Y =AX.
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By a transformation ¥ = AX and f = t, the equation (5.2) is
transformed into

vy — ax™ L pa' x4
— (AP, +nA) X1 4.
— (AP, +nA)A7ly (=D 4.
Then a choice of A by AP; +nA’ = 0 leads us to the situation

(5.4) P =0.

Under a general transformation (5.3), the equation changes into

(f/)ny(n) + an(f’)”_zf”Y(”_l)
+ (On () en ()T YT

n(n

_AX™ 4 oparx oD MY ey

From this we get
(f/)ny(n) _ (n(f/)n—lA/A—l
B an(f/)n—2f//)y(n—l) + (f/)n—2j52y(n—2) e

where
/! /! /!
P2 = APQA_l f/ — Cp, (f—/) +na,_ 1f/A/A_1
(5.5) " f f f
Cnln— DAATA AT 4 @A”A‘l.

Hence, to preserve the condition (5.4),

A= (fHY"D/2B for a constant matrix B
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is necessary.

On the other hand, from (5.5) we see

trﬁg_n(n—l)(n—l—l) ‘ tr Py

r

Then, solving tr Py, = 0, we get the next proposition which is similar to
Proposition 3.4.

Proposition 3.10. 1° The equation (5.4) can be normalized so as
P1:0 and tI'PQZO.
2° A transformation (5.3) preserving this condition has the form

at + (3
S =
vt + 0
Y =(yt+6)"""BX; B s constant.

3° Under this transformation, the matriz-valued quadratic form Ps dt?
changes only by a conjugate action of B.

Remark. We can moreover see the k-differential form

k—2

d\?
Rk: = Zak’j (E) Pk_J(dt>k, k Z 2,

=0

;2k—j = 2)1(n—k+j)!
Ak—j—1)

are also invariants up to conjugation of B. ([W1, I1,§4]; [MOR],[SEA1]).
When r = 1, P5 does not appear. When r > 2, Ry = P, dt?. Wilczyn-
ski’s computation for » = 1 holds also for » > 2. Note that Rs, ...,
R, are fundamental invariants in the sense that they determine the
projective equivalence class of motions of (r — 1)-planes in general. See

[SEAL.

ak,j = (—1)
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Example. When n = 2 and r = 3, we have a three-dimensional sub-
manifold in P°, which is a one-parameter family of 2-planes. When
the invariants vanish, i.e. P, = P3 = 0, the equation has six solutions
(1,0,0,0,0,0), (0,¢0,0,0,0), (0,0,1,0,0,0), (0,0,0,¢0,0), (0,0,0,
0,1,0) and (0,0,0,0,0,t). The submanifold is given by a map (¢, s, u) —
(1,t, s, st,u,ut) and written in homogeneous coordinates by equations
x1x4 — wox3 = 0 and z12¢ — 225 = 0. The 2-plane through (1,¢,0,0,
0,0) is given by z1 = txo, x3 = txy, x5 = txg.



4. Projective theory of hypersurfaces

In this chapter we will treat hypersurfaces in P**!. The aim is to
formulate the projective fundamental theorem of hypersurfaces. For its
better understanding, we recall first the outline of the euclidean theory
of hypersurfaces in R"*1.

Let M be an immersed hypersurface in R”™!. The euclidean metric
induces a Riemannian metric on M and the second fundamental form
is defined on M. These two are related in such ways that the Riemann-
ian curvature tensor is expressible in terms of the second fundamental
form (Gauss equation) and that the covariant derivatives of the second
fundamental form are written by this form and by the metric (Codazzi-
Minardi equation). Then the fundamental theorem of hypersurfaces
says that these two equations characterize the immersion: given a Rie-
mannian metric and a quadratic form on an n-manifold M which satisfy
these equations, we can find an immersion of M into R™*! up to a rigid
motion so that the given metric and the form are the induced metric
and the second fundamental form respectively.

Now consider an immersed hypersurface M in P?*!. Then it turns
out that the conformal class, denoted by h, of the second fundamental
form of M is a projective invariant. Assume this class is non-degenerate
and n = 3. Then we can define a matrix-valued one-form 7, which is
essentially the same as the so-called cubic form. These invariants h and
T play a similar role as the induced metric and the second fundamental
form in the euclidean case: the conformal curvature tensor is expressed
by 7 and the covariant derivative of 7 have a certain relation with 7
and h. We call these relations also Gauss equation and Codazzi-Minardi
equation and we can find an immersion up to a projective motion so
that the given class and the given form are the induced conformal class
and the induced one-form respectively.

In §1, we recall some terminologies about conformal connections.
In §2, some fundamental invariants of a hypersurface in P*t! will be
defined and explicit expressions of these invariants will be given in §3.
The §4 explains a relation with the unimodular affine treatment of

46
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hypersurfaces. In §5, we prove a theorem by Pick and Berwald about
the characterization of quadratic hypersurfaces. Fundamental theory of
hypersurfaces will be formulated and proved in §6, when the dimension
n = 3; the case when n = 2 is treated in §7. In the last section 8 we
give some formulae about the projective metric.

§1. Quadratic hypersurfaces

Let h be a non-singular n X n symmetric matrix of signature (p, q).
The orthogonal group with respect to h is

O(h)={g€GL,;gh'g=h}.

The conformal orthogonal group CO(h) is defined by

CO(h) ={Ag; g€ O(h), x e R" }.

Let M be an n-dimensional manifold. The bundle of linear frames
is denoted by L(M). This is a principal G L,-bundle. A subbundle of
L(M) with CO(h) as the structure group is called a CO(h)-structure
of the manifold M. This has the unique correspondence with the con-
formal class of a pseudo-riemannian metric of type (p, q).

Let ) be a matrix in GL,,12:

Define the orthogonal group with respect to ) by

OQ)={9g€GLypi2; 9Q'g=0Q}.

Its Lie algebra o(Q) is generated by elements

A D 0
(1.1) B A E],
0 C -A
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where B and F are vertical and C and D are horizontal vectors and A
is an n X n-matrix. A is a scalar. They satisfy relations

(1.2) B=h'C, E=h'D, and Ah+h'A=0.

A quadratic hypersurface " is defined by
Q" ={[z]eP";2Q=0}.

The group O(Q) acts on Q™ transitively on the right: (z*) — (Z g;'-xj).
The isotropy subgroup at (1,0,...,0) is

0\ Av=1, ac€O(h)
0
v

o 2 O

A
1.3 H = b :
(1:3) " b= Mlah'c, ,u:%)\chtc

Hence O(Q) is a principal H-bundle over Q™. Let h denote the Lie
algebra of H; whose element is written as

A0 O
B A 0 . B=h'C, Ah+h'A=0.
0 C -—A

The linear representation of H at (1,0,...,0) is not faithful and has
a kernel consisting of elements

. B=h'C.

S e
QOO
o O O

Let N be the corresponding normal subgroup of H. Then we see
H/N = CO(h). Hence the bundle O(Q)/N is a principal CO(h)-bundle
over (Q". This defines the canonical conformal structure on Q)". Put
o = —2dx°dx™t + > hijdxidxj, a non-degenerate quadratic form on
R"*2. The restriction to Q™ of the pull-back of ¢ by a section of
R""2 — {0} — P! gives the conformal class associated to the bundle
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O(Q)/N. It is independent of the choice of a section. Moreover, the
bundle O(Q) itself is the first prolongation of O(Q)/N and the Maurer-
Cartan form of O(Q) defines a normal conformal connection.

We here briefly recall the definition of a normal conformal connection
(see Chapter 4 of [KOB]). Let M be an n-manifold, G a Lie group, Gy
a closed subgroup with dim G/Gg = n and P a principal Gp-bundle
over M. The group G acts on P on the right and the right translation
by g € Gg is denoted by R,. Through this action every element A of
the Lie algebra gy of GGy defines a vertical vector field on P denoted by
A*. Then a pair (P,w) of the bundle P and a 1-form w with values
in the Lie algebra of G is called a Cartan connection if the following
conditions are satisfied:

a) w(A*)=A forevery A€ g
(1.4) b) (Ry)*w=ad(¢g")w forevery g€ Gy,

¢) w(X)#0 forevery non-zero vector X of P.

When G = O(Q) and Gy = H, this connection is called a conformal
connection of type @ or of type (p,q). Let (P,w) be one conformal
connection. The components of w are written as wg, 0 < a <
n + 1. Corresponding to the decomposition (1.1), 0(Q) has a grading
0_1 4+ 00+ 01, where 01 = {B,C}, 0 = {A, A} and 0y = {D, E}. The
decomposition of w according to this grading is denoted by w_1 = (w?),
wo = (wY,w?) and w; = (w}). By (1.2) we can forget the C' and E
parts. The condition (1.4) shows that the component w; is basic: the
tangent vector X of P is vertical if w{(X) = 0. Let Q = dw —w Aw be

the curvature form and Q2 be components of 2. Put
Q) —6105 = = ZKW A Wb

Then the connection w is called normal if

(1.5) Z L=

We will use the following fact: Let P be a principal H-bundle over a
manifold of dimension = 3. Given 1-forms w; = (w*) and wy = (W), w!)
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there exists a unique normal conformal connection w extending w; and
wo provided that they satisfy dw’ = wj A w' + Y w’ Aw} and (a')
wi(A*) = 0, wo(A*) = the og-component of A for A € oy + 01; (b)
R} (w1 4+ wo) = ad (97 ") (w1 + wo) for every g € H and (c’) a tangent
vector X of P is vertical if wi(X) = 0. See Theorem 4.2 of [KOB|.

62. Projective invariants of a hypersurface
2.1. projective frames

Let F be the set of linear bases e = (e, e1,...,ent1) of R*T2. The
group GL"?2 acts on F simply transitively by g(es) = (g8es). Between
two bases e and € define a relation ~ by e, = Ae, for some A € R*.
Then the quotient space

F=F/~

is defined, whose element is called a projective frame. This space is
identified with the projective linear group G = SL,2/centre. Define
a mapping m: F — P"T! by

m(e) = [eo].
Then F is a principal bundle over P" with 7w as its projection. The

fibre group is isomorphic to

Go={g€G;en(ge) =ep(e) for any e € F}
{270
* %

A local section is called a projective frame field (or simply a frame).
We will denote it by the same letter e = (eg,e1,...,e,41). Fix an
element €® € F. Then any projective frame e is written as e = ge®. So
de =dge® = dg-g~te. We write w = dg-g~!, the Maurer-Cartan form
of G. Let w?, 0 < a, B <n+1, be components of w. Then

(2.1) deo = wleg,
and
(2.2) dwb = W) A wfj , wo =0.
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Here and in the following we use the summation convention: repeated
indices, once in upper case and once in lower case, are summed on its
range. The range will be from 0 to n + 1 for o, 3,... and from 1 to
n for i, j, ... Note that the 1-forms wi, ... ,ng are basic forms with
respect to the projection 7.

Let e be a projective frame field. The induced form e*w is denoted
by w(e), or simply by w if there is no confusion. Let € be another frame
field with a relation

(2.3) e=ge
for a Gy-valued function g. By definition

(2.4) w(e) =dgg" + gw(e)g™".

Let now f: M™ — P"*! be an immersion of an n-manifold M. The

pull-back of the bundle F onto M is denoted by f*F. Frame fields with

the property wg’ﬂ = 0 generate a subbundle F;. We write this fact as

(2.5) Fir={ec f*F;wyt =0}.

Each fibre is isomorphic to

(( n \ \
A 0---0 O
0
(2.6) G =X .| €Gop.
* * .
0
N\« )

The first component ey of e € F; represents a point of M in R"+?2
and the next n components together with eg span the tangent space of
the cone over M at eg. When wi = 0, these n components are tangent
vectors at eg(M).
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2.2 The fundamental form

Let e be a frame field in F;. The exterior derivation of the condition

wi™ =0 gives

w' AWt = 0.
Hence
(2.7) Wi = hijw? iy = hy

for some functions h;;. Define
(2.8) 2 = hjjw'w’, h=(hy) and H =det h.
We call 5 the fundamental form of the immersed hypersurface.

To see the dependence on frames we rewrite (2.4) componentwise for
g€ Gy

@y = wy +d log A — bz-A;-wj

ob = )\Aiwj
g}zn+1 — 1ak’w2+1
(2.9) ok = daj-A"? + a‘?ng’? + biij"? _ 1y w?+1C]Ak:
C&Zii = Zi%+dlogy+y L n—|—1
1 AR = (de + Fwl + pw’ + an+1)A§'
A&7 + ij + pwp = ajwo + db; + biw)
ATy By + T = v+ it i+
where
A0 O
g = b a 0 , A:a_l and &:w(/é’)
L c v

From the second and the third equations we have

~

(2.10) h=(w)ahta, ie hiy= () taFheat,
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~

(2.11) H = (det a)""2H.

(~ denotes that the reference frame is €). The formula (2.10) shows
that rank h and |indexh| are independent of choice of frames. We
assume from now on that rankh = n (see §2.5). In this case we say
that the hypersurface is non-degenerate. The identity (2.11) then shows
that we may assume

(2.12) H| =1,
and consequently |det a| = |A\v| = 1. With this assumption the first
and the fifth equations of (2.9) give the identity

1 1 1
@y +opt] =wg +wpiy v Wl = b AL

So we can find a frame with the property

(2.13) wy +wp it = 0.

Define a bundle F> by
(2.14) Fo={e€Fi; |H=1,w)+wifi =0}
The fibre group is

(2.15) Go={gecG;|detal=1, | |=1,b=v tahl}.

2.3. The cubic form

We next take the exterior derivation of (2.7):

0= —dw!™*" + dhij Aw’ + hijdw’
—w! A w”“ Wit AW + dhi; AW
+ hij (W) Aw? 4+ Wk Awl) (by (2.2))
= {dh;; — h”w hkjw + hij (W + W:LLI})} A w?
= (dhg; — hzkw — hiwF) A w? (by (2.13)).
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Hence we can define a symmetric tensor h;j, by

(216) hijkwk’ = dhw - hkjw;? — hlkwf
Put
(2.17) p3 = hijrw'w w",

F = hijphpgrhPhI9RF"
which we call the cubic form and the Fubini-Pick invariant. Here

(h*7) = (h;j)~'. The cubic form satisfies an identity called the apo-
larity condition:

(2.18) h" hiji = 0.

This is seen as follows:

0= dlog|H| = h¥dhy; = h¥ (hijpw® + hiw! + hijw?)
= h¥h W™ by (2.2).

The next formula can be seen by a straightforward calculation
(2.19) )\21/711-3»;{; = hpqrafa?a};.
We have seen

Proposition 4.1. Assume the hypersurface is non-degenerate. Then
the fundamental form o and the Fubini-Pick invariant transform as

(2.20) Go= "o, Pz=Alos, F=\WF

when frames change as e = ge for g € Go. The quadratic form Fys is
independent of choice of frames.

Definition. We call F'p, the projective metric.
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2.4. The structure bundle

From (2.13) we have the following identity by taking exterior deriva-
tion:

(hijwfbﬂ —wH Aw' = 0.

This enables us to put
(221) hijw%_i_l — (,U? = waj y L,Lj = LJ@
and to define

1 ..
(2.22) L= —hLy.

The sixth and seventh formulae of (2.9) then yield
Azij - A_lLanga’;]' + (2/~L T V_lhkzﬁckce)zij - <>‘I/)_1hpq7°cpagagT

and
(2.23) AL = AU+ (2p — v hiec®ed).
Consequently, we can find a frame with the property

(2.24) L=0.

Define a bundle F3 by
(2.25) Fs={eeFy; L=0}.
The fibre group is
(2.26) ng{gEGg;u:%V_lchtc}.
With respect to frames in F3, L;; transforms as

(2.27) >\2Z¢j = (Lge — )\hkgmcm)afag.

In summary, we have
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Proposition 4.2. For a non-degenerate hypersurface there exists a lo-
cal projective frame field satisfying
witt =wg+witi =0, |H/=1, L=0.

Such frames generate a bundle F3 with Gs as its fibre group:

A0 0 M| =1,b=v"tahlc,
Gs = b a 0] eGy; I 4
0 oc v p=gv ch'c

The formulae in (2.9) for g in G3 become simpler. The last three are
written as

oY = afwj + {d(b; A7) bjAzwﬁ}af + biw))
(2.28) — v taF Wt — bibinwk + v tafwy T (chfbk) :
D qal = vl +dd 4 Fwl + (W) + dlog \) + pwd — I Fwptt

. 1 o
Wppr = A vwn g — (A_lchik — é(AV)_lczc]hijk)wk.

Put

(2.29) Wy = —yjw.

Then we see

_ . 1 .
(2.30) Ny = ()\_11/% + ALy — 5(/\V)_1czc£higk>a§?.

We now rephrase Proposition 2 as follows. Let h be of signature
(p,q). We fix a non-degenerate symmetric matrix hg of this signature
and with |det hg| = 1. The identity (2.10) shows that we can choose
a frame so that h = hg at each point. Then it is possible to define a
bundle

(2.31) P={eeF;h=ho,wj+witi=0,L=0}
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If p # q, then A\v = 1 and the structure group is equal to the isotropy
group H of the quadric Q™ with respect to hgy (see §1.). When p = ¢,
assuming the hypersurface is orientable, we can construct a subbundle
with H also as the structure group.

2.5. Remarks

1. From (2.27), we can see the property

(2.32) L;; = Z hijkak for some a”
k

is independent of frames. Also
1 .
(233) Lij = Z hijkak and Yi = —§ Z h,-jk,ajak.

These properties seem to have interesting geometric conclusion. (see §4
and §2 of Chapter 6).

2. Let us consider the case when h is degenerate and rankh = r is
constant. We will see that the hypersurface is then ruled in the sense
that it is foliated locally by linear subspaces of dimension n — r. Fix a
frame and assume, for simplicity, h is constant so that

0 izr+1
Wit = L
g > hijw? i <.
J<r

The exterior derivation gives

wa/\hjkwk =0 foriz=zr-+1,
k<r

which yields
w! = Zagkwk for i=r+1
k<r
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for some functions agk. On the other hand,
dw’ = Zwi/\wg + Z wi/\wg +w) Aw?,
i <r iZr+1

Hence ‘
dw’ :Zag Aw' for j<r,
i<r

for some forms . This shows that the equation w! = -+ = w" =0

is integrable. Now assume w) = 0, which is always possible (§2) by
preserving the condition on rankh. Let N be one leaf. Then we have

deo|n = g w’e;.
j2r+1

Hence e,41, - ,e, are tangent to N and they form a basis of T'N.
Furthermore

dej|n = waek + w;l+1en+1
=0 for j=r+41.

This says that e;, j = r + 1, are constant along N, i.e. N is a linear
subspace of P"t1,

§3. Explicit expression of projective invariants

In this section we will explain the process in §2 geometrically for a
non-degenerate hypersurface given by an equation

"t = flat, . 2™

in affine coordinates x!,...,z", 2" *!. Denote derivatives of f by f; =
of/ox", fi; = 0%f/0x'0x7,.... Define a frame e = (e, ..., €n11) by

€y = (173:17"'7xn7f)

€1 :<071707"'707f1)

1

en=1(0,...,0,1, f)
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With respect to this frame de = we, where

0 dx! - dz" 0

0 flj dmj

w = .
0 fnj d.ij

0 . 0

By the definition of the fundamental form (2.7),
hij = fij-

Hence the non-degeneracy of h;; is equivalent to that of the hessian
matrix of f. Choose affine coordinates so that f(0) = f;(0) = 0 and
develop f formally into a series

(3.1) f(x) = %aijxixj + chu

d>3

fa being a homogeneous polynomial of degree d. The matrix (a;;) is
assumed non-degenerate. Define coefficients of f; by

1 . .

(3.2) fa= 7l Z Qjyooig 't -t
Put

(33) Tr f3 = Z aijaijk

2 Z ij Kl
Tre fy = a’a Qijke,
where (a'/) is the inverse matrix of (a;;). Then we can see

Proposition 4.3. (1) At each point of a non-degenerate hypersurface,
there exists a projective change of coordinates such that the hypersurface
18 represented by a function with property

(3.4) Tr f3 = Tr?f, = 0.
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(2) Fiz a;;. Then every projective change of coordinates for which the
hypersurface is represented by a function f satisfying this property and
with f;;(0) = aw belongs to the isotropy subgroup at the origin of the
quadric z" T = La;;xtnd .

Note that the property (3.4) corresponds to the conditions (2.18)
and (2.24).

We next normalize the frame e by defining a new frame € by

€0 — €p
(3.5) i =k
€ntl = —560 +ac'e; + o "ent,
where

o — (det f ) 1/n(n+2)
(3.6) ¢ =na "2y
{=a " z(aaij —(n+ ooy — a&kfkefez’j)fij-

The associated form @ is

0 W 0
(3.7) U= % ;“L 5;d log oz. c’cu;’Jrl w;”rl ,
%dﬂ —%wl +dc + ctd log a 0
where
(3.8) w'=a tda, w;“rl = a" T2 f k.

Then we have
(3.9) hij = a" 2 f;,
hiji = o 2 (aufijr + nlowfij + @ifin + ;i fri))-
Assume f;;(0) = 9;; for simplicity. Assume also the property (3.4):

> fij(0) = >4, fiijj(0) = 0. Then, in particular, a;(0) = 0. This
shows, at the origin,

(3.10)  hy(0) =65,  hie(0) = fijr(0) = fijr(0)
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The quantities L;;(0) and «;(0) are computed by the definitions (2.21)
and (2.29):

1
Lij(0) = — o ; fikefire) Z T 2)F($ij7
(3.11)
© 1 Figien — 2 (fijnefine + Fijn Finee)
%(0) = 5=~ ¢
2nn+2) 93 +3  fiik frem fiem
Z,m

t4. Remarks on affine description of a hypersurface

We will briefly recall the affine description of a hypersurface in rela-
tion with the normalization in §2.

Let A"*! be an (n + 1)-dimensional affine space. The unimodular
affine group G, is defined by

1 wu n
Ga:{<0 a), CLGSLn_|_1, UEA+1},

which is a subgroup of G = PSL, 2. Denote by (w?) the restriction
of the Maurer-Cartan form of G to G,. We have now w? = 0. Let
fo:M™ — A"l be an immersion and attach to each point a set of
independent vectors (f1,..., fnt1) such that

det(fl, ceey fn+1) = 1,

where det is a volume form invariant under G,. Then a set (fo, f1,- ..,
fn+1), called a unimodular affine frame field, can be seen a section of
the canonical projection G, — A™*! and satisfies

d fo =P fs.

Considering frame fields with w”“ = 0, we can define h;; and

o similarly as in §2. Furthermore under the assumption of non-
degeneracy of h = (h;;), it is possible to choose a frame field by a
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transformation belonging to G, so that |det h| = 1 and wZIi =0. It
is known that, for such a frame, the form 5 is uniquely defined and

called the affine metric. Now the form w looks like
0 uﬂ: 0
(4.1) 0 w Wt

0 wioy O

A cubic form (3 is defined by the same way. The tensor ¢;; analogous
to L;; is given by hijwaH = l;;w’. This is called the affine mean
curvature tensor and £ = %hij ¢;; is called the affine mean curvature.
The operator associated with the tensor ¢;;h’ ¥ is called the affine shape
operator. It is known that the last vector f,11 of a frame is affinely

invariant (up to £1 in case index h = 0) and it is called an affine
normal. (cf. [CH]).

We next perform a change of frame by a transformation

1 0 0
0 I, 0
~-£ 0 1

2

to get a frame satisfying the conditions in Proposition 2 of §2. The new
form is given by

0 wJ 0
(12) E A" B
—2dl —%wj +w;i+1 0
Then we see
(43) Lij = Eij — Ehz’j,

1 .
;= 563- where df = {07,

In the affine theory of hypersurfaces, this form L;; has a special
interest: the condition

(4.4) Eij — Ehw =0
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is known to define a surface called affine hypersphere. See [BL], [CAL],
[S2]. A typical example is a quadratic hypersurface, whose invariants
hiji, Li; and v, all vanish; cf. §3 and §5.

Let us here recall the condition (2.32) in §2.5. In the above affine
terminology it is written as

—(hy = Z hijra®

for some vector (a*). Since affine spheres satisfy this condition for

¥ =0, any projective transformation of an affine sphere satisfies (2.32)
(and also (2.33)). But examples show that (2.32) or (2.33) defines a
broader class of surfaces. See Chapter 6.

§5. A characterization of quadratic hypersurfaces

In this section we prove

Theorem 4.4. Let M be a connected non-degenerate hypersurface in
P"+l(n 2 2). If the cubic form vanishes everywhere, then M is a part
of a quadratic hypersurface.

When n = 2, this was proved by Wilczynski [W1] and Pick [P].
Berwald [BER] generalized it for n = 3.

Lemma 4.5. Consider a connected non-degenerate hypersurface M.
Assume there exists a frame field e with the property that the coframe
w, de = we, takes values in 0(Q). Then M is a part of a quadratic
hypersurface.

Proof. Let e = (eg,€Y,...,€e2, ) be a standard frame: €2 = (0,...,0,

(6%

1,0,...,0). Define a Gg-valued function g on M by e = ge®. Then
w = dgg~!. Since w takes values in 0(Q), there exists a constant matrix
a and an O(Q)-valued matrix h so that ¢ = ha. Hence e, = hgageg.
In particular eg = (... ,hgag, ...). Then, defining Q% = a~1Q %!, we
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have
e0Q™ 'eo = h§ Quphy = Qoo = 0
. This shows M is contained in a quadratic hypersurface defined by Q®.

Proof of Theorem. Choose a frame field belonging to the bundle P
defined in §2. It satisfies

(5.1) wy+witl =0 and L=0.

We take (g;0;;), €; = %1, as a reference matrix hy. The assumption
w3 = 0 is then equivalent to

(52) a;cug + €jw; = 0.

(Do not take summation in this proof unless » is used.) Recall nota-
tions in §2:

n+l _ ) ' 0 _ ' [ — ]
(6.3) W' =W, Ewy, g —w; = E Lijw’, wpiq=— g W’
J

For the proof it is enough to see L;; = v; = 0 in view of Lemma 5.
Take the exterior derivation of (5.2):

5idwg + 5jdw;~ =g (w?“ A wiﬂ +wd Aw + Zk Wi A wi)
+1 : 0 A, 0 ko i
+z—:j<w? ANwypyq +wj Aw’ +kaj /\w,ﬁ:)
= g;(giw" A w%H +w) Aw?) +ej(gjw? AWl + w? Aw')
k ' ko i
+ Zk(a‘iwi ANwy, +ejws Awy).
The last term vanishes by (5.2). Hence

0=w'A (f,uf,'bJrl — ejw?) +wl A (wf,LH —giw?)

=€y Zijwi A wF +&; ZLikwj AWk

Consider the case i = j to see L;r = 0 for k # i. When 7 # 7, look at
the term w* Aw’. Then ¢;L;; = €;L;;. Hence L;; = ce;d;; for a scalar
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function c¢. On the other hand we know h*/ L;; = 0. This proves ¢ = 0
and L;; = 0. Next take the derivation of g;w!; — w) = 0:

. . . L
gidw! — dw) = ¢; <w2+1 Aw' + g w1 Awh +wi A w;hq)

— <w?/\w8+2w§/\w2+w?+l/\w2+l>

_ n—+1 ; 0 0
= (giwn11 Nwyiq — w; Awp)

3k nwf = ety Awl)

+ (Wt 4 gw) A Why1-

Since the first and the second terms vanish by (5.1), by (5.2) and by
the identity w) = &;w?_ ;, we have by (5.3)

giw" A w2+1 = 0.
Hence w?,; = 0 and this proves the theorem.
Theorem 4.4 gives the following

Corollary 4.6. Let M be a closed locally strongly convex smooth hy-
persurface in Pt n > 2. Then the connected component of the group
of projective transformations which leave M invariant is compact unless
M s a quadratic hypersurface.

This is a weak form of a theorem proved by J. Bénzecri [BEN],
which assumes weak convexity throughoute, and strong convexity and
smoothness at one point. The proof of Corollary is given if we show the
cubic form vanishes. Since the hypersurface is locally strongly convex,
it is enough to see that the Fubini-Pick invariant F' vanishes. Here
note that s gives a Riemannian metric on M and that each projective
automorphism is conformal with respect to ¢o. Then a theorem of M.
Obata [OB] says that ¢y is conformorphic to the standard metric of
the unit sphere. Moreover Fs3 is an invariant (0, 3)-tensor. The same
theorem says that such a tensor does not exist. Hence we have F' = 0.
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§6. Fundamental theorem of a hypersurface

The aim of this section is to construct a normal conformal connection
associated with the fundamental form @9 and, by use of this connection,
to formulate the fundamental theorem of hypersurfaces in P*+1. We
assume the dimension n = 3 throughout this section.

We first try to find a h-valued 1-form 7 satistying the curvature
condition (1.5), which defines a normal conformal connection on the
bundle P. Since a general process of obtaining 7 is well-known (see [K,
p.135-136]), it is simply necessary to relate m with w. Assume 7 has
the following form with unknown 1-form 7:

(6.1) T=w+T.
The curvature form 2 of 7 is defined by

(6.2) Q=dr—7mAm.
We want to determine 7 so that QY = 0 and that Q‘Z is written as

7

1 . .
(6.3) QO = §C'Jkﬂg AT s Cike + Cio, =0,
with the property

(6.4) > ¢l =0.
J

From now on, the rule of raising and lowering indices with respect
to the matrix h = (h;;) will be used. We write 7* for 7. First define

(6.5) 6 =Ta T =0, T = W
7l = %hikhmwﬁ — %hij b

Then

(6.6) =W

dhij — hzk;ﬂ';c - hijﬂ'f = 0.
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The other components of 7 are tentatively supposed to have a form

Ty = Mt
Then 7 has values in § relative to h. We can see
(6.8) QF =t =00 | =o.

These are because of symmetry of h;;, hiji, Lij and M;;. In fact Qg =0
is shown as follows:
Qg :d7T8—7T8‘/\7r8
= dwy — wi A (W) + Lijw? + M)
= —w' A (Lij + M)’ (2.2)
=0 (symmetry of L;; and M;;).

The form QZ is by definition

O = dn’

a J
7 i T /\ﬂ-a
_ J k 7 k J k J
=dr; — T ANwy —w; N1, —T; NTj,
1 j k j
— WAL = (Lig + Mig)w® A w?.

n

The definitions (2.16) and (2.21) show

—d(hijkwk’) = hikgwg N wf + hjkgwe N wf-i—

+ ijwfﬂ AwF + Likw;”l AWk,
by which one can compute dTij and get
cl, = i(hikmhﬁjm — hiemhi?™)
+ (Mw + %L;e) &5 — (Mzk: + %Lik>5z
+ (M + %Li)hw — (M + %L@')hik.
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Hence,

(6.9) c’

1 .
ijl = 4 i£+(n—2)<Mi£+ §L¢e+Mj~hig),

where we have put
(6.10) Ko = hijrhe"
Therefore the condition (6.4) is satisfied only when

1 1
L K- L
2 —2) " it

(6.11) M;; = — 5

hii.
8(n—2)(n—1) "
Introduce a new invariant f;; by

1
4(n —2)

F
Kij + hzj

(6.12) Jii == 8(n—2)(n—1)

Then the definition (6.7) is written as
0 1
TP = (fij + §Lv:j>w‘7
) WL 1 k
(6.7) = W (fa = S Lok )

Proposition 4.7. Let T denote the form T with respect to the frame

ge. Then
T=grg L.

Proof. By the definition (6.12) and by (2.9)

(6.13) F@' @ = fijwin.

Using this identity and putting (; = hjrec tw¥ for a moment, we can see
following formulae from (2.27) and (2.30):

1 .
_>\ 1 J 0_§aggj

'L
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7 — Al 1Aj k
Tn+1 = VARTh 1 + 5 kC

. B L ‘ 1 L
T = AT AT+ Ljw’ — §(Ay) Led ¢,

The definition of T,L.j gives a formula

~j _  k_¢ 4J
T —CLiTkAé.

It is now immediate to see that these formulae together imply the result.

This proposition leads a transformation formula for 7
(6.14) T=dgg '4+gmng ' for ge H.

Let now P be the principal H-bundle defined in §2.4. The formula
(6.14) shows that the form 7 is defined on P and satisfies the conditions
(1.4) in §1. The form 7 also can be seen a basic 1-form on P by
Proposition 4.7. Summarizing we have

Theorem 4.8. Let M be a non-degenerate oriented hypersurface of
type (p,q). Then the pair (p,7) defines a normal conformal connection

of type (p,q).

The form 7, whose components are defined by use of h;j, L;; and
vi, is as a whole an invariant of an immersed hypersurface. This plays
an analogous role as the second fundamental form in the euclidean case.
The Gauss equation which expresses the curvature tensor in terms of 7
is given as follows.
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Proposition 4.9. Let QF = %Cgkﬁrk A7t and ng —1—05% = 0. Then

(1) Cijke = himClrg

1
- Z(hzémhkjm - hikmhjém)
1
———(hi Ky — hiy K; hip K. — hip K ;
+4(n_2)<]k ¢ — hjeKig + hie K, 1K o)
1
hirhio — hijohip)F
T I =1y —g) awhae  hiehir)

)

1
= fik,; — fijr + Z(hijele — hir“Lej)
(3) Q. =h"Qf
where
(6.15) fijpm™ = dfij — fz'kﬂf — fimy + 2fi;mg.

Proof. (1) follows directly from (6.8) and (6.11). (3) is obvious by
definition. As for (2) recall

0_ 70 _ G 0_ 0, _0_ ntl, 0 _ G, _0_ _j, 0
Q) =dr; =T N7, =T, ATg —w] T AT —wi AT; — T Awj.

First show

1 . .
drd = §(hijkwk ANw) g — 2wt A w2+1 + w! A ijwk + Lipw® A w8)

(]
+dfg AwF — fijw‘,i A WP+ firwd A WP,
then insert this to the above formula. Several cancellations by use of

identities defining 7 and L will prove (2).

We next define a higher order invariant: take covariant derivation of
T by

(6.16) Dr=dr—7Am—7mAT.
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It satisfies
(6.17) DT = gDrg !

for a frame change. In order to write down D7 explicitly, we will define

(6.18)

¢ ¢ ¢ ¢ 0
hijkem™ = dhiji — hejem; — hioe; — hijemy, + hijrpmg,
J

k k k 0 k_0
Lij,kzﬂ' = dLU — ijﬂ-i — Lik:ﬂ'j + 2Lijﬂ'0 + hij T,

Yigm = dy; — ] + 3img — Lijmy g1-

Because of the transformation rule for 7, the right hand sides of these
definitions are again basic forms. Then a calculation shows

0 0 0
(6.19) Dr=| (Dbr)? (Dr) 0
(DT)%-H (DT)iL-;-l 0
where
(6.20)

2hik(DT)5 = (hijie + 2(fichje + firhie) + (Likhie + Ljghi) )w® A w¥,
J

1
(D7) = (fik:,ﬁ + §Lik’£ + hik%)wz AWk,

1
hir(DT)5 41 = (fz'k:,e - §Lik,£ + hik’}%)we AW,

(DT)2 1 = ypow® A WF.
Making use of this invariant D7, the curvature form is given by

(6.21) Q=Dr+71TAT.

We call this identity the Codazzi-Minardi equation.
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Proposition 4.10. The equation (6.21) is equivalent to the symmetry
of hiji and L;; and to the equations

(1) Riji,e — Nijeks = lichji — Likhje + Ljohix — Ljihig,
(2) Lijk — Likj = hi;" for. — b’ fo; + 2(hiry; — hijve)
(3) Yiij — Vi = Ljef{ — Lief5.

Proof. The (0,0)-th component of the right hand side of (6.21) is

0 0 0 0
drg — 15 Ny — o AT, + T AT,
= -7 AT

1 . .
= _(fij -+ éLij)ﬂ'Z VAN 7Tj.

Similarly the (n + 1,n + 1)-, (0,4)- and (j,n + 1)-th components are
—(fij — %Lij)wi/\ 7 —%hijkwj A7k and —%hijkﬂ'i/\ 7% respectively. So
the vanishing of QF and Qg“ implies the symmetry. The equations (1)
to (3) follow from identities (6.20) and Proposition 4.9.

1
Corollary 4.11. (1) L;; = ——hy;1,".
n
1 . .
2 G = —Li'j hzij .
@ v =sn k" T sm ooyt Kok

Proof. Contracting (6.18) relative to h;; and using the apolarity condi-
tion (2.18) and the trace condition (2.24), we get

W9 hijke = h" L1 = 0.
Then the contraction of (1) and (2) in Proposition 4.10 gives the result.

The fundamental theorem of a hypersurface in the projective case
can now be stated as follows.
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Theorem 4.12. Let M be an n-dimensional manifold (n 2 3) with a
normal conformal connection (p,m). Let T be a g, 12-valued basic 1-form
on the structure bundle P whose components are given as illustrated
in (6.5) and (6.7) with symmetric coefficients. Assume T satisfies the
covriant relations in Proposition 4.10 and the curvature tensor of w
satisfies the relation in (6.8) and in Proposition 4.9. Then, for a given
point p of M, there exists a neighborhood of p which can be embedded
as a non-degenerate hypersurface in a projective space of dimension
n+ 1 so that m and T are the connection and the invariant induced by
this embedding as described above. This embedding is unique up to a
projective transformation.

Proof. Given 7 and 7, define w = w — 7. All assumptions together
imply dw = w Aw. Therefore we can solve the equation de = we locally
around p and we have the theorem. The ambiguity depends on initial
conditions.

Remark. The theorem by Pick-Berwald in §5 follows from this theorem
in case n = 3. If p3 = 0, then Q = 0 and 7 = 0 by Proposition 4.9
and Corollary 4.11. Hence the uniqueness of the theorem says that if
w3 = 0, then it is projectively equivalent to a quadratic hypersurface
because 7 = 0 also for a quadratic hypersurface.

The Bianchi identity is as usual given by differentiating the equation
of the curvature form.

(6.22) dQAQ=m1NQ—-QAT.
We here define covariant derivatives of the curvature tensor by

Cijke,mm" = dCijre — Crjgem;” — Cimpens”
(6.23) — Cijmumy” — Cijremm)" + 2Ci5107m0,
' Cijrem’ = dCijp — Cojpmt — Cwmf — Cijemh
+ 30Ty + C’%kwg.

2

Proposition 4.13. The Bianchi identity (6.22) implies
(1) S(GkO)Cijke =0, S(ijk)Cijr =0,
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(2) S(kfm) (Cijkg’m - hiijke + hjkcike) =0, S(jke)cijk,é =0,
where S(ijk) means an operation of taking a cyclic summation for
i,7, k.

Proof. The identity (6.22) for indices (0,0) and (0,7) implies
7Ti/\Qg:7Tj/\Q§ = 0.

This is (1). Components with idices (n + 1,7 + 1) and (i,n + 1) give
the same result. The (i, j)-th component and the (i,0)-th component
are respectively

dQﬁ—waQi+Q§Awi—wf+lAQj+1+QSAwﬂ':0,

n

dQ?—w{/\§22+§2{/\w§?—wf+1/\QO+1+Q‘3/\7T8:0.

n

Then (6.23) implies (2).
By taking contractions of (1) and (2), we have

Corollary 4.14. (1) (n —3)Cijr = C’gijk,e,
(2) whenn =4, Q) =0 implies Q =0.

Remark. It is interesting to find a geometric characterization of a non-
degenerate hypersurface which is conformally flat. In the euclidean case
an elegant description of compact conformally flat hypersurfaces with
respect to the induced Riemannian metric is known by U. Pinkall.

§7. Surfaces in P3

When the dimenson n of a hypersurface is two, we cannot follow
the argument from (6.11) on. However a similar reasoning is possible
relying on the next

F
Lemma 4.15. Assume n =2. Then K;; = Ehij.

Proof. 1t is enough to show this identity when (h;;) is diagonal because
of the invariance of both sides. Let h;; = €;0;5, ¢ = £1. Then the
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apolarity (2.18) leads to
(7.1) e1hi1k +eahoor, =0, k=1,2,
and consequently

F = 4(51(11111)2 + 82(/1112)2)-

The tensor K;; is by the definition (6.10)
K;; = ZM ex€ehirehjre.

Hence, for example,

K11 = (h111)? + 2e162(h112)? + (h122)?

= 2((h111)* + e162(h112)?)
F

= —€&1.
2

F
Similarly K12 =0 and KQQ = 582.

Recall the equation (6.9) for n = 2:

. F ,
ngg = ghié + ijhw

So, if we put

(7.2) fij = _Ehij and M;; = _lLij + fij;
16 2

then C’fj , =0 and 70 and 7 are defined by (6.7). With this definition
Proposition 4.7 also holds, because the proof has depended solely on the
transformation rules of h;jx, L;; and v; and on the fact that f;jw'w’ is
independent of frames (see (6.13)). The last property is now equivalent
to the invariance of F'ps, that is shown in Proposition 4.1. Hence we
can define a form 7 by m = w + 7. Then, similarly as Proposition 4.9,
we have
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Proposition 4.16. (1) Q‘Z =0.

1 1
(2) Cijk = Z(hijELEk; — hitLey) — 1—6(th¢1¢ — Fyhij),
where

(7.3) Fn® = dF + 2Fn)).

(3) Q) = h7"QY.

The covariant derivations of h;;i, L;; and «; are also defined by
(6.18). Then

(7.4) F; = 207" hjp ;.

The Codazzi-Minardi equation is

Proposition 4.17.

(1) hijke — hije. = Lichjx — Likhje + Lijchix — Lighig,
(2)  Lijk — Likj = 2(hakj — hij k),

) iy =i =0

1 1 ;
Corollary 4.18. (1) L;; = _§hijk:7 Q) v = §Lij7]'

Remark With these modifications we have a similar statement as in
Theorem 4.12 for the case n = 2.

The case n = 2 has another feature that a complex structure is
associated with the conformal structure. We will give some formulae in
this point of view. To make notations simpler, assume

-3 Y)

Then each element of the group H with respect to h is written as

A 0 0 0
by cos@ sinf O
by —sinf cosf O ’

7 cl 2\
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to which we associate a matrix in G Lo (C)

where

(7.5) z= e "
t=Xc' —ic?).

Then H is isomorphic to the affine transformation group of C!. Let

We have
(7.7) s=tz
_ ! tt
P=on

Next, define complex invariants by

(7.8) C = hi11 — i haaa
K = Ly — 1Ly,
o=y —iv2.

Then transformation rules are given by
(7.9) +vAC = 2°C
2K =K +1C

- _ 1_
V226 = 6+ 1K — 57526’.

We define further

(7.10) ¢ =nt +in?
T(1) = T —iTL,
T(2) = ™ 40Ty,

_ 1 . 2
7'(3) —7'3 +ZT3,

7
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then
(7.11)

and

(7.12)

4. Projective theory of hypersurfaces

1
T(1) = 505,

F 1—
T(2) = _1_65 + §K§7
F 1—

The Gauss equation is reformulated as follows:

(7.13)

d§ =nAN§
dn=E&NE
d¢ =CAn+Q,

where 7, ¢, and () are defined by

(7.14)

0 2

="y — 1T

_ -0 -0
(=m —17y
Q=00 -0

68. Projective metric

When the Fubini-Pick invariant F' vanishes nowhere, the projective
metric F'p, becomes a true pseudo-Riemannian metric. We will sum-

marize formulae in this case.

Recall first a transformation rule \v=1F = F (see Proposition 4.1.).
So, if ' # 0, then we can find a frame so that F' is a constant, say 1.
This means a restriction of frame change to A = v = 1. Next recall w)

changes as 0f = wy — biA%w’, (2.9). Then we can assume w) = 0 and

consequently a frame change is restricted to

1
9= a



§8. Projective metric 79

This says that the quadratic form o defines globally a pseudo Rieman-
nian metric. The metric connection is given by a pair (w?, 7r]) 7r;- =
w + 1h3 kwk The transformation rules by the above g are given by

(8.1) o = wk Al
B = abupt

& = daf Al + atwf Al

~0 J 0
W; = G;w;

_ J
wn—}-l - wn—l—lAk:

~0 _ .0
n+1 wn-i—l‘

We define new invariants p = (p;;) and ¢ = (¢;;) by
(8.2) wy = pijw’  and hijw:,iﬂ = qijw’.

These invariants together with v = (v;) defined by w?,, = —vyjw’
transform as

(8.3) p=ap'a, ¢=aq'a, ~v=ay.
The invariant L;; is now equal to ¢;; — p;;. Symmetrically put
(8.4) Uij = qij + pij-

Then these satisfy the relations that will be called the Codazzi-Minardi
equation.
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Proposition 4.18. (1) gij, pij, Lij, and U;; are symmetric tensors.

(2)  hijke — hijoy = hikLje — hieLji + hjkLic — hieLig

1
(3) Dij.k — Pik,j = §(hij£p£k: — hir“pe;) + (hijye — hinvi),
L. ,
Qijk — Qik,j = _i(hij Qer — hik qej) — (hijve — hiky;j),

1

Lijr — Lik; = _§<hz’j£U£kz — hit'Usj) — 2(hijve — hirvj),s
1

Uijo — Uir,j = _§<hz’j£L£k — hix“Lej),

Yig = Vii = Pkl — pz'kL?-
(4) hijk,® = —n Lyj,

. 1
ng = —§hiijjk + 2(n — 1)’}/1

These relations are consequences of the integrability condition dw =
w A w. We will not reproduce here. The Riemannian curvature tensor
is given as follows:

PI‘OpOSitiOH 4.19. (1) Rijkg = %(Uigh]’k - Uikhjg + Ujkhig - Ujghz'k;) +
2 (k™ hiem — hik™hjom)-
(2) The Ricci tensor R;; and the scalar curvature R is given by

1 1 1
Rij = —5(?1 — 2)UZJ — §TI'<U)hZ] + ZKij’
1
R=—-(n-1)Tr(U)+ ZF

The last vector e,,+1 of a frame is uniquely determined in the present
case. It may be called the projective normal, cf. [BOL, vol. 2, p. 35].
The next proposition gives a relation connecting e, 41 and eg; this is a
projective analogue of the relation in the affine geometry (see [FL]).

Proposition 4.20. Let A be the Laplacian of the metric h;;. Then

Aey =nepy1 + tr(p)eg.
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Proof. Since dey = w'e;, the covariant derivation of eg is e;. The deriva-
tion of e; is
d J _ n+1 1 h 7, .k
€ — €e;T; = Wwijey +w;  €ent1 — 5 ik W €.
Hence e;; = pijeq — %hijkek + hijen+1. Taking traces, we have the
result.
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5. Systems of linear differential equations and hypersurfaces

The purpose of this chapter is to apply the geometric formulation of a
non-degenerate hypersurface to the study of a system of linear differen-
tial equations of n variables. Let z: M™ — P™*! be an immersion of an
n-manifold. Choose local coordinates (z°) on M and put z; = dz/0x",
zij = 0%°2/02'0x7,... We assume vectors {z,21,...,2n,21,} are lin-
early independent. Then z;;’s are expressible by linear combinations of
these vectors such as

Here coefficients are scalar functions and symmetric with respect to
subindices and

(0.2) gin=1, A¥ =A% —=o.

Since the immersion z is, as we have seen in the previous chapter, de-
termined by the induced conformal connection and the invariant 7, the
coefficients of (0.1) are expected to have relations with these geometric
quantities. In fact, the system (0.1) can be written in a Pfaffian form,
which is geometrically a differential equation satisfied by a projective
frame. This will be made clear in §1 for n = 3. The §2 deals with a
special case where the image of z lies in a quadratic hypersurface. The
case n = 2 is treated in §3. In §4 the notion of dual immersions and
dual systems will be defined. This chapter is mostly based on [SY1]
and [SY2].

§1. Systems of linear differential equations defining a hyper-
surface

Let z: M™ — P™*! be a non-degenerate immersion. Assume n > 3.
Let (z%) be a local coordinate system and take a frame field with w® =
dx’. Let ng be the Christoffel symbol of the tensor h;; with respect to
this coordinate system:

I = §hjg(hw,k + hiei — hike),  dhig = hig pda®.
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Then the conformal connection form is Wf = F‘Z kw’“ by the requirement
of (6.6) of Chapter 4. Let R}, , denote the Riemannian curvature tensor:

. T
drn] —nf A = §ng:£wk Awt.

The Ricci and the scalar curvatures are denoted by R;; and by R re-
spectively: -
Rij =R}, R=h"R;.

iy

Put

0 k
T, = —OikW ,

then the conformal curvature tensor nge is given by

Cloy = Ry — Sixd) + Sie6], — hirch?™ S e + hich?™ Sy

(2

The requirement (6.4) of Chapter 4 shows

(1.1) Sy = — (Rij—%hij>.

n—2 n—1

The tensor S;; is called the Schouten tensor relative to the tensor
hi;. Now we have

0 7w 0 0 dx? 0
T=| 7 7TZ‘-j 7T;H_1 = | —S;pdxF ngd:pk h;jda®
0 w., 0 0 ~hSpdz® 0

We continue the argument in the introduction. The third-order
derivatives of z are also linear combinations of {z, z1, . .., z,, 21 }, among
which we need

(1.2) Z1jn = szln + ZB;{:ZI@ + B;)Z, 1< .] <mn,

where G, Bf and B? are certain scalar functions. Define a function 6
by

(1.3) e = |det(z, 21,..., 2n, Z1n)|-
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We call 6 the normalizing factor of the system (0.1). Define a frame
field e = (eg,...,€ent1) by

(1.4) e0=2, € =2, €pi1= e 92

Then the system (0.1) combined with (1.2) is written in a Pfaffian form
(1.5) de = we

where ,
0 dx? 0

W= A9 dx* Al da® e?gix, da®
e~ BY dz* e_QB,‘i do®  (Gy — 0) dz®

The induced conformal tensor h;; is by definition e? gij- We apply a
process of normalization to the frame e: to find a transformation g so
that, with respect to the frame ¢/ = ge,

(1.6) |det hij| =1, wi+wi'=0 and L' =0,

where

W' =dgg~! +gwgT".

Since w’ is decomposed into the sum of the connection form 7 associated
with h}; and the invariant form 7 of the embedding z, we have

(1.7) w=dhh™' +h(r—71)h"!

for h = g=!. This equality shows that w is represented by geometric

invariants in the right side. And, consequently, the coefficients of (0.1)
is written in terms of invariants of the hypersurface z. Assume

(1.8) | det(e’gi;)| =1
and take a transformation g of the form
0
I,
c

g:

T O
— o O

Then it will be seen that the condition (0.2) determines g uniquely.
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Proposition 5.1. Assume (1.8). Then the coefficients A;, are given

. . , 1 , .
Al = (T, — gal'1,) — §(hik:jgik:h1nj)

1 1
0O _— _(q. _ 4. _ . i S -
Aik — (Szk: gzksln) <fzk: + 2sz: 9ik (fln + 2L1n))7

where ng and S;i are the Christoffel symbol and the Schouten tensor of
eegij. The hfk, L;x and f;;. are components of the form T with respect
to the frame €.

Proof. By the assumption h;j = hi; = e? gij, the form 7 has the follow-
ing form

0 0 0
7= | (fir + 3Lik) dz* Lhi, da* 0
—w2+1 hje(fgk - %LU{:) d:Ck 0

We see ) = m/'T1 = 0 because wy’ = wd = 0. Then (1.7) turns out to

be

( 0 s 0\

0_ .0 n+1 J _ j—n+1 n+1
; T; + U, U T + c i ™,
w =
0 J J ' J
— i = T Mol — Tpp1 — A€ — pm 4l
i 0 0 n+1 i( ] J o gt '
\ c'(my —1; +pm] ™) —c'(m] — 1) + )
Hence

| A
Al =T, — Shin’ + ¢ hi

1
Afy, = —Si — (fik: + §Lik:> + phig.
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The requirement (0.2) shows

‘ , 1 . 1
J = —e " (F{n — §h{n) . ou=e "’ (Sln + fin + §L1n)-

Hence we have the formula.

If the condition (1.8) is not satisfied, then by multiplying a suit-
able function to the unknown z, one can transform the system (0.1),
without changing the hypersurface nor the coefficients g;;, into a sys-
tem satisfying this condition. Then the other coefficients are obtained
by the following lemma, which is known as the transformation rule of
connection forms under a conformal change of metric (cf. [G]).

Lemma 5.2. If the unknown z is transformed into a new unknown w
by w = e%z, then the system (0.1) changes into

(1.9) Wik = YikWin + Pfgwj + Py,

where
(1.10)
szk = Agk + sz(si + Ckk(slj — gik(al(S% + an(S{)

PY. = A% + (ai, — azo) + AL — gin(ann — aran).

The new normalization factor is e?+t(nt2)a,

§2. Systems of linear differential equations defining maps into
quadratic hypersurfaces

We consider in this section an n-manifold with a conformally flat
structure. Such a manifold has a mapping called the developing map,
which is defined on the universal cover of M into a quadric. Since a
quadric is embedded in P"*! as a quadratic hypersurface, this map
defines a (multi-valued) immersion of M into Pt

Definition. The system (0.1) is said to satisfy the quadric condition if
the image of z is contained in a quadratic hypersurface. In view of the
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theorem in §5, Chapter 4, this is equivalent to say the cubic form of the
immersed hypersurface by z vanishes identically. Then the invariant
form 7 vanishes and the connection form 7 is flat. Therefore we have,
as a corollary of Proposition 5.1,

Theorem 5.3. Assume the system (0.1) satisfy the condition (1.8) and
the quadric condition. Then the coefficients A;; are expressed as ratio-
nal functions of g;; and of their derivatives:

(2.1) Al =T7 — gy

In>

AY = —Si + gixStn.

A converse of this theorem holds.

Theorem 5.4. Assume n = 3. Let gijdxidxj(gln = 1) be a non-
degenerate symmetric tensor which is conformally flat. Define 6 so
that | det(e?gi;)| = 1 and define Af; and AY; by (2.1) with respect to the

ij
tensor egg,-j. Then the number of independent solutions of the system
(called the rank) z; = gijz1n + Aszk + A,?jz is n + 2 and this system

satisfies the quadric condition. Its normalization factor is e?.

Proof. Put h;; = eggz-j. Since by assumption h;; is conformally flat,
the associated normal conformal connection 7 is integrable. Apply
Theorem 4.12 by putting 7 = 0. The Gauss and the Codazzi-Minardi
equations are trivially satisfied so that there is an unique immersion z
of z-space into P"*! such that the induced conformal tensor is h;; and
the invariant form is zero. Let

(2.2) Zij = ggjzln + Ai?zk; + Ai?
be the system with z as solutions and with the normalizing factor e .

. . . / . . . .
The induced conformal metric is e’ gi;, which coincides with ?gi;.

Hence e/ = ¢ and 9ij = ggj. Then Theorem 5.3 shows the conclu-

sion.

This theorem can be formulated in a more symmetric way.
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Theorem 5.4'. Assume n = 3. Let o;;dx'dz? be a non-degenerate
symmetric tensor which is conformally flat. Put

1
— ... _Tk .
Zij = zij — iz + — 2sz.
Then the system
(23) O'Z'jZk;g = O_k:EZij

1s of rank n + 2 and satisfies the quadric condition. Here Ff’j and R;;
stand for the Christoffel symbol and the Ricci tensor with respect to 0.

Proof. Assume first " : = 01, # 0 and put g;; = e~ "0;; and | det g;;| =
e~ 2", Define h;; = e®g;; so that |det h;j| = 1. We have only to
combine Theorem 5.4 and Lemma 5.2 as well as the transformation
formulae of the Christoffel symbol and the Ricci tensor for h;; into
those for o;;:

ng(g)
le(O')

7, (h) + idl + agd? — hih'Pay,
Rir(h) — (n — 2) (i — asag — ;T (R))
—{Apa+ (n—2)W ajap}hi

where & = 31+ p and Ay, is the laplacian of h;; (see [G, p. 115]).
When o0;; = 0 for ¢ # j, change coordinates by y; = x; + z,, and
y; = x; for i = 2. Define S;; by Si;dy‘dy’ = o,;dz'dz?. Then Sy, #
0 and we can apply the above case. In fact, let yfj and r;; stand
for the Christoffel symbol and Ricci tensor for (y*,S;;). Put W;; =
022/0y 0y — k.02 /0xF +1;; /(n—2)z. Then, since the transformation

J
is linear, we can see easily the identity

oxP 0z? 0x" Ox* (
oy’ OyJ Oyk Oyt

SiiWie — SpeWi; = 0ij Zke — OkeZij)-

This completes the proof.

Example. Let M" = R™ with the standard metric > (dz%)?. The
corresponding system (2.3) is

2y =0 1#], Zi= 2z
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A set of independent solutions is {1,z',... 2", (z1)? + -+ + (a™)?}
which defines a mapping from R"™ into a paraboloid. This mapping is

projectively equivalent to the inverse map of the stereographic projec-
tion from S™ — {oo} into R™.

Example. The following system is an example satisfying the quadric
condition:

L 1 n 1 L 1< 1 L 1 )
¢ xt—1 2\xt—gxd gt —gk

B 27 (27 — 1) e o (xF — 1) 1
20 (xt — 1)(at —2d) 7 29 (xt — 1)(zt — k)

(Qwij—l—( ! + .1 Z)w@\

) —xk  xi—x

(zF — aV)ad (7 — 1) —I—(mZixk +q;iixj>wj
1
\ @) )

/Qwik+ (xkixﬂ + o L )wl\

: : 1 1
— Y R k_l ( : i )
(' — 2’ )x"(z ) + xl—xk+:cz—x3 W

1
\ T aw-h )

where (4,7, k) is a cyclic permutation of (1,2,3), and w; = Ow/dx?,
w;; = 0%w/dz 0z’

This system is defined on P3 and z! are affine coordinates. A set
of independent solutions defines a multi-valued mapping into the Siegel
upper half space Hs of degree 2, contained in its compact dual, a qua-
dratic hypersurface of dimension 3. The map from Hs onto P3 is given
by taking the quotient with respect to the Siegel modular group. For
another example when n = 4 refer [MSY].
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§3. Systems of linear differential equations in two variables

E. J. Wilczynski has studied the surfaces in P3 as the integrating
surface of a system of linear differential equations:

Zpg =l Zpy F A2y b2y +D2
(3.1)

Zyy = M Zgy +C2p +d 2y +q2,

(z,y) being local coordinates. We here summarize some basic facts
about this system in our point of view.

Let us start with an example which shows the difference between the
case n = 2 and the case n = 3. Consider a system

Zexx — P
52) {

Ryy = 4%,

which is assumed to have four independent solutions. The integrability
condition of this system is

py:%c:O-

Hence both equations of (3.2) are ordinary differential equations with
respect to z and with respect to y respectively. So both have two
independent solutions; say 21, z2 and wq, we. Then { z;w;; 1 <1i,5 <2}
is a set of fundamental solutions of (3.2) and the map

(z,y) — (z1w1, 219, 22w1, 2ows) € P3

defines an immersion into a quadric defined by X' X% = X2X3, (X?)
denoting homogeneous coordinates. In the terminology of the previous
section the system (3.2) satisfies the quadric condition. However the
coefficients p and ¢ are arbitrary, contrary to the case n = 3 where all
coefficients are determined by the conformal tensor.

Assume now (3.1) has four independent solutions which define an
immersion z of a surface. Define a frame field e = (eg, €1, €2, e3) by

—0
€0 =%, €1 =2, €2=2y, €3=€ Zgy
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where 6 is defined by
(3.3) e’ = |det(z, 2z, 2y, 2ay)|-

Then the coframe w is computed to be

(3.4)
w =
( 0 dx dy 0 \
pdx adz bdx el (Udx + dy)
qdy cdy d dy ee(daz—l—mdy)

) Bdax 0 Bldx 0 B?dx
e~ 0 e~ ) e~ ) —adr — ddy
\ + C0dy + Cldy + C2dy )

Hence, the fundamental form ¢, is given by
(3.5) 9 = L dx® + 2dx dy + m dy®.
The non-degeneracy of the associated surface is equivalent to
1—4¢m #0.
Coefficients B*, C* are given as follows:
B? = {py + bq + £(qz + cp)} /(1 — m)
B! = (A+4q)/(1 — ¢m)
B* = (B +p)/(1—tm)
B ={l,+a+bm+L(my+d+cl)}/(1—lm)
(3.6)
C? = {gz + cp +m(py +bg)}/(1 — Im)
C'=(C+4q)/(1—tm)
C? = (D +mp)/(1 — tm)
C? = {mgy +d+cl+m(l, +a+bm)}/(1—fm)
A =ay+bc+ l(cy + ac) B =by, + bd + {(dx + bc)
C = cy + ac+ m(ay + be) D = dg + be + m(b, + bd).
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Taking derivation of (3.3), we see

(3.7) 0, =a+ B
0, =d+ C°.

The integrability condition dw—wAw = 0 consists of above equations
(3.6) and the following four equations

(3.8)
(a+B%), = (d+C%),
gy —2q, —mpy — (€&, — & — 20,)qg = R’
M Py — 2py — £qe — (M&x — & — 2m,)p = R
Pyy — dex — M Pay + 4oy
= CPgx — be + (d +2m, + fy - mgz)py - (a + 26@/ + & — ffy)@lm
+ {may +2c, —2cly —Llcy —c(&x —0Ey)}p
— {ldx + 2by, — 2bmy — mb, — b(&, — m&) g,
where
R'=(C]+¢)A—(B* —a+&,)C —cB+C, — A,
R*=(B*+¢&,)D— (C° —d+¢,)B—bC + B, — D,
¢ =log|l —{m).

We next consider the case £m — 1 < 0, i.e. s is of indefinite type.
Recall the definition of asymptotic curves defined in §2, Chapter 3. In
the present case such a curve (x(t),y(t)) is defined by

dr\ 2 dx dy dy 2
g(dx) T dt+m<dt> 0
Since /m — 1 < 0, we have a set of two curves through each point.

Therefore, if we take these curves as coordinate curves, then o =
2dz dy, i.e. £ =m = 0. Now the system (3.1) is simplified to

{zm =azy +bzy+pz

Zyy = CZg +dzy +qz.
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For this system, (3.7) implies
0, =2a, 0,=2d.
So, by putting w = /2%, this system is further simplified to

{wm =bwy +pw

Wyy = CWgx + qW,

93

with new coefficients. This is called a canonical form of (3.1) and
intensively studied by Wilczynski and others. Define a new frame e =

(607 €1,€2, 63) by

1
€0 =2, €1 =2y, €2=2y, egzzxy—ibcz.
Since the coframe w has the form
/ 0 dx dy 0 \

pdx + %bcdy 0 bdx dy
W = 1

qdy + sbcdx cdy 0 dx

(bq + py) dx tbedx (p+by)dx

\ + (p + g) dy — 5d(be)  + (q+ca)dy +5bedy )
This frame is normalized in the sense of Proposition 4.2.

Proposition 5.5. (1) The cubic form h;ji is given by

(3.9) hi11 = =2b, hozo = —2¢, hi12 = hi22 =0.

In particular, F = 8bc. (2) The quantities L;; and ~y; with respect to

the above frame e are given by

(3.10) o= 2.

Cx
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1
(3.11) = 5(1)6)96 —bqg —py

1
Y2 = §(bc)y — CP — (-

Proof. Recall h = ((1) (1)) The apolarity condition (2.18) of Chapter 4

says 0 = h% hijr, = 2hi2k. The definition of the cubic form gives

hllkwk = —2h12w% = —wal

h22kwk = —2h21w% = —26w2.

So we have seen (1). Since L;;w’ = h;jw] — w?,

G20 _p 1
Lijw =w; —w] = byw
ngwjzwé—wg:cwa.

Similarly from the definition w§ = —\;w’ we have (2).

The integrability condition (3.8) simplifies to

2py = (bc)y +bey — byy
2¢y = (bc)y +cby — Cap
Pyy — Qzz = (cp)z — (bQ)y +pcg —qby.

(3.12)

We will conclude this section by giving a characterization of non-
degenerate ruled surfaces in terms of the Fubini-Pick invariant. Recall
that a ruled surface is defined by a map

(z,y) = 2(z,y) = u(r) + yv(r),

where u(z) and v(x) are generating curves in P3 (§1, Chapter 3). We
have seen that curves v and v and local coordinates (z,y) are so chosen
that they satisfy a system of ordinary differential equations

Ugpe = QU + BV
Uz = YU + 0.
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It is easy to see that z satisfies the equations

{ 2w = (+9Y)z + {B+ (6 — @)y — 7y*} 2y
(3.13)

Zyy = 0,

which is of canonical form. The Fubini-Pick invariant vanishes. Con-
versely, let M C P3 be a non-degenerate surface of indefinite type with
F' = 0. Then the associated system is written as

{zm =bzy+pz

Zyy = qz
for some coordinates (z,y). The integrability condition is
(3'14) 2py = =byy, =0 py, = _(bQ)y — q by;

see (3.12). Let ¢ be a non-zero solution of the second equation and
define a new coordinate 3’ and a new unknown variable w by

Y :/80_26@, w=p lz

Then a calculation shows

Wer = bwy + p'w
(3.15)

Wyryr = 0.
Again from (3.14), we can see

pr=a+yy
b=—yy" +0'y +8

for some functions «, 3, v and ¢’ of x. So the system (3.15) is defining
a ruled surface, see (3.13). We have proved
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Proposition 5.6. A non-degenerate surface of indefinite type in P3 is
a ruled surface if and only if the Fubini-Pick invariant vanishes.

§4. Dual immersions and dual systems.

Let us recall the situation in Chapter 4: M is a non-degenerate
immersed hypersurface and e = (eg,...,en41) iS a projective frame
field satisfying a system of equations

(4.1) de =we.

The components e, are vectors in V = R"*2. The first vector ey has a
special meaning that it gives the immersion. Define E% by

(4.2) E® = (=1)%g A~ Aéa A Aentls

n+1 n+2
which are vectors in the space A V. If we identify A V with R, then
n+1
/\ V is a dual space of V' and by a canonical pairing ( , ) we have

(4.3) (eq, EP) = 45,

Notice that the vector E"*! is determined up to a non-zero multiple
independently of the choice of frames and hence it defines a mapping
from M to P"T1* the dual of P**!. If this is an immersion, we call
E™t the dual immersion. The set E = {EY, E', ..., E""1} is a frame
field along E"T1. From (4.1), we can see that E satisfies

(4.4) dE = —FEw
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(here E is considered as a row vector of £¢). In fact

dE® =Y "(~1)%g A+ Ndeg A+ Aeq A Aenti
3

::22-— ) wheg A A €SN Aea A Al

8
( )Ea+§: )wheg A A EB A ANeq A Aen
B#a Ba

:( )E (C1)P wleg A~ A s A A e
B#a p#

«

= —wgk (note wi =0).

If we define a column vector E by

E= ("t E',. .. E" EY),

then
(4.5) dE = QF
where
(wﬁi% Wit w0 \
n+1 wi o wlo Wl
(4.6) -0 =
Wpi1 WP wy o w"
o0 W W ny,

Hence F is a projective frame along E™*'. Since ' = :“Ll and

Q' = —w', we have Q"' =37, h¥Q; the fundamental tensor hj; of

the dual immersion is equal to h*. Similarly we have
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Lemma 5.7. Denote invariants of the dual immersion by attaching
“x 7. Then

h;'kj = h" h?jk = hk L;'kj = —L¥ Vi = Vi
F*=F P =2 P3=p3.

In particular, if e is normalized, then E is also normalized.

Consider now a system of linear differential equations of n variables
of rank n + 2, which can be written in a form (4.1). Then we obtain
another system (4.4) called the dual system. Assume here both systems
are known explicitly. Then the identity (4.3) gives a relation among
solutions of both systems. In order to clarify this phenomenon we show
an

Example. Let Fs(a, 3,0',7,7") be the system of equations given by
(1 —2)2gy =Y 20y +{a+ 8+ 1)z —7v}2e + PByzy +afz
(4.7)

y(1 = y)zyy = 2y 20y + {(a+ 5" + D)z —7'}ey + frze + a f2
which is called Appell’s Esy (see [ERD]). The function
(.m + ) (8, m)(F7)
(v, m)(7',n)(1,m)(1,7)
is a solution of this system. We can prove the dual system is equivalent

to Fo(l—a,1—0,1—3,2—+,2—7"). Then the identity (4.3) gives a
formula

(Fol, 8,677 2,9)  Fo(l— a1 =51 5,2 =72 —752,9) )
—Fa+1—78+1-7,8,2—7,9;1,y)
Fy(y—a,1=6,1-0,7,2—7"2,y)
—Fa+1-+,8,+1-7"72-7"z,y) = 0.
F(Y —a,1=3,9" = 3,2 7,7 2,y)
+Ra+2-y—9,8+1-70 +1-9,2—-7,2—-9"2,9)
\ By +y —a—-1,y=0,8,7" = 5,2 7,71,y

This formula reflects the symmetry possessed by the system (4.7). As
for this and for other examples, refer [SY3]. Refer also §5, Chapter 2.

Fy(a, 3, 8,77 52,9) = )

m,n




6. Projectively minimal hypersurfaces

In §2 of Chapter 4 we have seen that the quadratic form Fs is an
absolute invariant of a hypersurface, which is called the projective met-
ric provided that the hypersurface is non-degenerate. The associated
volume form is |F™det h|'/2w! A --- A w™ once we fix an orientation.
Define an area functional P by

P(C) :/ |F™ det h|Y 2w A AW"
c

for C' a relatively compact domain. A non-degenerate hypersurface is
called projectively minimal if this functional is critical for any infinites-
imal deformation of the hypersurface. In §1 we will show how to derive
a differential equation defining projectively minimal hypersurfaces and
give some examples of such hypersurfaces for dimension n = 2 and also
for n = 3. In §2 we will define a transformation of surfaces called the
Demoulin transform and then in §3 discuss its relation with projectively
minimal surfaces.

61. Variational formula and examples

We first notice that the volume form cannot be always positive. It
vanishes where F' = 0. In particular every quadratic hypersurface is
projectively minimal. However, to avoid the differentiability problem
at F' = 0, we assume for the moment that ¢, is positive definite and
consider the functional where F' # 0.

Let M be such a hypersurface and e = (eg,...,e,11) a projective
frame field, for which

(1.1) det H=1 and wj+wifi=0
hold. A deformation M; of M is given by a vector
(1.2) eor = eo + a*(t)e; + v(t)entt,

99
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where t is a deformation parameter and a*(t) and v(t) are functions on
M with parameter ¢ such that

These functions are assumed to have compact supports in a domain
C'; and C'is contained in the domain where the frame is defined. Let P;
be the value of P for M; over C. Let da denote the value da/dt|; = 0
for a function a of . Then the hypersurface is projectively minimal if
and only if

OP = 0.

Since the deformation is defined by functions a* and v, we can expect
to get a formula such as

(1.3) 6P = / {Apda® + ASvYw A A W™
C

In fact the computation has been carried out in [SA3], where we took
one affinely normalized frame field explained in §4 of Chapter 4 as a
reference frame. Denote by “; "the formal covariant derivations with

respect to forms = wf + %hikj w” introduced in §6 of the same chap-

i
ter: for quantities with suffices from 1 to n, say for a], define formally

al, wk = dal —alwF + afr] as in usual tensor analysis. This is com-
)

patible with h;; because h;;., = 0. Then we can see that
(1.4) A, =0

and that the minimality is defined by

A=0,
where
2 n/2—1 1-ij n/2—1\  1oji
—— A= FYP R Ly + (7270, K7°)
(1.5) — ((F"2  hij) ), — (n+2) (F*2 R L)

. 2(Fn/2_1hwk);kLij . §(Fn/2_1hkaij);k:

+ 2(Fn/2—1h2]k) hjin

)



§1. Variational formula and examples 101

see p. 247 of [SA3]. The summation convention and the raising-and-
lowering rule by h;; are used. Although the expression (1.5) is not
projectively invariant because of tentative use of “;”, the definition
of covariant derivations (6.18) of Chapter 4 enables us to rewrite this
expression in an invariant form, which will be shown later for n = 2.

Before applying the formula (1.5) we want to redefine the projec-
tive minimality. This formula of A contains a term with fourth-order
derivatives of F™/? unless n = 2, 4 or 6. However, if we put A’ = A for
n=2 4or6and A = F~"/2t% A otherwise, then A’ turns out to be
finite even where F' = 0 and has meaning also for the case when A is
indefinite. So we pose a

Definition. A non-degenerate hypersurface is said to be projectively
mainimal if it satisfies the differential equation

A" =0.

Remark. When h is definite it is seen that F~"/21t2 4 is finite. As far
as we are concerned with the part where F' # 0, this definition is of
course the same as the previous.

We now find some special solutions. Consider an affine hypersurface
which is defined by the condition L;; = ¢;; — £h;; = 0. Since wy =
n) = 0 for affine frames, we see hijk:x = 0 by (6.18) and Corollary 4.11
of Chapter 4. This makes the equation simple so that

(1.6) A(F™ 2Rk s — (F™27L KRR = 0.

Assume the metric @5 is Einstein. Since the Ricci tensor of this metric
2 is known to be
1 1 1
Rij = —5(71 — 2)51'3' — §£ hij + ZKij

(see f.ex. [SA3]), we have K;; = K h;;. Hence the second term of (1.6)
vanishes by the apolarity. The first term also vanishes if we assume that
the hypersphere is homogeneous under a unimodular transformation
group; because F' is invariant under such transformations. We have
seen
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Proposition 6.1. Let M be an affine hypersphere in A"T1. Assume
M is homogeneous under a unimodular transformation group and the
affine metric @o s Finstein. Then M and every surface projectively
equivalent to M are projectively minimal.

Example. Let V be a non-degenerate convex cone in A" and let x be
the characteristic function of V' defined by x(x) = fv* e~ {#8 d¢. where
V* is the dual cone and ( , ) is a dual pairing. If V is affinely homo-
geneous, then the hypersurface {x = 1} is an affine hypersphere. The
assumptions in Proposition 6.1 are satisfied when V = { (z!,...,2") €
A" 20 > 0} or when V is an irreducible self-dual cone.

When n = 2, the formula (1.5) becomes simpler because of the iden-
tity K;; = Fh;;/2, that was shown in Lemma 4.15. In fact we have

(1.7) h'9l.; = LY L.
This formula shows in particular
Proposition 6.2. Every affine sphere in A3 is projectively minimal.

A converse of this fact in a global sense is given by

Theorem 6.3. A compact strongly convex projective minimal surface
in A3 is a quadratic surface.

For a proof, first integrate (1.7) over the surface to see it is an affine
sphere L;; = 0 and next use the theorem that a compact strongly
convex affine sphere is a quadratic surface, due to Calabi [CAL1] and
Pogorelov [PO].

The formula (1.7) will now be rewritten in projective terminology.
Recall that every affine frame is normalized projectively in the form
(4.2) of Chapter 4. Hence ; = %&. On the other hand, the covariant
derivation of v; has been given by (6.18) of Chapter 4:

(18) %’jwj = d’yi — ’}/jﬂ'zj- + 3’)/1'71'8 — Lijﬂ-vjz—i—l’
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: 0_ i i _ pik 1 k
Since 7y = 0 and 7y, | = w;, . + 751 = 7Ly + fri — 5Lk )w” where
F

fri = —Ehm (88, Chapter 4), we have
F 1
Vig = Yis — Lieh** <€j£ — it~ §Lj£>-
Therefore ]
Wiy = Wi — gL LY.
We have

Theorem 6.4. A non-degenerate surface in P3 is projectively minimal
of and only if

(19) hij’}/i,j =0.

Proof. Since this holds for affinely normalized frames, it is enough to
see that this condition is independent of frames. This will be shown in
the next lemma.

Lemma 6.5. Consider a frame change € = ge by

A Av| =1,
g=1|b a : b=v"tahlc
pocov p=svtchlc

A denotes the inverse of a. Then

- 1 _
(1) X9, g AV AT = v, 5 + Lig i — v hige i

2
1
— hypc” (fyj + V_legc£ - §V_2hjgmc£cm>
1
+ hyjck (’Yk + v Lyect — §V_2hk€mcgcm)

1
- 3%-hjkck’ - 2V_1hjkLingC£ + §V_1hjkckhigmc£cm

- ,LL(LU - l/_lhijkck).
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(2) Put T = h%~; ;. Then

(T forn =2,
1 y
A7 _ ) T— —— v K9 AP
M = 4(n —2) Ik . 1 forn > 3.
+ (n — 2){3v 1y;ct + §V_2Lijcicj — §V_3hijkcicjck}

The proof is given by a routine calculation and omitted.

62. Demoulin transforms of surfaces
We assume n = 2 and treat normalized frames:
(2.1) wy+ws=0, |H =1, L=0.
Recall transformation rules for such frames.
(2.2) Azl/ﬁijk = hpqrafag-az

27 —1 k¢
ALy = (Lge — v hiemc™)a; a;

7: .

- 1 ;
Ny = (fyj + v L ek — §V_2hjkgck’c£)aj

We try to find a frame so that 4; = 0. To simplify notations we

: 1
consider the case h = (? 0

and L2 = 0 in this case (cf. Chapter 4). Put

). We have seen already hi12 = hi22 = 0

hi11 = —2a, ha = —20.
Then ~; = 0 if we can solve

{ a(c')? + Lizct +41 =0

2.3
( ) 6(62)2 + L2202 + v = 0

to define a frame change. Let us denote by A; and Ay the discriminants
of these equations.

Ay = L%l — 4 a, Ay = ng — 490.
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Consider a frame change by

A
2«
1
c 6
x ¢t 2 v

Then (2.2) yields
Ma A=A, MB 1A, = A,

Since the remaining freedom of choice of frames is the exchange of e;
and ey, the condition

(2.4) A1 20, Ay =20
is independent of frames.

Assume this condition and the condition
(2.5) a#0, b#0.

Then (2.3) has solutions, the number of which is generally 4. Let
(¢!, c?) = (t1,?) be one solution and € be the corresponding new frame:

~ ~ 2 ~ 1
ep =€y, €1 =teg+e, ex=1¢ey+ e,

53 = t1t2€0 + t1€1 + t2€2 + €3.

New Eij’s are
L1 = L1 + 2at! , Loy = Lo + 2b1t2.
The equation (2.3) is for this frame
a(cl)2 + Ellcl =0
b(c?)? + Losc® = 0.

Hence, as is easily seen, any solution of this system defines an inter-
change among e’s. We have seen
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Proposition 6.6. Consider a surface of indefinite type. Then under
the assumptions (2.4) and (2.5) there exists a normalized frame e which
satisfy the condition w) = 0. The set of the last vector e3 of such frames
1s uniquely determined up to multiplication and consists of at most four
elements.

Definition. We call such a frame a Demoulin frame. When the last
vector e3 of a Demoulin frame defines a surface, we call e3 a Demoulin
transform of the original surface. (cf. [BOL, vol. 2, §120])

For a Demoulin frame put
(2.6) hijwh = qijo’ W) = pyw’.

(Since transformation among Demoulin frames are restricted so that ¢’
take only finite possible values, we can think of p;; and g;; as relative
invariants.) The condition for e3 to define a surface is that wi and w3
are linearly independent because deg = w§’63 + wgl,el + w%eg. Namely

(2.7) det ¢ #0, q = (gij)-

In this case a set € = (e3, e1, €2, €g) in this order defines a projective
frame of e3 and the coframe @ is

(2.8) D=

Therefore the associated fundamental form @, is w3 - w{ +w? - WY, which

is non-degenerate when

(2.9) det p#0, p=(pij)

Since L;; = q;; — pi;j satisfies the condition L = trL;; = 0,

(2-10) P12 = q12, P21 = (421,
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from which we have

(2-11) P9 = P21(p11 + q11)w1w1 +p12(p22 + Q22)w2w2
2

+ (2p12p21 + P11go2 + Q11p22)w1w :

Moreover wj = 0 implies wi A w) = 0. Hence

(2.12) P11g22 — p22q11 = 0.

Denote by h, p, and g the quantities with respect to . Let Q = ¢~ .

Then a computation shows

(2.13) h=pQh, Pp=hQh, G=pQhQh.

Definition. (O. Mayer [MAY]). We call a surface of indefinite type with
the condition (2.5) a Demoulin surface if Ay = Ay = 0, or equivalently
if it has only one Demoulin transform.

In §2 of Chapter 4 we posed a problem to characterize hypersurfaces
with the property that

1 .
(2.14) Lij = hijkak, Yi = §hijka’a]

for some vector ak. In case n = 2 we have an answer:

Proposition 6.7. Assume (2.5). Then the condition (2.14) is equiva-
lent to that the surface is Demoulin.

Proof. Since hi11 # 0 and haag # 0, the condition ; = —2h;jpa’a” for
a Demoulin frame is a* = 0. Hence L;; = 0, which implies A; = 0 and
vice versa.

Let us consider a system of differential equations
{ Zpx = b2y +uz

Zyy = CZz + V2
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with b # 0 and ¢ # 0. Referring a formula of the associate normalized
frame (§3 of Chapter 5), we see that Demoulin transforms w of the
surface z are given by

1
(2.15) w = <c102 — §b c)z +clz, + szy + Zzy,

where

1:—by:|:\/A1 62_—C$:|:\/A2

2.16 _
(2.16) ¢ 2% %

and |
Ay = (b,)? + 4b (bv tuy — 5(bc)x)
1
Ay = (cw)2 + 4c (cu + v, — §(bc)y)
Example. Assume u = v = 0. Then the surface z is equivalent to the

surface { (z? +y?)z = 1} in affine coordinates. Its Demoulin transform
W= Zgy — %z also satisfy the same system.

Remark. The condition (2.4) is not of course necessary for complex
coefficients. The case when h is definite is similarly treated. Use the
identity (7.19) of Chapter 4:

- 1 -
Nz =0+ Kt — §ct2.

If C'=hqi11 +ihi12 # 0, ie. if F # 0, then this is always solvable with
respect to ¢ and we have a frame with wl = 0.

§3. Demoulin transforms of projectively minimal surfaces
Assume n = 2 and consider a Demoulin frame, i.e. w) = 0. By the
formula (1.8) this case yields

g 1.
Wi = =5 L7 (pij + ¢ij)-

Namely
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Proposition 6.8. A non-degenerate surface is projectively minimal if
and only if

(3.1) LY (pij +qij) =0,

for a Demoulin frame.

Assume the surface is of indefinite type. Then, by the conditions
(2.10) and (2.12), the condition (3.1) is equivalent to one of the following
equivalent conditions:

(3.2) det p = det ¢,
(3.3) Laa(p11 +¢11) =0,
(3.4) Li1(p22 + q22) = 0.

Theorem 6.9. ([MAY]). Let M be a non-degenerate surface of indefi-
nite type satisfying (2.4). Assume conditions (2.5), (2.7) and det L;; #
0 for a Demoulin frame. Then (1) if M is projectively minimal, then
the conformal structure of a Demoulin transform of M 1s the same as
the conformal structure of M; i.e. a Demoulin transform is Wein-
garten. (2) Conversely, if a Demoulin transform is Weingarten, then
the original surface is projectively minimal or a surface with the prop-

erty pi1ap21 = 0.

Proof. Since det L;; = L11L22 # 0, the conditions (3.3) and (3.4) shows
P is conformal to ¢ = w'w? by (2.11). The converse is also immediate.

Remark. The surface with p1ope; = 0 is called Q-surface in [BOL, p.
326].

Theorem 6.10. ([MAY]) Let M be a non-degenerate projectively min-
imal surface of indefinite type. Assume (2.5) and (2.7). Then any
Demoulin transform is again projectively minimal. One of Demoulin
transforms of a Demoulin transform M s M itself.

Proof. Let € the frame defined in §2. From the expression (2.8) of @,
wy + ws = 0. The identity det p = det ¢ shows det h = 1 by (2.13)
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and the identity (2.13) shows E”Zij = 0. Hence € is normalized and a
Demoulin frame because W3 = wi = 0. Now (2.13) again shows det p =
det g, proving the first part. The second statement is immediate.
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