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0. Introduction

The aim of these notes is to consider the following problems in various
cases.

Problem 1. Given two manifolds of the same dimension in a projec-
tive space, how can we decide that they are projectively equivalent to
each other?

Let f : M → Pn and g: N → Pn be immersions. The problem is to
look for conditions that enable us to find a diffeomorphism ϕ:M → N
and a projective transformation p of Pn such that p ◦ f = g ◦ ϕ. This
is in general of global nature and seems more difficult than the next

Problem 2. Let f1 and f2 be two immersions of a manifold M into
Pn. Find conditions so that f2 = p ◦ f1 for some projective transfor-
mation p.

This is in principle a local problem and the main concern of these
notes. The relation with a system of differential equations is seen by
the following rough arguments. Let (x1, . . . , xm) be local coordinates
of M and make a set of vectors { f, ∂f/∂xi, ∂2f/∂xi∂xj , . . . }. Since
the maximum possible number of independent vectors are n + 1, there
will be a linear relation among each n + 2 vectors of this set. These
relations make a system of linear homogeneous differential equations
satisfied by f . By the linearity, each set of independent solutions, the
number of which is assumed to be n + 1, define an immersion projec-
tively equivalent to f . Conversely, given such a system whose rank, the
dimension of solution space, is n + 1, the fundamental set of solutions
define an immersion.

The method we now take for the above problems is to draw some
geometrical information out of this system, that is sufficient to charac-
terize immersion. This method originates in Halphen’s study of ordi-
nary linear differential equations and in Wilczynski’s work for curves
and surfaces among others.
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2 0. Introduction

In Chapter 1 we deal with a mapping from Mn to a same-dimensional
Pn. Such a mapping when n = 1 is called a projective motion by E.
Cartan. The aim is to review Schwarzian derivatives from a geometric
point of view. Main references are [CAR] and [Y]. Chapter 2 treats
curves in a projective plane and recalls the theory by Laguerre-Forsyth.
We give some applications to linear ordinary differential equations. In
Chapter 3 we recall the theory of ruled surfaces and give a generalization
of treatments of plane curves and ruled surfaces. References for these
two chapters are [W1], [LAN] and [BOL] among other many volumes.

Chapter 4 reformulates the theory of hypersurfaces in a projective
space. The main emphasis is laid on the definition of several invariants
and on the formulation of a fundamental theorem. Chapter 5 is an
application in the study of a system of linear differential equations with
n variables of rank n+2. The principal role is played by the conformal
geometry. The case n = 2 is separately treated. In Chapter 6 we discuss
the projective minimality. Transforms of surfaces due to Demoulin will
be formulated in our point of view. References for these four chapters
will be given in the context.

Notations: Throughout these notes, Pn denotes an n-dimensional pro-
jective space over R. The coefficient field is R. Functions are assumed
to be C∞. However, the most of arguments holds also for the complex
case: Pn over C, the coefficient field C and the holomorphic functions.
Some parts are valid only for the complex case, which will be stated
explicitly.
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1. Motion of Points in Pn

We treat a mapping from an n-dimensional manifold into Pn. When
n = 1, it is called a projective motion. The projective equivalence class
of such a mapping is described by Schwarzian derivatives. Sections 1–4
treat the case n = 1 and Section 5 the case n ≥ 2.

§1. Schwarzian derivative

M denotes a 1-dimensional manifold with a coordinate t. A map-
ping from M to P1: t → p(t) is called a motion of points in P1. We
forget sometimes to mention M saying “a motion p(t)”. General prob-
lem concerning the projective equivalence is now stated for motions as
follows.

Problem. Given two motions p(t) and q(t), decide whether they are
projectively equivalent or not. In other words when is the one trans-
formed to the other by a projective transformation?

Recall first the euclidean case: let x(t) and y(t) be motions in R1.
Then they are equivalent under a rigid motion, i.e. x(t) = y(t) + b for
a constant b, if and only if x′(t) = y′(t). So in the projective case we
should ask for the condition replacing the derivative x′. To make the
discussion easier we fix an affine coordinate of P1 as

p(t) = [ 1, f(t) ] and q(t) = [ 1, q(t) ].

Then the above problem is reduced to the problem to find a condition
that assures

(1.1) g =
af + b

cf + d
.

Assume first this identity and take derivatives successively to get

g′ =
(ad− ec)f ′

(cf + d)2
,
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4 1. Motion of Points in Pn

g′′

g′
=

f ′′

f ′
− 2f ′

cf + d
,

and
g′′′

g′
−

(
g′′

g′

)2

=
f ′′′

f ′
−

(
f ′′

f ′

)2

− 2f ′′

cf + d
+

2(f ′)2

(cf + d)2
.

The last two terms are equal to

1
2

(
f ′′

f ′
− 2f ′

cf + d

)2

− 1
2

(
f ′′

f ′

)2

=
1
2

((
g′′

g′

)2

−
(

f ′′

f ′

)2
)

.

Hence, if we put

(1.2) {f ; t} =
1
2

f ′′′

f ′
− 3

4

(
f ′′

f ′

)2

=
1
2

(
f ′′

f ′

)′
− 1

4

(
f ′′

f ′

)2

and similarly for g, then we have an identity

{f ; t} = {g; t}.

Here we have assumed f ′ and g′ do not vanish; such a motion is called
a regular motion.

Proposition 1.1. If two regular motions p and q are projectively equiv-
alent, then {f ; t} = {g; t} and conversely.

To see the converse statement we need

Lemma 1.2. 1◦ {(at + b)/(ct + d); t} = 0.
2◦ If t is a non-constant function of s, then {f ; t} dt2 = {f ; s} ds2 +
{s; t} dt2.
3◦{t; s} ds2 = −{s; t} dt2.
4◦If {f ; t} = 0, then f = (at + b)/(ct + d).

Assuming Lemma 1.2, we prove the converse. Replacing s in 2◦ by
g, we get {f ; g} dg2 = [ {f ; t} − {g; t} ] dt2 = 0. Hence, by 4◦, f =
(ag + b)/(cg + d).



§2. Ordinary linear differential equation of order 2 5

Proof of Lemma 1.2. The assertion 1◦ follows from the first part of
Proposition 1.1, since {t; t} = 0. 2◦ is shown by computation. 3◦ is
a special case of 2◦ when f = t. The assertion 4◦ is seen by a simple
integration.

Definition. We call {f ; t} the Schwarzian derivative of f with re-
spect to t.

We notice here that Proposition 1.1 says

S(t) = {f ; t}

is defined independently of a choice of coordinates of P1. This is an
(differential) invariant of a projective equivalence class of motions. Fur-
thermore the quadratic differential S(t) dt2 is invariant under any pro-
jective coordinate change of t.

§2. Ordinary linear differential equation of order 2

We next associate with every motion a linear differential equation
and understand the invariant S(t) in terms of this equation. We write
the motion p(t) in homogeneous coordinates as p(t) = (x1(t), x2(t)).
Assume p(t) is regular, i.e.,

(2.1) x′1x2 − x1x
′
2 6= 0.

Functions xi(t) satisfy the differential equation with unknown x(t):
∣∣∣∣∣∣

x′′ x′ x
x′′1 x′1 x1

x′′2 x′2 x2

∣∣∣∣∣∣
= 0.

This can be written, by the assumption (2.1), as

(2.2) x′′ + p1x
′ + p2x = 0,

which is the equation associated with the motion p. Let y1 and y2

be a set of independent solutions. Then yi =
∑
j

aj
ixj for a constant



6 1. Motion of Points in Pn

matrix (aij) with det aij 6= 0. Hence a motion (y1, y2) is equivalent to
the original p. Namely the differential equation of type (2.2) gives a
projective equivalence class of motions. Then, by referring the result in
§1, the invariant S(t) may have some relation with p1 and p2. In fact
the explicit form is given in the following way.

First note that the equation (2.2) is not the only one associated with
the motion, since the choice of xi is not unique. Put yi = λ(t)xi for a
non-vanishing function λ. Then yi also represent the same motion and
satisfy the differential equation

(2.3) x′′ +
(
−2λ′

λ
+ p1

)
x′ +

(
−λ′′

λ
+ 2

λ′2

λ2
− p1

λ′

λ
+ p2

)
x = 0.

Hence for any λ this equation may be considered as the same equa-
tion in our viewpoint. To kill the freedom of choice of λ, we impose
that (2.3) should have a special form. This is done by choosing λ so
that

p1 − 2λ′

λ
= 0

and (2.3) turns out to be

(2.4) x′′ + Q(t)x = 0,

where

(2.5) Q(t) = p2 − 1
4
p2
1 −

1
2
p′1.

Proposition 1.3. Q(t) = S(t).

Proof. Let p(t) be a motion. It is represented by functions xi(t) of the
form

x1(t) = λ(t)f(t), x2(t) = λ(t).

Let us find λ so that xi satisfies (2.4). From equations (λf)′′+Q(λf) =
0 and λ′′ + Qλ = 0 follows 2λ′f ′ + λf ′′ = 0. Hence

(2.6) λ = (f ′)−1/2.



§3. Normal form of a motion 7

Then

Q(t) = −λ′′

λ
= {f ; t} = S(t),

which is the desired identity.

The equality (2.6) implies that, for a given f ,

x1 = f(f ′)−1/2 and x2 = (f ′)−1/2

satisfy (2.4) for Q = {f ; t}.

§3. Normal form of a motion

We now try to find a normal form of the function f(t) relating with
value of Q. Assume Q(t) is defined around t = 0 and compute approx-
imate solutions of (2.4). Let

Q(t) = Q(0) + Q′(0)t + · · ·
and put

x = 1 +
a2

2
t2 +

a3

6
t3 + · · · .

Inserting these expressions into (2.4), we get

0 = (a2 + a3t + · · · ) + (Q(0) + Q′(0)t + · · · )
(
1 +

a2

2
t2 + · · ·

)

= (a2 + Q(0)) + (a3 + Q′(0))t + · · ·

Hence one approximate solution is

x1(t) = 1− Q(0)
2

t2 + · · ·
Another is obtained similarly by putting

x = t +
b3

6
t3 + · · ·

The result is

x2(t) = t− Q(0)
6

t3 + · · · .

Since f =
x2

x1
is an affine coordinate function, we have



8 1. Motion of Points in Pn

Proposition 1.4. For any regular motion around t = 0, there is an
affine coordinate such that the motion is written as (1, f(t)) where

f(t) = t +
Q(0)

3
t3 + · · ·

§4. Example by H. A. Schwarz

We will in this section explain how the invariant was used by H. A.
Schwarz himself. For details and further results refer the books [F-K],
[Y].

The coefficient field is now C and the category is that of holomorphic
functions. Consider the Gauss hypergeometric differential equation

y′′ +
(

c

x
+

a + b + 1− c

x− 1

)
y′ +

ab

x(x− 1)
y = 0

where a, b, c are real parameters. This equation is defined on P1(x) and
has regular singularities at x = 0, 1, ∞. Let y1 and y2 be independent
solutions and put z = y1/y2. We are interested in the multivalued
mapping from P1(x) to P1(z). The behavior of this mapping near
singularities are seen by the next

Lemma 1.5. Let z be a non-constant function around x = 0 and of
the form z = xeh(x) or z = (log x)h(x), where h(x) is a non-vanishing
holomorphic function. Then limt→0 4x2{z;x} = 1−e2 or 1 respectively.

To find the value e, let us compute the invariant Q(x). Since

1
2
p′1 = − c

2x2
− c′

2(x− 1)2

1
4
p2 =

c2

4x2
+

cc′

2x(x− 1)
+

c′2

4(x− 1)2
,

where c′ = a + b + 1− c, we get

Q(x) =
2c− c2

4x2
+

2c′ − c′2

4(x− 1)2
+

cc′ + 2ab

2x(x− 1)
.



§5. Schwarzian derivatives of several variables 9

Then, by Lemma 1.5, the values e at x = 0, 1, ∞ are ±(1 − c),
±(c− a− b), ±(a− b) respectively (for x = ∞, rewrite the equation by
introducing a new coordinate t = 1/x and compute Q at t = 0). For
simplicity assume these numbers are not integers. Then Lemma 1.5
shows that around each singularity the mapping z behaves like x|1−c|,
(1 − x)|c−a−b| and (1/x)|a−b| up to a projective transformation. From
this fact we can prove that the mapping z restricted to the upper half-
plane has its image in the inside of the triangle whose sides are circular
arcs and that the angles at the edge of the triangle are π|1−c|, π|c−a−b|
and π|a− b|.

This mapping is continued analytically to the lower half plane through
the intervals (0, 1), (1,∞), and (∞, 0) and we obtain the multi-valued
mapping z. Put

λ =
1

|1− c| , µ =
1

|c− a− b| , ν =
1

|a− b|

and assume λ, µ and ν are integers. Then Schwarz found the following
fact.

(H. A. Schwarz, l872). The image of P1(z) is P1, C1 or the unit disc
according as

1
λ

+
1
µ

+
1
ν

> 1, = 1 or < 1 respectively.

§5. Schwarzian derivatives of several variables

Let M be an n-dimensional manifold with local coordinates (xi).
A motion of M on a projective space Pn is now understood to be a
non-degenerate mapping

M 3 (x) 7→ z(x) ∈ Pn.

Problem in §1 can be read similarly. We need Schwarzian derivatives
of several variables defined below.



10 1. Motion of Points in Pn

Let (z1, . . . , zn) be affine coordinates of z and j(z, x) be the jacobian:

j(z, x) = (jk
i ) ; jk

i =
∂zk

∂xi
.

Its inverse is written

Jk
i (z, x) =

∂xk

∂zi
.

Put
σ(z, x) =

1
n + 1

log det j(z, x),

σi(z, x) =
∂σ

∂xi
,

γk
ij(z, x) =

∑

`

∂2z`

∂xi ∂xj
Jk

` (z, x).

Then Schwarzian derivatives Sk
ij are defined by

(5.1) Sk
ij(z; x) = γk

ij(z, x)− δk
i σj(z, x)− δk

j σi(z, x).

Remark that these expressions are given by derivatives up to order 2.
When n = 1, this is trivial. So assume n ≥ 2. The next is an analogue
of Lemma 1.2.

Lemma 1.6. 1◦ Sk
ij(z; x) = Sk

ji(z;x).
2◦

∑
k Sk

ik = 0.
3◦ Sk

ij(Az; x) = Sk
ij(z; x) for any projective transformation A ∈ PGLn+1.

In particular, Sk
ij(Ax; x) = 0.

4◦ Let x be a non-degenerate map of y. Then

Sk
ij(z; y)− Sr

pq(z; x)jp
i (x; y)jq

j (x; y)Jk
r (x, y) = Sk

ij(x; y)

5◦ If Sk
ij(z; x) = 0 for all i, j and k, then z = Ax for a projective

transformation A ∈ PGLn+1.
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Proof. 1◦ is trivial. 3◦ and 5◦ will be shown later. 4◦ is verified by a
direct calculation. 2◦ is seen as follows:

∑

k

Sk
ik(z;x) =

∑

k,`

∂2z`

∂xi ∂xk

∂xk

∂z`
− (n + 1)σi = 0

by definition of σ.

From this lemma follows an analogue of Proposition 1.1:

Proposition 1.7. Two non-degenerate mappings z1 and z2 are projec-
tively equivalent if and only if

Sk
ij(z1; x) = Sk

ij(z2; x) for all i, j and k.

The differential equations satisfied by the mapping z will next be
derived. Let y be a vector in An+1 representing z. Consider n+1 vectors
y, y1, y2, . . . , yn (yi = ∂y/∂xi). They are linearly independent by non-
degeneracy. Hence the second-order derivatives zij = ∂2z/∂xi∂xj are
linear combinations of these vectors; we have

(5.2) zij =
∑

k

Ak
ijzk + A0

ijz,

for some functions Ak
ij and A0

ij . These are equations defining a non-
degenerate mapping into Pn. If we take w = λ−1y instead of y for a
scalar function λ, then new equations are

wij =
∑

k

(
Ak

ij − δk
j

λi

λ
− δk

i

λj

λ

)
wk +

(
A0

ij +
∑

Ak
ij

λk

λ
− λij

λ

)
w.

This verifies that we can choose y so that

(5.3)
∑

k

Ak
ik = 0.

When this condition is satisfied we call (5.2) a normalized system.
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Proposition 1.8. Assume (5.2) is normalized. Then

1o Ak
ij = Sk

ij(z;x) 2o A0
ij =

1
n− 1

(∑

`,k

S`
ikSk

`j −
∑

k

∂

∂xk
Sk

ij

)
.

Proof. The components of y are λ, λz1, . . . , λzn for some λ; they
satisfy (5.2). So

λij =
∑

Ak
ijλk + A0

ijλ

(λz`)ij =
∑

Ak
ij(λz`)k + A0

ij(λz`),

whence we have

Ak
ij = δk

j

λi

λ
+ δk

i

λj

λ
+

∑
z`
ijJ

k
` .

Then the normalization condition implies

0 =
∑

Ak
ik = (n + 1)

λi

λ
+ (n + 1)σi.

Hence we get 1◦. To see 2◦, differentiate (5.2) once getting

zij` =
∑

Ak
ijzk` +

∑ ∂Ak
ij

∂x`
zk + A0

ijz` +
∂A0

ij

∂x`
z

=
∑(

∂Ak
ij

∂x`
+

∑
Am

ij Ak
m` + A0

ijδ
k
`

)
zk+

(
∂A0

ij

∂x`
+

∑
Ak

ijA
0
k`

)
z.

Since this expression does not change by interchange of j and `, we
have the identity

∂Ak
ij

∂x`
+

∑
Am

ij Ak
m` + A0

ijδ
k
` =

∂Ak
i`

∂xj
+

∑
Am

i` Ak
mj + A0

i`δ
k
j ,

whence follows easily the identity 2o by use of the condition (5.3).

We now give
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Proof of 3o and 5o of Lemma 1.6. We have seen that, for some λ,
y = λ(1, z1, . . . , zn) satisfies the normalized equation (5.2). Let A ∈
PGLn+1. Then y1 = µ(1, (Az)1, . . . , (Az)n) is a linear transformation
of y for some µ. Hence y1 also satisfies the same equations. This implies

Sk
ij(Az; x) = Ak

ij = Sk
ij(z; x); i.e. 3o.

Next assume Sk
ij(z; x) = 0. Then y = λ(1, z1, . . . , zn) satisfies a system

of equations yij = 0 for some λ. Then every component of y must
be a linear combination of 1, x1, . . . , xn. Hence (zi) is a projective
transformation of (xi). This shows 5o.

As we have defined Schwarzian derivatives, it will be better to men-
tion projective structure and projective connection.

Definition. An n-dimensional manifold is said to admit a projective
structure if it is covered by a coordinate system {Uα, zα} such that zα

maps Uα diffeomorphically into an open set of Pn and the coordinate
change zβ ◦ z−1

α is a projective transformation so far as it is defined.

Definition. A normal projective connection on an n-dimensional man-
ifold is a pair of a local coordinate system {Uα, zα} and a system of
functions {P k

αij} attached to every Uα so that they satisfy

1) P k
αij = P k

αji,

2) P k
αij − P r

βpqj
p
i (zβ , zα)jq

j (zβ , zα)Jk
r (zβ , zα) = Sk

ij(zβ ; zα).

By these definitions, a projective structure is seen to be a normal
projective connection where P k

ij = 0. We call a projective connection
is flat if it arises from a projective structure, in other words, if there
exists a coordinate system such that the projective connection is given
by P k

ij = 0 (more precisely, is compatible with the connection defined
by P k

ij = 0). We cite a following characterization of flatness. Proof can
be given by use of Lemma 1.6, 4o.

Proposition 1.9. A projective connection {zα, P k
αij} is flat if and only

if the system of equations

zij =
∑

P k
αijzk + P 0

αijz,
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has n + 1 independent solutions. Here P 0
αij is given by

(n− 1)P 0
αij =

∑(
P k

αik,j − P k
αij,k +

∑
Pm

αikP k
αmj −

∑
Pm

αijP
k
αmk

)
.

Remark. As for the role of holomorphic projective structures, refer
[GUN] and [K-O]. A system of differential equations called Appell-
Lauricella’s system is one of important examples of type (5.2). See
[Y] and references therein.



2. Plane curves

A plane curve is an immersion p of a 1-dimensional manifold into P2.
This chapter treats the equivalence problem of plane curves. The funda-
mental invariant of a plane curve is Laguerre-Forsyth cubic differential
invariant defined in §1. If this invariant does not vanish, then we can
define the projective curvature, by use of which the projective Frenet
formula of a plane curve is given in §3. Since a plane curve is described
by an ordinary linear homogeneous differential equation of degree 3,
the theory of plane curves can be seen as a projective treatment of such
equations. Notions such as symmetric product and exterior product of
linear differential equations will be introduced.

§1. Plane curves

Let p(t) be a plane curve, i.e. an immersion of a 1-dimensional
manifold with a coordinate t into P2. We denote by (x1, x2, x3) a
system of homogeneous coordinates of P2 and express the immersion p
as

p(t) = (x1(t), x2(t), x3(t)).

Each coordinate function xi(t) satisfies a differential equation

∣∣∣∣∣∣∣

x′′′ x′′ x′ x
x′′′1 x′′1 x′1 x1

x′′′2 x′′2 x′2 x2

x′′′3 x′′3 x′3 x3

∣∣∣∣∣∣∣
= 0.

We assume the coefficient of x′′′ does not vanish:
∣∣∣∣∣∣

x′′1 x′1 x1

x′′2 x′2 x2

x′′3 x′3 x3

∣∣∣∣∣∣
6= 0.

The point where this determinant vanishes is called an inflection point.
When this determinant vanishes everywhere, then, as is easily seen, the

15



16 2. Plane curves

curve is contained in a projective line. Under the assumption that the
curve has no inflection points, the equation reduces to

(1.1) x′′′ + p1x
′′ + p2x

′ + p3x = 0.

Conversely, similarly as in the case of motions in P1, each set of
independent solutions defines a curve that is equivalent to the original
curve p. Hence (1.1) represents one and only one class of plane curves.
The equation (1.1) is not, however, the unique equation associated to
the curve p because, if we replace x with y = λ−1x, we arrive at another
equation also corresponding to this curve. By calculation we see that y
satisfies

λy′′′ + (3λ′ + p1λ)y′′ + (3λ′′ + 2p1λ
′ + p2λ)y′′

+(λ′′′ + p1λ
′′ + p2λ

′ + p3λ)y = 0.

Now we choose λ by the condition

(1.2) 3λ′ + p1λ = 0

so that the equation becomes (rewrite x for y)

(1.3) x′′′ + P2x
′ + P3x = 0,

where

(1.4)





P2 = p2 − p′1 −
1
3
p2
1

P3 = p3 − 1
3
p′′1 +

2
27

p3
1 −

1
3
p1p2.

We next want to see how the form (1.3) changes under a transfor-
mation of variables

(1.5) (t, x) 7→ (s = f(t), y = g(t)−1x),
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(see Remark below). Denoting by “ ·” derivations with respect to s, we
get

x′ = g′y + gf ′ẏ

x′′ = g′′y + (2g′f ′ + gf ′′)ẏ + g(f ′)2ÿ

x′′′ = g′′′y + (3g′′f ′ + 3g′f ′′ + gf ′′′)ẏ + 3(g′(f ′)2 + gf ′f ′′)ÿ + g(f ′)3
...
y .

Hence, to keep the vanishing of the coefficient of ÿ as (1.3), it is neces-
sary to assume

g′(f ′)2 + gf ′f ′′ = 0, i.e. g = c/f ′.

In this case y satisfies

(f ′)2
...
y + (P2 − 4{f ; t})ẏ

+
[
P3/f ′ − f ′′P2/(f ′)2 − f ′′′/(f ′)2 + 2(f ′′2/(f ′)3)′

]
y = 0.

So, letting f be a solution of

(1.6) {f ; t} =
1
4
P2,

we have, again replacing y with x and s with t,

(1.7) x′′′ + Rx = 0,

where

(1.8) R =
(
P3 − 1

2
P ′2

)/
(f ′)3.

We define for later use

(1.9) P = P3 − 1
2
P ′2,

which is called Laguerre-Forsyth invariant of the original equation (1.1).
And the equation of form (1.7) is called a Laguerre-Forsyth canonical
form of (1.1). Now arises a question: which transformation (1.5) keeps
this form? Repeating the above process, we know such a transformation
is given by

g = c/f ′ and {f ; t} = 0.

By Lemma 1.2, f is a linear fractional transformation. So we have
proved
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Proposition 2.1. 1o The differential equation (1.1) is transformed
by a change of variables to the equation of Laguerre-Forsyth canoni-
cal form.
2o Any change of variables (t, x) 7→ (s, y) preserving this form is given
by

s =
at + b

ct + d
and y = C(ct + d)−2x.

These transformations form a group isomorphic to R∗ × SL2.
3o Under this group the differential form P dt3 is invariant.

Definition. We call P dt3 the Laguerre-Forsyth cubic differential in-
variant and ds = P 1/3 dt the projective arc length element of the curve.

Proposition 2.2. Assume the invariant P vanishes everywhere. Then
the curve is a conic.

Proof. The associated equation of such a curve is normalized as x′′′ = 0
for an appropriate choice of a coordinate t. The independent solutions
are 1, t and t2. Hence the given curve is projectively equivalent to the
curve (1, t, t2) which is a conic.

Example. Let Y = f(X) be a plane curve in inhomogeneous coordi-
nate (X, Y ). The associated equation, in case f ′′ 6= 0, is

x′′′ − f ′′′

f ′′
x′′ = 0.

Then the invariant P is computed to yield

P = −1
6

(
f ′′′

f ′′

)′′
− 2

27

(
f ′′′

f ′′

)3

+
1
3

(
f ′′′

f ′′

)(
f ′′′

f ′′

)′
.

Or, if we put ξ = (f ′′)−2/3, then

P =
1
4

ξ′′′

ξ
.
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Hence we have the curve Y = f(X) is a conic if and only if

9(f ′′)2f (5) − 45f ′′f ′′′f (4) + 40(f ′′′)3 = 0.

Remark. Consider a transformation ϕ in (t, x)-space given by (t, x) 7→
(τ, ξ) = (τ(t, x), ξ(t, x)) where ∂(τ, ξ)/∂(t, x) 6= 0. We can prove that
the equation (1.1) is transformed into a linear homogeneous differential
equation with unknown ξ and the variable τ if and only if ϕ has a form
ξ = g(t)x and τ = f(t) as (1.5).

§2. Sextactic points and normal form of curves

So far we have normalized equations to define the invariant P . We
next see the role of P in a local representation of a curve.

Let p(t) be a plane curve defined around t = 0. Under the gener-
ality assumption in §1 three vectors p(0), p′(0) and p′′(0) are linearly
independent. Hence any point p(t) is written as

p(t) = z p(0) + x p′(0) + y p′′(0)

for scalar functions x, y and z. We want to express these functions in
terms of the invariant P around t = 0. Expand p(t) at t = 0, then

p(t) = p(0) + t p′(0) +
1
2
t2p′′(0) +

1
6
t3p′′′(0) + · · · .

Assume the parameter t is already chosen so as

p′′′ + P p = 0.

Then, by a simple computation, we see that

p(t) =
(
1− 1

6
a t3 + · · ·

)
p(0) +

(
t− 1

24
a t4 + · · ·

)
p′(0)

+
(1

2
t2 − 1

120
a t5 + · · ·

)
p′′(0),
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therefore

(2.1)





z = 1− 1
6
a t3 + · · ·

x = t− 1
24

a t4 + · · ·

y =
1
2
t2 − 1

120
a t5 + · · · ,

where a = P (0). Let X = x/z and Y = y/z be inhomogeneous coordi-
nates. Then

X = t +
1
8
a t4 + · · ·

Y =
1
2
t2 +

1
24

a t5 + · · · .

We have shown

Proposition 2.3. Any plane curve has a local expression

(2.2) Y =
1
2
X2 − 1

12
aX5 + · · ·

at a non-inflectional point for an appropriate choice of inhomogeneous
coordinates (X,Y ).

The value a that was the value P (0) for variable t has no absolute
meaning by the ambiguity explained in Proposition 2.1, 2o. Whether
a is 0 or not is however projectively invariant and has a geometrical
meaning: consider the conic defined by Y = 1

2X2 (in homogeneous
coordinates p(0) + t p′(0) + 1

2 t2p′′(0)). Proposition 2.3 says that this
conic tangents to the curve at t = 0 to the highest order of contact
unless a = 0 and to the order higher by at least one if a = 0. This
conic is called an osculating conic of the curve. Be careful that conics
Y = 1

2bX2 (b 6= 0) are also osculating conics. We have no invariant way
about how to choose b. The quantity which measures the difference of
a curve with its associated osculating conics will be given in the next
section.

Definition. We call a point where P vanishes a sextactic point .
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This notion resembles that of inflection points in the euclidean theory
of plane curves. In fact we have an analogue of the four-vertex theorem.

Theorem 2.4. (G. Herglotz-J. Radon) The number of sextactic points
of a strictly convex simply closed smooth curve is at least six.

We first prepare a lemma:

Lemma 2.5. Let p(t) be a closed smooth curve in P2 without inflection
points. Let (x1(t), x2(t), x3(t)) be one of closed lifts. The coordinate
functions xi are periodic with period, say, 1 and satisfy x′′′ + p1x

′′ +
p2x

′+p3x = 0. Let P be the Laguerre-Forsyth invariant of this equation.
Then

(2.3)
∫ 1

0

Pxixj exp
(

2
3

∫ t

p1(u) du

)
dt = 0 for 1 ≤ i, j ≤ 3.

Proof. Define a new parameter s = f(t) by f ′(t) = exp
(− 1

3

∫ t
p1(u) du

)
.

Then the new differential equation is
...
x + q2ẋ + q3x = 0; ( · = d/ds).

Let Q be the invariant of this equation: Q = q3 − 1
2 q̇2. We have seen

the identity Qds3 = P dt3. Hence

∫
Pxixj exp

(
2
3

∫ t

p1 du

)
dt =

∫
Qxixj ds.

Now Stokes’s theorem proves Lemma as follows.

2
∫

Qxixj ds =
∫

(2q3 − q̇2)xixj ds

= −
∫
{...x i + q2ẋi)xj + (

...
x j + q2ẋj)xi + q̇2xixj} ds

= −
∫
{(...x ixj + xi

...
x j) + (q2xixj)·} ds

=
∫

(ẍiẋj + ẋiẍj) ds

= 0.
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Remark. Any closed curve in P2 without inflection points is homo-
topically trivial ([SS]).

Proof of Theorem 2.4. Since the curve is assumed to be simply closed
and convex, it is contained in one affine plane. So we can take x3(t) = 1
throughout. The strong convexity implies that the curve has no inflec-
tion points. Assume first P has no zeros or has only one zero; P must
be of constant sign. Then taking a line outside the curve and denoting
this line by a linear equation `(xi) = 0, we see

∫
P` exp

(
2
3

∫
p1 du

)
dt 6= 0.

This contradicts to (2.3). We next assume that P has only two or three
zeros and changes sign. Then take a line through two zeros where P
changes sign. This also leads a contradiction as above. Hence P has
at least four zeros. But, if only four, then it is seen that the sign of P
on each arc changes alternately. Then we can find two lines, given by
linear functions `1 and `2, through zeros so that∫

P`1`2 exp
(

2
3

∫
p1 dt

)
du 6= 0,

which contradicts to (2.3). The five-zero case is also cleared by this
argument. Hence we have the theorem.

The first part of this proof shows also

Proposition 2.6. The number of sextactic points of a locally strongly
convex smooth closed curve that is contained in one affine plane is at
least two.

The following two examples show that the numbers six and two above
are best possible.

Example. Define a curve (x, y) in A2 by




x = −α sin t +
sin 2t

4
+

sin 4t

8

y = α cos t +
cos 2t

4
− cos 4t

8

; 0 ≤ t ≤ 2π.



§3. Projective curvature 23

This is simply closed and strongly convex when α > 1. Its sextactic
points are given by

sin 3t(7α cos 3t + 8− α2) = 0.

So, when α ≥ 8, the number of sextactic points is six (see Figure 1;
sectactic points are marked by quadrangles).

Example. Consider a curve (x, y) in A2 given by
{

x = cos t · cos(t/3)

y = sin t · cos(t/3)
; 0 ≤ t ≤ 4π.

This is closed and locally strongly convex. Its sextactic points are (1, 0)
and (0, 0) (see Figure 2).

0

y

   

 

 

 

x

y

Figure 1 Figure 2

§3. Projective curvature

We have seen that P itself is not a scalar invariant. So, assuming
P 6= 0, we restart the normalization process with the projective length
s as a parameter. Then the equation (1.3) in §1 is written as

d3

ds3
x + 2k

d

ds
x + hx = 0.
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Since P is now equal to 1, h = 1 + dk/ds. Namely

(3.1) x′′′ + 2k x′ + (1 + k′)x = 0

is the equation with respect to the projective length parameter.

Definition. We call the coefficient k the projective curvature of a plane
curve. It is defined outside the set of sextactic points.

Since k is uniquely determined, we have

Theorem 2.7. Let p1 and p2 be two connected plane curves with pa-
rameters t1 and t2 respectively and without sextactic points. Let dsi

and ki denote the projective length element and the projective curvature
of pi for i = 1, 2.
1o. Assume p1 and p2 are projectively equivalent. Then there exists a
mapping ϕ between parameters, t2 = ϕ(t1), such that

ds1 = ϕ∗ ds2 and k1 = ϕ∗k2.

2o. Conversely, if there exists a mapping ϕ satisfying these conditions,
then p1 and p2 are projectively equivalent.

We here remark that the equation (3.1) provides us a formula called
the projective Frenet formula. Define vector valued functions e0(s),
e1(s) and e2(s) by

e0 = x

e1 = x′(3.2)

e2 = x′′ + k x.

Then (3.1) yields

(3.3) d




e0

e1

e2


 = ω




e0

e1

e2


 ,

where

(3.4) ω =




0 1 0
−k 0 1
−1 −k 0


 ds.
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This set of vectors (e0, e1, e2) is called a projective frame along a curve.
Theorem 2.7 says that this matrix-valued 1-form ω describes a projec-
tive equivalence class of plane curves uniquely.

Proposition 2.8. The projective curvature k of the curve (1.1) is given
by

(3.5) k = P−2/3

(
1
2
P2 − 1

3
P ′′

P
+

7
18

(
P ′

P

)2)
.

Proof. We denote by ′ the derivation with respect to the original param-
eter t. The parameter used for the normalization (1.7) is denoted by u.
It is determined by {u; s} = 1

2k. Since {u; s} ds2 = [ {u; t} − {s; t} ] dt2

by Lemma 1.2 , we have

k = 2
{u; t} − {s; t}

(ds/dt)2
.

By the identity ds = P 1/3 dt,

{s; t} =
1
6

P ′′

P
− 7

36

(
P ′

P

)2

.

Hence, combined with (1.6) in §1, the formula follows.

Remark. Wilczynski has used other expressions Θ3 and Θ8 to denote
the invariants. They are defined by

Θ3 = P

Θ8 = 6PP ′′ − 7(P ′)2 − 9P2(P )2.

Subindices means the weight showing the order of relative invariance:
by a transformation (t, x) 7→ (a t, x), Θi changes into a−iΘi. And it
is shown that, in case P = Θ3 6= 0, Θ3

8/Θ8
3 is an absolute invariant.

The formula (3.5) says that this ratio is equal to k3 up to a constant
multiple.
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Example. Let us find curves whose projective curvatures are constant.
Let λ be one of roots of the characteristic equation λ3 + 2kλ + 1 = 0.
Then eλs is a solution of (3.1). Following three cases occur.

1. Different three real roots: the curve is (eλ1s, eλ2s, eλ3s) equivalent to
Y = Xm. Here m takes values other than ±1, ±2 and ±1/2.

2. Different roots but two complex conjugates: the curve is
(eλs, eµs + eµs, i(eµs − eµs)). In inhomogeneous coordinates,
X = eνs cos ν′s and Y = eνs sin ν′s; ν, ν′ are constants. This curve
is called a logarithmic spiral.

3. Double roots: the curve is Y = XeX .

These are all projectively homogeneous: the action of R 3 t is given by
a projective transformation

1.




t 0 0
0 tm 0
0 0 1


 2.




e−νt cos ν′t e−νt sin ν′t 0
−e−νt sin ν′t e−νt cos ν′t 0

0 0 1


 3.




1 0 t
0 et 0
0 0 1




If a curve is projectively homogeneous and if it is not a conic nor a
line, then it is equivalent to one of above curves; because the projective
curvature of such a curve is constant.

Example. Consider an equation with a regular singularity at the ori-
gin:

y′′′ +
a

x2
y′ +

b

x3
y = 0.

By a computation, P = (a + b)/x3. Hence, if a + b = 0, this generates
a conic. Assume a + b 6= 0. Then the projective curvature of the
corresponding curve is seen to be k = 1

2 (a− 1)(a + b)−2/3. So, if a = 1,
this belongs to the case 2 of the above Example.

§4. Symmetric product of differential equations

We will consider the condition P = 0 in the different view point
introducing a new notion.
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Let us treat first a second-order equation.

x′′ + q x = 0.

We choose two independent solutions x1 and x2. Their symmetric prod-
ucts y1 = (x1)2, y2 = (x1x2) and y3 = (x2)2 satisfy

y′′′ + 4q y′ + 2q′y = 0.

Then, by the definition (1.9), P vanishes. Since yi satisfies a quadratic
relation y1y3 = (y2)2, this is obvious by the meaning of P . But in some
cases, this process gives non-trivial examples. See an example in the
end of this section.

We next treat a third-order equation

(4.1) x′′′ + p2x
′ + p3x = 0.

We try to find the equation satisfied by y = 1
2x2. Successive derivations

yield
y′ = xx′

y′′ = (x′)2 + xx′′

y′′′ = 3xx′′ + xx′′′ = 3x′x′′ − p2y
′ − 2p3y.

Define
Y = y′′′ + p2y

′ + 2p3y = 3x′x′′.

Taking derivations further we get

Y ′ = 3x′x′′′ + 3(x′′)2 = −3p3y
′ − 3P2(x′)2 + 3(x′′)2

(Y ′ + 3p3y
′) = 6x′′x′′′ − 6p2x

′x′′ − 3p′2(x
′)2

= −4p2Y − 6p3(y′′ − (x′)2)− 3p′2(x
′)2.

Hence

(4.2) (Y ′ + 3p3y
′)′ + 4p2Y + 6p3y

′′ = 6
(
p3 − 1

2
p′2

)
(x′)2.
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The left side contains only derivatives of y. Taking one more derivation
and cancelling derivatives of x, we will obtain a six-order equation with
respect to y. This is the equation satisfied by any product of solutions
of (4.1). We call this equation the symmetric product . Note that this
definition can be generalized for higher order case or for several variables
case (see [HSY] and cf. Chapter 8).

Our concern here is, however, the fifth-order equation (4.2). If the
coefficient of the right side, that is the invariant P of the equation
(4.1), vanishes, then y satisfies a homogeneous fifth-order equation.
This phenomenon is observed also in view of the meaning of P . If P
vanishes, then independent solutions satisfy a quadratic relation as we
have seen in §1. This, in turn, imples that there holds a linear relation
between products. So the number of independent products reduces at
least by one and, hence, they satisfy a fifth-order equation given by the
left hand side of (4.2). Conversely, if there is a linear relation between
solutions of the symmetric product of (4.1), that is, if solutions satisfy a
fifth-order equation, then there holds a relation such as

∑
aij(xixj) = 0

for a non-trivial matrix aij , xi being solutions. This means that the
mapping (xi) has image in a conic, and P = 0. So we have proved

Proposition 2.9. The symmetric product of x′′′ + p2x
′ + p3x = 0

reduces to a fifth-order equation if and only if 2p3 − p′2 = 0.

This seems very simple but has important applications. One ap-
plication is an explanation of the following fact due to L. Fuchs. He
has considered the problem how to integrate the equation (4.1). In
other words, he treated the structure of the automorphism group of the
equation now called Picard-Vessiot group. Fuchs reduced this problem
to the problem to consider algebraic relations between solutions. Let
f ∈ C[X1, X2, X3] be a polynomial satisfying f(x1, x2, x3) = 0 for a set
of independent solutions xi. Define d = the minimum of degree (f) for
such polynomials. Then

(L. Fuchs, 1882) If d ≥ 3, then the automorphism group is finite and
the equation is integrated by algebraic operations and by quadrature.
If d = 2, then the integration reduces to solving an equation of second
order.
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The latter half follows from Proposition 2.9. G. Fano has solved this
problem for fourth- and fifth-order equations (cf. [Fan]).

Example. Let us define a function qFp by a series

qFp(α1, · · · , αq; β1, · · · , βp; x) =
∞∑

n=0

(α1, n) · · · (αq, n)
(β1, n) · · · (βp, n)

xn

n!
.

Here (a, n) = a(a+1) · · · (a+n−1). Parameters αi and βj are complex
numbers. Assume βj are not negative integers. We define a differential
operator θ = x d/dx. Then z = qFp satisfies

(qEp) : θ(θ + β1 − 1) · · · (θ + βp − 1)z − x(θ + α1) · · · (θ + αq)z = 0.

This equation is called the generalized hypergeometric equation and the
function qFp is called the generalized hypergeometric functions. When
(p, q) = (1, 2), they are Gauss hypergeometric equation and Gauss hy-
pergeometric functions. (see [E]). We here quote an identity found by
Clausen, 1828:

2F1

(
α, β;α + β +

1
2
; x

)2

= 3F2

(
2α, 2β, α + β; 2(α + β), α + β +

1
2
; x

)
.

This can be proved by making the symmetric product of Gauss equation
and by connecting it with (3E2).

§5. Dual curve and exterior product of differential equations

The dual vector space of P2, denoted by P2∗, is defined as the set of
all lines in P2. Since each line is determined by two points (xi) and (yi)
on it, we associate a vector (ξi) by ξ1 = x2y3 − x3y2, ξ2 = x3y1 − x1y3

and ξ3 = x1y2 − x2y1 called the Pluücker coordinates of a line. We
express these coordinates simply by

ξ = x ∧ y.

Let now p(t) be a plane curve. Then two vectors p(t) = (xi(t)) and
p′(t) = (xi(t)) span a line π(t) = (ξi) (recall the generality assumption
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in §1). π is a curve in P2∗ and is called the dual curve of P . We are
interested in relations between p and π. By the above convention

(5.1) ξ = x ∧ x′.

Assume p is defined by the equation (1.1):

x′′′ + p1x
′′ + p2x

′ + p3x = 0.

Then taking derivations of (5.1) and making use of this equation, we
get

ξ′ = x ∧ x′′

ξ′′ = x′ ∧ x′′ + x ∧ x′′ = x′ ∧ x′′ − p1ξ
′ − p2ξ

ξ′′′ = x′ ∧ x′′′ − (p1ξ
′ + p2ξ)′.

Hence ξ satisfies

(5.2) ξ′′′ + 2p1ξ
′′ + (p′1 + p2

1 + p2)ξ′ + (p′2 + p1p2 − p3)ξ = 0.

Recall here the definition of the adjoint equation of (1.1). It is by
definition

(5.3) ξ′′′ − (p1ξ)′′ + (p2ξ)′ − p3ξ = 0.

Although these two equations seem different, it is easy to see that both
are projectively equivalent to
(5.4)

ξ′′′+
(
p2−p′1−

1
3
p2
1

)
ξ′+

(
p′2−

2
3
p′′1−p3− 2

27
p3
1 +

1
3
p1p2− 2

3
p1p

′
1

)
ξ = 0.

This fact clarifies the meaning of the adjointness in our viewpoint. We
call the (projective equivalent class of) equation (5.2) the exterior prod-
uct of the given equation (1.1).

We have defined P2, P3 and P in §1 to denote coefficients of nor-
malized equations. Let P ∗2 , P ∗3 and P ∗ denote those for π. Then (5.4)
shows

P ∗2 = P2, P ∗3 = −P3 + P ′2
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and hence

(5.5) P ∗ = −P.

We say a curve p is self-dual if the immersion p and its dual im-
mersion π is projectively equivalent. Here we identify P2∗ and P2 by
identifying respective homogeneous coordinates. Though this identifi-
cation has ambiguity up to a projective automorphism, this does not
affect the definition of self-duality. Then from (5.5) and Proposition
2.2, we have

Proposition 2.10. A curve is self-dual if and only if it is a conic
curve.

Assume next P 6= 0 and that the equation is given by

(5.6) x′′′ + 2kx′ + (1 + k′)x = 0

Then the equation of the dual curve is

(5.7) ξ′′′ + 2kξ′ − (1− k′)ξ = 0

with respect to the same parameter. Hence

Proposition 2.11. The projective length element of the dual curve is
the minus of that of the original curve. The projective curvature is the
same at the corresponding points.

Example. The exterior product of the generalized hypergeometric
equation 3E2(α, β, γ; δ, ε; z) (see Example in §4) is equivalent to the
equation 3E2(1 − α, 1 − β, 1 − γ; 2 − δ, 2 − ε; z). This was first shown
by Darling (1932). From this identity follows a remarkable formula:

3F2(α, β, γ; δ, ε; z)3F2(1− α, 1− β, 1− γ; 2− δ, 2− ε; z)

=
ε− 1
ε− γ

3F2(1 + α− δ, 1 + β − δ, 1 + γ − δ; 2− δ, 1 + ε− δ; z)

· 3F2(δ − α, δ − β, δ − γ; δ, 1 + δ − ε; z)

+
δ − 1
δ − ε

3F2(1 + α− ε, 1 + β − ε, 1 + γ − ε; 1 + δ − ε, 2− ε; z)

· 3F2(ε− α, ε− β, ε− γ; 1 + ε− δ, ε; z).
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We say a surface in P3 is ruled if through each point of the surface
passes one straight line lying entirely on the surface or, equivalently, if
the surface is paved with one parameter family of lines. In other words,
a ruled surface is a curve in a Grassman manifold G2,4 of lines in P3.
In this chapter we present some of fundamentals on ruled surfaces.

§1. System of differential equations associated with a ruled
surface

To write differential equations for ruled surfaces it will be convenient
to understand that a ruled surface is given by a pair of curves in P3

with a common parameter u: Let x1(u) and x2(u) be such curves.
The ruling is given by lines connecting two points x1(u) and x2(u)
and the surface is a mapping (u, v) 7→ x(u, v) = x1(u) + v x2(u) or
x(u, v) = x2(u) + v x1(u). By abuse of notation we denote this surface
sometimes by (x1, x2).

A typical example of ruled surfaces is a quadratic surface. It is
the surface where x1 = (1, u, 0, 0) and x2 = (0, 0, 1, u). Then x =
(1, u, v, u v). This is doubly ruled. As an another example, x(u, v) =
(1+a v)x1(u) for x2 = a x1. This looks like a cone and is a developable
surface. In the following consideration we avoid the latter case: Assume

(1.1) det |x1, x2, x
′
1, x

′
2| 6= 0.

namely assume that four vectors x1, x2, x′1 and x′2 are linearly indepen-
dent. Under this assumption, the second derivatives of xi are linearly
dependent on xi and x′i. Hence we have

(1.2) x′′i (u) =
∑

pj
ix
′
j +

∑
qj
i xj .

for some functions pj
i and qj

i . Conversely, if we are given a system of
differential equations of type (1.2), then the number of independent
solutions are four and they define a ruled surface. Hence we can regard

32
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(1.2) as a system of differential equations for a ruled surface (x1, x2)
with condition (1.1).

§2. Normalization of a system

As we have seen for curves, the system (1.2) is not unique for a given
ruled surface. Even if we change variables (u, x) 7→ (w, y) by

(2.1)
w = f(u)

yi =
∑

aj
i (u)xj , det(aj

i ) 6= 0,

the surface is unchanged. Let us first see that pj
i may be assumed to

vanish. For this purpose we here employ a geometrical reasoning.

Definition. Let x(u, v) be a surface. A curve on this surface defined
by u = u(t) and v = v(t) is said an asymptotic curve if four vectors x,
xu, xv, and xtt are linearly dependent.

Since first three vectors generate the tangent plane of the surface,
this definition is equivalent to say the second osculating vector xtt of
the curve is included in this tangent plane along the curve. For the sake
of simplicity we write this condition as

(2.2) x ∧ xu ∧ xv ∧ xtt = 0.

(∧ means the wedge product in R4.) Apply this definition to a ruled
surface (x1, x2). By differentiation, we have

x ∧ xu ∧ xv = (x1 + v x2) ∧ (x′1 + v x′2) ∧ x2

= x1 ∧ x′1 ∧ x2 + v x1 ∧ x′2 ∧ x2.

Denote by “ · ” the derivation with respect to t. Then

xt = (x′1 + v x′2)u̇ + x2v̇

xtt = (x′1 + v x′2)ü + (x′′1 + v x′′1)(u̇)2 + 2x′2u̇v̇ + x2v̈,

hence
x ∧ xu ∧ xv ∧ xtt = 2u̇ v̇ x1 ∧ x′1 ∧ x2 ∧ x′2 − u̇2A,
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where

A = x1 ∧ x2 ∧ x′1 ∧ x′′1 + v(x1 ∧ x2 ∧ x′2 ∧ x′′1 + x1 ∧ x2 ∧ x′1 ∧ x′′2)

+ v2x1 ∧ x2 ∧ x′2 ∧ x′′2 .

Therefore the condition (2.2) is

(2.3) u̇{2v̇ x1 ∧ x′1 ∧ x2 ∧ x′2 − u̇ A} = 0.

Since we have assumed x1 ∧ x′1 ∧ x2 ∧ x′2 6= 0, the equation (2.3) has
always two different solutions; through each point pass two asymptotic
curves. One is a ruling line and the other is given by a differential
equation of Riccati type

(2.4) 2x1 ∧ x′1 ∧ x2 ∧ x′2dv −Adu = 0.

Now we reparametrize the surface assuming both x1 and x2 are as-
ymptotic curves. Then from (2.4) we see

(2.5) x1 ∧ x2 ∧ x′1 ∧ x′′1 = x1 ∧ x2 ∧ x′2 ∧ x′′2 = 0.

This says p2
1 = p1

2 = 0 as asserted. We next replace x1 and x2 by
λx1 and µx2 for scalars λ, µ. Then the coefficients p1

1 and p2
2 vary by

λ′/λ and µ′/µ respectively. So we can always find λ and µ so that
p1
1 = p2

2 = 0. Hence we have proved

Proposition 3.1. A ruled surface with condition (1.1) is given by a
system of differential equations

(2.6)

{
x′′1 = p x1 + q x2

x′′2 = r x1 + s x2.

This has the following
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Corollary 3.2. If two curves defining a ruled surface satisfy (2.6), then
asymptotic curves through each point are a ruling line (v-curve) and a
u-curve through this point.

Proof. Because the equation (2.3) becomes du dv = 0.

Consider next a surface x ruled by two ways. Let (x1, x2) give one
ruling such that curves xi are asymptotic. Since only v-curves and u-
curves are asymptotic, xi must be lines of another ruling. Hence xi are
assumed to be linear in u. Then we see x = a+b u+c v+d u v for some
constant vectors a, b, c and d; hence, x is a quadratic surface:

Proposition 3.3. If a surface is ruled in two ways both with condition
(1.1), then the surface is a quadratic surface.

Examples. (1) The system for a quadratic surface is x′′1 = x′′2 = 0.
(2) The surface defined by (x2)3+x1(x1x4+x2x3) = 0 in P3 in homoge-
neous coordinates (xi) is called a Cayley’s cubic scroll. This is a ruled
surface with generating curves x1 = (1,−u,−u2, 0) and x2 = (0, 0, 1, u).
Hence the equations are

{
x′′1 = −2x2 + 2ux′2

x′′2 = 0.

The asymptotic curves other than ruling lines are given by 2x1 ∧ x′1 ∧
x2∧x′2 dv = x1∧x2∧x′1∧x′′1 du, i.e. dv = −u du. Hence they are twisted
cubics defined by x3 = x1− 1

2u2x2+a x2 =
(
1,−u,− 3

2u2+a,− 1
2u3+a u

)
for a constant a. Then, the system of equations with respect to (x2, x3)
is

(2.7)

{
x′′3 = −3x2

x′′2 = 0.

§3. Fundamental invariant

We will continue to normalize systems further.
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Lemma 3.4. Every change of variables (2.1) that preserves the form
(2.6) is given by

w = f(u) , y1 = (f ′)1/2(a x1 + b x2) , and y2 = (f ′)1/2(c x1 + d x2)

where a, b, c, d are constants.

Proof. Put X = t(x1, x2). The transformation (2.1) is written as

w = f(u); Y = AX, A = (aj
i )

in matrix notation, A being non-singular. Similarly (2.5) is written as

(3.1) X ′′ = QX, Q =
(

p q
r s

)
.

Then, denoting by “ · ” the w-derivation, we have

f ′Ẏ = A′X + AX ′

(f ′)2Ÿ + f ′′Y = A′′X + 2A′X ′ + AX ′′.

These yield

(3.2)
(f ′)2Ÿ = (2f ′A′A−1 − f ′′)Ẏ

+ (A′′A−1 + AQA−1 − 2A′A−1A′A−1)Y.

To preserve the form (3.1), 2f ′A′A−1 − f ′′ = 0 is necessary. Putting
B = (f ′)−1/2A, we see B′ = 0. This proves the lemma.

From (3.2), more can be said. If we put A = (f ′)1/2B, where B is
constant, then the coefficient of Y is h′′/h− 2(h′/h)2 + BQB−1 where
h = (f ′)1/2. Now note that h′′/h − 2(h′/h)2 = {f ; u}. Then the trace
of this coefficient is equal to trQ+2{f ;u}. So, we can assume tr Q = 0
by an appropriate choice of f . We have
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Proposition 3.5. 1o. Each system (1.2) representing a ruled surface
can be normalized to have a form

X ′′ = QX; X = t(x1, x2) , Q =
(

p q
r s

)

with the condition

(3.3) tr Q = 0.

2◦. The transformation (2.1) preserving this normalization is given by

(3.4) w =
αu + β

γu + δ
, Y = (γu + δ)−1BX,

where α, β, γ, δ and B are constant.
3o. The matrix-valued quadratic form Qdu2 changes, under a trans-
formation (3.4), into B(Qdu2)B−1. In particular the quartic form
(det Q) du4 is a differential invariant of the surface.

Proof. 1o is shown already. 2o follows from the condition {f ; u} = 0.
Then 3o is seen by (3.2).

Definition. We call Qdu2 the fundamental invariant of a ruled surface.

Theorem 3.6. Let x and y be two ruled surfaces with condition (1.1)
given respectively by curves (x1(u), x2(u)) and by curves (y1(w), y2(w)).
Let Qdu2 and R dw2 denote fundamental invariants of x and y, respec-
tively.
1o. Assume x and y are projectively equivalent. Then there exists a
diffeomorphism between parameters, w = f(u), and a non-singular con-
stant matrix B such that

(3.5) f∗(R dw2) = B(Qdu2)B−1.

2o. Conversely, if there exists a mapping f and a matrix B satisfying
this identity, then ruled surfaces x and y are projectively equivalent.

Proof. If one of surfaces is a quadratic surface, then the other is also a
quadratic surface and (3.5) holds trivially. So we assume both x and
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y are not quadratic surfces. Then, letting ϕ be a projective transfor-
mation mapping x to y, we have a mapping f such that the line with
parameter u is mapped by ϕ to the line with parameter w = f(u) (see
Proposition 3.3). Then Proposition 3.5 implies 1o. Conversely, if (3.5)
holds, then we can find new curves defining the same surfaces so that
these curves satisfy the same system of differential equations under the
identification of parameters by f . This proves the theorem.

We put, after Wilczynski,

(3.6) θ4 = −4 det Q.

This relative invariant for the system (3.1), is given by

(3.7) θ4 = (p− s)2 + 4rq.

This invariant has the following geometrical meaning. Let x(u, v) =
x1(u)+ v x2(u) be a ruled surface. Fixing v to a certain value, consider
the curve c(u) = x(u, v) of u. Then the point x(u, v) is called a flecnodal
point of the surface if it is a flecnodal point of the space curve c, i.e.

c ∧ cu ∧ cuu = 0

Since cuu = (p + v r)x1 + (q + v s)x2, this condition is equivalent to

r v2 + (p− s)v − q = 0.

Hence, on each line, there are generally two flecnodal points. The in-
variant θ4 is the discriminant of this quadratic equation of v. Therefore
θ4 = 0 means that two flecnodal points coincide. For later use we in-
troduce one more terminology. The flecnodal points on each line draw
curves on the surface. We call these curves flecnodal curves.

§4. Scalar differential invariants

Wilczynski has shown that, other than θ4, there exist three basic
scalar invariants denoted by θ4·1, θ9 and θ10. We will reproduce them
in our notation.
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We have seen that the fundamental invariant changes under the rule

(4.1) (f ′)2Qw = BQuB−1

by the transformation (3.4), the suffices being used to denote the pa-
rameter of curve. Let Iu be a differential polynomial of components of
Qu and Iw the corresponding value for Qw. We say I (or Iu by abuse
of language) is a (relative) scalar invariant of weight a if

(4.2) Iw = Iu(f ′)−a.

The invariant θ4 is of weight 4.

Lemma 3.7. If I is an invariant of weight a, then its derivatives satisfy

(4.3) İw = I ′u(f ′)−a−1 − a Iu(f ′)−a−2f ′′

and
(4.4)

Ïw = I ′′u (f ′)−a−2 − (2a + 1)I ′u(f ′)−a−3f ′′ + a(a +
1
2
)Iu(f ′)−a−4(f ′′)2.

(′ and · denote derivations with respect to u and w respectively.)

Proof. Differentiate (4.2) and use the identity f ′f ′′ = 3
2 (f ′′)2.

From this lemma follows

Lemma 3.8. 1o. If I is an invariant of weight a, then 2aI ′′I
− (2a + 1)(I ′)2 is an invariant of weight 2a + 2.
2o. If I and J are invariants of weight a and b respectively, then
aIJ ′ − bI ′J is an invariant of weight a + b + 1.

By this lemma

(4.5) θ4·1 = 32(det Q)′′ det Q− 36((det Q)′)2
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is an invariant of weight 10. Lemma 3.7 applied to det Q yields

(det Qw)· = (det Qu)′(f ′)−5 − 4(det Qu)(f ′)−6f ′′

(det Qw)·· = (det Qu)′′(f ′)−6 − 9(det Qu)′(f ′)−7f ′′

+ 18(det Qu)(f ′)−8(f ′′)2.

On the other hand

B−1Q·wB = Q′
u(f ′)−3 − 2Qu(f ′)−4f ′′,

whence we have

det(Q·w) = (f ′)−6 det
(

Q′ − 2
f ′′

f ′
Q

)

= (f ′)−6

(
det(Q′)− 2

f ′′

f ′
(det Q)′ + 4

(
f ′′

f ′

)2

det Q

)
.

These identities show easily

(4.6) 9 det(Q·w)− 2(det Qw)·· = (f ′)−6 {9 det(Q′
u)− 2(det Qu)′′} .

Hence,

(4.7) θ6 := 9 det(Q′)− 2(det Q)′′

is an invariant of weight six. He has also introduced

(4.8) θ10 = −4 det Q det(Q′) + ((det Q)′)2.

These are not independent as he claimed. They satisfy

θ4·1 + 36θ10 − 4θ4θ6 = 0.

Let
(

p q
r −p

)
be components of Q as before and define

(4.9) θ9 = det




p q r
p′ q′ r′

p′′ q′′ r′′


 .

This is an invariant of weight 9; due to three identities (4.1), (4.6) and

(4.10) B−1Q··wB = Q′′(f ′)−4 − 5Q′(f ′)−5f ′′ + 5Q(f ′)−6(f ′′)2.

The geometrical meaning of θ9 is given in
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Proposition 3.9. ([W1, Chapter VIII]). θ9 = 0 if and only if the
associated curve in G2,4, which is considered as a curve in P5 by the
Plücker embedding of G2,4 into P5, is included in a hyperplane of P5.

Proof. Let us denote by y the associated curve in P5. It is given by
y = x1 ∧ x2. Differentiation gives

y′ = x′1 ∧ x2 + x1 ∧ x′2
y′′ = x′′1 ∧ x2 + 2x′1 ∧ x′2 + x1 ∧ x′′2

= 2x′1 ∧ x′2. (by (2.6) and p + s = 0)

Then successively we have

(4.11)
1
2
y′′ + py′ = 2p x1 ∧ x′2 + q x2 ∧ x′2 − r x1 ∧ x′1.

(4.12)(
1
2
y′′′ + py′

)′
= 2p′x1 ∧x′2 + q′x2 ∧x′2− r′x1 ∧x′1 + py′′− 2(p2 + q r)y.

(4.13)
((1

2
y′′′ + py′

)′
− py′′ + 2(p2 + q r)y

)′

= 2p′′x1 ∧ x′2 + q′′x2 ∧ x′2 − r′′x1 ∧ x′1 + p′′y′′ − 2((p′)2 + q′r′)y.

These equalities (4.11)–(4.l3) show that if θ9 = 0, then y satisfies
an equation of order 5, which means that there exists a linear relation
among coordinates of y and that the curve y is included in a hyperplane.
Conversely, if y is included in a hyperplane, then vectors y, y′, . . . , y(5)

are linearly dependent and we obtain a linear relation among six vectors
given by the right hand sides of above equalities. But, if θ9 6= 0, they
span a six-dimensional vector space by the generality assumption (1.1).
This proves Lemma.

Remark. If θ4 6= 0, then we have absolute invariants, say (θ4·1)4/(θ4)10,
(θ9)4/(θ4)9, . . . Moreover, if θ4 6= 0, we can normalize the system fur-
ther so that |θ4| = 4, i.e. det Q = ±1, and reduce the transformation
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(3.4) to that composed of a translation of u and a multiplication by
B. Hence the procedure to get invariants is completely reduced to the
PGL2-invariant theory. Then, generally speaking, two invariants suffice
to determine Q because tr Q = 0 and det Q = ±1. Wilcyznski showed
that we can take θ9 and θ10 for these invariants assuming θ10 6= 0. (see
[W1, p. 120-121]).

§5. A generalization of plane curves and ruled surfaces

Recall that a ruled surface is defined as a pair of two curves in P3.
This situation may be generalized to that for a certain number of curves
in PN . We here treat the case of r curves in Pnr−1, because similar
arguments are possible. Namely, we consider a one-parameter family of
(r − 1)-plane in Pnr−1. When r = 1, this is the case of a single curve;
Chapter 1 for n = 2 and Chapter 2 for n = 3. When r = n = 2, the
case of ruled surfaces.

Let x1(t), . . . , xr(t) be curves in Pnr−1. They define an (r − 1)-
plane x(t, u2, . . . , ur) = x1(t)+

∑
ujxj(t). We assume that the vectors

x1, . . . , xr, x′1, . . . , x′r, . . . , x
(n−1)
1 , . . . , x

(n−1)
r are linearly indepen-

dent. Then we have a system of differential equations

(5.1) x
(n)
i =

n−1∑

k=0

P i
ikx

(k)
j

We define matrices Pk by Pk = (pj
ik). By putting X = t(x1, . . . , xr)

this system is written

(5.2) X(n) =
∑

PkX(k).

The ambiguity to determine the planes x(t, u2, . . . , ur) lies in the choice
of parameter t and the choice of generating curves x1, . . . , xr. So trans-
formations that we should consider have the form

(5.3)





s = f(t)

yi =
∑

aj
i (t)xj(t) ; Y = AX.
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By a transformation Y = AX and f = t, the equation (5.2) is
transformed into

Y (n) = AX(n) + nA′X(n−1) + · · ·
= (AP1 + nA′)X(n−1) + · · ·
= (AP1 + nA′)A−1Y (n−1) + · · ·

Then a choice of A by AP1 + nA′ = 0 leads us to the situation

(5.4) P1 = 0.

Under a general transformation (5.3), the equation changes into

(f ′)nY (n) + an(f ′)n−2f ′′Y (n−1)

+
(
bn(f ′)n−3f ′′′ + cn(f ′)n−4(f ′′)2

)
Y (n−2) + · · ·

= AX(n) + nA′X(n−1) +
n(n− 1)

2
A′′X(n−2) + · · · ,

where

an =
n(n− 1)

2
, bn =

n(n− 1)(n− 2)
6

, cn =
n(n− 1)(n− 2)(n− 3)

8
.

From this we get

(f ′)nY (n) = (n(f ′)n−1A′A−1

− an(f ′)n−2f ′′)Y (n−1) + (f ′)n−2P̃2Y
(n−2) + · · · ,

where

(5.5)
P̃2 = AP2A

−1 − bn
f ′′

f ′
− cn

(
f ′′

f ′

)2

+ nan−1
f ′′

f ′
A′A−1

− n(n− 1)A′A−1A′A−1 +
n(n− 1)

2
A′′A−1.

Hence, to preserve the condition (5.4),

A = (f ′)(n−1)/2B for a constant matrix B
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is necessary.

On the other hand, from (5.5) we see

tr P̃2

r
=

n(n− 1)(n + 1)
6

{f ; t}+
trP2

r
.

Then, solving tr P̃2 = 0, we get the next proposition which is similar to
Proposition 3.4.

Proposition 3.10. 1o The equation (5.4) can be normalized so as

P1 = 0 and trP2 = 0.

2o A transformation (5.3) preserving this condition has the form

s =
αt + β

γt + δ

Y = (γt + δ)1−nBX ; B is constant.

3o Under this transformation, the matrix-valued quadratic form P2 dt2

changes only by a conjugate action of B.

Remark. We can moreover see the k-differential form

Rk =
k−2∑

j=0

ak,j

(
d

dt

)j

Pk−j(dt)k ; k ≥ 2,

ak,j = (−1)j (2k − j − 2)! (n− k + j)!
j! (k − j − 1)!

are also invariants up to conjugation of B. ([W1, II,§4]; [MOR],[SEA1]).
When r = 1, P2 does not appear. When r ≥ 2, R2 = P2 dt2. Wilczyn-
ski’s computation for r = 1 holds also for r ≥ 2. Note that R2, . . . ,
Rn are fundamental invariants in the sense that they determine the
projective equivalence class of motions of (r− 1)-planes in general. See
[SEA1].
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Example. When n = 2 and r = 3, we have a three-dimensional sub-
manifold in P5, which is a one-parameter family of 2-planes. When
the invariants vanish, i.e. P2 = P3 = 0, the equation has six solutions
(1, 0, 0, 0, 0, 0), (0, t, 0, 0, 0, 0), (0, 0, 1, 0, 0, 0), (0, 0, 0, t, 0, 0), (0, 0, 0,
0, 1, 0) and (0, 0, 0, 0, 0, t). The submanifold is given by a map (t, s, u) 7→
(1, t, s, st, u, ut) and written in homogeneous coordinates by equations
x1x4 − x2x3 = 0 and x1x6 − x2x5 = 0. The 2-plane through (1, t, 0, 0,
0, 0) is given by x1 = t x2, x3 = t x4, x5 = t x6.



4. Projective theory of hypersurfaces

In this chapter we will treat hypersurfaces in Pn+1. The aim is to
formulate the projective fundamental theorem of hypersurfaces. For its
better understanding, we recall first the outline of the euclidean theory
of hypersurfaces in Rn+1.

Let M be an immersed hypersurface in Rn+1. The euclidean metric
induces a Riemannian metric on M and the second fundamental form
is defined on M . These two are related in such ways that the Riemann-
ian curvature tensor is expressible in terms of the second fundamental
form (Gauss equation) and that the covariant derivatives of the second
fundamental form are written by this form and by the metric (Codazzi-
Minardi equation). Then the fundamental theorem of hypersurfaces
says that these two equations characterize the immersion: given a Rie-
mannian metric and a quadratic form on an n-manifold M which satisfy
these equations, we can find an immersion of M into Rn+1 up to a rigid
motion so that the given metric and the form are the induced metric
and the second fundamental form respectively.

Now consider an immersed hypersurface M in Pn+1. Then it turns
out that the conformal class, denoted by h, of the second fundamental
form of M is a projective invariant. Assume this class is non-degenerate
and n = 3. Then we can define a matrix-valued one-form τ , which is
essentially the same as the so-called cubic form. These invariants h and
τ play a similar role as the induced metric and the second fundamental
form in the euclidean case: the conformal curvature tensor is expressed
by τ and the covariant derivative of τ have a certain relation with τ
and h. We call these relations also Gauss equation and Codazzi-Minardi
equation and we can find an immersion up to a projective motion so
that the given class and the given form are the induced conformal class
and the induced one-form respectively.

In §1, we recall some terminologies about conformal connections.
In §2, some fundamental invariants of a hypersurface in Pn+1 will be
defined and explicit expressions of these invariants will be given in §3.
The §4 explains a relation with the unimodular affine treatment of

46
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hypersurfaces. In §5, we prove a theorem by Pick and Berwald about
the characterization of quadratic hypersurfaces. Fundamental theory of
hypersurfaces will be formulated and proved in §6, when the dimension
n = 3; the case when n = 2 is treated in §7. In the last section 8 we
give some formulae about the projective metric.

§1. Quadratic hypersurfaces

Let h be a non-singular n× n symmetric matrix of signature (p, q).
The orthogonal group with respect to h is

O(h) = { g ∈ GLn ; g h tg = h }.

The conformal orthogonal group CO(h) is defined by

CO(h) = {λg ; g ∈ O(h), λ ∈ R∗ }.

Let M be an n-dimensional manifold. The bundle of linear frames
is denoted by L(M). This is a principal GLn-bundle. A subbundle of
L(M) with CO(h) as the structure group is called a CO(h)-structure
of the manifold M . This has the unique correspondence with the con-
formal class of a pseudo-riemannian metric of type (p, q).

Let Q be a matrix in GLn+2:

Q =




0 0 −1
0 h 0

−1 0 0


 .

Define the orthogonal group with respect to Q by

O(Q) = { g ∈ GLn+2 ; gQtg = Q }.

Its Lie algebra o(Q) is generated by elements

(1.1)




Λ D 0
B A E
0 C −Λ


 ,
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where B and E are vertical and C and D are horizontal vectors and A
is an n× n-matrix. Λ is a scalar. They satisfy relations

(1.2) B = h tC, E = h tD, and Ah + h tA = 0.

A quadratic hypersurface Qn is defined by

Qn = { [x ] ∈ Pn+1 ; xQ tx = 0 }.

The group O(Q) acts on Qn transitively on the right: (xi) 7→ (∑
gi

jx
j
)
.

The isotropy subgroup at (1, 0, . . . , 0) is

(1.3) H =








λ 0 0
b a 0
µ c ν


 ;

λν = 1, a ∈ O(h)

b = λah tc , µ =
1
2
λc h tc



 .

Hence O(Q) is a principal H-bundle over Qn. Let h denote the Lie
algebra of H; whose element is written as




Λ 0 0
B A 0
0 C −Λ


 ; B = h tC, Ah + h tA = 0.

The linear representation of H at (1, 0, . . . , 0) is not faithful and has
a kernel consisting of elements




0 0 0
B 0 0
0 C 0


 ; B = h tC.

Let N be the corresponding normal subgroup of H. Then we see
H/N ∼= CO(h). Hence the bundle O(Q)/N is a principal CO(h)-bundle
over Qn. This defines the canonical conformal structure on Qn. Put
ϕ = −2dxodxn+1 +

∑
hijdxidxj , a non-degenerate quadratic form on

Rn+2. The restriction to Qn of the pull-back of ϕ by a section of
Rn+2−{0} → Pn+1 gives the conformal class associated to the bundle
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O(Q)/N . It is independent of the choice of a section. Moreover, the
bundle O(Q) itself is the first prolongation of O(Q)/N and the Maurer-
Cartan form of O(Q) defines a normal conformal connection.

We here briefly recall the definition of a normal conformal connection
(see Chapter 4 of [KOB]). Let M be an n-manifold, G a Lie group, G0

a closed subgroup with dim G/G0 = n and P a principal G0-bundle
over M . The group G0 acts on P on the right and the right translation
by g ∈ G0 is denoted by Rg. Through this action every element A of
the Lie algebra g0 of G0 defines a vertical vector field on P denoted by
A∗. Then a pair (P, ω) of the bundle P and a 1-form ω with values
in the Lie algebra of G is called a Cartan connection if the following
conditions are satisfied:

(1.4)

a) ω(A∗) = A for every A ∈ g0

b) (Rg)∗ω = ad (g−1)ω for every g ∈ G0,

c) ω(X) 6= 0 for every non-zero vector X of P.

When G = O(Q) and G0 = H, this connection is called a conformal
connection of type Q or of type (p, q). Let (P, ω) be one conformal
connection. The components of ω are written as ωβ

α, 0 ≤ α, β ≤
n + 1. Corresponding to the decomposition (1.1), o(Q) has a grading
o−1 + o0 + o1, where o−1 = {B, C}, o = {Λ, A} and o1 = {D,E}. The
decomposition of ω according to this grading is denoted by ω−1 = (ω0

i ),
ω0 = (ω0

0 , ωj
i ) and ω1 = (ωi

0). By (1.2) we can forget the C and E
parts. The condition (1.4) shows that the component ω1 is basic: the
tangent vector X of P is vertical if ωi

0(X) = 0. Let Ω = dω − ω ∧ ω be
the curvature form and Ωβ

α be components of Ω. Put

Ωj
i − δj

i Ω
0
0 =

1
2

∑
Kj

ik`ω
k ∧ ω`.

Then the connection ω is called normal if

(1.5)
∑

Kj
ij` = 0.

We will use the following fact: Let P be a principal H-bundle over a
manifold of dimension = 3. Given 1-forms ω1 = (ωi) and ω0 = (ω0

0 , ωj
i )
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there exists a unique normal conformal connection ω extending ω1 and
ω0 provided that they satisfy dωi = ω0

0 ∧ ωi +
∑

ωj ∧ ωi
j and (a′)

ωi(A∗) = 0, ω0(A∗) = the o0-component of A for A ∈ o0 + o1; (b′)
R∗g(ω1 + ω0) = ad (g−1)(ω1 + ω0) for every g ∈ H and (c′) a tangent
vector X of P is vertical if ω1(X) = 0. See Theorem 4.2 of [KOB].

§2. Projective invariants of a hypersurface

2.1. projective frames

Let F be the set of linear bases e = (e0, e1, . . . , en+1) of Rn+2. The
group GLn+2 acts on F simply transitively by g(eα) = (gβ

αeβ). Between
two bases e and e define a relation ∼ by eα = λeα for some λ ∈ R∗.
Then the quotient space

F := F/ ∼
is defined, whose element is called a projective frame. This space is
identified with the projective linear group G = SLn+2/centre. Define
a mapping π:F → Pn+1 by

π(e) = [ e0 ].

Then F is a principal bundle over Pn with π as its projection. The
fibre group is isomorphic to

G0 = { g ∈ G ; e0(g e) = e0(e) for any e ∈ F }
∼=

{ (
λ 0 · · · 0
∗ ∗

)
∈ G

}
.

A local section is called a projective frame field (or simply a frame).
We will denote it by the same letter e = (e0, e1, . . . , en+1). Fix an
element e0 ∈ F . Then any projective frame e is written as e = g e0. So
de = dg e0 = dg · g−1e. We write ω = dg · g−1, the Maurer-Cartan form
of G. Let ωβ

α, 0 ≤ α, β ≤ n + 1, be components of ω. Then

(2.1) d eα = ωβ
αeβ ,

and

(2.2) dωβ
α = ωγ

α ∧ ωβ
γ , ωα

α = 0.
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Here and in the following we use the summation convention: repeated
indices, once in upper case and once in lower case, are summed on its
range. The range will be from 0 to n + 1 for α, β, . . . and from 1 to
n for i, j, . . . Note that the 1-forms ω1

0 , . . . , ωn+1
0 are basic forms with

respect to the projection π.

Let e be a projective frame field. The induced form e∗ω is denoted
by ω(e), or simply by ω if there is no confusion. Let ẽ be another frame
field with a relation

(2.3) ẽ = g e

for a G0-valued function g. By definition

(2.4) ω(ẽ) = dg g−1 + gω(e)g−1.

Let now f :Mn → Pn+1 be an immersion of an n-manifold M . The
pull-back of the bundle F onto M is denoted by f∗F . Frame fields with
the property ωn+1

0 = 0 generate a subbundle F1. We write this fact as

(2.5) F1 = {e ∈ f∗F ; ωn+1
0 = 0}.

Each fibre is isomorphic to

(2.6) G1 =








λ

n︷ ︸︸ ︷
0 · · · 0 0

0

∗ ∗ ...
0

∗ ∗ ν



∈ G0





.

The first component e0 of e ∈ F1 represents a point of M in Rn+2

and the next n components together with e0 span the tangent space of
the cone over M at e0. When ω0

0 = 0, these n components are tangent
vectors at e0(M).
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2.2 The fundamental form

Let e be a frame field in F1. The exterior derivation of the condition
ωn+1

0 = 0 gives

ωi ∧ ωn+1
i = 0.

Hence

(2.7) ωn+1
i = hijω

j , hij = hji

for some functions hij . Define

(2.8) ϕ2 = hijω
iωj , h = (hij) and H = det h.

We call ϕ2 the fundamental form of the immersed hypersurface.

To see the dependence on frames we rewrite (2.4) componentwise for
g ∈ G1:

ω̃0
0 = ω0

0 + d log λ− biA
i
jω

j

ω̃i = λAi
jω

j

ω̃n+1
i = ν−1ak

i ωn+1
k

ω̃k
i = daj

iA
k
j + a`

iω
j
`A

k
j + biω

jAk
j − ν−1a`

iω
n+1
` cjAk

j(2.9)

ω̃n+1
n+1 = ωn+1

n+1 + d log ν + ν−1ciωn+1
i

ω̃i
n+1 + cjAi

jω̃
n+1
n+1 = (dcj + ckωj

k + µωj + νωj
n+1)A

i
j

λω̃0
i + ω̃j

i bj + µω̃n+1
i = aj

iω
0
j + dbi + biω

0
0

λω̃0
n+1 + biω̃

i
n+1 + µω̃n+1

n+1 = νω0
n+1 + dµ + µω0

0 + ciω0
i ,

where

g =




λ 0 0
b a 0
µ c ν


 , A = a−1 and ω̃ = ω(ẽ).

From the second and the third equations we have

(2.10) h̃ = (λν)−1a hta, i.e. h̃ij = (λν)−1ak
i hk`a

`
j ,
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(2.11) H̃ = (det a)n+2H.

(∼ denotes that the reference frame is ẽ). The formula (2.10) shows
that rank h and | index h | are independent of choice of frames. We
assume from now on that rankh = n (see §2.5). In this case we say
that the hypersurface is non-degenerate. The identity (2.11) then shows
that we may assume

(2.12) |H| = 1,

and consequently | det a| = |λν| = 1. With this assumption the first
and the fifth equations of (2.9) give the identity

ω̃0
0 + ω̃n+1

n+1 = ω0
0 + ωn+1

n+1 + ν−1ciωn+1
i − biA

i
jω

j .

So we can find a frame with the property

(2.13) ω0
0 + ωn+1

n+1 = 0.

Define a bundle F2 by

(2.14) F2 = { e ∈ F1 ; |H| = 1 , ω0
0 + ωn+1

n+1 = 0 }

The fibre group is

(2.15) G2 = { g ∈ G ; |det a| = 1 , |λν| = 1 , b = ν−1a h tc }.

2.3. The cubic form

We next take the exterior derivation of (2.7):

0 = −dωn+1
i + dhij ∧ ωj + hijdωj

= −ωj
i ∧ ωn+1

j − ωn+1
i ∧ ωn+1

n+1 + dhij ∧ ωj

+ hij(ω0
0 ∧ ωj + ωk ∧ ωj

k) (by (2.2))

= {dhij − hijω
k
j − hkjω

k
i + hij(ω0 + ωn+1

n+1)} ∧ ωj

= (dhij − hikωk
j − hkjω

k
i ) ∧ ωj (by (2.13)).
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Hence we can define a symmetric tensor hijk by

(2.16) hijkωk = d hij − hkjω
k
j − hikωk

j .

Put

ϕ3 = hijkωiωjωk,(2.17)

F = hijkhpqrh
iphjqhkr,

which we call the cubic form and the Fubini-Pick invariant. Here
(hij) = (hij)−1. The cubic form satisfies an identity called the apo-
larity condition:

(2.18) hijhijk = 0.

This is seen as follows:

0 = d log |H| = hijdhij = hij(hijkωk + hikωk
j + hkjω

k
i )

= hijhijkωk by (2.2).

The next formula can be seen by a straightforward calculation

(2.19) λ2νh̃ijk = hpqra
p
i a

q
ja

r
k.

We have seen

Proposition 4.1. Assume the hypersurface is non-degenerate. Then
the fundamental form ϕ2 and the Fubini-Pick invariant transform as

(2.20) ϕ̃2 = λν−1ϕ2, ϕ̃3 = λν−1ϕ3, F̃ = λ−1νF

when frames change as ẽ = g e for g ∈ G2. The quadratic form Fϕ2 is
independent of choice of frames.

Definition. We call Fϕ2 the projective metric.
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2.4. The structure bundle

From (2.13) we have the following identity by taking exterior deriva-
tion:

(hijω
j
n+1 − ω0

i ) ∧ ωi = 0.

This enables us to put

(2.21) hijω
j
n+1 − ω0

i = Lijω
j , Lij = Lji

and to define

(2.22) L =
1
n

hijLij .

The sixth and seventh formulae of (2.9) then yield

λL̃ij = λ−1Lpqa
p
i a

q
j + (2µ− ν−1hk`c

kc`)h̃ij − (λν)−1hpqrc
paq

i a
r
j

and

(2.23) λL̃ = λ−1L + (2µ− ν−1hk`c
kc`).

Consequently, we can find a frame with the property

(2.24) L = 0.

Define a bundle F3 by

(2.25) F3 = { e ∈ F2 ; L = 0 }.
The fibre group is

(2.26) G3 =
{

g ∈ G2 ; µ =
1
2
ν−1c h tc

}
.

With respect to frames in F3, Lij transforms as

(2.27) λ2L̃ij = (Lk` − λhk`mcm)ak
i a`

j .

In summary, we have
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Proposition 4.2. For a non-degenerate hypersurface there exists a lo-
cal projective frame field satisfying

ωn+1
0 = ω0

0 + ωn+1
n+1 = 0, |H| = 1, L = 0.

Such frames generate a bundle F3 with G3 as its fibre group:

G3 =








λ 0 0
b a 0
µ c ν


 ∈ G1 ;

|λν| = 1 , b = ν−1a htc ,

µ =
1
2
ν−1c htc



 .

The formulae in (2.9) for g in G3 become simpler. The last three are
written as

λω̃0
i = ak

i ω0
k +

{
d(bjA

j
k)− bjA

j
`ω

`
k

}
ak

i + biω
0
0

− µν−1ak
i ωn+1

k − bibjA
j
kωk + ν−1a`

iω
n+1
`

(
cjAk

j bk

)
,(2.28)

ω̃i
n+1a

j
i = νωj

n+1 + d cj + ckωj
k + cj(ω0

0 + d log λ) + µωj − cjckωn+1
k ,

ω̃0
n+1 = λ−1νω0

n+1 −
(
λ−1ciLik − 1

2
(λν)−1cicjhijk

)
ωk.

Put

(2.29) ω0
n+1 = −γjω

j .

Then we see

(2.30) λγ̃j =
(
λ−1νγk + λ−1ciLik − 1

2
(λν)−1cic`hi`k

)
ak

j .

We now rephrase Proposition 2 as follows. Let h be of signature
(p, q). We fix a non-degenerate symmetric matrix h0 of this signature
and with |det h0| = 1. The identity (2.10) shows that we can choose
a frame so that h = h0 at each point. Then it is possible to define a
bundle

(2.31) P = { e ∈ F ; h = h0 , ω0
0 + ωn+1

n+1 = 0 , L = 0 }.
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If p 6= q, then λν = 1 and the structure group is equal to the isotropy
group H of the quadric Qn with respect to h0 (see §1.). When p = q,
assuming the hypersurface is orientable, we can construct a subbundle
with H also as the structure group.

2.5. Remarks

1. From (2.27), we can see the property

(2.32) Lij =
∑

k

hijkak for some ak

is independent of frames. Also

(2.33) Lij =
∑

hijkak and γi = −1
2

∑
hijkajak.

These properties seem to have interesting geometric conclusion. (see §4
and §2 of Chapter 6).

2. Let us consider the case when h is degenerate and rank h = r is
constant. We will see that the hypersurface is then ruled in the sense
that it is foliated locally by linear subspaces of dimension n− r. Fix a
frame and assume, for simplicity, h is constant so that

ωn+1
i =





0 i = r + 1
∑
j≤r

hijω
j i ≤ r.

The exterior derivation gives

∑

k≤r

ωj
i ∧ hjkωk = 0 for i = r + 1,

which yields
ωj

i =
∑

k≤r

aj
ikωk for i = r + 1
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for some functions aj
ik. On the other hand,

dωj =
∑

i≤r

ωi ∧ ωj
i +

∑

i=r+1

ωi ∧ ωj
i + ω0

0 ∧ ωj .

Hence
dωj =

∑

i≤r

αj
i ∧ ωi for j ≤ r,

for some forms αj
i . This shows that the equation ω1 = · · · = ωr = 0

is integrable. Now assume ω0
0 = 0, which is always possible (§2) by

preserving the condition on rankh. Let N be one leaf. Then we have

de0|N =
∑

j=r+1

ωjej .

Hence er+1, · · · , en are tangent to N and they form a basis of TN .
Furthermore

dej |N =
∑

ωk
j ek + ωn+1

j en+1

= 0 for j = r + 1.

This says that ej , j = r + 1, are constant along N , i.e. N is a linear
subspace of Pn+1.

§3. Explicit expression of projective invariants

In this section we will explain the process in §2 geometrically for a
non-degenerate hypersurface given by an equation

xn+1 = f(x1, . . . , xn)

in affine coordinates x1, . . . , xn, xn+1. Denote derivatives of f by fi =
∂f/∂xi, fij = ∂2f/∂xi∂xj , . . . . Define a frame e = (e0, . . . , en+1) by

e0 = (1, x1, . . . , xn, f)

e1 = (0, 1, 0, . . . , 0, f1)
...

en = ( 0, . . . , 0, 1, fn)

en+1 = ( 0, . . . . . . , 0, 1).
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With respect to this frame de = ωe, where

ω =




0 dx1 · · · dxn 0
0 f1j dxj

...
...

0 fnj dxj

0 . . . 0




.

By the definition of the fundamental form (2.7),

hij = fij .

Hence the non-degeneracy of hij is equivalent to that of the hessian
matrix of f . Choose affine coordinates so that f(0) = fi(0) = 0 and
develop f formally into a series

(3.1) f(x) =
1
2
aijx

ixj +
∑

d=3

fd,

fd being a homogeneous polynomial of degree d. The matrix (aij) is
assumed non-degenerate. Define coefficients of fd by

(3.2) fd =
1
d!

∑
ai1···id

xi1 · · ·xid .

Put

Tr f3 =
∑

aijaijk(3.3)

Tr2f4 =
∑

aijak`aijk`,

where (aij) is the inverse matrix of (aij). Then we can see

Proposition 4.3. (1) At each point of a non-degenerate hypersurface,
there exists a projective change of coordinates such that the hypersurface
is represented by a function with property

(3.4) Tr f3 = Tr2f4 = 0.
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(2) Fix aij. Then every projective change of coordinates for which the
hypersurface is represented by a function f satisfying this property and
with fij(0) = aij belongs to the isotropy subgroup at the origin of the
quadric xn+1 = 1

2aijx
ixj.

Note that the property (3.4) corresponds to the conditions (2.18)
and (2.24).

We next normalize the frame e by defining a new frame e by

(3.5)





e0 = e0

ei = αei

en+1 = − `

2
e0 + αciei + α−nen+1,

where

α = (det fij)−1/n(n+2)

ci = nα−n−2f ijαj(3.6)

` = α−n−2
(
ααij − (n + 1)αiαj − ααkfk`f`ij

)
f ij .

The associated form ω is

(3.7) ω =




0 ωi 0
`
2ωn+1

j δi
jd log α− ciωn+1

j ωn+1
j

1
2d` − `

2ωi + d ci + cid log α 0


 ,

where

(3.8) ωi = α−1d xi, ωn+1
j = αn+2fjkωk.

Then we have

hij = αn+2fij ,(3.9)

hijk = αn+2(αfijk + n(αkfij + αifjk + αjfki)).

Assume fij(0) = δij for simplicity. Assume also the property (3.4):∑
i fij(0) =

∑
ij fiijj(0) = 0. Then, in particular, αj(0) = 0. This

shows, at the origin,

(3.10) hij(0) = δij , hijk(0) = fijk(0) , F (0) =
∑

fijk(0)2.
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The quantities Lij(0) and γj(0) are computed by the definitions (2.21)
and (2.29):

Lij(0) =
1

n + 2

∑

k,`

(fik`fjk`)−
∑

k

fijkk − 1
n(n + 2)

Fδij ,

(3.11)

γi(0) =
−1

2n(n + 2)

∑

j,k




fijjkk − 2
∑

`

(
fijk`fjk` + fijkfjk``

)

+3
∑

`,m

fijkfk`mfj`m


 .

§4. Remarks on affine description of a hypersurface

We will briefly recall the affine description of a hypersurface in rela-
tion with the normalization in §2.

Let An+1 be an (n + 1)-dimensional affine space. The unimodular
affine group Ga is defined by

Ga =
{(

1 u
0 a

)
; a ∈ SLn+1, u ∈ An+1

}
,

which is a subgroup of G = PSLn+2. Denote by (ωβ
α) the restriction

of the Maurer-Cartan form of G to Ga. We have now ω0
α = 0. Let

f0:Mn → An+1 be an immersion and attach to each point a set of
independent vectors (f1, . . . , fn+1) such that

det(f1, . . . , fn+1) = 1,

where det is a volume form invariant under Ga. Then a set (f0, f1, . . . ,
fn+1), called a unimodular affine frame field , can be seen a section of
the canonical projection Ga → An+1 and satisfies

d fa = ωβ
αfβ .

Considering frame fields with ωn+1
0 = 0, we can define hij and

ϕ2 similarly as in §2. Furthermore, under the assumption of non-
degeneracy of h = (hij), it is possible to choose a frame field by a
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transformation belonging to Ga so that |det h| = 1 and ωn+1
n+1 = 0. It

is known that, for such a frame, the form ϕ2 is uniquely defined and
called the affine metric. Now the form ω looks like

(4.1)




0 ωj 0
0 ωj

i ωn+1
i

0 ωj
n+1 0


 .

A cubic form ϕ3 is defined by the same way. The tensor `ij analogous
to Lij is given by hijω

j
n+1 = `ijω

j . This is called the affine mean
curvature tensor and ` = 1

nhij`ij is called the affine mean curvature.
The operator associated with the tensor `ijh

jk is called the affine shape
operator . It is known that the last vector fn+1 of a frame is affinely
invariant (up to ±1 in case index h = 0) and it is called an affine
normal . (cf. [CH]).

We next perform a change of frame by a transformation



1 0 0
0 In 0
− `

2 0 1




to get a frame satisfying the conditions in Proposition 2 of §2. The new
form is given by

(4.2)




0 ωj 0
`
2ωn+1

i ωj
i ωn+1

i

− 1
2d` − `

2ωj + ωj
n+1 0


 .

Then we see

Lij = `ij − ` hij ,(4.3)

γj =
1
2
`j where d` = `jω

j .

In the affine theory of hypersurfaces, this form Lij has a special
interest: the condition

(4.4) `ij − ` hij = 0
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is known to define a surface called affine hypersphere. See [BL], [CAL],
[S2]. A typical example is a quadratic hypersurface, whose invariants
hijk, Lij and γj all vanish; cf. §3 and §5.

Let us here recall the condition (2.32) in §2.5. In the above affine
terminology it is written as

`ij − ` hij =
∑

k

hijkak

for some vector (ak). Since affine spheres satisfy this condition for
ak = 0, any projective transformation of an affine sphere satisfies (2.32)
(and also (2.33)). But examples show that (2.32) or (2.33) defines a
broader class of surfaces. See Chapter 6.

§5. A characterization of quadratic hypersurfaces

In this section we prove

Theorem 4.4. Let M be a connected non-degenerate hypersurface in
Pn+1(n = 2). If the cubic form vanishes everywhere, then M is a part
of a quadratic hypersurface.

When n = 2, this was proved by Wilczynski [W1] and Pick [P].
Berwald [BER] generalized it for n = 3.

Lemma 4.5. Consider a connected non-degenerate hypersurface M .
Assume there exists a frame field e with the property that the coframe
ω, de = ωe, takes values in o(Q). Then M is a part of a quadratic
hypersurface.

Proof. Let e0 = (e0
0, e

0
1, . . . , e

0
n+1) be a standard frame: e0

α = (0, . . . , 0,
α
1, 0, . . . , 0). Define a G0-valued function g on M by e = g e0. Then
ω = dg g−1. Since ω takes values in o(Q), there exists a constant matrix
a and an O(Q)-valued matrix h so that g = h a. Hence eα = hβ

αaγ
αe0

γ .
In particular e0 = (. . . , hβ

0aγ
β , . . . ). Then, defining Qa = a−1Q ta−1, we
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have
e0Q

a te0 = hα
0 Qαβhβ

0 = Q00 = 0

. This shows M is contained in a quadratic hypersurface defined by Qa.

Proof of Theorem. Choose a frame field belonging to the bundle P
defined in §2. It satisfies

(5.1) ω0
0 + ωn+1

n+1 = 0 and L = 0.

We take (εiδij), εi = ±1, as a reference matrix h0. The assumption
ϕ3 = 0 is then equivalent to

(5.2) εiω
j
i + εjω

i
j = 0.

(Do not take summation in this proof unless
∑

is used.) Recall nota-
tions in §2:

(5.3) ωn+1
i = εiω

i, εiω
i
n+1 − ω0

i =
∑

j

Lijω
j , ω0

n+1 = −
∑

γjω
j .

For the proof it is enough to see Lij = γj = 0 in view of Lemma 5.
Take the exterior derivation of (5.2):

εidωj
i + εjdωi

j = εi

(
ωn+1

i ∧ ωj
n+1 + ω0

i ∧ ωj +
∑

k
ωk

i ∧ ωj
k

)

+ εj

(
ωn+1

j ∧ ωi
n+1 + ω0

j ∧ ωi +
∑

k
ωk

j ∧ ωi
k

)

= εi(εiω
i ∧ ωj

n+1 + ω0
i ∧ ωj) + εj(εjω

j ∧ ωi
n+1 + ω0

j ∧ ωi)

+
∑

k
(εiω

k
i ∧ ωj

k + εjω
k
j ∧ ωi

k).

The last term vanishes by (5.2). Hence

0 = ωi ∧ (ωj
n+1 − εjω

0
j ) + ωj ∧ (ωi

n+1 − εiω
0
i )

= εj

∑
Ljkωi ∧ ωk + εi

∑
Likωj ∧ ωk.

Consider the case i = j to see Lik = 0 for k 6= i. When i 6= j, look at
the term ωi ∧ ωj . Then εiLii = εjLjj . Hence Lij = c εiδij for a scalar
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function c. On the other hand we know hijLij = 0. This proves c = 0
and Lij = 0. Next take the derivation of εiω

i
n+1 − ω0

i = 0:

εidωi
n+1 − dω0

i = εi

(
ω0

n+1 ∧ ωi +
∑

ωk
n+1 ∧ ωi

k + ωn+1
n+1 ∧ ωi

n+1

)

−
(
ω0

i ∧ ω0
0 +

∑
ωk

i ∧ ω0
k + ωn+1

i ∧ ω0
n+1

)

= (εiω
n+1
n+1 ∧ ωi

n+1 − ω0
i ∧ ω0

0)

+
∑

(ωk
i ∧ ω0

k − εiω
k
n+1 ∧ ωi

k)

+ (ωn+1
i + εiω

i) ∧ ω0
n+1.

Since the first and the second terms vanish by (5.1), by (5.2) and by
the identity ω0

i = εiω
i
n+1, we have by (5.3)

εiω
i ∧ ω0

n+1 = 0.

Hence ω0
n+1 = 0 and this proves the theorem.

Theorem 4.4 gives the following

Corollary 4.6. Let M be a closed locally strongly convex smooth hy-
persurface in Pn+1, n = 2. Then the connected component of the group
of projective transformations which leave M invariant is compact unless
M is a quadratic hypersurface.

This is a weak form of a theorem proved by J. Bénzecri [BEN],
which assumes weak convexity throughoute, and strong convexity and
smoothness at one point. The proof of Corollary is given if we show the
cubic form vanishes. Since the hypersurface is locally strongly convex,
it is enough to see that the Fubini-Pick invariant F vanishes. Here
note that ϕ2 gives a Riemannian metric on M and that each projective
automorphism is conformal with respect to ϕ2. Then a theorem of M.
Obata [OB] says that ϕ2 is conformorphic to the standard metric of
the unit sphere. Moreover Fϕ3 is an invariant (0, 3)-tensor. The same
theorem says that such a tensor does not exist. Hence we have F = 0.
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§6. Fundamental theorem of a hypersurface

The aim of this section is to construct a normal conformal connection
associated with the fundamental form ϕ2 and, by use of this connection,
to formulate the fundamental theorem of hypersurfaces in Pn+1. We
assume the dimension n = 3 throughout this section.

We first try to find a h-valued 1-form π satisfying the curvature
condition (1.5), which defines a normal conformal connection on the
bundle P . Since a general process of obtaining π is well-known (see [K,
p.135-136]), it is simply necessary to relate π with ω. Assume π has
the following form with unknown 1-form τ :

(6.1) π = ω + τ.

The curvature form Ω of π is defined by

(6.2) Ω = dπ − π ∧ π.

We want to determine τ so that Ω0
0 = 0 and that Ωj

i is written as

(6.3) Ωj
i =

1
2
Cj

ik`π
k
0 ∧ π`

0 , Cj
ik` + Cj

i`k = 0,

with the property

(6.4)
∑

j

Cj
ij` = 0.

From now on, the rule of raising and lowering indices with respect
to the matrix h = (hij) will be used. We write πi for πi

0. First define

τα
0 = τn+1

α = 0 , τ0
n+1 = −ω0

n+1(6.5)

τ j
i =

1
2
hjkhik`ω

` =
1
2
hi

j
`ω

`.

Then

πi = ωi,(6.6)

dhij − hikπk
j − hijπ

k
i = 0.
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The other components of τ are tentatively supposed to have a form

τ0
i = Mijω

j + Lijω
j , Mij = Mji(6.7)

τ i
n+1 = hijMjkωk.

Then π has values in h relative to h. We can see

(6.8) Ωβ
0 = Ωn+1

α = Ω0
n+1 = 0.

These are because of symmetry of hij , hijk, Lij and Mij . In fact Ω0
0 = 0

is shown as follows:

Ω0
0 = dπ0

0 − πα
0 ∧ π0

α

= dω0
0 − ωi

0 ∧ (ω0
i + Lijω

j + Mijω
j)

= −ωi ∧ (Lij + Mij)ωj (2.2)

= 0 (symmetry of Lij and Mij).

The form Ωj
i is by definition

Ωj
i = dπj

i − πα
i ∧ πj

α

= dτ j
i − τk

i ∧ ωj
k − ωk

i ∧ τ j
k − τk

i ∧ τ j
k

− ωn+1
i ∧ τ j

n+1 − (Lik + Mik)ωk ∧ ωj .

The definitions (2.16) and (2.21) show

−d(hijkωk) = hik`ω
` ∧ ωk

j + hjk`ω
` ∧ ωk

i +

+ Ljkωn+1
i ∧ ωk + Likωn+1

j ∧ ωk,

by which one can compute dτ j
i and get

Cj
ik` =

1
4
(hikmh`

jm − hi`mhk
jm)

+
(
Mi` +

1
2
Li`

)
δj
k −

(
Mik +

1
2
Lik

)
δj
`

+
(
M j

k +
1
2
Lj

k

)
hi` −

(
M j

` +
1
2
Lj

`

)
hik.
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Hence,

(6.9) Cj
ij` =

1
4
Ki` + (n− 2)

(
Mi` +

1
2
Li` + M j

j hi`

)
,

where we have put

(6.10) Ki` = hijkh`
jk.

Therefore the condition (6.4) is satisfied only when

(6.11) Mij = − 1
4(n− 2)

Kij − 1
2
Lij +

F

8(n− 2)(n− 1)
hij .

Introduce a new invariant fij by

(6.12) fij = − 1
4(n− 2)

Kij +
F

8(n− 2)(n− 1)
hij .

Then the definition (6.7) is written as

τ0
i =

(
fij +

1
2
Lij

)
ωj

τ j
n+1 = hj`

(
f`k − 1

2
L`k

)
ωk.(6.7’)

Proposition 4.7. Let τ̃ denote the form τ with respect to the frame
g e. Then

τ̃ = gτg−1.

Proof. By the definition (6.12) and by (2.9)

(6.13) f̃ijω̃
iω̃j = fijω

iωj .

Using this identity and putting ζj = hjk`c
`ωk for a moment, we can see

following formulae from (2.27) and (2.30):

τ̃0
i = λ−1aj

i τ
0
j −

1
2
aj

i ζj
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τ̃ j
n+1 = νAj

kτk
n+1 +

1
2
Aj

kζk

τ̃0
n+1 = λ−1ντ0

n+1 + λ−1ci + Lijω
i − 1

2
(λν)−1cjζj .

The definition of τ j
i gives a formula

τ̃ j
i = ak

i τ `
kAj

` .

It is now immediate to see that these formulae together imply the result.

This proposition leads a transformation formula for π

(6.14) π̃ = dg g−1 + g π g−1 for g ∈ H.

Let now P be the principal H-bundle defined in §2.4. The formula
(6.14) shows that the form π is defined on P and satisfies the conditions
(1.4) in §1. The form τ also can be seen a basic 1-form on P by
Proposition 4.7. Summarizing we have

Theorem 4.8. Let M be a non-degenerate oriented hypersurface of
type (p, q). Then the pair (p, π) defines a normal conformal connection
of type (p, q).

The form τ , whose components are defined by use of hijk, Lij and
γi, is as a whole an invariant of an immersed hypersurface. This plays
an analogous role as the second fundamental form in the euclidean case.
The Gauss equation which expresses the curvature tensor in terms of τ
is given as follows.
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Proposition 4.9. Let Ωβ
α = 1

2Cβ
αk`π

k ∧π` and Cβ
αk` +Cβ

α`k = 0. Then

(1) Cijk` = himCi
jk`

=
1
4
(hi`mhkj

m − hikmhj`
m)

+
1

4(n− 2)
(hjkKi` − hj`Kik + hi`Kjk − hikKj`)

+
1

4(n− 1)(n− 2)
(hikhj` − hi`hjk)F

(2) Cijk := C0
ijk

= fik,j − fij,k +
1
4
(hij

`Llk − hik
`L`j)

(3) Ωj
n+1 = hjiΩ0

i

where

(6.15) fij,kπk = dfij − fikπk
j − fjkπk

i + 2fijπ
0
0 .

Proof. (1) follows directly from (6.8) and (6.11). (3) is obvious by
definition. As for (2) recall

Ω0
i = dτ0

i − τ j
i ∧ τ0

j − τ0
i ∧ π0

0 − ωn+1
i ∧ τ0

n+1 − ωj
i ∧ τ0

j − τ j
i ∧ ω0

j .

First show

dτ0
i =

1
2
(
hijkωk ∧ ωj

n+1 − 2ωn+1
i ∧ ω0

n+1 + ωj
i ∧ Ljkωk + Likωk ∧ ω0

0

)

+ dfik ∧ ωk − fijω
j
k ∧ ωk + fikω0

0 ∧ ωk,

then insert this to the above formula. Several cancellations by use of
identities defining τ and L will prove (2).

We next define a higher order invariant: take covariant derivation of
τ by

(6.16) Dτ = dτ − τ ∧ π − π ∧ τ.
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It satisfies

(6.17) Dτ̃ = g Dτg−1

for a frame change. In order to write down Dτ explicitly, we will define

hijk,`π
` = dhijk − h`jkπ`

i − hi`kπ`
j − hij`π

`
k + hijkπ0

0 ,

(6.18)

Lij,kπk = dLij − Lkjπ
k
i − Likπk

j + 2Lijπ
0
0 + hij

kπ0
k,

γi,jπ
j = dγi − γjπ

j
i + 3γiπ

0
0 − Lijπ

j
n+1.

Because of the transformation rule for τ , the right hand sides of these
definitions are again basic forms. Then a calculation shows

(6.19) Dτ =




0 0 0
(Dτ)0i (Dτ)j

i 0

(Dτ)0n+1 (Dτ)j
n+1 0




where

2hik(Dτ)k
j =

(
hijk,` + 2(fi`hjk + fjkhi`) + (Likhi` + Ljkhi`)

)
ω` ∧ ωk,

(6.20)

(Dτ)0i =
(
fik,` +

1
2
Lik,` + hikγ`

)
ω` ∧ ωk,

hik(Dτ)k
n+1 =

(
fik,` − 1

2
Lik,` + hikγ`

)
ω` ∧ ωk,

(Dτ)0n+1 = γk,`ω
` ∧ ωk.

Making use of this invariant Dτ , the curvature form is given by

(6.21) Ω = Dτ + τ ∧ τ.

We call this identity the Codazzi-Minardi equation.
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Proposition 4.10. The equation (6.21) is equivalent to the symmetry
of hijk and Lij and to the equations

hijk,` − hij`,k = li`hjk − Likhj` + Lj`hik − Ljkhi`,(1)

Lij,k − Lik,j = hij
`f`k − hik

`f`j + 2(hikγj − hijγk)(2)

γi,j − γj,i = Lj`f
`
i − Li`f

`
j .(3)

Proof. The (0, 0)-th component of the right hand side of (6.21) is

dτ0
0 − τα

0 ∧ π0
α − πα

0 ∧ τ0
α + τα

0 ∧ τ0
α

= −πi ∧ τ0
i

= −
(
fij +

1
2
Lij

)
πi ∧ πj .

Similarly the (n + 1, n + 1)- , (0, i)- and (j, n + 1)-th components are
−(fij − 1

2Lij)πi∧πj , − 1
2hi

jkπj ∧πk and − 1
2hijkπi∧πk respectively. So

the vanishing of Ωα
0 and Ωn+1

β implies the symmetry. The equations (1)
to (3) follow from identities (6.20) and Proposition 4.9.

Corollary 4.11. (1) Lij = − 1
n

hijk,k.

(2) γi =
1

2(n− 1)
Lij

j +
1

8(n− 1)(n− 2)
hi

jkKjk.

Proof. Contracting (6.18) relative to hij and using the apolarity condi-
tion (2.18) and the trace condition (2.24), we get

hijhijk,` = hijLij,k = 0.

Then the contraction of (1) and (2) in Proposition 4.10 gives the result.

The fundamental theorem of a hypersurface in the projective case
can now be stated as follows.
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Theorem 4.12. Let M be an n-dimensional manifold (n = 3) with a
normal conformal connection (p, π). Let τ be a gn+2-valued basic 1-form
on the structure bundle P whose components are given as illustrated
in (6.5) and (6.7) with symmetric coefficients. Assume τ satisfies the
covriant relations in Proposition 4.10 and the curvature tensor of π
satisfies the relation in (6.8) and in Proposition 4.9. Then, for a given
point p of M , there exists a neighborhood of p which can be embedded
as a non-degenerate hypersurface in a projective space of dimension
n + 1 so that π and τ are the connection and the invariant induced by
this embedding as described above. This embedding is unique up to a
projective transformation.

Proof. Given π and τ , define ω = π − τ . All assumptions together
imply dω = ω ∧ω. Therefore we can solve the equation de = ωe locally
around p and we have the theorem. The ambiguity depends on initial
conditions.

Remark. The theorem by Pick-Berwald in §5 follows from this theorem
in case n = 3. If ϕ3 = 0, then Ω = 0 and τ = 0 by Proposition 4.9
and Corollary 4.11. Hence the uniqueness of the theorem says that if
ϕ3 = 0, then it is projectively equivalent to a quadratic hypersurface
because τ = 0 also for a quadratic hypersurface.

The Bianchi identity is as usual given by differentiating the equation
of the curvature form.

(6.22) dΩ = π ∧ Ω− Ω ∧ π.

We here define covariant derivatives of the curvature tensor by

(6.23)

Cijk`,mπm = dCijk` − Cmjk`π
m
i − Cimk`π

m
j

− Cijm`π
m
k − Cijkmπm

` + 2Cijk`π
0
0 ,

Cijk,`π
` = dCijk − C`jkπ`

i − Ci`kπ`
j − Cij`π

`
k

+ 3Cijkπ0
0 + C`

ijkπ0
` .

Proposition 4.13. The Bianchi identity (6.22) implies
(1) S(jk`)Cijk` = 0, S(ijk)Cijk = 0,
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(2) S(k`m)(Cijk`,m − himCjk` + hjkCik`) = 0, S(jk`)Cijk,` = 0,
where S(ijk) means an operation of taking a cyclic summation for
i, j, k.

Proof. The identity (6.22) for indices (0, 0) and (0, i) implies

πi ∧ Ω0
i = πj ∧ Ωi

j = 0.

This is (1). Components with idices (n + 1, n + 1) and (i, n + 1) give
the same result. The (i, j)-th component and the (i, 0)-th component
are respectively

dΩj
i − πk

i ∧ Ωj
k + Ωk

i ∧ πj
k − πn+1

i ∧ Ωj
n+1 + Ω0

i ∧ πj = 0,

dΩ0
i − πj

i ∧ Ω0
j + Ωj

i ∧ π0
j − πn+1

i ∧ Ω0
n+1 + Ω0

i ∧ π0
0 = 0.

Then (6.23) implies (2).

By taking contractions of (1) and (2), we have

Corollary 4.14. (1) (n− 3)Cijk = C`ijk,`,
(2) when n = 4, Ωj

i = 0 implies Ω = 0.

Remark. It is interesting to find a geometric characterization of a non-
degenerate hypersurface which is conformally flat. In the euclidean case
an elegant description of compact conformally flat hypersurfaces with
respect to the induced Riemannian metric is known by U. Pinkall.

§7. Surfaces in P3

When the dimenson n of a hypersurface is two, we cannot follow
the argument from (6.11) on. However a similar reasoning is possible
relying on the next

Lemma 4.15. Assume n = 2. Then Kij =
F

2
hij.

Proof. It is enough to show this identity when (hij) is diagonal because
of the invariance of both sides. Let hij = εiδij , ε = ±1. Then the
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apolarity (2.18) leads to

(7.1) ε1h11k + ε2h22k = 0 , k = 1, 2 ,

and consequently

F = 4(ε1(h111)2 + ε2(h112)2).

The tensor Kij is by the definition (6.10)

Kij =
∑

k,`
εkε`hik`hjk`.

Hence, for example,

K11 = (h111)2 + 2ε1ε2(h112)2 + (h122)2

= 2((h111)2 + ε1ε2(h112)2)

=
F

2
ε1.

Similarly K12 = 0 and K22 =
F

2
ε2.

Recall the equation (6.9) for n = 2:

Cj
ij` =

F

8
hi` + M j

j hi`.

So, if we put

(7.2) fij = − F

16
hij and Mij = −1

2
Lij + fij ,

then Cj
ij` = 0 and τ0

i and τ j
3 are defined by (6.7). With this definition

Proposition 4.7 also holds, because the proof has depended solely on the
transformation rules of hijk, Lij and γi and on the fact that fijω

iωj is
independent of frames (see (6.13)). The last property is now equivalent
to the invariance of Fϕ2, that is shown in Proposition 4.1. Hence we
can define a form π by π = ω + τ . Then, similarly as Proposition 4.9,
we have
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Proposition 4.16. (1) Ωj
i = 0.

(2) Cijk =
1
4
(hij

`L`k − hik
`L`j)− 1

16
(Fjhik − Fkhij),

where

(7.3) Fkπk = dF + 2Fπ0
0 .

(3) Ωj
3 = hjiΩ0

i .

The covariant derivations of hijk, Lij and γi are also defined by
(6.18). Then

(7.4) Fi = 2hjk`hjk`,i.

The Codazzi-Minardi equation is

Proposition 4.17.
(1) hijk,` − hij`,k = Li`hjk − Likhj` + Lj`hik − Ljkhi`,
(2) Lij,k − Lik,j = 2(hikγj − hijγk),
(3) γi,j − γj,i = 0.

Corollary 4.18. (1) Lij = −1
2
hijk, k, (2) γi =

1
2
Lij ,

j.

Remark With these modifications we have a similar statement as in
Theorem 4.12 for the case n = 2.

The case n = 2 has another feature that a complex structure is
associated with the conformal structure. We will give some formulae in
this point of view. To make notations simpler, assume

h =
(

1 0
0 1

)
.

Then each element of the group H with respect to h is written as



λ 0 0 0
b1 cos θ sin θ 0
b2 − sin θ cos θ 0
µ c1 c2 λ−1


 ,
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to which we associate a matrix in GL2(C)
(

z 0
t 1

)

where

z = λe−iθ(7.5)

t = λ(c1 − i c2).

Then H is isomorphic to the affine transformation group of C1. Let

(7.6) s = λ(b1 + i b2).

We have

s = t z

µ =
1

2|z| t t.

(7.7)

Next, define complex invariants by

C = h111 − i h222(7.8)
K = L11 − i L12,

δ = γ1 − i γ2.

Then transformation rules are given by

γ4C̃ = z3C(7.9)

z2K̃ = K + tC

γ2zδ̃ = δ + tK − 1
2
t
2
C.

We define further

ξ = π1 + i π2,(7.10)

τ(1) = τ1
1 − i τ2

1 ,

τ(2) = τ0
1 + i τ0

2 ,

τ(3) = τ1
3 + i τ2

3 ,
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then

(7.11) ξ = zξ

and

τ(1) =
1
2
Cξ,(7.12)

τ(2) = − F

16
ξ +

1
2
Kξ,

τ(3) = − F

16
ξ − 1

2
Kξ.

The Gauss equation is reformulated as follows:

dξ = η ∧ ξ(7.13)
dη = ξ ∧ ξ

dζ = ζ ∧ η + Ω,

where η, ζ, and Ω are defined by

η = π0
0 − i π2

1(7.14)

ζ = π0
1 − i π0

2

Ω = Ω0
1 − i Ω0

2.

§8. Projective metric

When the Fubini-Pick invariant F vanishes nowhere, the projective
metric Fϕ2 becomes a true pseudo-Riemannian metric. We will sum-
marize formulae in this case.

Recall first a transformation rule λν−1F̃ = F (see Proposition 4.1.).
So, if F 6= 0, then we can find a frame so that F is a constant, say 1.
This means a restriction of frame change to λ = ν = 1. Next recall ω0

0

changes as ω̃0
0 = ω0

0 − biA
i
jω

j , (2.9). Then we can assume ω0
0 = 0 and

consequently a frame change is restricted to

g =




1
a

1


 .
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This says that the quadratic form ϕ2 defines globally a pseudo-Rieman-
nian metric. The metric connection is given by a pair (ωi, πi

j), πi
j =

ωi
j + 1

2hj
ikωk. The transformation rules by the above g are given by

ω̃j = ωkAj
i(8.1)

ω̃n+1
i = ak

i ωn+1
k

ω̃j
i = dak

i Aj
k + a`

iω
k
` Aj

k

ω̃0
i = aj

iω
0
j

ω̃j
n+1 = ωk

n+1A
j
k

ω̃0
n+1 = ω0

n+1.

We define new invariants p = (pij) and q = (qij) by

(8.2) ω0
i = pijω

j and hijω
j
n+1 = qijω

j .

These invariants together with γ = (γj) defined by ω0
n+1 = −γjω

j

transform as

(8.3) p̃ = a p ta, q̃ = a q ta, γ = aγ.

The invariant Lij is now equal to qij − pij . Symmetrically put

(8.4) Uij = qij + pij .

Then these satisfy the relations that will be called the Codazzi-Minardi
equation.
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Proposition 4.18. (1) qij, pij, Lij, and Uij are symmetric tensors.

hijk,` − hij`,k = hikLj` − hi`Ljk + hjkLi` − hi`Lik(2)

pij,k − pik,j =
1
2
(hij

`p`k − hik
`p`j) + (hijγk − hikγj),(3)

qij,k − qik,j = −1
2
(hij

`q`k − hik
`q`j)− (hijγk − hikγj),

Lij,k − Lik,j = −1
2
(hij

`U`k − hik
`U`j)− 2(hijγk − hikγj),

Uij,k − Uik,j = −1
2
(hij

`L`k − hik
`L`j),

γi,j − γj,i = pjkLk
i − pikLk

j .

hijk, k = −n Lij ,(4)

Lj
ij = −1

2
hi

jkUjk + 2(n− 1)γi.

These relations are consequences of the integrability condition dω =
ω ∧ ω. We will not reproduce here. The Riemannian curvature tensor
is given as follows:

Proposition 4.19. (1) Rijk` = 1
2 (Ui`hjk−Uikhj` +Ujkhi`−Uj`hik)+

1
4 (hjk

mhi`m − hik
mhj`m).

(2) The Ricci tensor Rij and the scalar curvature R is given by

Rij = −1
2
(n− 2)Uij − 1

2
Tr(U)hij +

1
4
Kij ,

R = −(n− 1)Tr(U) +
1
4
F.

The last vector en+1 of a frame is uniquely determined in the present
case. It may be called the projective normal , cf. [BOL, vol. 2, p. 35].
The next proposition gives a relation connecting en+1 and e0; this is a
projective analogue of the relation in the affine geometry (see [FL]).

Proposition 4.20. Let ∆ be the Laplacian of the metric hij. Then

∆e0 = n en+1 + tr(p)e0.
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Proof. Since de0 = ωiei, the covariant derivation of e0 is ei. The deriva-
tion of ei is

dei − ejπ
j
i = ωie0 + ωn+1

i en+1 − 1
2
hik

jωkej .

Hence eij = pije0 − 1
2hij

kek + hijen+1. Taking traces, we have the
result.



82 4. Projective theory of hypersurfaces

5. Systems of linear differential equations and hypersurfaces

The purpose of this chapter is to apply the geometric formulation of a
non-degenerate hypersurface to the study of a system of linear differen-
tial equations of n variables. Let z: Mn → Pn+1 be an immersion of an
n-manifold. Choose local coordinates (xi) on M and put zi = ∂z/∂xi,
zij = ∂2z/∂xi∂xj , . . . We assume vectors {z, z1, . . . , zn, z1n} are lin-
early independent. Then zij ’s are expressible by linear combinations of
these vectors such as

(0.1) zij = gijz1n +
∑

Ak
ijzk + A0

ijz.

Here coefficients are scalar functions and symmetric with respect to
subindices and

(0.2) g1n = 1 , Ak
1n = A0

1n = 0.

Since the immersion z is, as we have seen in the previous chapter, de-
termined by the induced conformal connection and the invariant τ , the
coefficients of (0.1) are expected to have relations with these geometric
quantities. In fact, the system (0.1) can be written in a Pfaffian form,
which is geometrically a differential equation satisfied by a projective
frame. This will be made clear in §1 for n = 3. The §2 deals with a
special case where the image of z lies in a quadratic hypersurface. The
case n = 2 is treated in §3. In §4 the notion of dual immersions and
dual systems will be defined. This chapter is mostly based on [SY1]
and [SY2].

§1. Systems of linear differential equations defining a hyper-
surface

Let z: Mn → Pn+1 be a non-degenerate immersion. Assume n = 3.
Let (xi) be a local coordinate system and take a frame field with ωi =
dxi. Let Γj

ik be the Christoffel symbol of the tensor hij with respect to
this coordinate system:

Γj
ik =

1
2
hj`(hi`,k + hk`,i − hik,`) , dhi` = hi`,kdxk.
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Then the conformal connection form is πj
i = Γj

ikωk by the requirement
of (6.6) of Chapter 4. Let Rj

ik` denote the Riemannian curvature tensor:

dπj
i − πk

i ∧ πj
k =

1
2
Rj

ik`ω
k ∧ ω`.

The Ricci and the scalar curvatures are denoted by Rij and by R re-
spectively:

Rij = R`
i`j , R = hijRij .

Put
π0

i = −Sikωk,

then the conformal curvature tensor Cj
ik` is given by

Cj
ik` = Rj

ik` − Sikδj
` + Si`δ

j
k − hikhjmSm` + hi`h

jmSmk.

The requirement (6.4) of Chapter 4 shows

(1.1) Sij =
1

n− 2

(
Rij − R

2(n− 1)
hij

)
.

The tensor Sij is called the Schouten tensor relative to the tensor
hij . Now we have

π =




0 πj 0

π0
i πj

i πn+1
i

0 πj
n+1 0


 =




0 dxj 0

−Sikdxk Γj
ikdxk hijdxk

0 −hj`S`kdxk 0


 .

We continue the argument in the introduction. The third-order
derivatives of z are also linear combinations of {z, z1, . . . , zn, z1n}, among
which we need

(1.2) z1jn = Gjz1n +
∑

Bk
j zk + B0

j z , 1 ≤ j ≤ n,

where Gj , Bk
j and B0

j are certain scalar functions. Define a function θ
by

(1.3) eθ = | det(z, z1, . . . , zn, z1n)|.
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We call θ the normalizing factor of the system (0.1). Define a frame
field e = (e0, . . . , en+1) by

(1.4) e0 = z , ei = zi , en+1 = e−θz1n.

Then the system (0.1) combined with (1.2) is written in a Pfaffian form

(1.5) d e = ωe

where

ω =




0 dxj 0

A0
ik dxk Aj

ik dxk eθgik dxk

e−θB0
k dxk e−θBj

k dxk (Gk − θk) dxk


 .

The induced conformal tensor hij is by definition eθgij . We apply a
process of normalization to the frame e: to find a transformation g so
that, with respect to the frame e′ = g e,

(1.6) | det h′ij | = 1 , ω′00 + ω′n+1
n+1 = 0 and L′ = 0,

where
ω′ = dg g−1 + gωg−1.

Since ω′ is decomposed into the sum of the connection form π associated
with h′ij and the invariant form τ of the embedding z, we have

(1.7) ω = dhh−1 + h(π − τ)h−1

for h = g−1. This equality shows that ω is represented by geometric
invariants in the right side. And, consequently, the coefficients of (0.1)
is written in terms of invariants of the hypersurface z. Assume

(1.8) | det(eθgij)| = 1

and take a transformation g of the form

g =




1 0 0
0 In 0
µ c 1


 .

Then it will be seen that the condition (0.2) determines g uniquely.
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Proposition 5.1. Assume (1.8). Then the coefficients Aik are given
by

Aj
ik = (Γj

ik − gikΓj
1n)− 1

2
(hik

jgikh1n
j)

A0
ik = −(Sik − gikS1n)−

(
fik +

1
2
Lik − gik

(
f1n +

1
2
L1n

))
,

where Γj
ik and Sik are the Christoffel symbol and the Schouten tensor of

eθgij. The hj
ik, Lik and fik are components of the form τ with respect

to the frame e′.

Proof. By the assumption h′ij = hij = eθgij , the form τ has the follow-
ing form

τ =




0 0 0

(fik + 1
2Lik) dxk 1

2hj
ik dxk 0

−ω0
n+1 hj`(f`k − 1

2L`k) dxk 0




.

We see π0
0 = πn+1

n+1 = 0 because ω
′0
0 = ω0

0 = 0. Then (1.7) turns out to
be

ω =




0 πj 0

π0
i − τ0

i + µπn+1
i πj

i − τ j
i + cjπn+1

i πn+1
i

− dµ− τ0
n+1

− ci(π0
i − τ0

i + µπn+1
i )

πj
n+1 − τ j

n+1 − dcj − µπj

−ci(πj
i − τ j

i + cjπn+1
i )

ciπn+1
i




.

Hence

Aj
ik = Γj

ik −
1
2
hik

j + cjhik

A0
ik = −Sik −

(
fik +

1
2
Lik

)
+ µhik.
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The requirement (0.2) shows

cj = −e−θ
(
Γj

1n −
1
2
hj

1n

)
, µ = e−θ

(
S1n + f1n +

1
2
L1n

)
.

Hence we have the formula.

If the condition (1.8) is not satisfied, then by multiplying a suit-
able function to the unknown z, one can transform the system (0.1),
without changing the hypersurface nor the coefficients gij , into a sys-
tem satisfying this condition. Then the other coefficients are obtained
by the following lemma, which is known as the transformation rule of
connection forms under a conformal change of metric (cf. [G]).

Lemma 5.2. If the unknown z is transformed into a new unknown w
by w = eαz, then the system (0.1) changes into

(1.9) wik = gikw1n + P j
ikwj + P 0

ikw,

where

P j
ik = Aj

ik + αiδ
j
k + αkδj

i − gik(α1δ
j
n + αnδj

1)
(1.10)

P 0
ik = A0

ik + (αik − αiαk) + Aj
ikαj − gik(α1n − α1αn).

The new normalization factor is eθ+(n+2)α.

§2. Systems of linear differential equations defining maps into
quadratic hypersurfaces

We consider in this section an n-manifold with a conformally flat
structure. Such a manifold has a mapping called the developing map,
which is defined on the universal cover of M into a quadric. Since a
quadric is embedded in Pn+1 as a quadratic hypersurface, this map
defines a (multi-valued) immersion of M into Pn+1.

Definition. The system (0.1) is said to satisfy the quadric condition if
the image of z is contained in a quadratic hypersurface. In view of the
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theorem in §5, Chapter 4, this is equivalent to say the cubic form of the
immersed hypersurface by z vanishes identically. Then the invariant
form τ vanishes and the connection form π is flat. Therefore we have,
as a corollary of Proposition 5.1,

Theorem 5.3. Assume the system (0.1) satisfy the condition (1.8) and
the quadric condition. Then the coefficients Aij are expressed as ratio-
nal functions of gij and of their derivatives:

Aj
ik = Γj

ik − gikΓj
1n,(2.1)

A0
ik = −Sik + gikS1n.

A converse of this theorem holds.

Theorem 5.4. Assume n = 3. Let gijdxidxj(g1n = 1) be a non-
degenerate symmetric tensor which is conformally flat. Define θ so
that | det(eθgij)| = 1 and define Ak

ij and A0
ij by (2.1) with respect to the

tensor eθgij. Then the number of independent solutions of the system
(called the rank) zij = gijz1n + Ak

ijzk + A0
ijz is n + 2 and this system

satisfies the quadric condition. Its normalization factor is eθ.

Proof. Put hij = eθgij . Since by assumption hij is conformally flat,
the associated normal conformal connection π is integrable. Apply
Theorem 4.12 by putting τ = 0. The Gauss and the Codazzi-Minardi
equations are trivially satisfied so that there is an unique immersion z
of x-space into Pn+1 such that the induced conformal tensor is hij and
the invariant form is zero. Let

(2.2) zij = g′ijz1n + A
′k
ij zk + A

′0
ij

be the system with z as solutions and with the normalizing factor eθ′ .
The induced conformal metric is eθ′g′ij , which coincides with eθgij .
Hence eθ = eθ′ and gij = g′ij . Then Theorem 5.3 shows the conclu-
sion.

This theorem can be formulated in a more symmetric way.
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Theorem 5.4′. Assume n = 3. Let σijdxidxj be a non-degenerate
symmetric tensor which is conformally flat. Put

Zij = zij − Γk
ijzk +

1
n− 2

Rijz.

Then the system

(2.3) σijZk` = σk`Zij

is of rank n + 2 and satisfies the quadric condition. Here Γk
ij and Rij

stand for the Christoffel symbol and the Ricci tensor with respect to σij.

Proof. Assume first eη : = σ1n 6= 0 and put gij = e−ησij and | det gij | =
e−2nρ. Define hij = e2ρgij so that |det hij | = 1. We have only to
combine Theorem 5.4 and Lemma 5.2 as well as the transformation
formulae of the Christoffel symbol and the Ricci tensor for hij into
those for σij :

Γj
ik(σ) = Γj

ik(h) + αiδ
j
k + αkδj

i − hikhjpαp

Rik(σ) = Rik(h)− (n− 2)(αik − αiαk − αjΓ
j
ik(h))

− {∆hα + (n− 2)hj`αjα`}hik

where α = 1
2η + ρ and ∆h is the laplacian of hij (see [G, p. 115]).

When σij = 0 for i 6= j, change coordinates by y1 = x1 + xn and
yi = xi for i = 2. Define Sij by Sijdyidyj = σijdxidxj . Then S1n 6=
0 and we can apply the above case. In fact, let γk

ij and rij stand
for the Christoffel symbol and Ricci tensor for (yi, Sij). Put Wij =
∂2z/∂yi∂yj−γk

ij∂z/∂xk + rij/(n−2)z. Then, since the transformation
is linear, we can see easily the identity

SijWk` − Sk`Wij =
∂xp

∂yi

∂xq

∂yj

∂xr

∂yk

∂xs

∂y`
(σijZk` − σk`Zij).

This completes the proof.

Example. Let Mn = Rn with the standard metric
∑

(dxi)2. The
corresponding system (2.3) is

zij = 0 i 6= j , zii = zjj .
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A set of independent solutions is { 1, x1, . . . , xn, (x1)2 + · · · + (xn)2 }
which defines a mapping from Rn into a paraboloid. This mapping is
projectively equivalent to the inverse map of the stereographic projec-
tion from Sn − {∞} into Rn.

Example. The following system is an example satisfying the quadric
condition:

wii +
(

1
xi

+
1

xi − 1
+

1
2

( 1
xi − xj

+
1

xi − xk

))
wi

− xj(xj − 1)
2xi(xi − 1)(xi − xj)

wj − xk(xk − 1)
2xj(xi − 1)(xi − xk)

wk +
1

xi(xi − 1)
w = 0,

(xk − xi)xj(xj − 1)




2wij +
( 1

xj − xk
+

1
xj − xi

)
wi

+
( 1

xi − xk
+

1
xi − xj

)
wj

+
1

(xk − xi)(xk − xj)
w




= (xi − xj)xk(xk − 1)




2wik +
( 1

xk − xj
+

1
xk − xi

)
wi

+
( 1

xi − xk
+

1
xi − xj

)
wk

+
1

(xj − xi)(xj − xk)
w




where (i, j, k) is a cyclic permutation of (1, 2, 3), and wi = ∂w/∂xi,
wij = ∂2w/∂xi∂xj .

This system is defined on P3 and xi are affine coordinates. A set
of independent solutions defines a multi-valued mapping into the Siegel
upper half space H2 of degree 2, contained in its compact dual, a qua-
dratic hypersurface of dimension 3. The map from H2 onto P3 is given
by taking the quotient with respect to the Siegel modular group. For
another example when n = 4 refer [MSY].
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§3. Systems of linear differential equations in two variables

E. J. Wilczynski has studied the surfaces in P3 as the integrating
surface of a system of linear differential equations:

(3.1)

{
zxx = ` zxy + a zx + b zy + p z

zyy = mzxy + c zx + d zy + q z,

(x, y) being local coordinates. We here summarize some basic facts
about this system in our point of view.

Let us start with an example which shows the difference between the
case n = 2 and the case n = 3. Consider a system

(3.2)

{
zxx = p z

zyy = q z,

which is assumed to have four independent solutions. The integrability
condition of this system is

py = qx = 0.

Hence both equations of (3.2) are ordinary differential equations with
respect to x and with respect to y respectively. So both have two
independent solutions; say z1, z2 and w1, w2. Then { ziwj ; 1 ≤ i, j ≤ 2 }
is a set of fundamental solutions of (3.2) and the map

(x, y) 7→ (z1w1, z1w2, z2w1, z2w2) ∈ P3

defines an immersion into a quadric defined by X1X4 = X2X3, (Xi)
denoting homogeneous coordinates. In the terminology of the previous
section the system (3.2) satisfies the quadric condition. However the
coefficients p and q are arbitrary, contrary to the case n = 3 where all
coefficients are determined by the conformal tensor.

Assume now (3.1) has four independent solutions which define an
immersion z of a surface. Define a frame field e = (e0, e1, e2, e3) by

e0 = z , e1 = zx , e2 = zy , e3 = e−θzxy
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where θ is defined by

(3.3) eθ = | det(z, zx, zy, zxy)|.
Then the coframe ω is computed to be

(3.4)

ω =


0 dx dy 0

p dx a dx b dx eθ( `dx + dy )

q dy c dy d dy eθ
(
dx + mdy

)

e−θ

(
B0dx

+ C0dy

)
e−θ

(
B1dx

+ C1dy

)
e−θ

(
B2dx

+ C2dy

)
−a dx− d dy




.

Hence, the fundamental form ϕ2 is given by

(3.5) ϕ2 = ` dx2 + 2dx dy + m dy2.

The non-degeneracy of the associated surface is equivalent to

1− `m 6= 0.

Coefficients Bi, Ci are given as follows:

B0 = {py + bq + `(qx + cp)}/(1− `m)

B1 = (A + `q)/(1− `m)

B2 = (B + p)/(1− `m)

B3 = {`y + a + bm + `(mx + d + c`)}/(1− `m)

C0 = {qx + cp + m(py + bq)}/(1− `m)
(3.6)

C1 = (C + q)/(1− `m)

C2 = (D + mp)/(1− `m)

C3 = {mx + d + c` + m(`y + a + bm)}/(1− `m)

A = ay + bc + `(cx + ac) B = by + bd + `(dx + bc)

C = cx + ac + m(ay + bc) D = dx + bc + m(by + bd).
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Taking derivation of (3.3), we see

θx = a + B3(3.7)

θy = d + C3.

The integrability condition dω−ω∧ω = 0 consists of above equations
(3.6) and the following four equations

(a + B3)x = (d + C3)y

(3.8)

`qy − 2qx −mpy − (`ξy − ξx − 2`y)q = R1

mpx − 2py − `qx − (mξx − ξy − 2mx)p = R2

pyy − qxx −mpxy + `qxy

= c px − b qy + (d + 2mx + ξy −mξx)py − (a + 2`y + ξx − `ξy)qx

+ {m ay + 2cx − 2c `y − ` cy − c(ξx − `ξy)}p
− {` dx + 2by − 2bmx −m bx − b(ξy −mξx)}q,

where

R1 = (C3 + ξy)A− (B3 − a + ξx)C − cB + Cx −Ay

R2 = (B3 + ξx)D − (C3 − d + ξy)B − bC + By −Dx

ξ = log |1− `m|.

We next consider the case `m− 1 < 0, i.e. ϕ2 is of indefinite type.
Recall the definition of asymptotic curves defined in §2, Chapter 3. In
the present case such a curve (x(t), y(t)) is defined by

`

(
dx

dx

)2

+ 2
dx

dt

dy

dt
+ m

(
dy

dt

)2

= 0.

Since `m − 1 < 0, we have a set of two curves through each point.
Therefore, if we take these curves as coordinate curves, then ϕ2 =
2 dx dy, i.e. ` = m = 0. Now the system (3.1) is simplified to

{
zxx = a zx + b zy + p z

zyy = c zx + d zy + q z.
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For this system, (3.7) implies

θx = 2a , θy = 2d.

So, by putting w = eθ/2z, this system is further simplified to
{

wxx = bwy + pw

wyy = cwx + q w,

with new coefficients. This is called a canonical form of (3.1) and
intensively studied by Wilczynski and others. Define a new frame e =
(e0, e1, e2, e3) by

e0 = z , e1 = zx , e2 = zy , e3 = zxy − 1
2
bc z.

Since the coframe ω has the form

ω =




0 dx dy 0

p dx + 1
2bc dy 0 b dx dy

q dy + 1
2bc dx c dy 0 dx

(bq + py) dx

+ (cp + qx) dy − 1
2d(bc)

1
2bc dx

+ (q + cx) dy

(p + by) dx

+ 1
2bc dy

0




.

This frame is normalized in the sense of Proposition 4.2.

Proposition 5.5. (1) The cubic form hijk is given by

(3.9) h111 = −2b , h222 = −2c, h112 = h122 = 0.

In particular, F = 8bc. (2) The quantities Lij and γj with respect to
the above frame e are given by

(3.10) (Lij) =
(

by 0
0 cx

)
,
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γ1 =
1
2
(bc)x − bq − py(3.11)

γ2 =
1
2
(bc)y − cp− qx.

Proof. Recall h =
(

0 1

1 0

)
. The apolarity condition (2.18) of Chapter 4

says 0 = hijhijk = 2h12k. The definition of the cubic form gives

h11kωk = −2h12ω
2
1 = −2bω1

h22kωk = −2h21ω
1
2 = −2cω2.

So we have seen (1). Since Lijω
i = hijω

j
3 − ω0

i ,

Lijω
j = ω2

3 − ω0
1 = byω1

L2jω
j = ω1

3 − ω0
2 = cxω2.

Similarly from the definition ω0
3 = −λjω

j we have (2).

The integrability condition (3.8) simplifies to

2py = (b c)x + b cx − byy

2qx = (b c)y + c by − cxx(3.12)

pyy − qxx = (c p)x − (b q)y + p cx − q by.

We will conclude this section by giving a characterization of non-
degenerate ruled surfaces in terms of the Fubini-Pick invariant. Recall
that a ruled surface is defined by a map

(x, y) 7→ z(x, y) = u(x) + y v(x),

where u(x) and v(x) are generating curves in P3 (§1, Chapter 3). We
have seen that curves u and v and local coordinates (x, y) are so chosen
that they satisfy a system of ordinary differential equations

{
uxx = αu + βv

vxx = γu + δv.
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It is easy to see that z satisfies the equations

(3.13)

{
zxx = (α + γy)z + {β + (δ − α)y − γ y2}zy

zyy = 0,

which is of canonical form. The Fubini-Pick invariant vanishes. Con-
versely, let M ⊂ P3 be a non-degenerate surface of indefinite type with
F = 0. Then the associated system is written as

{
zxx = b zy + p z

zyy = q z

for some coordinates (x, y). The integrability condition is

(3.14) 2py = −byy , qx = 0 pyy = −(b q)y − q by;

see (3.12). Let ϕ be a non-zero solution of the second equation and
define a new coordinate y′ and a new unknown variable w by

y′ =
∫

ϕ−2dy , w = ϕ−1z.

Then a calculation shows

(3.15)

{
wxx = b wy′ + p′w

wy′y′ = 0.

Again from (3.14), we can see

p′ = α + γy′

b = −γy′2 + δ′y′ + β

for some functions α, β, γ and δ′ of x. So the system (3.15) is defining
a ruled surface, see (3.13). We have proved
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Proposition 5.6. A non-degenerate surface of indefinite type in P3 is
a ruled surface if and only if the Fubini-Pick invariant vanishes.

§4. Dual immersions and dual systems.

Let us recall the situation in Chapter 4: M is a non-degenerate
immersed hypersurface and e = (e0, . . . , en+1) is a projective frame
field satisfying a system of equations

(4.1) d e = ω e.

The components eα are vectors in V = Rn+2. The first vector e0 has a
special meaning that it gives the immersion. Define Eα by

(4.2) Eα = (−1)αe0 ∧ · · · ∧ ěα ∧ · · · ∧ en+1,

which are vectors in the space
n+1∧

V . If we identify
n+2∧

V with R, then
n+1∧

V is a dual space of V and by a canonical pairing 〈 , 〉 we have

(4.3) 〈eα, Eβ〉 = δβ
α.

Notice that the vector En+1 is determined up to a non-zero multiple
independently of the choice of frames and hence it defines a mapping
from M to Pn+1∗, the dual of Pn+1. If this is an immersion, we call
En+1 the dual immersion. The set E = {E0, E1, . . . , En+1} is a frame
field along En+1. From (4.1), we can see that E satisfies

(4.4) dE = −Eω
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(here E is considered as a row vector of Eα). In fact

dEα =
∑

β

(−1)αe0 ∧ · · · ∧ deβ ∧ · · · ∧ ∧
eα ∧ · · · ∧ en+1

=
∑

β,γ

(−1)αωγ
βe0 ∧ · · · ∧

β
^
e β

γ ∧ · · · ∧
∧
eα ∧ · · · ∧ en+1

=
(∑

β 6=α

ωβ
β

)
Eα +

∑

β 6=α

(−1)αωα
β e0 ∧ · · · ∧

β
^
e β

α ∧ · · · ∧
∧
eα ∧ · · · ∧ en+1

=
(∑

β 6=α

ωβ
β

)
Eα +

∑

β 6=α

(−1)β+1ωα
β e0 ∧ · · · ∧ ∧

eβ ∧ · · · ∧ en+1

= −ωα
β Eβ (note ωα

α = 0).

If we define a column vector Ě by

Ě = (En+1, E1, . . . , En, E0),

then

(4.5) dĚ = ΩĚ

where

(4.6) − Ω =




ωn+1
n+1 ωn+1

1 . . . ωn+1
n 0

ω1
n+1 ω1

1 . . . ω1
n ω1

...
...

...
...

ωn
n+1 ωn

1 . . . ωn
n ωn

ω0
n+1 ω0

1 . . . ω0
n ω0

0




.

Hence Ě is a projective frame along En+1. Since Ωi = −ωn+1
i and

Ωn+1
i = −ωi, we have Ωn+1

i =
∑

i hijΩi; the fundamental tensor h∗ij of
the dual immersion is equal to hij . Similarly we have
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Lemma 5.7. Denote invariants of the dual immersion by attaching
“ ∗ ”. Then

h∗ij = hij

F ∗ = F

h∗ijk = hijk

ϕ∗2 = ϕ2

L∗ij = −Lij

ϕ∗3 = ϕ3.

γ∗i = γi

In particular, if e is normalized, then Ě is also normalized.

Consider now a system of linear differential equations of n variables
of rank n + 2, which can be written in a form (4.1). Then we obtain
another system (4.4) called the dual system. Assume here both systems
are known explicitly. Then the identity (4.3) gives a relation among
solutions of both systems. In order to clarify this phenomenon we show
an

Example. Let E2(α, β, β′, γ, γ′) be the system of equations given by

(4.7)

{
x(1− x)zxx = xy zxy + {α + β + 1)x− γ}zx + βy zy + α β z

y(1− y)zyy = xy zxy + {(α + β′ + 1)x− γ′}zy + β′x zx + α β′z

which is called Appell’s E2 (see [ERD]). The function

F2(α, β, β′, γ, γ′; x, y) =
∑
m,n

(α,m + n)(β, m)(β′, n)
(γ, m)(γ′, n)(1,m)(1, n)

xmyn

is a solution of this system. We can prove the dual system is equivalent
to F2(1− α, 1− β, 1− β′, 2− γ, 2− γ′). Then the identity (4.3) gives a
formula



F2(α, β, β′, γ, γ′; x, y) · F2(1− α, 1− β, 1− β′, 2− γ, 2− γ′; x, y)

− F2(α + 1− γ, β + 1− γ, β′, 2− γ, γ′; x, y)

· F2(γ − α, 1− β, 1− β′, γ, 2− γ′; x, y)

− F2(α + 1− γ′, β, β′ + 1− γ′, γ, 2− γ′; x, y)

· F2(γ′ − α, 1− β, γ′ − β′, 2− γ, γ′;x, y)

+ F2(α + 2− γ − γ′, β + 1− γ, β′ + 1− γ′, 2− γ, 2− γ′; x, y)

· F2(γ + γ′ − α− 1, γ − β, β, γ′ − β′, 2− γ, γ′; x, y)




= 0.

This formula reflects the symmetry possessed by the system (4.7). As
for this and for other examples, refer [SY3]. Refer also §5, Chapter 2.



6. Projectively minimal hypersurfaces

In §2 of Chapter 4 we have seen that the quadratic form Fϕ2 is an
absolute invariant of a hypersurface, which is called the projective met-
ric provided that the hypersurface is non-degenerate. The associated
volume form is |Fn det h|1/2ω1 ∧ · · · ∧ ωn once we fix an orientation.
Define an area functional P by

P (C) =
∫

C

|Fn det h|1/2ω1 ∧ · · · ∧ ωn

for C a relatively compact domain. A non-degenerate hypersurface is
called projectively minimal if this functional is critical for any infinites-
imal deformation of the hypersurface. In §1 we will show how to derive
a differential equation defining projectively minimal hypersurfaces and
give some examples of such hypersurfaces for dimension n = 2 and also
for n = 3. In §2 we will define a transformation of surfaces called the
Demoulin transform and then in §3 discuss its relation with projectively
minimal surfaces.

§1. Variational formula and examples

We first notice that the volume form cannot be always positive. It
vanishes where F = 0. In particular every quadratic hypersurface is
projectively minimal. However, to avoid the differentiability problem
at F = 0, we assume for the moment that ϕ2 is positive definite and
consider the functional where F 6= 0.

Let M be such a hypersurface and e = (e0, . . . , en+1) a projective
frame field, for which

(1.1) det H = 1 and ω0
0 + ωn+1

n+1 = 0

hold. A deformation Mt of M is given by a vector

(1.2) e0t = e0 + ai(t)ei + ν(t)en+1,

99
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where t is a deformation parameter and ai(t) and ν(t) are functions on
M with parameter t such that

ai(0) = 0 , ν(0) = 0.

These functions are assumed to have compact supports in a domain
C; and C is contained in the domain where the frame is defined. Let Pt

be the value of P for Mt over C. Let δa denote the value da/dt|t = 0
for a function a of t. Then the hypersurface is projectively minimal if
and only if

δP = 0.

Since the deformation is defined by functions ai and ν, we can expect
to get a formula such as

(1.3) δP =
∫

C

{Akδak + Aδν}ω1 ∧ · · · ∧ ωn.

In fact the computation has been carried out in [SA3], where we took
one affinely normalized frame field explained in §4 of Chapter 4 as a
reference frame. Denote by “; ”the formal covariant derivations with
respect to forms πj

i = ωj
i + 1

2hik
jωk introduced in §6 of the same chap-

ter: for quantities with suffices from 1 to n, say for aj
i , define formally

aj
i;kωk = d aj

i − aj
kπk

i + ak
i πj

k as in usual tensor analysis. This is com-
patible with hij because hij;k = 0. Then we can see that

(1.4) Ak = 0

and that the minimality is defined by

A = 0,

where

(1.5)

− 2
n

A = Fn/2−1KijLij +
(
(Fn/2−1)jK

ji
)
;i

− (
(Fn/2−1hijk);khij`

)
;`
− (n + 2)

(
Fn/2−1hijkLij

)
;k

− 2(Fn/2−1hijk);kLij − 1
2
(Fn/2−1hijkKij);k

+ 2(Fn/2−1hijk);kji,
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see p. 247 of [SA3]. The summation convention and the raising-and-
lowering rule by hij are used. Although the expression (1.5) is not
projectively invariant because of tentative use of “ ; ”, the definition
of covariant derivations (6.18) of Chapter 4 enables us to rewrite this
expression in an invariant form, which will be shown later for n = 2.

Before applying the formula (1.5) we want to redefine the projec-
tive minimality. This formula of A contains a term with fourth-order
derivatives of Fn/2 unless n = 2, 4 or 6. However, if we put A′ = A for
n = 2, 4 or 6 and A′ = F−n/2+4A otherwise, then A′ turns out to be
finite even where F = 0 and has meaning also for the case when h is
indefinite. So we pose a

Definition. A non-degenerate hypersurface is said to be projectively
minimal if it satisfies the differential equation

A′ = 0.

Remark. When h is definite it is seen that F−n/2+2A is finite. As far
as we are concerned with the part where F 6= 0, this definition is of
course the same as the previous.

We now find some special solutions. Consider an affine hypersurface
which is defined by the condition Lij = `ij − ` hij = 0. Since ω0

0 =
π0

0 = 0 for affine frames, we see hijk;k = 0 by (6.18) and Corollary 4.11
of Chapter 4. This makes the equation simple so that

(1.6) 4(Fn/2−1hijk);kji − (Fn/2−1Kijh
ijk);k = 0.

Assume the metric ϕ2 is Einstein. Since the Ricci tensor of this metric
ϕ2 is known to be

Rij = −1
2
(n− 2)`ij − 1

2
` hij +

1
4
Kij

(see f.ex. [SA3]), we have Kij = K hij . Hence the second term of (1.6)
vanishes by the apolarity. The first term also vanishes if we assume that
the hypersphere is homogeneous under a unimodular transformation
group; because F is invariant under such transformations. We have
seen
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Proposition 6.1. Let M be an affine hypersphere in An+1. Assume
M is homogeneous under a unimodular transformation group and the
affine metric ϕ2 is Einstein. Then M and every surface projectively
equivalent to M are projectively minimal.

Example. Let V be a non-degenerate convex cone in An+1 and let χ be
the characteristic function of V defined by χ(x) =

∫
V ∗ e−〈x,ξ〉dξ, where

V ∗ is the dual cone and 〈 , 〉 is a dual pairing. If V is affinely homo-
geneous, then the hypersurface {χ = 1} is an affine hypersphere. The
assumptions in Proposition 6.1 are satisfied when V = { (x1, . . . , xn) ∈
An+1 ; xi > 0 } or when V is an irreducible self-dual cone.

When n = 2, the formula (1.5) becomes simpler because of the iden-
tity Kij = Fhij/2, that was shown in Lemma 4.15. In fact we have

(1.7) hij`;ij = LijLij .

This formula shows in particular

Proposition 6.2. Every affine sphere in A3 is projectively minimal.

A converse of this fact in a global sense is given by

Theorem 6.3. A compact strongly convex projective minimal surface
in A3 is a quadratic surface.

For a proof, first integrate (1.7) over the surface to see it is an affine
sphere Lij = 0 and next use the theorem that a compact strongly
convex affine sphere is a quadratic surface, due to Calabi [CAL1] and
Pogorelov [PO].

The formula (1.7) will now be rewritten in projective terminology.
Recall that every affine frame is normalized projectively in the form
(4.2) of Chapter 4. Hence γi = 1

2`i. On the other hand, the covariant
derivation of γi has been given by (6.18) of Chapter 4:

(1.8) γi,jω
j = dγi − γjπ

j
i + 3γiπ

0
0 − Lijπ

j
n+1.
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Since π0
0 = 0 and πj

n+1 = ωj
n+1 + τ j

n+1 = hjk(`ki + fki− 1
2Lki)ωk where

fki = − F

16
hki (§8, Chapter 4), we have

γi,j = γi;j − Likhk`
(
`j` − F

16
hj` − 1

2
Lj`

)
.

Therefore
hijγi,j = hijγi;j − 1

2
LijL

ij .

We have

Theorem 6.4. A non-degenerate surface in P3 is projectively minimal
if and only if

(1.9) hijγi,j = 0.

Proof. Since this holds for affinely normalized frames, it is enough to
see that this condition is independent of frames. This will be shown in
the next lemma.

Lemma 6.5. Consider a frame change ẽ = g e by

g =




λ
b a
µ c ν


 ,





|λν| = 1,

b = ν−1a htc

µ = 1
2ν−1c htc.

A denotes the inverse of a. Then

(1) λ3γ̃p,qA
p
i A

q
j = νγi,j + Lik,jc

k − 1
2
ν−1hik`,jc

kc`

− hikck
(
γj + ν−1Lj`c

` − 1
2
ν−2hj`mc`cm

)

+ hijc
k
(
γk + ν−1Lk`c

` − 1
2
ν−2hk`mc`cm

)

− 3γihjkck − 2ν−1hjkLi`c
kc` +

1
2
ν−1hjkckhi`mc`cm

− µ(Lij − ν−1hijkck).
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(2) Put Γ = hijγi,j. Then

λ4Γ̃ =





Γ for n = 2,

Γ− 1
4(n− 2)

ν−1hijkKijck

+ (n− 2){3ν−1γic
i +

3
2
ν−2Lijc

icj − 1
2
ν−3hijkcicjck}

for n = 3.

The proof is given by a routine calculation and omitted.

§2. Demoulin transforms of surfaces

We assume n = 2 and treat normalized frames:

(2.1) ω0
0 + ω3

3 = 0 , |H| = 1 , L = 0.

Recall transformation rules for such frames.

λ2νh̃ijk = hpqra
p
i a

q
ja

r
k(2.2)

λ2L̃ij = (Lk` − ν−1hk`mcm)ak
i a`

j

λ2ν−1γ̃j =
(
γj + ν−1Lkjc

k − 1
2
ν−2hjk`c

kc`
)
aj

i .

We try to find a frame so that γi = 0. To simplify notations we
consider the case h =

(
0 1

1 0

)
. We have seen already h112 = h122 = 0

and L12 = 0 in this case (cf. Chapter 4). Put

h111 = −2a , h222 = −2b.

Then γ̃i = 0 if we can solve

(2.3)

{
a(c1)2 + L11c

1 + γ1 = 0

b(c2)2 + L22c
2 + γ2 = 0

to define a frame change. Let us denote by ∆1 and ∆2 the discriminants
of these equations.

∆1 = L2
11 − 4γ1a, ∆2 = L2

22 − 4γ2b.
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Consider a frame change by



λ
c2 α
c1 β
∗ c1 c2 ν


 .

Then (2.2) yields

λ4α−4∆̃1 = ∆1 , λ4β−4∆̃2 = ∆2.

Since the remaining freedom of choice of frames is the exchange of e1

and e2, the condition

(2.4) ∆1 = 0 , ∆2 = 0

is independent of frames.

Assume this condition and the condition

(2.5) a 6= 0 , b 6= 0.

Then (2.3) has solutions, the number of which is generally 4. Let
(c1, c2) = (t1, t2) be one solution and ẽ be the corresponding new frame:

ẽ0 = e0 , ẽ1 = t2e0 + e1 , ẽ2 = t1e0 + e2,

ẽ3 = t1t2e0 + t1e1 + t2e2 + e3.

New L̃ij ’s are

L̃11 = L11 + 2a t1 , L̃22 = L22 + 2b t2.

The equation (2.3) is for this frame




a(c1)2 + L̃11c
1 = 0

b(c2)2 + L̃22c
2 = 0.

Hence, as is easily seen, any solution of this system defines an inter-
change among ẽ’s. We have seen
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Proposition 6.6. Consider a surface of indefinite type. Then under
the assumptions (2.4) and (2.5) there exists a normalized frame e which
satisfy the condition ω0

3 = 0. The set of the last vector e3 of such frames
is uniquely determined up to multiplication and consists of at most four
elements.

Definition. We call such a frame a Demoulin frame. When the last
vector e3 of a Demoulin frame defines a surface, we call e3 a Demoulin
transform of the original surface. (cf. [BOL, vol. 2, §120])

For a Demoulin frame put

(2.6) hijω
j
3 = qijω

j , ω0
i = pijω

j .

(Since transformation among Demoulin frames are restricted so that ci

take only finite possible values, we can think of pij and qij as relative
invariants.) The condition for e3 to define a surface is that ω1

3 and ω2
3

are linearly independent because d e3 = ω3
3e3 + ω1

3e1 + ω2
3e2. Namely

(2.7) det q 6= 0 , q = (qij).

In this case a set e = (e3, e1, e2, e0) in this order defines a projective
frame of e3 and the coframe ω is

(2.8) ω =




ω3
3 ω1

3 ω2
3 0

ω3
1 ω1

1 ω2
1 ω0

1

ω3
2 ω1

2 ω2
2 ω0

2

0 ω1 ω2 ω0
0




Therefore the associated fundamental form ϕ2 is ω1
3 ·ω0

1 +ω2
3 ·ω0

2 , which
is non-degenerate when

(2.9) det p 6= 0 , p = (pij).

Since Lij = qij − pij satisfies the condition L = trLij = 0,

(2.10) p12 = q12 , p21 = q21,
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from which we have

ϕ2 = p21(p11 + q11)ω1ω1 + p12(p22 + q22)ω2ω2(2.11)

+ (2p12p21 + p11q22 + q11p22)ω1ω2.

Moreover ω0
3 = 0 implies ωi

3 ∧ ω0
i = 0. Hence

(2.12) p11q22 − p22q11 = 0.

Denote by h, p, and q the quantities with respect to e. Let Q = q−1.
Then a computation shows

(2.13) h = pQh , p = hQh , q = pQhQh.

Definition. (O. Mayer [MAY]). We call a surface of indefinite type with
the condition (2.5) a Demoulin surface if ∆1 = ∆2 = 0, or equivalently
if it has only one Demoulin transform.

In §2 of Chapter 4 we posed a problem to characterize hypersurfaces
with the property that

(2.14) Lij = hijkak , γi =
1
2
hijkaiaj

for some vector ak. In case n = 2 we have an answer:

Proposition 6.7. Assume (2.5). Then the condition (2.14) is equiva-
lent to that the surface is Demoulin.

Proof. Since h111 6= 0 and h222 6= 0, the condition γi = − 1
2hijkajak for

a Demoulin frame is ai = 0. Hence Lij = 0, which implies ∆i = 0 and
vice versa.

Let us consider a system of differential equations
{

zxx = b zy + u z

zyy = c zx + v z
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with b 6= 0 and c 6= 0. Referring a formula of the associate normalized
frame (§3 of Chapter 5), we see that Demoulin transforms w of the
surface z are given by

(2.15) w =
(
c1c2 − 1

2
b c

)
z + c1zx + c2zy + zxy,

where

(2.16) c1 =
−by ±

√
∆1

2b
, c2 =

−cx ±
√

∆2

2c
,

and 



∆1 = (by)2 + 4b
(
b v + uy − 1

2
(bc)x

)

∆2 = (cx)2 + 4c
(
c u + vx − 1

2
(bc)y

)
.

Example. Assume u = v = 0. Then the surface z is equivalent to the
surface { (x2 + y2)z = 1 } in affine coordinates. Its Demoulin transform
w = zxy − 1

2z also satisfy the same system.

Remark. The condition (2.4) is not of course necessary for complex
coefficients. The case when h is definite is similarly treated. Use the
identity (7.19) of Chapter 4:

λ2zδ̃ = δ + Kt− 1
2
ct

2
.

If C = h111 + i h112 6= 0, i.e. if F 6= 0, then this is always solvable with
respect to t and we have a frame with ω0

3 = 0.

§3. Demoulin transforms of projectively minimal surfaces
Assume n = 2 and consider a Demoulin frame, i.e. ω0

3 = 0. By the
formula (1.8) this case yields

hijγi,j = −1
2
Lij(pij + qij).

Namely
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Proposition 6.8. A non-degenerate surface is projectively minimal if
and only if

(3.1) Lij(pij + qij) = 0,

for a Demoulin frame.

Assume the surface is of indefinite type. Then, by the conditions
(2.10) and (2.12), the condition (3.1) is equivalent to one of the following
equivalent conditions:

det p = det q ,(3.2)

L22(p11 + q11) = 0 ,(3.3)

L11(p22 + q22) = 0.(3.4)

Theorem 6.9. ([MAY]). Let M be a non-degenerate surface of indefi-
nite type satisfying (2.4). Assume conditions (2.5), (2.7) and det Lij 6=
0 for a Demoulin frame. Then (1) if M is projectively minimal, then
the conformal structure of a Demoulin transform of M is the same as
the conformal structure of M ; i.e. a Demoulin transform is Wein-
garten. (2) Conversely, if a Demoulin transform is Weingarten, then
the original surface is projectively minimal or a surface with the prop-
erty p12p21 = 0.

Proof. Since det Lij = L11L22 6= 0, the conditions (3.3) and (3.4) shows
ϕ2 is conformal to ϕ2 = ω1ω2 by (2.11). The converse is also immediate.

Remark. The surface with p12p21 = 0 is called Q-surface in [BOL, p.
326].

Theorem 6.10. ([MAY]) Let M be a non-degenerate projectively min-
imal surface of indefinite type. Assume (2.5) and (2.7). Then any
Demoulin transform is again projectively minimal. One of Demoulin
transforms of a Demoulin transform M is M itself.

Proof. Let e the frame defined in §2. From the expression (2.8) of ω,
ω0

0 + ω3
3 = 0. The identity det p = det q shows det h = 1 by (2.13)
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and the identity (2.13) shows h
ij

Lij = 0. Hence e is normalized and a
Demoulin frame because ω0

3 = ω3
0 = 0. Now (2.13) again shows det p =

det q, proving the first part. The second statement is immediate.
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Flächen gegenüber affinen Transformationen, Berichte Verh.
Ges. Wiss. Leibzig 69(1917), 107–136.

[SS] Sh. Sasaki, The minimum number of points of inflection of
closed curves in the projective plane, Tohoku Math. J. (Ser 2)
9(1957), 113–117.

[SA1] T. Sasaki, On the projective geometry of hypersurfaces, MPI



References 113

preprint 86-7, Max-Planck-Institut für Mathematik 1986; Équations
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