Vassiliev Invariants and

Local Moves of Knots

大山 淑之 (東京女子大学)

はじめに

このレクチャーノートは2000年度に行った集中講義をもとにしたものである. 結び目理論において, Vassiliev invariant とは, ある意味で結び目不変量すべてを階 層分けしたもので, たくさんの不変量の情報を含む.この Vassiliev invariant を結 び目の local move からの視点で研究した結果をまとめたものである.

集中講義の際,当時大学院博士課程の学生であった中村拓司君,山本亮介君にこのレクチャーノートの tex file の土台を作っていただいた.感謝の意を表したい.最後に このレクチャーノートを書く機会を与えて下さった中西康剛教授に感謝する 次第である.

> 2003年10月 大山淑之

目 次

1	knot \mathcal{O} Vassiliev invariant				
	1.1	Vassiliev invariant	1		
	1.2	Vassiliev invariant $\boldsymbol{\mathcal{E}}$ [<i>i</i>]-configuration	5		
	1.3	低い order σ Vassiliev invariant	9		
2	cho	rd diagram と web diagram	22		
3	n -trivial, n -similar \succeq Vassiliev invariant				
	3.1	<i>n</i> -trivial \succeq <i>n</i> -similar	28		
	3.2	$L \sqsubset n$ -similar な knot の Vassiliev invariant	32		
4	local move としての C_n -move				
	4.1	C_n -move	37		
	4.2	G-H Theorem の証明の方針	41		
5	C_n -	move と web diagram	48		
6	unl	knotting number one knot \succeq Vassiliev invariant	59		
7	\mathbf{spa}	tial graph と Vassiliev type invariant	65		
	7.1	spatial graph σ Vassiliev type invariant	65		
	7.2	spatial graph への応用	71		
1	knot \mathcal{O} Vassiliev invariant				
	1.1	Vassiliev invariant	1		
	1.2	Vassiliev invariant $\boldsymbol{\mathcal{E}}$ [<i>i</i>]-configuration	5		

	1.3 低	El Vorder σ Vassiliev invariant	9				
2	chord	diagram と web diagram	22				
3	n-triv	ial, <i>n</i> -similar \succeq Vassiliev invariant	28				
	3.1 n-	-trivial \mathcal{E} <i>n</i> -similar	28				
	3.2 L	$arepsilon$ <i>n</i> -similar ta knot σ Vassiliev invariant $\ldots \ldots \ldots \ldots \ldots$	32				
4	local	move としての C_n -move	37				
	4.1 C	n-move	37				
	4.2 G	-H Theorem の証明の方針	41				
5	C_n -mo	ove と web diagram	48				
6	unkno	otting number one knot \succeq Vassiliev invariant	59				
7	spatia	al graph と Vassiliev type invariant	65				
	7.1 sp	patial graph σ Vassiliev type invariant $\ldots \ldots \ldots \ldots \ldots \ldots$	65				
	7.2 sp	oatial graph への応用	71				
参	参考文献 79						

$1 \quad \text{knot } \mathcal{O} \text{ Vassiliev invariant}$

この章では Birman-Lin[3] に従って, Vassiliev 不変量について解説する.

1.1 Vassiliev invariant

Definition 1.1. Abelian group (実数や複素数のときもある) に値をとる knot invariant v が与えられたとき, 次の式で singular knot の invariant に拡張できる.

$$v\left(\checkmark\right) = v\left(\checkmark\right) - v\left(\checkmark\right). \tag{1}$$

ここで singular knot とは $S^1 \cap R^3 \land O$ immersion で singularity は transversal な double point のみのものをいう.

☑ 1: : singular knot

singular knot は flat vertex graph として取り扱う. つまり, vertex には局所的に disk が張られていると考え, disk を保つ ambient isotopy で移りあうとき, 同値で あると定義する.同じ vertex に接続している edge の順を入れ替えることは出来な い.

 K^n を n 個の double points を持つ singular knot とする. knot invariant v が

$$v(K^n) = 0 \quad (n > i) \tag{2}$$

を満たし, $v(K^i) \neq 0$ となる K^i が存在するとき, v を order i の Vassiliev invariant と呼び, v_i と書く.

knot invariant が finite type であるとは ある自然数mが存在して、その invariant が order m の Vassiliev invariant であることを意味する.

Remark 1.2. 実数に値をとる(*R*-valued) order *i* 以下の Vassiliev invariant 全体はベクトル空間をなす.

Definition 1.3. $K \in \text{knot}, D \in \text{crossing} \text{ is } n+1$ 個以上の $K \in \mathbb{O}$ diagram とする. また, $C \in n+1$ 個の $D \in \text{crossing} \oplus \mathbb{O}$ の集合とし, $X \in C \in \mathbb{O}$ 部分集合とする. $D_X \subset X$ に含まれる crossing \mathbb{C} crossing change して D から得られる diagram を意味する. knot invariant v が次の式を満たすとき, $v \in \text{order } n$ 以下の Vassiliev invariant という. ここで #X は $X \in \mathbb{O}$ の元の個数をあらわす.

$$\sum_{X \subset C} (-1)^{\sharp X} v(D_X) = 0.$$
(3)

Proposition 1.4. Definition 1.1 と Definition 1.3 は同値である.

Sketch proof. (n = 2 のときの証明)

K (× ×) は 3つの double point を持つ singular knot であり, 各 double point は局所的な状態を表しているものとする. Definition 1.1 より次の式が得られる.

$$\begin{aligned} v(K\left()\right) &\stackrel{(1)}{=} v(K\left()\right) - v(K\left()\right) \\ &= v(K\left()\right) - v(K\left()\right) \\ &- v(K\left()\right) + v(K\left()\right) + v(K\left()\right) \\ &- v(K\left()\right) + v(K\left()\right) + v(K\left()\right) \\ &+ v(K\left()\right) - v(K\left()\right) - v(K\left()\right) \\ &+ v(K\left()\right) + v(K\left()\right) - v(K\left()\right) \\ &+ v(K\left()\right) + v(K\left()\right) \\ &+ v(K\left()\right) + v(K\left()\right) \\ &+ v(K\left()\right) + v(K\left()\right) \\ &+ v(K\left()\right) \\ &+ v(K\left()\right) + v(K\left()\right) \\ &+ v(K\left()$$

vを order 2の Vassiliev invariant とすると $v(K(\bigvee \bigvee)) = 0$. ここで, $K(\bigvee \lor)$ は各 double point を図の crossing に置き換えた knot を意味している.これを Definition 1.3の K とし, C を 図の 3 つの crossing の集合 とすると (3) が得られる.逆に (3) が成立していると上記の逆をたどると Definition 1.1の (2) が得られることになる.

Theorem 1.5 (Birman-Lin[3], Birman[2], \cdots).

 Q_q を Kの quantum group invariant とする. $P_x(K) = \sum_{i=0}^{\infty} U_i(K) x^i$ を $Q_q(K)$ に $q = e^x$ を代入して e^x を Taylor 展開して得られる巾級数とする. このとき x^i の係数 $U_i(K)$ は i = 0のときに 1, $i \ge 1$ のと

きは order iの Vassiliev invariant である. ここで quantum group invariant とは braid group の R-matrix 表現の trace として得られる knot invariant のことであり, Jones, HOMFLY, Kauffman polynomial などはすべて quantum group invariant で ある.

Example 1.6. Jones polynomial について上の定理を確かめてみる.

$$t^{-1}V (t) - tV (t) = (\sqrt{t} - \frac{1}{\sqrt{t}})V (t).$$

まず, (1) により, singular knot \mathcal{O} invariant に拡張する. (1) 式と

$$V = t^2 V (t) + (t^{3/2} - t^{1/2}) V (t)$$

により,

$$V = (t^{2} - 1)V (t) + (t^{3/2} - t^{1/2})V (t).$$

V (*t*) は double point を1つもつ singular knot の Jones polynomial をあらわ す.ここで $K_{1\cdots j}^{j}$ を *j* 個の double point を持つ singular knot とする.1…*j* は 各 double point をあらわしている.次式が得られる.

$$V_{K_{1\cdots j}^{j}}(t) = \sum_{\sigma} (t^{2} - 1)^{p_{\sigma}} (t^{3/2} - t^{1/2})^{q_{\sigma}} V_{K_{\sigma}}(t).$$
(4)

ここで、 K_{σ} は j 個の double point を (-)-crossing か smoothing したものに置き換 えた link (diagram) であり、 $\sigma = (\sigma_1 \cdots \sigma_j) (\sigma_k = -1 \text{ or } 0)$ で各 double point をどち らに置き換えたかの情報をあらわす.-1 は (-)-crossing を 0 は smoothing を意味 している. p_{σ} は K_{σ} の (-)-crossing の数, q_{σ} は K_{σ} の smoothing した交点の数で ある.

ここで, $t = e^x$ とおき, $V_K(e^x) = W_K$ であらわす.

$$W_{K_{1\cdots j}^{j}} = \sum_{\sigma} (e^{2x} - 1)^{p_{\sigma}} (e^{3x/2} - e^{x/2})^{q_{\sigma}} W_{K_{\sigma}}.$$
 (5)

 e^x の Taylor 展開により,

$$e^{2x} - 1 = (2x) + \frac{(2x)^2}{2!} + \cdots$$

$$e^{3x/2} - e^{x/2} = \left\{ 1 + \left(\frac{3}{2}x\right) + \frac{\left(\frac{3}{2}x\right)^2}{2!} + \cdots \right\} - \left\{ 1 + \left(\frac{x}{2}\right) + \frac{\left(\frac{x}{2}\right)^2}{2!} + \cdots \right\}$$

$$= x + \frac{1}{2!} \left\{ \left(\frac{3}{2}\right)^2 - \left(\frac{1}{2}\right)^2 \right\} x^2 + \cdots$$

式 (5) の右辺の最低次数は $(2x)^{p_{\sigma}}x^{q_{\sigma}} = 2^{p_{\sigma}}x^{p_{\sigma}+q_{\sigma}}$ より, $p_{\sigma}+q_{\sigma}$ 以上である. $p_{\sigma}+q_{\sigma} = j$ より i < jのとき x^{i} の係数は 0, いいかえると x^{i} の係数は i < jとなる j 個の double point を持つ singular knot に対しては 0, 即ち Definition 1.1 を満たすことになる.

Jones polynomial に対しては $V_K^{(i)}(1)$ (*t* で *i* 階微分したのち *t* = 1 を代入したもの) も order *i* の Vassiliev invariant である.

1.2 Vassiliev invariant $\geq [i]$ -configuration

Definition 1.1 にもとづいて order i の Vassiliev invariant を計算する. i 個の double point をもつ singular knot を K^i とする.

$$v_i\left(K^{i+1}\right) = v_i\left(K^i\right) - v_i\left(K^i\right) = 0$$

であるから,

$$v_i\left(K^i\right) = v_i\left(K^i\right).$$

i 個の double point をもつ singular knot は crossing change しても v_i の値は変わらない.よって、 $v_i(K_i^i)$ は K^i の埋め込みによらない.言い換えると、 v_i の値は singular knot を 4-valent graph としてみたときの graph の type によって決まる.

Definition 1.7. [i]-configuration とは S^1 上の 2i 個の点を i 個の対に分ける分け方 の指定である. S^1 上の対となる点を i本の chord で結んだ graph を order i の chord diagram と呼び, [i]-configuration を order i の chord diagram であらわす. singular knot を S^1 の immersion と考え double pointの preimage の点を対とみることにより, singular knot K^i に対してある chord diagram を対応させる.

 \boxtimes 2: : order 4 \mathcal{O} chord diagram

例えば、図3の singular knot は crossing change で移り合うので同じ [2]-configuration を持つ.

図 3:: 同じ [2]-configuration を持つ singular knot

Definition 1.8. [*i*]-configuration が inadmissible であるとは その[*i*]-configuration をあらわす chord diagram において他の chord と交わらない chord が存在すること である. また inadmissible でないとき admissible [*i*]-configuration と呼ぶ.

 \mathbf{Z} 4: : inadmissible configuration

他の chord と交わらない chord は singular knot の cut-vertex となるような double point に対応させることができる. またこのような singular knot を inadmissible [*i*]-configuration に対応する good model という.

Definition 1.1 (1) により, inadmissible [*i*]-configuration に対応する good model の Vassiliev invariant は 0 である.

Definition 1.9 (initial data).

以下の2つを order *i* の Vassiliev invariant v_i に対する initial data という.

(1) 任意の自然数 k に対して $v_k(\bigcirc) = 0$, ここで \bigcirc は trivial knot.

(2) $2 \le j \le i$ に対する admissible [j]-configuration を持つ singular knot (model graph と呼ぶ) $K^j \mathcal{O} v_i \mathcal{O} \bar{u}$.

同じ configuration を持つ singular knot は crossing change によってうつりあう. よって Definition 1.1 (1), (2) と initial data により, $v_i(K)$ は決定できる. 実際には 次のような resolution tree を考え計算する.

・左に下る (✓): crossing change (同じ [*i*]-configuration を持つ model graph に なるように)

 \boxtimes 5: : resolution tree

・右に下る (_):
$$\checkmark$$
, \checkmark \rightarrow \checkmark (double point が増える)

initial data の決定: model graph に対する v_i の値は次のようにして決定される.

Definition 1.1 (1) より, double point を crossing に変えると,上の関係式が成立 する. 符号は向きによって決まる.逆に上の関係式を満たせば initial data となり得 る.この関係式は triple point をずらしたものと考えることができる.ここで, triple point を1つ持つ singular knot とそれに対応する特別な configuration を考える.

 $\langle j \rangle$ -configuration : [j-2]-configuration + triple point

上図は triple point と chord diagram において triple point に対応する点をあら わしている.triple point をずらすことにより,一般の singular knot と対応する [*j*]-configuration が得られる.

上の6つの図が関係式の図に対応している.即ち, $\langle j \rangle$ -configuration と対応する triple point をもつ特別な singular knot から関係式が得られることになる.

1.3 低い order の Vassiliev invariant

前節にもとづいて 低い order の Vassiliev invariant を求めてみる.

order 0

により、 すべての knot が同じ値をとる.

order 1

[1]-configuration は () であり model graph での値は v_1 ()) = 0 よって, resolution tree を考えることにより, この場合すべての knot が 0 の値をとる.

order 4 以下の Vassiliev invariant について

admissible [j]-configuration $(j \le 4)$ を全部持ってくる.

j = 4 のときは crossing change によらないので, model graph は要らない. よっ て以下の7つの chord diagram を考えればよい. chord diagram の v_i の値は その chord diagram をもつ model graph の v_i の値である.

図 6:

j = 3,2のときは model graph も必要となる.

叉 7:

図6の chord diagram の v_i の値を順に $x_1 \sim x_7$, 図7の model graph の v_i の値 を y_1, y_2, z_1 とおく.まず $x_1 \sim x_7$ に関する式を initial data の満たすべき条件式から 導く.

すべての $\langle 4 \rangle$ -configuration ([2]-configuration + triple point (3点の配置))を用意 する. 各 $\langle 4 \rangle$ -configuration から関係式が得られる. v_i を省略してあらわすと次のようになる.

 $x_4 - x_3 = 0 - x_2.$

以下同様にして,次の関係式が得られる.

また, inadmissible [2]-configuration + triple point から

次に y_i に関する関係式を求める.

 $\langle 3 \rangle$ -configuration ([1]-configuration + triple point) を用意し, triple point を以下の ようにずらしてできる singular knot を Φ_1, \ldots, Φ_6 とする.

 \boxtimes 8: : singular knot Φ_1, \ldots, Φ_6

よって、満たすべき式は

$$v(\Phi_1) - v(\Phi_2) = v(\Phi_3) - v(\Phi_4)$$

= $v(\Phi_5) - v(\Phi_6).$

$$v(\Phi_3) - v(\Phi_4) + v(\Phi_6) = 0.$$

ここで, Φ_4 , Φ_6 は model graph であり, Φ_3 と Φ_6 は同じ configuration を持つ. よって

$$v(\Phi_3) - v(\Phi_6) = v(\bigcirc) = x_6.$$

従って,

$$2y_1 - y_2 + x_6 = 0$$

が得られる.

結局 initial data は

$$\begin{cases} x_2 - x_3 + x_4 = 0. \\ x_3 + x_5 - x_7 = 0. \\ x_4 - x_5 + x_6 = 0. \\ x_1 - 2x_2 + x_3 = 0. \\ -x_2 + x_3 - x_5 + x_6 = 0. \\ 2y_1 - y_2 + x_6 = 0. \end{cases}$$

を満たす. これを解くと

$\left(\begin{array}{c} x_1 \end{array}\right)$		$\left(-3 \right)$		$\begin{pmatrix} 2 \end{pmatrix}$		$\begin{pmatrix} 1 \end{pmatrix}$		$\left(\begin{array}{c} 0 \end{array}\right)$		$\left(\begin{array}{c} 0 \end{array}\right)$	
x_2	=a	-2		1		1		0		0	
x_3		-1	0		1		0		0		
x_4		1		-1		0		0		0	
x_5		-a 1 $+b$	0	+c	0	+ d	0	+ e	0		
x_6		$\begin{array}{c c} - u \\ 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \end{array}$	1		0		0		0		
x_7			0		1		0		0		
y_1				0		0		0		1	
y_2		0		1		0		2		0	
$\left(\begin{array}{c} z_1 \end{array} \right)$		0)		0)		0)		0)		$\left(1 \right)$	

とあらわされる. 以上の結果から order 2, 3, 4 の Vassiliev invariant を計算するた めの initial data の表 (actually table) を作ることができる.

actually table (Vassiliev invariant を計算する上での実用的な表)

order 3

 $\underline{\text{order } 4}$

(0, 1, 0)

(0, 0, 0)

(0, 0, 0)

例えば, $K \mathcal{O}$ order 3 \mathcal{O} Vassiliev invariant $v_3(K)$ は actually table より

$$v_{3}(K) = Av_{3}(\bigcirc) + Bv_{3}(\bigcirc) + Cv_{3}(\bigcirc)$$
$$= (A+2B)v_{3}(\bigcirc)$$

となる.

order n 以下の Vassiliev invariant 全体はベクトル空間をなす.上の計算よりその 次元は次のようになる. order 0,1 1 次元 order 2 2 次元 order 3 3 次元 order 4 6 次元

Vassiliev invariant を計算するための initial data を求めた.ここから 具体的な Vassiliev invariant の例について考えていく.よく知られている order n の Vassiliev invariant として次の2つが挙げられる.

- a_n : Conway polynomial $\nabla(z)$ の z^n の係数.
- $V_K^{(n)}(1)$: Jones polynomial の n 階微分した後 t = 1 を代入したもの.

更に 次の定理も知られている.

Theorem 1.10 (Bar-Natan $[1], \cdots$).

f, gをそれぞれ order p, order qの Vassiliev invariant とする. このとき $f \cdot g(K) = f(K)g(K)$ で定義される $f \cdot g$ は order p + q以下の Vassiliev invariant である.

order 4 までの Vassiliev invariant を実際の不変量を用いて具体的に求めてみる. ・ <u>order 2</u>

order 2 以下の Vassiliev invariant の次元が(定数を含めて)2より, $v_2(K) = A + Ba_2(K)$ と書ける.即ち どんな order 2 の Vassiliev invariant v_2 も定数 A, Bを用 いて $A + Ba_2(K)$ の形をしており,具体的に knot や singular knot を K に代入す ることにより, A, B が決まる.

結局、次のように書ける.

$$v_{2}(K) = v_{2}(\bigcirc) + v_{2}(\bigcirc) a_{2}(K)$$

= $v_{2}(\bigcirc) + \left\{ v_{2}(\bigcirc) - v_{2}(\bigcirc) \right\} a_{2}(K).$

• order 3

$$v_{3}(K) = A + Ba_{2}(K) + CV_{K}^{(3)}(1).$$

$$v_{3}(\bigcirc) = A.$$

$$v_{3}(\bigcirc) = -v_{3}(\bigcirc) + v_{3}(\bigcirc)$$

$$= -A + (A + B + 54C)$$

$$= B + 54C.$$

$$v_3(\bigcirc) = v_3(\bigcirc) - v_3(\bigcirc) = A + B - 18C - (A + B + 54C)$$

= -72C.

よって B, C は次のように決まる.

order 4のときも $v_4(K) = A + Ba_2(K) + CV_K^{(3)}(1) + Da_2^2(K) + Ea_4(K) + FV_K^{(4)}(1)$ を用いて同様に計算できる.

2 chord diagram \succeq web diagram

singular knot に [*i*]-configuration を対応させ, [*i*]-configuration は order *i* の chord diagram によってあらわされた.この章では chord diagram の一般化と Vassiiev invariant の関係について述べる.詳しい証明等は Bar-Natan[1] と Ng-Stanford[21] を参照のこと.

Definition 2.1.

order *i* の chord diagram が生成する additive group において,図9のような関係 式を 4T-relation と呼ぶ.

⊠ 9: : 4T-relation

4T-relation は前章の initial data の条件式に対応するものである.

Definition 2.2.

rational Vassiliev invariant v (有理数に値をとる Vassiliev invariant) に対して $v(K_1 \sharp K_2) = v(K_1) + v(K_2)$ が成立するとき v は additive であるという.ここで \sharp は connected sum を意味する.

Theorem 2.3 (Bar-Natan[1], Gusarov[5], \cdots).

rational Vassiliev invariant 全体の集合は *additive invariant* によって生成される *algebra* をなす.

更に 次の Lemma 2.4 も成立する.

Lemma 2.4 (Ng-Stanford[21]).

Kを order n-1 以下のすべての additive invariant が 0 であるような knot とする. このとき任意の order n の additive invariant v に対して

$$v(K) = \sum_{i=1}^{r} a_i v(D_i)$$

が成り立つ. ここで, a_i は整数, D_i は order n の chord diagram である.

Lemma 2.5 (Ng-Stanford[21]).

 $v \, \epsilon \, order \, n \, \mathbf{O} \, additive \, invariant$, $C \, \epsilon \, order \, n \, \mathbf{O} \, split \, chord \, diagram \, と \, \mathbf{z}$ $v(C) = 0 \, \mathbf{c}$ ある.ここで, split chord diagram とは chord が互いに交わらない2つ の部分に分れるような chord diagram である.

chord diagram の一般化である web diagram の概念が Bar-Natan[1] によって導入 された.

Definition 2.6.

order i の web diagram G とは 2i 個の vertex から成る trivalent graph である. G

は subgraph として circle を持ち, external circle と呼ばれる. それ以外の部分は internal graph と呼ばれる.

 $G = (\text{external circle}) \cup (\text{internal graph } G').$

更に次の性質を満たす.

external circle のみに
orientation が付いている.
各 vertex には接続する
edge に cyclic order が付いている.

web diagram の生成する additive group において 図 10 の関係式は STU-relation と呼ばれる.

 \boxtimes 10: : STU-relation

またこれは図 11 の IHX-relation, AS-relation と呼ばれる関係式を生成する.

$$A_n:$$
 order $n \, \mathcal{O}$ chord diagram によって / 4T-relation .

☑ 11: : IHX,AS-relations

$$B_n:$$
 order $n \sigma$ web diagram によって / 生成される additive group / STU-relation

とすると, chord diagram の web diagram への inclusion が $A_n \ge B_n$ の同型を induce する.

更に 特別な種類の web diagram を定義する.

Definition 2.7 (Ng-Stanford[21]).

internal graph G'が standard *n*-tree に isomorphic な web diagram Gを one-branch tree diagram と呼ぶ.ここで, standard *n*-tree とは図 12 の graph である.

次のように external circle 上の vertex に label をつける; standard *n*-tree の

 \boxtimes 12: : standard *n*-tree

 \boxtimes 13: : one-branch tree diagram

branch 0 に対応する vertex に label 0. 以下, external circle の orientation に従って 1,2,...,n と label をつける.

G' (standard *n*-tree) の branch *i* に対して external circle の vertex の label $\sigma(i)$ を対応させると *n* 次対称群 S_n の元 σ が得られる . 逆に S_n の元 σ を与えると , one-branch tree diagram が唯一つ決まる . 以下 one-branch tree diagram を $\sigma \in S_n$ を用いて T_{σ} であらわす .

one-branch tree diagram に関して 次の結果が成立する.

Lemma 2.8 (Ng-Stanford[21]).

 B_n は order n の split diagram と one-branch tree diagram で生成される.

Lemma 2.9 (Ng-Stanford[21]).

 $K \ge K' \ge order n - 1$ 以下のすべての additive invariant が等しい knot とし, v

を order n の additive invariantとする.このとき

$$v(K) - v(K') = \sum_{\sigma \in S_n} a_{\sigma} v(T_{\sigma}).$$

ここで, a_{σ} は整数, T_{σ} は order n の one-branch tree diagram である.

order $n \sigma$ additive Vassiliev invariant は, order n-1 以下の値を法とすると,本 質的に one-branch tree diagram の値によって決定されることになる.更に, onebranch tree diagram が C_n -move と密接に関係していることが5章において解説さ れる.

3 n-trivial, n-similar \succeq Vassiliev invariant

任意に自然数 $n \ge \text{knot} K$ を与えたとき, order n 以下の Vassiliev invariant が Kと同じ結び目を構成することが本章の目標である. 与えられた finite type invariant が等しい knot は無限個存在するのである.

3.1 *n*-trivial \succeq *n*-similar

Definition 3.1. Kを knot, \tilde{K} を Kの diagram とする.また A_1, A_2, \ldots, A_n を \tilde{K} の crossing の(空でない)集合とする.以下の条件を満たすとき, \tilde{K} は $\{A_1, A_2, \ldots, A_n\}$ に関して *n*-trivial diagram であるという.

- (1) $A_i \cap A_j = \emptyset \ (i \neq j).$
- (2) {A₁, A₂,..., A_n}の任意の(空でない) subfamily の crossing で crossing change
 すると、 K は trivial knot の diagram になる.

Example. 8_{21} の diagram $\widetilde{8_{21}}$ において A_1 , A_2 , A_3 を図 14 のような crossing の 集合とする.

 $2 14:: \widetilde{8_{21}}$

 $A_1 \subset \text{crossing change} \longrightarrow \text{trivial.}$

 $A_2 \subset \text{crossing change} \longrightarrow \text{trivial.}$

 $A_3 \subset \text{crossing change} \longrightarrow \text{trivial.}$

 $A_1 \cup A_2 \subset \text{crossing change} \longrightarrow \text{trivial.}$

 $A_2 \cup A_3 \subset \text{crossing change} \longrightarrow \text{trivial.}$

 $A_3 \cup A_1 \subset \text{crossing change} \longrightarrow \text{trivial.}$

 $A_1 \cup A_2 \cup A_3 \subset \text{crossing change} \longrightarrow \text{trivial.}$

 $\{A_1, A_2, A_3\}$ の全ての subfamily で crossing change して、どれも trivial knot の diagram になったので、 $\widetilde{8_{21}}$ は $\{A_1, A_2, A_3\}$ に関して 3-trivial diagram である.

Definition 3.2. knot Kが *n*-trivial diagram を持ち, (n + 1)-trivial diagram を持たないとき,

$$O(K) = n$$

とする. また, knot K が任意の自然数 n に対して n-trivial diagram を持つときは, $O(K) = \infty$ と定義する.

結び目の n-trivial に関して次の結果が知られている.

Proposition 3.3 (M. Yamamoto[36]).

任意の knot は, 2-trivial diagram を持つ. つまり, $O(K) \ge 2$ である.

Theorem 3.4 (Ohyama[22]).

任意に自然数 $n(\geq 2)$ を与えたとき, *n*-trivial diagram を持つ non-trivial knot K が 存在する.

また *n*-trivial と Conway polynomial の関係は次のようになる.

Theorem 3.5 (Ohyama[22], Ohyama-Ogushi[25]).

knot Kが n-trivial diagram を持つならば, Kの $Conway polynomial \nabla_K(z)$ は次の 形になる.

- (1) nが奇数のとき, $\nabla_K(z) = 1 + a_{n+1}z^{n+1} + \cdots$.
- (2) nが偶数のとき, $\nabla_K(z) = 1 + a'_n z^n + \cdots$ $(a'_n:even).$

Theorem 3.5 を用いて Theorem 3.6 が得られる.

Theorem 3.6 (Ohyama-Ogushi[25]).

任意に自然数 $n(\geq 2)$ を与えたとき, O(K) = n となる non-trivial knot が無限個存 在する.

Proof. K_n を図 15 のような knot とする. K_n は $\{A_1, A_2, \ldots, A_n\}$ に対し, *n*-trivial diagram. さらに, K_n は変形すると alternating knot になることがわかる.

図 15:

 K_n の Conway polynomial は次のようになる . nが 3以上の奇数のとき、 $\nabla_{K_n}(z) = 1 + nz^{n+1} + \dots + nz^{2(n-1)}$. nが 2以上の偶数のとき、 $\nabla_{K_n}(z) = 1 - 2z^n + \dots - nx^{2(n-1)}$. よって、Theorem 3.5より、 $O(K_n) = n$ である. 更に無限個構成することを考える.

図 16 の K_n^l は *n*-trivial diagram. $\nabla_{K_n^l}(z) = \nabla_{K_n}(z)$. よって, $O(K_n^l) = O(K_n) = n$. Kanenobu[9] により, K_n^l の Jones polynomial は

$$V_{K_n^l}(t) = (t^2 - 1)(V_{K_n}(t) - 1)\sum_{i=0}^{l-1} (t^{-2i}) + V_{K_n}(t).$$

 $V_{K_n}(t)$ のtの最大次数と最小次数の差は3nであることも分かっているので, $V_{K_n}(t) \neq 1$ である.よって,l < l'に対して, $V_{K_n^l}(t) \neq V_{K_n^{l'}}(t)$.従って, $K_n^l \not\simeq K_n^{l'}$.

次に、*n*-trivial の一般化として、*n*-similar という概念を導入する.

Definition 3.7 (Taniyama[32]). Definition3.1 において、あらかじめ knot Lを 与えておき、(2)の条件を" \widetilde{K} が Lの diagram になる"とかえる. このとき \widetilde{K} は $\{A_1, A_2, \ldots, A_n\}$ に関して、knot Lに *n*-similar であるという.

Theorem 3.6 より次が得られる.

Corollary 3.8. 任意に knot L と自然数 $n(\geq 2)$ を与えたとき, L に n-similar な knot が無限個存在する.

Lに *n*-similar な knot の Vassiliev invariant 3.2

 $\widetilde{K} \not\in L \models n$ -similar $\notintermath{\mathfrak{C}}$ (oriented) knot diagram , $\{A_1, A_2, \dots, A_n\} \not\in n$ -similar \mathcal{O} 条件を満たす crossing の集合から成る family とする.また 各 $A_i \in A_i \in A_i = \{c_{i1}, c_{i2}, \dots, c_{i\alpha(i)}\}$ とおき, ε_{ij} を crossing c_{ij} の符号とする.

 $K\left(\begin{array}{cccc} 1 & 2 & \cdots & k \\ i_1 & i_2 & \cdots & i_k \end{array}\right) \ \mathbf{C}, \ \widetilde{K} \ \mathbf{D} \$ point にする.

 \widetilde{K} の Vassiliev invariant の値をこれらの記号を用いて書き下すことを考える. \widetilde{K} の Vassiliev invariant を A_1 を用いて計算する. $K(\frac{1}{\infty})$ をKから A_1 のすべて の crossing で crossing change して 得られる knot とする.

$$\widetilde{K} \xrightarrow{c_{11}} \xrightarrow{c_{12}} \cdots \xrightarrow{c_{1\alpha(1)}} K\left(\begin{smallmatrix}1\\\infty\end{smallmatrix}\right) \sim L$$

$$\searrow \qquad \searrow \qquad \qquad \searrow$$

$$K\left(\begin{smallmatrix}1\\1\end{smallmatrix}\right) \qquad K\left(\begin{smallmatrix}1\\2\end{smallmatrix}\right) \qquad K\left(\begin{smallmatrix}1\\\alpha(1)\end{smallmatrix}\right)$$

この図式より

$$v(\widetilde{K}) = v(K\binom{1}{\infty}) + \sum_{i=1}^{\alpha(1)} \varepsilon_{1i} v(K\binom{1}{i}).$$
(6)
さらに, $K(\frac{1}{1}), K(\frac{1}{2}), \ldots, K(\frac{1}{\alpha(1)})$ の Vassiliev invariant を A_2 を用いて求める.

(1) 式右辺 =
$$v(K(\frac{1}{\infty})) + \sum_{i=1}^{\alpha(1)} \varepsilon_{1i} \left\{ v(K(\frac{1}{i} \frac{2}{\infty})) + \sum_{j=1}^{\alpha(2)} \varepsilon_{2j} v(K(\frac{1}{i} \frac{2}{j})) \right\}$$

= $v(K(\frac{1}{\infty})) + \sum_{i=1}^{\alpha(1)} \varepsilon_{1i} v(K(\frac{1}{i} \frac{2}{\infty})) + \sum_{i=1}^{\alpha(1)} \sum_{j=1}^{\alpha(2)} \varepsilon_{1i} \varepsilon_{2j} v(K(\frac{1}{i} \frac{2}{j}))$

また,

より,

$$v(K\left(\begin{smallmatrix}2\\\infty\end{smallmatrix}\right)) = v(K\left(\begin{smallmatrix}2\\\infty\end{smallmatrix}\right)) + \sum_{i=1}^{\alpha(1)} \varepsilon_{1i}v(K\left(\begin{smallmatrix}2\\\infty\end{smallmatrix}\right)).$$
$$\therefore \sum_{i=1}^{\alpha(1)} \varepsilon_{1i}v(K\left(\begin{smallmatrix}2\\\infty\end{smallmatrix}\right)) = 0.$$

よって,

$$v(\widetilde{K}) = v(K(\frac{1}{\infty})) + \sum_{i=1}^{\alpha(1)} \sum_{j=1}^{\alpha(2)} \varepsilon_{1i} \varepsilon_{2j} v(K(\frac{1}{i} \frac{2}{j})).$$

この計算を繰り返していくと,次の Lemma 3.9 が得られる(厳密には帰納法で 証明する)

Lemma 3.9 (Ohyama[23]).

*K*が*L*に*n-similar*であるならば,*K*の*order m*の*Vassiliev invariant* は,以下の 式で表される.

$$v_m(K) = v_m(L) + \sum_{\substack{1 \le i_j \le \alpha(j) \\ j = 1, 2, \dots, n}} \varepsilon_{1i_1} \varepsilon_{2i_2} \cdots \varepsilon_{ni_n} v_m(K(\binom{1}{i} \binom{2}{j} \cdots \binom{n}{i_n})).$$

 $K(1 \atop i \atop j \atop m \atop n_n)$ が n 個の double point を持つことより, m < n のとき,

$$v_m(K\left(\begin{smallmatrix} 1 & 2 & \cdots & n \\ i & j & \cdots & i_n \end{smallmatrix}\right)) = 0.$$

すなわち、Lに *n*-similar な knot Kの order が n-1 以下の Vassiliev invariant は、 Lと同じ値である. Corollary 3.8 より、次の Theorem 3.10 が得られる.

Theorem 3.10 (Ohyama[23]).

任意の自然数 $n \ge knot K$ を与えると, order n 以下の Vassiliev invariant が $K \ge$ 同じ knot が無限個存在する.

他の方法でも finite type invariant が等しい knot が構成されている.以下いくつかの例をあげる.

 P_k を k-string pure braid group, P_k^n を P_k の n 階 lower central series とする. pure braid とは、置換としては trivial な braid のことをいう. また、ある群 G の n 階 lower central series とは、以下のように定義される.

 $G = G^0, G^1, \cdots, G^{n+1} = [G, G^n]$

ただし, $A, B \in P_k$ に対して, $[A, B] = ABA^{-1}B^{-1}$ である.

Theorem 3.11 (Stanford[31]).

 $L \geq L'$ が図 17 のように braid $b \in P_k^n$ だけ異なる knot とする. このとき, $L \geq L'$ の order n 以下の Vassiliev invariant が一致する.

Theorem 3.11 より,次が証明される.

Theorem 3.12 (Stanford[31]).

任意の knot K と自然数 n に対して, order が n 以下の Vassiliev invariant が K と 一致する prime (non-split) alternating knot が無限個存在する.

図 17:

2 18:

Corollary 3.13. braid index, minimal crossing number は finite type invariant ではない.

Remark 3.14. Theorem 3.11 も *n*-similar の概念を用いて証明できる (図 18 参照).

また 以下のような結果も知られている.

Theorem 3.15 (Lin[12]).

Kを knot, K(m)で m回 Kの untwisted double をとったものとする. K(m)の order

m+1以下の Vassiliev invariant は, trivial knot のものと等しい.

Theorem 3.15 は、以下の Lemma 3.16 と Proposition 3.3 からも得られる.

Lemma 3.16 (Taniyama[32]).

Kを*n*-trivial diagram を持つ knot とする. Kの untwisted double は (n+1)-trivial diagram を持つ.

Theorem 3.15 ${\mathfrak O}$ knot ${\tt ltj}{\prec}{\tau}$ unknotting number 1 ${\tt tj}$,

Corollary 3.17. unknotting number も finite type invariant ではない.

4 local move としての C_n -move

n-similar が生成する同値関係において同値な knot は order n-1 以下の Vassiliev invariant が等しくなる.この逆も成立することが証明された([5]).更に次のよう な理想的な結果が Goussarov[6] と Habiro[8] によって独立に示されたのである.

Goussarov-Habiro Theorem.

2つの knot $K \geq J$ が C_{n+1} -equivalent であるための必要十分条件は $K \geq J$ の order n 以下の Vassiliev invariant が一致することである.ここで 2つの knot が C_{n+1} -equivalent であるとは それらが C_{n+1} -move の有限回の操作で互いに移りあ うことである.

この章では C_n-move を local move として説明し, Goussarov-Habiro Theorem (以後 G-H Theorem と呼ぶ)の local move の立場からの証明の方針を簡単に解説 する.

4.1 C_n -move

Definition 4.1. tangle とは unit 3-ball B^3 に proper に埋め込まれた arc の disjoint union のこととし, tangle Tが trivial であるとは B^3 内に proper に埋め込まれた disk で Tを含むものが存在することとする (すなわち, rational tangle).

local move を以下の条件を満たす trivial tangle の pair (T_1, T_2) とする; $\partial T_1 = \partial T_2$ であり, かつ T_1 の component t に対して, $\partial t = \partial u$ となる T_2 の component u が存 在する.

2 つの local move (T_1, T_2) , (U_1, U_2) が equivalent, $(T_1, T_2) \cong (U_1, U_2)$, であると は orientation preserving homeomorphism $\phi : B^3 \longrightarrow B^3$ が存在して, $\phi(T_i)$ が U_i と ambient isotopic rel. ∂B^3 (i = 1, 2) となるときをいう.

2 つの knot K_1, K_2 が local move (T_1, T_2) によって related であるとは orientation preserving embedding $h : B^3 \longrightarrow S^3$ が存在して $K_i \cap h(B^3) = h(T_i)$ (i = 1, 2) かつ $K_1 - h(B^3) = K_2 - h(B^3)$ となるときをいう.

Remark 4.2. 2つの knot K_1 , K_2 が local move (T_1, T_2) によって related であり $(T_1, T_2) \cong (U_1, U_2)$ ならば $K_1 \succeq K_2$ は local move (U_1, U_2) によって related である.

Definition 4.3.

(1) (T_1, T_2) を local move とし、 $\partial t_1 = \partial t_2$ となる arc $t_i \in T_i$ (i = 1, 2) を選ぶ. N_i

を $N_1 \cap \partial B^3 = N_2 \cap \partial B^3$ となる $t_i \mathcal{O}$ regular neighborhood とする.

図 20 のような $B^2 \times [0,1]$ を考える. 写像 ψ_i を

 $\psi_i: B^2 \times [0,1] \longrightarrow N_i$; homeomorphism

20:

とする. ただし, $\psi_i(B^2 \times \{0,1\}) = N_i \cap \partial B^3$. ここで, $\psi_1(\partial \alpha) = \psi_2(\partial \alpha)$. ($(T_1 - t_1) \cup \psi_1(\alpha), (T_2 - t_2) \cup \psi_2(\alpha)$)を (T_1, T_2)の component t_1, t_2 に関する double という. (簡単にいうと, local move の対応する arc を α に置き換える操作をその local move の double ということになる.)

 (2) C₁-move を図 21 の local move と定義し, C_k-move の double を C_{k+1}-move と 定義する.

21:

Example 4.4.

 C_2 -move

この2つの C_3 -move は、一見異なるように見えるが、equivalent である.

Remark 4.5. 定義より, C_n -move がいくつかの local move の族であることが分かるが, すべての C_n -move は図 36の C'_n -move ひとつから生成できる (Habiro[7]).

22:

local move (T_1, T_2) が Brunnian であるとは、任意の $t_1 \in T_1, t_2 \in T_2$ $(\partial t_1 = \partial t_2)$ に対して、 $T_1 - t_1$ が $T_2 - t_2$ に B^3 内で ambient isotopic rel. ∂B^3 であるときをいう.

Lemma 4.6. C_n -move \natural , Brunnian $c \mathfrak{s} \mathfrak{s}$.

Proof. C_1 -move は、Brunnian 、かつ Brunnian local move の double は Brunnian に なることにより示される.

次の lemma は前章の結果を用いて示すことができる.

Lemma 4.7. 2つの $knot K \ge J$ が C_{n+1} -equivalent ならば $K \ge J$ の order n 以下の Vassiliev invariant は一致する.

Proof. K が C_{n+1} -move 1 回で J に移るときを考えれば十分である.

 $T_1 = t_1 \cup t_2 \cup \dots \cup t_{n+2}, \ T_2 = u_1 \cup u_2 \cup \dots \cup u_{n+2} \quad (\partial t_{n+2} = \partial u_{n+2})$

とする. T_1 は trivial tangle なので, T_1 を含む embedded disk Dが存在する. (T_1, T_2) が Brunnian であることより,

$$t_1 \cup t_2 \cup \cdots \cup t_{n+1} = u_1 \cup u_2 \cup \cdots \cup u_{n+1}$$

とできる.図23のようなD上の diagram を考える.

23:

 $u_i \ge u_{n+2}$ の crossing のうち, u_{n+2} が u_i の over pass となっている crossing の集 合を $A_i \ge$ する. すると $A = \{A_1, A_2, \dots, A_{n+1}\}$ に関して J は K に (n+1)-similar となり, 証明される.

4.2 G-H Theorem の証明の方針

Lemma 4.7 の逆を考える.まず C_n -move を link の band-sum と見なす.

Definition 4.8. 図 24のように $\alpha \in B^3$ 内に proper に埋め込まれた arc, $\beta \in \partial B^3$ 上の arc とし $\partial \alpha = \partial \beta$ とする. 2 component link $\alpha \cup \beta \in C_1$ -link model (α, β) と呼ぶ.

24:

 C_k -link model (α, β) が定義されているとする.

$$\alpha : B^3$$
内の $k + 1$ 本の arc,
 $\beta : \partial B^3 \perp \mathcal{O} k + 1$ 本の arc, $\partial \alpha = \partial \beta$,
 $\alpha \cup \beta : k + 1$ component link.

 $\gamma \mathbf{\epsilon} \alpha \cup \beta \mathbf{0} 1 \mathbf{0} \mathbf{0}$ component, $N \mathbf{\epsilon} B^3 \mathbf{n} \mathbf{0} \mathbf{0} \gamma \mathbf{0}$ regular neighborhood, $V \mathbf{\epsilon}$ 図 25 のような handlebody とし, $V \mathbf{0}$ 底面を $D \mathbf{c} \mathbf{s} \mathbf{\zeta} . \psi(D) = N \cap \partial B^3 \mathbf{c}$ 満た す orientation preserving homeomorphism $\psi : V \longrightarrow N \mathbf{c} \mathbf{\xi} \mathbf{\zeta} \mathbf{\delta}$.

25:

このとき, C_{k+1} -link model を

$$((\alpha - \gamma) \cup \psi(\alpha_0), (\beta - \gamma) \cup \psi(\beta_0))$$

で定義する.また 上の操作を C_k -link model (α, β) の γ に関する double と呼ぶ.

Example 4.9.

example のように 2 つの kont $K \geq L$ が C_n -move (T_1, T_2) によって related であ るなら, K は, L とある C_n -link model の band sum で表される. さらに, C_n -move の inverse も C_n -move なので, L も, K とある C_n -link model の band sum で表され る. よって, 次の Lemma が成り立つ.

Lemma 4.10. $K \ge J \text{ if } C_n$ -equivalent ならば, J は K といくつかの C_n -link model の band sum で表される.

26:

Lemma 4.11. Jを K と C_k -link model の band sum とするとき, C_k -link model の band と knot の一部分の arc との crossing change は, C_{k+1} -move で実現される.

Sketch proof. k = 1のとき,

この move \mathbf{L} , C_2 -move そのもの. 後 \mathbf{L} , k に関する帰納法で証明する.

knot 全体の集合を \mathcal{K} と表すことにすると, \mathcal{K}/C_n -equiv. は群になる. 以下でその ことを確認する.

knot K を任意に選ぶ. C_2 -move と Δ -move は local move として equivalent なの で, K は trivial knot と C_2 -equivalent である.

上のことと Lemma 4.10 より, trivial knot を K とある C_2 -link model との band sum の形に表す. Lemma 4.11 より, C_3 -move で C_2 -link model の band を自由に滑 らせることができ,

trivial knot と C_3 -equivalent な knot $K \# K_2$ が得られる. すなわち,

$$K \# K_2 \xrightarrow[C_3-move]{C_3-move} \cdots \xrightarrow[C_3-move]{C_3-move} \bigcirc.$$

trivial knot は knot $K \# K_2$ といくつかの C_3 -link model の band sum であらわせ られる.上と同様に band を C_4 -move で滑らせて, trivial knot と C_4 -equivalent な knot $K \# K_2 \# K_3$ を得る.

これを繰り返すと, trivial knot と C_n -equivalent な knot $K \# K_2 \# \cdots \# K_{n-1}$ が得られる.

以上により、次が示せた.

Lemma 4.12. 任意の knot Kに対して, K # K'が trivial $knot \ge C_n$ -equivalent と なるような knot K'が存在する.

この Lemma は、逆元の存在を保証するものである. よって、 \mathcal{K}/C_n -equiv. は、connected sum に関して abelien group となる.

そこで,自然な写像 v

 $v: \mathcal{K} \longrightarrow \mathcal{K}/C_n$ -equiv.

を考えると、これは、singular knot 全体の集合 \mathcal{K}^* から \mathcal{K}/C_n -equiv. への写像

 $\bar{v}: \mathcal{K}^* \longrightarrow \mathcal{K}/C_n$ -equiv.

に拡張できる. この写像 \bar{v} に関して, $K^n \in n$ 個の double point を持つ singular knot とすると

$$\bar{v}(K^n) = 0$$

を示すことができる(ここの証明に非常に多くの議論が必要である).

これを認めると、 \bar{v} が order n-1 以下の Vassiliev invariant であると言える. よって、knot K と L の order n-1 以下の Vassiliev invariant が一致するならば

$$\bar{v}(K) = \bar{v}(L)$$

である. これはすなわち, $K \ge L$ が C_n -equivalent であることと同値である. 以上のような方針で G-H Theorem は証明される(Habiro[8]を参照のこと).

Lemma 4.10 と Lemma 4.11 は local move の性質としてもとても有益である.この性質を用いて link の local move に関する結果(Nakanishi-Ohyama[19], [20])も得られている.

5 C_n -move \succeq web diagram

 C_n -move は order n-1 以下の Vassiliev invariant は変えない. order n の Vassiliev invariant をどのくらい変えるかを考察する.

任意の C_n -move は 図 22 の C'_n -move で実現できる(Habiro[7])ので,この章で は C'_n -move を C_n -move と呼ぶことにする. C_2 -move は Δ -move と C_3 -move は clasp-pass move と equivalent であり,次の結果が知られている.

 C_2 -move : Δ -move

 C_3 -move : clasp-pass move

28:

Theorem 5.1 (T. Tsukamoto[34]).

(1) $K \ge K'$ が 互いに 1 回の C_2 -move で移り合うとき

$$v_2(K) - v_2(K') = \pm v_2($$
 $).$

(2) *K* と *K'* が 互いに 1 回の *C*₃-move で移り合うとき

$$v_3(K) - v_3(K') = \pm v_3($$
) or 0.

まず 2 つの knot $K \geq K'$ が 互いに 1 回の C_n -move で移り合うときの $v_n(K) \geq v_n(K')$ の差を singular knot の Vassiliev invariant であらわす.

Proposition 5.2. *K*, *K'* を (singular) knot とし, *K'* は *K* から 符号の異なる 2 つ の crossing $c_1 \ge c_2$ で crossing change することにより得られたとする. このとき

$$v_n(K) - v_n(K') = \operatorname{sign}(c_1) \{ v_n(K(\dot{c_1})) - v_n(K(\bar{c_1}\dot{c_2})) \}.$$

ここで, $K(\dot{c_1})$ は K から c_1 を double point にして得られた singular knot, $K(\bar{c_1}\dot{c_2})$) は K から c_1 で crossing change して, c_2 を double point にして得られた singular knot を意味する.

Proof. resolution tree を用いて計算する.

Vassiliev invariant の定義式より,

$$v_n(K) = v_n(K(\bar{c_1})) + \operatorname{sign}(c_1)v_n(K(\bar{c_1}))$$

= $v_n(K') + \operatorname{sign}(c_2)v_n(K(\bar{c_1}c_2)) + \operatorname{sign}(c_1)v_n(K(\bar{c_1})).$

よって,

$$v_n(K) - v_n(K') = \operatorname{sign}(c_1) \{ v_n(K(\dot{c_1})) - v_n(K(\bar{c_1}\dot{c_2})) \}$$

が得られる.

29:

Lemma 5.3. 図 29のように $K \ge K'$ が互いに 1 回の C_n -move で移り合うとき

$$v_n(K) - v_n(K') = \pm \sum_{i_j = \pm 1} \left\{ \prod_{i_j = 1}^{n} i_j v_n \left(K \begin{pmatrix} 1 & 2 & \dots & n \\ 1 & i_2 & \dots & i_n \end{pmatrix} \right) \right\}.$$
$$i_j = \pm 1$$
$$j = 2, \dots, n$$

ここで, $K\left(\begin{smallmatrix} 1 & 2 & \cdots & n \\ 1 & i_2 & \cdots & i_n \end{smallmatrix}\right)$ は K から以下の操作で得られる singular knot である.

$$\begin{cases} c_1 \mathbf{\hat{E}} \text{ double point ICJS.} \\ i_j = 1 \quad \Rightarrow \quad c_{j_1} \mathbf{\hat{E}} \text{ double point ICJS.} \\ i_j = -1 \quad \Rightarrow \quad c_{j_1} \mathbf{\hat{C}} \text{ crossing change } \mathbf{L} \\ c_{j_2} \mathbf{\hat{E}} \text{ double point ICJS.} \quad (j = 2, \dots, n) \end{cases}$$

Proof. K と K' は c_1 で crossing change すると同じ knot になるので

$$v_n(K) - v_n(K') = \{v_n(K(\bar{c}_1)) \pm v_n(K(\bar{c}_1))\} - \{v_n(K'(\bar{c}_1)) \pm v_n(K'(\bar{c}_1))\} = \pm \{v_n(K(\bar{c}_1)) - v_n(K'(\bar{c}_1))\}.$$

ここで, $K(\dot{c_1}) = K\begin{pmatrix} 1\\ 1 \end{pmatrix}$, $K'(\dot{c_1}) = K'\begin{pmatrix} 1\\ 1 \end{pmatrix}$ とおく. $K\begin{pmatrix} 1\\ 1 \end{pmatrix}$ と $K'\begin{pmatrix} 1\\ 1 \end{pmatrix}$ は $A_2 = \{c_{21}, c_{22}\}$ で crossing change すると同じ singular knot になる. よって Proposition 5.2 より,

$$v_{n} \left(K \left(\frac{1}{1} \right) \right) - v_{n} \left(K' \left(\frac{1}{1} \right) \right)$$

$$= \pm \left\{ v_{n} \left(K \left(\frac{1}{1} \frac{2}{1} \right) \right) - v_{n} \left(K \left(\frac{1}{1} \frac{2}{-1} \right) \right) \right\}$$

$$- \left[\pm \left\{ v_{n} \left(K' \left(\frac{1}{1} \frac{2}{1} \right) \right) - v_{n} \left(K' \left(\frac{1}{1} \frac{2}{-1} \right) \right) \right\} \right]$$

$$= \pm \left[\left\{ v_{n} \left(K \left(\frac{1}{1} \frac{2}{1} \right) \right) - v_{n} \left(K \left(\frac{1}{1} \frac{2}{-1} \right) \right) \right\} \right]$$

$$- \left\{ v_{n} \left(K' \left(\frac{1}{1} \frac{2}{1} \right) \right) - v_{n} \left(K' \left(\frac{1}{1} \frac{2}{-1} \right) \right) \right\} \right]$$

$$= \pm \left\{ \sum_{i_{2}=\pm 1} i_{2} v_{n} \left(K \left(\frac{1}{1} \frac{2}{i_{2}} \right) \right) - \sum_{i_{2}=\pm 1} i_{2} v_{n} \left(K' \left(\frac{1}{1} \frac{2}{i_{2}} \right) \right) \right\}$$

$$= \pm \sum_{i_{2}=\pm 1} i_{2} \left\{ v_{n} \left(K \left(\frac{1}{1} \frac{2}{i_{2}} \right) \right) - v_{n} \left(K' \left(\frac{1}{1} \frac{2}{i_{2}} \right) \right) \right\}.$$

 $K\begin{pmatrix} 1 & 2 \\ 1 & i_2 \end{pmatrix}$ と $K'\begin{pmatrix} 1 & 2 \\ 1 & i_2 \end{pmatrix}$ は $A_3 = \{c_{31}, c_{32}\}$ で crossing change すると同じ singular knot になる. これを繰り返すと,

$$v_n(K) - v_n(K') = \pm \sum_{\substack{i_j = \pm 1 \\ j = 2, \dots, n-1}} \prod_{i_j} \left\{ v_n \left(K \left(\begin{smallmatrix} 1 & 2 & \cdots & n-1 \\ 1 & i_2 & \cdots & i_{n-1} \end{smallmatrix} \right) \right) - v_n \left(K' \left(\begin{smallmatrix} 1 & 2 & \cdots & n-1 \\ 1 & i_2 & \cdots & i_{n-1} \end{smallmatrix} \right) \right) \right\}.$$

 $K\left(\begin{smallmatrix} 1 & 2 & \cdots & n-1 \\ 1 & i_2 & \cdots & i_{n-1} \end{smallmatrix}\right) \mathbf{\mathcal{E}} A_n = \{c_{n1}, c_{n2}\} \ \mathbf{\mathcal{C}} \text{ crossing change } \mathbf{\mathcal{I}SE}$ $K'\left(\begin{smallmatrix} 1 & 2 & \cdots & n-1 \\ 1 & i_2 & \cdots & i_{n-1} \end{smallmatrix}\right) \mathbf{\mathcal{L}SS}. \text{ Proposition } 5.2 \texttt{ JU},$

$$v_{n}(K) - v_{n}(K')$$

$$= \pm \sum_{i_{j} = \pm 1} \prod i_{j} \{ v_{n} \left(K \left(\begin{smallmatrix} 1 & 2 & \cdots & n \\ 1 & i_{2} & \cdots & 1 \end{smallmatrix} \right) \right) - v_{n} \left(K' \left(\begin{smallmatrix} 1 & 2 & \cdots & n \\ 1 & i_{2} & \cdots & -1 \end{smallmatrix} \right) \}$$

$$j = 2, \dots, n - 1$$

$$= \pm \sum_{i_{j} = \pm 1} \prod i_{j} v_{n} \left(K \left(\begin{smallmatrix} 1 & 2 & \cdots & n \\ 1 & i_{2} & \cdots & i_{n} \end{smallmatrix} \right) \right).$$

$$i_{j} = \pm 1$$

$$j = 2, \dots, n$$

_	_	_	_

 $\sum_{i_j=\pm 1} \prod_{i_j K \begin{pmatrix} 1 & 2 & \cdots & n \\ 1 & i_2 & \cdots & i_n \end{pmatrix}$ を web diagram であらわす.

$$\sum_{\substack{i_j = \pm 1 \\ j = 2, \dots, n}} \prod_{\substack{i_j \in K \left(\begin{array}{ccc} 1 & 2 & \cdots & n \\ 1 & i_2 & \cdots & i_n \end{array} \right) \\ = \sum_{\substack{i_j = \pm 1 \\ j = 3, \dots, n-1}} \prod_{\substack{i_j \in K \left(\begin{array}{ccc} 1 & 2 & 3 & \cdots & n \\ 1 & 1 & i_3 & \cdots & i_n \end{array} \right) - K \left(\begin{array}{ccc} 1 & 2 & 3 & \cdots & n \\ 1 & -1 & i_3 & \cdots & i_n \end{array} \right) \right\}.$$

 c_{21}, c_{22} どちらかを double point にしているので, web diagram は

となる. STU-relation より,

$$\sum_{i_j = \pm 1} \prod_{i_j \in K} \left(\begin{smallmatrix} 1 & 2 & \cdots & n \\ 1 & i_2 & \cdots & i_n \end{smallmatrix} \right) = \pm \sum_{i_j = \pm 1} \prod_{i_j \in K} \left(\begin{smallmatrix} 1 & 2 & 3 & \cdots & n \\ 1 & \cdot & i_3 & \cdots & i_n \end{smallmatrix} \right).$$

$$j = 2, \dots, n \qquad \qquad j = 3, \dots, n$$

$$\pm \sum_{i_j = \pm 1} \prod_{i_j \in K} \left(\begin{smallmatrix} 1 & 2 & 3 & \dots & n \\ 1 & \cdot & i_3 & \dots & i_n \end{smallmatrix} \right)$$
$$i_j = 3, \dots, n$$

図 31:

 $\mathrm{STU}\text{-relation} \; [\texttt{LJU},$

$$\sum_{i_j = \pm 1} \prod_{i_j \in K} \left(\begin{smallmatrix} 1 & 2 & 3 & \cdots & n \\ 1 & \cdot & i_3 & \cdots & i_n \end{smallmatrix} \right) = \pm \sum_{i_j = \pm 1} \prod_{i_j \in K} \left(\begin{smallmatrix} 1 & 2 & 3 & \cdots & n \\ 1 & \cdot & \cdot & \cdots & i_n \end{smallmatrix} \right).$$
$$i_j = \pm 1$$
$$j = 3, \dots, n$$
$$j = 4, \dots, n$$

 $\texttt{zzc}, K(\begin{smallmatrix} 1 & 2 & 3 & \dots & n \\ 1 & \cdot & \cdots & in \end{smallmatrix}) \texttt{l}$

となる web diagram である.

これを繰り返すと、結局次を得る.

$$\sum_{i_j = \pm 1} \prod_{i_j \in K} \left(\begin{smallmatrix} 1 & 2 & \cdots & n \\ 1 & i_2 & \cdots & i_n \end{smallmatrix} \right) = \pm K \left(\begin{smallmatrix} 1 & 2 & \cdots & n \\ 1 & 2 & \cdots & 2 \end{smallmatrix} \right).$$
$$j = 2, \dots, n$$

この右辺は internal graph が standard *n*-tree となっている web diagram である. 以上より,次の定理が得られる.

Theorem 5.4 (Ohyama-Tsukamoto[28]). $K \geq K'$ が互いに1回の C_n -moveで移り合うとき,

$$v_n(K) - v_n(K') = \pm v_n(T_{\sigma}).$$

ここで, T_{σ} は order n の one-branch tree diagram である.

例えば図 32 の場合

$$v_n(K) - v_n(K') = \pm v_n($$
)

となる.

図 32:

Remark 5.5.

- ・ T_{σ} が同じならば, knot のどこで C_n -move を行っても $v_n(K)$ の変化は同じである.
- ・ C_n -move $(n \ge 3)$ を行っても knot type が変わらない例がある.

図 33:

G-H Theorem と Theorem 5.4 より, Lemma 2.9 は次のように一般化される.

Lemma 5.6 (Lemma 2.9 の一般の場合).

Abelian group に値をとる Vassiliev invariant を考える. 2つの knot K と K' の order n-1 以下の Vassiliev invariant が一致するならば

$$v_n(K) - v_n(K') = \sum_{\sigma \in S_n} a_\sigma v_n(T_\sigma)$$

が成立する.ここで, a_{σ} は整数, T_{σ} は order n の one-branch tree diagram である.

具体的に Vassiliev invariant が与えられたときに C_n -move 1回でその値がどの程 度変わるか,実際の計算例をあげる.

 a_n を Conway polynomial $\nabla(z)$ の z^n の係数, $V_K^{(n)}(1)$ を Jones polynomial の n階微分した後 t = 1 を代入したものとする.

 K^n … を n 個の double point を持つ singular knot としたとき, [Kanenobu-Miyazawa[10]] より次の式が成立する.

2 34:

図 35:

Theorem 5.4 の one-branch tree diagram を chord diagram の一次結合であらわし, [Kanenobu-Miyazawa[10]]の結果を用いると具体的に計算は可能となる.

Theorem 5.7 (H. Miyazawa [15]).

 $link L \mathrel{\mathrel{\sc l}} L' \mathrel{\acute{m}} 1$ 回の C_n -move $(n \ge 3)$ で移り合うとき

$$a_n(L) - a_n(L') \equiv 0 \pmod{2}.$$

Remark 5.8.

・n = 2 のとき, $a_2(K) - a_2(K') = \pm 1$ (Okada [30], Tsukamoto[34]).

・ $L \ge L'$ が knot のときは Theorem 3.5 で既に示されている.

Theorem 5.9 (H. Miyazawa [15]).

 $link L \ge L'$ が1回の C_n -move $(n \ge 3)$ で移り合うとき

$$V_L^{(n)}(1) - V_{L'}^{(n)}(1) \equiv 0 \pmod{6n!}.$$

Remark 5.10. order が低い場合,より厳密に計算されている. (1) *K* と *K*' が 1 回の *C*₂-move で移り合うとき

 $|V_L^{(2)}(1) - V_{L'}^{(2)}(1)| = 6$ (Tsukamoto [34]).

(2) K と K' が 1 回の C₃-move で移り合うとき

 $|V_L^{(3)}(1) - V_{L'}^{(3)}(1)| = 36 \text{ or } 0 \quad (\text{Tsukamoto } [34]).$

(3) K と K' が 1 回の C₄-move で移り合うとき

 $|V_L^{(4)}(1) - V_{L'}^{(4)}(1)| = 288 \text{ or } 144 \text{ or } 0 \quad (\text{Matsuzaka [13]}).$

6 unknotting number one knot と Vassiliev invariant

この章では前章の Theorem 5.4 と Lemma 5.6 を用いて,次の結果を示す.

Theorem 6.1 (Ohyama-Taniyama-Yamada[27], Ohyama[24]).

任意に自然数 n と knot K が与えられたとき, order n 以下の Vassiliev invariant が

K と一致する unknotting number one knot が無限個存在する.

Proof.

図 36:

図 36 の local move は C_n -move と equivalent であり, ここではこの local move を用いる.

与えられた knot K に対して order n までの Vassiliev invariant が K と等しい knot を 図 37 の trivial knot K_0 から構成していく.

図 37:

 $K \geq K_0$ は order 1 の Vassiliev invariant が等しい. Lemma 5.6 より,

$$v_2(K) - v_2(K_0) = \sum_{\sigma \in S_2} a_{\sigma} v_2(T_{\sigma}).$$

ここで、 T_{σ} は order 2 の one-branch tree diagram であるので、 $a_{\sigma} > 0$ のとき $v_2(T_{\sigma})$ 変化させる C_2 -move を a_{σ} 回 $a_{\sigma} < 0$ のとき $-v_2(T_{\sigma})$ 変化させる C_2 -move を $|a_{\sigma}|$ 回 を K_1 とする.

図 38:

Theorem 5.4 より, $K \geq K_1$ は order 2 以下の Vassiliev invariant が等しい. Lemma 5.6 より,

$$v_3(K) - v_3(K_1) = \sum_{\sigma \in S_3} a_{\sigma} v_3(T_{\sigma}).$$

ここで、 T_{σ} は order 3 の one-branch tree diagram であるので、前と同様に必要な C_3 -move を K_1 に施し、できた knot を K_2 とする. Theorem 5.4 より、 $K \ge K_2$ は order 3 以下の Vassiliev invariant が一致、以下これを繰り返す.

2 39:

 $K \geq K_{n-1}$ は order n 以下の Vassiliev invariant が一致している. そこで, $v_{n+1}(T_{\sigma}) \neq 0$ となるような order n+1 の one-branch tree diagram T_{σ} を選び, 対応する C_{n+1} -move を K_{n-1} に繰り返し施す. それらを

$$K_{n-1} = J_1, J_2, J_3, \dots$$

とすると、 $\{J_i\}$ は order n 以下の Vassiliev invariant は K と同じで、order n+1の Vassiliev invariant がすべて異なるような unknotting number one knot の集合である.

Theorem 6.1 の unknotting number という条件を ∆ unknotting numer に置き換 えた結果も成立する. Theorem 6.2 (H. Yamada [35]).

任意に自然数 $n \ge knot K$ が与えられたとき, order n 以下の Vassiliev invariant が $K \ge -$ 致し, 次の条件を満たす無限個の $knot J_1, J_2, J_3, \ldots$ が存在する.

- (1) $a_2(K) \neq 0$ のとき $U_{\Delta}(J_m) = |a_2(K)|$.
- (2) $a_2(K) = 0$ のとき $U_{\Delta}(J_m) = 2$ (m = 1, 2, ...).

ここで, $U_{\Delta}(\cdot)$ は Δ unknotting number である.

r 個の trefoil

r 個の figure-eight

trefoil # figure-eight

2 40:

Idea of Proof. $a_2(K)$ の値によってスタートの knot (Theorem 6.1 の証明における K_0) を図 40 のように用意する. これを C_n -move と equivalent な図 41 の C''_n -move で変形していく.

前の2つの Theorem の条件を満たし,更に order 3 の Vassiliev invariant の条件 を付け加えた次の結果も得られている. Theorem 6.1, Theorem 6.2 の証明のアイデ アを基に,より精密に knot を構成することによって証明される. 詳しい証明は [29] を参照のこと.

Theorem 6.3 (Ohyama-H. Yamada [29]).

任意に自然数 $n \ge knot K$ が与えられたとき, order n 以下の Vassiliev invariant が $K \ge -$ 致し, 次の条件を満たす無限個の $knot J_1, J_2, J_3, \ldots$ が存在する.

(1)
$$U(J_m) = 1$$
 $(m = 1, 2, ...).$

(2)
$$a_2(K) \neq 0$$
 のとき $U_{\Delta}(J_m) = |a_2(K)|.$

 $a_2(K) = 0$ のとき $U_{\Delta}(J_m) = 2$ (m = 1, 2, ...).

(3) $a_2(K) = p$ で $V_K^{(3)}(1) - V_{T_p}^{(3)}(1) = 36q$ としたとき

 $d_{cp}(J_m, T_p) = q \ (|q| \ge 2).$ $d_{cp}(J_m, T_p) \le 3 \ (|q| = 1).$ $d_{cp}(J_m, T_p) \le 2 \ (q = 0) \qquad (m = 1, 2, ...).$

ここで, $U(\cdot)$ は unknotting number, $d_{cp}(\cdot, \cdot)$ は clasp-pass (C_3 -move) distance で 2 つの knot が clasp-pass move で移りあうときの必要な clasp-pass move の最小回 数を意味する.また T_p は a_2 の値が p である twist knot とする.

₩ 42: : T_p

7 spatial graph \succeq Vassiliev type invariant

この章では Vassiliev invariant の spatial graph への拡張とその応用について述べる.

Gを finite graph, Gの R^3 への embedding 全体の集合を SE(G) と書くことにす る. $f \in SE(G)$ あるいは f(G)を spatial graph と呼ぶ. また,連続写像で、多重点 が辺同士の transversal な double point (crossing vertex と呼ぶ)のみであるような ものを singular embedding と呼び, double point がちょうど *i* 個のとき, *i*-singular embedding と呼ぶことにする. Gの R^3 への *i*-singular embedding 全体の集合を $SE_i(G)$ と表す.

7.1 spatial graph \mathcal{O} Vassiliev type invariant

Definition 7.1. Gの edge に任意に orientation をつけておく. Rを unit 1 を持つ 可換環とする. ambient isotopy invariant $v : SE(G) \longrightarrow R$ が与えられると,

$$v_{(i)}(\checkmark) = v_{(i-1)}(\checkmark) - v_{(i-1)}(\checkmark)$$

によって ambient isotopy invariant $v_{(i)} : SE_i(G) \longrightarrow \mathbf{R}$ に拡張できる.

 $v_{(n+1)}: SE_{n+1}(G) \longrightarrow \mathbf{R}$ が zero map となるような最小値 n をとり, v を order n の Vassiliev type invariant と呼ぶ.

 $f \in SE_i(G)$ に対して, crossing vertex の逆像である $G \perp 0.2$ 点を chord で結 んだ図形を order i の chord diagram といい, chord diagram の realization とは i-singular embedding f で, crossing vertex が与えられた chord diagram に対応して いるものをいう. ここで subgraph の Vassiliev invariant から spatial graph の Vassiliev invariant を構成する.cycle をもつ graph に対しては, knot の Vassiliev invariant を用いて Vassiliev type invariant を定義することが可能になるのである.

Definition 7.2. *G* を a finite graph, $\Omega(G)$ を *G* の subgraph 全体の集合, Γ を $\Omega(G)$ の subset とする.

 $\gamma \in \Gamma \subset \Omega(G)$ に対して, order $n \mathcal{O}$ Vassiliev invariant $v_{\gamma} : SE(\gamma) \longrightarrow \mathbf{R}$ が与え られているとする. また, $\omega : \Gamma \longrightarrow \mathbf{R}$ を map とする.

$$v = v(\{v_{\gamma}\}, \omega) : SE(G) \longrightarrow \mathbf{R}$$

を次の式で定義する.

$$v(f) = \sum_{\gamma \in \Gamma} \omega(\gamma) v_{\gamma}(f|_{\gamma}) \qquad (f \in SE(G)).$$

 $(\Gamma = G, \omega(G) = 1$ のとき, Definition 7.1 の Vassiliev invariant になっている.)

Proposition 7.3. $v = v(\{v_{\gamma}, \omega\})$ は spatial graph に対する order n 以下の Vassiliev type invariant である.

Proof. $f \in SE_{n+1}(G)$ とし, $c_1, c_2, \ldots, c_{n+1}$ でf(G)の crossing vertex を表す. P を $\{1, 2, \ldots, n+1\}$ の subset とする.更に f_P を SE(G)の element で f から以下の 操作で得られるものとする;

 $i \in P$ ならば $c_i \mathbf{\hat{e}} + \text{crossing}$ にし, $i \notin P$ ならば $c_i \mathbf{\hat{e}} - \text{crossing}$ にする. このとき, $v_{(n+1)}(f)$ は Definition7.1より,以下のように書ける.

$$v_{(n+1)}(f) = \sum_{P \subset \{1,\dots,n+1\}} (-1)^{n+1-|P|} v(f_P)$$
$$= \sum_{P \subset \{1,\dots,n+1\}} (-1)^{n+1-|P|} \left(\sum_{\gamma \in \Gamma} \omega(\gamma) v_{\gamma}(f_P|_{\gamma}) \right)$$
$$= \sum_{\gamma \in \Gamma} \omega(\gamma) \left(\sum_{P \subset \{1,\dots,n+1\}} (-1)^{n+1-|P|} v_{\gamma}(f_P|_{\gamma}) \right).$$

よって任意の $\gamma \in \Gamma$ に対して,

$$\sum_{P \subset \{1, \dots, n+1\}} (-1)^{n+1-|P|} v_{\gamma}(f_P|_{\gamma}) = 0$$

を示せばよい.

ある c_i が $f|_{\gamma}$ の crossing vertex でないとき, $f_P|_{\gamma}$ と $f_{P-\{i\}}|_{\gamma}$ が ambient isotopic より

$$\sum_{\substack{P \subset \{1, \dots, n+1\} \\ P \subset \{1, \dots, n+1\}}} (-1)^{n+1-|P|} v_{\gamma}(f_{P}|_{\gamma})$$

=
$$\sum_{\substack{P \subset \{1, \dots, n+1\} \\ i \in P}} ((-1)^{n+1-|P|} v_{\gamma}(f_{P}|_{\gamma}) + (-1)^{n+1-(|P|-1)} v_{\gamma}(f_{P-\{i\}}|_{\gamma}))$$

= 0.

すべての c_i が $f|_{\gamma}$ の crossing vertex であるとき, v_{γ} は order nの Vassiliev invariant より

$$\sum_{\substack{P \subset \{1, \dots, n+1\} \\ = (v_{\gamma})_{(n+1)}(f|_{\gamma})} (-1)^{n+1-|P|} v_{\gamma}(f_{P}|_{\gamma})$$

= 0.

任意の spatial graph において order n の Vassiliev invariant が等しいということ は次のように言い換えられる.

Theorem 7.4.

vを order nの Vassiliev invariant とする.このとき次の条件は互いに同値である.

- (1) 任意の $f, g \in SE(G)$ に対して, v(f) = g(f).
- (2) 任意の *i*-singular embedding $f \in SE_i(G)$ $(1 \le i \le n)$ に対して, $v_{(i)}(f) = 0$.
- (3) Gの任意の order i の chord diagram $c \ (1 \le i \le n)$ に対して, その realization $f_c \in SE_i(G)$ で, $v_{(i)}(f_c) = o$ となるものが存在する.

Proof.

 $(1) \Rightarrow (2) (1) \texttt{JU},$

$$v_{(1)}(f) = v(f_+) - v(f_-) = 0.$$

よって, 任意の $f \in SE_1(G)$ に対して, $v_{(1)}(f) = 0$. 以下, これを繰り返せばよい. $(2) \Rightarrow (1)$ 任意の $f, g \in SE(G)$ に対して g(G) は f(G) から crossing change によっ て得られる . $v_{(1)}(f) = 0$ より v(f) = v(g). $(2) \Rightarrow (3)$ 明らか.

 $(3) \Rightarrow (2)$ 任意に $f \in SE_n(G)$ を選び, $f \mathcal{O}$ chord diagram を cとする. f_c を

$$v_{(n)}(f_c) = 0$$

となる c の realization とする. $f \geq f_c$ は edge の crossing change で移り合う. また, 任意の $g \in SE_{n+1}(G)$ に対しては, $v_{(n+1)}(g) = 0$. よって

$$v_{(n)}(f) = v_{(n)}(f_c) = 0.$$

この操作を繰り返していけばよい.

68
Remark 7.5.

Conway と Gordon([4]) により,次の結果が示されている.

- (1) 任意の $f \in SE(K_6)$ に対して, $f(K_6)$ は subgraph として non-split link を含む.
- (2) 任意の $f \in SE(K_7)$ に対して, $f(K_7)$ は subgraph として non-trivial knot を 含む.

[4] の証明において, (1) に対しては linking number modulo 2, (2) については Arf invarinat が用いられているのであるが,次のように Definition 7.2 の特別な Vassiliev type invariant をもちいていると解釈することができる.

(1) $G = K_6$, $\Gamma = \{K_3 \sqcup K_3\}$ とし $\gamma \in \Gamma$ に対して, $\omega(\gamma) = 1$ とおく. v_{γ} を order 1 の Vassiliev invariant である linking number modulo 2 とおく.

$$v(v_{\gamma},\omega) = \sum_{\gamma \in \Gamma} \mathrm{l}k(\gamma) \pmod{2}.$$

任意の $f,g \in SE(K_6)$ に対して,

$$v(v_{\gamma},\omega)(f) = v(v_{\gamma},\omega)(g)$$

であることがわかり, さらに, ある $f \in SE(K_6)$ について,

$$v(v_{\gamma},\omega)(f) = 1 \pmod{2}$$

より 任意の $f \in SE(K_6)$ に対して $f(K_6)$ は linking number が奇数の link を subgraph として含むことになる.

(2) $G = K_7$, $\Gamma = \{\text{Hamilton cycle}\} とし \gamma \in \Gamma invariant (<math>a_2(\gamma) \pmod{2}$) とおき, (1) と同様な方法で示すことができる.

spatial graph の他の同値関係のもとで,次のような結果も成立する.詳しい証明 等に関しては [26] を参照のこと. Definition 7.6 (Taniyama[33]).

 $f,g \in SE(G)$ に対して,

- g(G)がf(G)から同一の edge の crossing change で得られるとき、fとgとは "edge-homotopic"であるという。
- g(G)がf(G)から adjacent edge (同一の vertex を端点とする edge)の crossing change で得られるとき、fとgとは "vertex-homotopic" であるという.

Theorem 7.7 (Ohyama-Taniyama[26]).

vを order nの Vassiliev invariant とする.このとき次の条件は同値である.

- (1) 任意の $f, g \in SE(G)$ に対して, $f \geq g \, \check{n}$ edge-homotopic ならば, v(f) = g(f).
- (2) 任意の *i*-singular embedding $f \in SE_i(G)$ $(1 \le i \le n)$ に対して, f(G) が同一辺 上に少なくとも 1 つの crossing vertex を持つならば, $v_{(i)}(f) = 0$.
- (3) Gの order i の chord diagram $(1 \le i \le n)$ で同一辺に端点を持つ chord が少 なくとも1つあるものを c とする. このとき c の realization f_c で, $v_{(i)}(f_c) = o$ となるものが存在する.

Theorem 7.8 (Ohyama-Taniyama[26]).

- vを order nの Vassiliev invariant とする.このとき次の条件は同値である.
 - (1) 任意の $f, g \in SE(G)$ に対して, $f \geq g$ が vertex-homotopic ならば, v(f) = g(f).
 - (2) 任意の *i*-singular embedding $f \in SE_i(G)$ $(1 \le i \le n)$ に対して, f(G) が adjacent edge 間に少なくとも1つの crossing vertex を持つならば, $v_{(i)}(f) = 0$.

(3) Gの order i の chord diagram (1 ≤ i ≤ n) で adjacent edge に端点を持つ chord が少なくとも1つあるものを c とする. このとき c の realization f_c で, v_(i)(f_c) = 0 となるものが存在する.

7.2 spatial graph への応用

前節で定義した spatial graph の Vassiliev type invariant を spatial graph 独自の 問題に応用する.

 $\{c_1, c_2, \ldots, c_r\}$ を Gの cycle 全体とする. また, 各 cycle に対して任意の embedding $f_i : c_i \to R^3 \ (i = 1, 2, \ldots, r)$ が与えられているとする. このとき G から $R^3 \land o$ embedding f で, $f|_{c_i}$ が f_i と ambient isotopic となるものが存在するならば, graph G は adaptable であるという.

Example 7.9. 今まで知られている adaptable, non-adaptable graph.

adaptable graph の例:

non-adaptable graph の例:

× 43:

図 43 のように *m*-cycle (*m*本の edge からなる cycle)の edge をすべて double $\{e_i, d_i\}(i = 1, 2, \dots, m)$ にした graphを G_m とおく.

 $\omega: \Omega(G_m) \to R$ を以下で定義する.

$$\omega(\gamma) := \begin{cases}
1 : \gamma \, t m \text{-cycle } \mathbf{c} \{d_1, d_2, \dots, d_m\} \, \mathbf{0} \, \mathbf{5} \, \mathbf{f} \, \mathbf{g} \, \mathbf{d} \, \mathbf{f} \, \mathbf{f} \, \mathbf{f} \\
-1 : \gamma \, t m \text{-cycle } \mathbf{c} \{d_1, d_2, \dots, d_m\} \, \mathbf{0} \, \mathbf{5} \, \mathbf{5} \, \mathbf{g} \, \mathbf{d} \, \mathbf{f} \, \mathbf{f} \, \mathbf{f} \\
0 : \mathbf{c} \, \mathbf{c} \, \mathbf{f} \, \mathbf{f$$

また、 v_{γ} を

$$v_{\gamma} := \begin{cases} v \text{ (order} n \mathbf{O} \text{ Vassiliev invariant)} & : \gamma \text{ } n \text{-cycle} \\ 0 & : それ以外 \end{cases}$$

とする.

Theorem 7.10 (Ohyama-Taniyama[26]).

n < m/2 のとき $v = v(v_{\gamma}, \omega)$ は zero map になる.

Proof. n < m/2 のとき, 任意の order i の chord diagram $(1 \le i \le n)$ には chord の 端点がない edge e_j, d_j が存在する. e_j, d_j のつくる 2 辺形が disk を張る embedding

fc を考えると

$$v_{(i)}(f_c) = 0.$$

Theorem 7.4 より, 任意の $f, g \in SE(G_m)$ に対して,

v(f) = v(g)

また G_m の plannar embedding に対して v = 0.よって任意の $f \in SE(G_m)$ に対して

$$v(f) = 0.$$

Corollary 7.11. G_5 \ddagger non-adaptable $\neg \sigma \sigma$.

Proof. G_5 が adaptable であると仮定する. 1つの m-cycle に trefoil, それ以外を trivial にする embedding を f とする.また v_{γ} を order 2の Vassiliev invariant と おく.すると

$$v(v_{\gamma},\omega)(f) = \pm 1.$$

m = 5, n = 2 とすると Theorem 7.10 に矛盾. よって G_5 は non-adaptable .

 G_5 は non-adaptable な planar graph の最初の例である(今ではいくつか他の例 も知られている).

ー般に同じ辺上の crossing vertex c で c から c への arc が disk を張るとき, c を nugatory self-crossing と呼ぶ.

vertex p を端点とする adjacent edge e, d間の crossing vertex c で e 上の p と c を結 ぶ arc と d 上の p と c を結ぶ arc とで disk を張っているとき, c を nugatory crossing of adjacent edges という.

 $f \in SE(G)$ が nugatory self-crossing か nugatory crossing of adjacent edges を持 つならば

$$v_{(i)}(f) = 0 \quad (1 \le i \le n).$$

 $G = G_m, v = v(\{v_{\gamma}\}, \omega)$ のとき, $e_l \ge d_l \, \check{n}$ disk を張ると,v = 0 となることと上の事実を用いると次の結果が得られる.

Theorem 7.12 (Ohyama-Taniyama[26]). $G = G_m, v = v(\{v_\gamma\}, \omega)$ とするとき以下が成立する.

- (1) n < (m+2)/2 **t**S**i**, *v***i** edge-homotopy invariant.
- (2) n < (m+1)/2 **x \in u**, $v \mid u$ vertex-homotopy invariant.

更に次のような言葉を用意する.

• $\Lambda \in \{1, 2, ..., m\}$ の subset とする. G_m の *i*-singular embedding f が Λ に関 して locally parallel であるとは, $f(\bigcup_{l \in \Lambda} (e_l \cup d_l))$ には fの crossing vertex が 存在しなくて, かつ各 $l \in \Lambda$ において, $e_l \ge d_l$ は, $f|_{\bigcup_{l \in \Lambda} (e_l \cup d_l)}$ で parallel になっ ているときをいう. 例) $\Lambda = \{1, 2\}$

fが Λ に関して up to edge-homotopy (resp. vertex-homotopy) で locally parallel であるとは、f(U_{l∈Λ}(e_l ∪ d_l)) は crossing vertex を持たなくて、かつ f|_{U_{l∈Λ}(e_l∪d_l)}が各 l ∈ Λ に対して e_l と d_lが parallel となるような h ∈ SE(U_{l∈Λ}(e_l∪d_l)) に edge-homotopic (resp. vertex-homotopic) になっていることとする.

Theorem 7.13 (Ohyama-Taniyama[26]).

 $|\Lambda| = k$ とする. $n \leq k - 1$ かつ $f \in SE(G_m)$ が Λ に関して locally parallel なら,

$$v(f) = v(\{v_{\gamma}\}, \omega)(f) = 0.$$

Proof. $1 \leq i \leq k$ となる *i* に対して, $T_i(G_m)$ を $|\Delta| = k - i$ となる $\Delta \subset \Lambda$ に関して locally parallel な *i*-singular embeddings の集合とする.

 $g \in T_i(G_m)$ ならば, $l \in \Delta$ となるようなlに対して e_l , d_l が parallel となる embedding $h \in T_i(G_m)$ に crossing change で移る. $v(g) \ge v(h) = 0 \ge \mathcal{O}$ 差は, $T_{i+1}(G_m) \mathcal{O}$ embedding $v \mathcal{O}$ 値によって決まる.

i = kのとき, 任意の $g \in T_k(G_m)$ に対して v(g) = 0 $(n \le k - 1)$ なので, 任意の $f \in T_{k-1}(G_m)$ に対して v(f) = 0. 順次繰り返していくと, 任意の $f \in T_1(G_m)$ に対し て v(f) = 0. $f \in SE(G_m)$ かつ f が Λ に関して locally parallel ならば v(f) = 0.

Theorem 7.14 (Ohyama-Taniyama[26]: 前定理の edge-homotopy version). $f, g \in SE(G_m)$ が任意の $|\Lambda| = k \le m - 1$ となる $\Lambda \subset \{1, 2, ..., m\}$ に関して *locally* parallel up to edge-homotopy であるとする. $n \le k \ \c f \ge g \ \c dge$ -homotopic なら ば, v(f) = v(g).

Proof. $1 \le i \le k$ となる *i* に対して, $T_i(G_m)$ をある $\Delta \subset \Lambda$ ($|\Delta| = k - i + 1$) に関して up to edge-homotopy で locally parallel な i-singular embedding の set とする.

任意の $h \in T_i(G_m)$ について, locally palallel な embedding を u とすると次の図 式が得られる.

i = kのとき, 任意の $g \in T_k(G)$ について,

$$g \longrightarrow \cdots \longrightarrow u \longrightarrow \cdots \longrightarrow \cdots \longrightarrow$$

self-crossing change crossing change $\lambda \to \cdots \to \lambda$
 $k+1$ 個の crossing vertex を持つ
つまり $v = 0$ $bar a l \in \Delta$ ($|\Delta| = 1$)が
あって、 $e_l \ge d_l$ が parallel になっている embedding

よって, v(g) = 0.

順次繰り返すと、任意の $f \in T_1(G_m)$ に対してv(f) = 0. f, gが任意の Λ ($|\Lambda| = k$) に関して up to edge-homotopy で locally parallel かつ $f \geq g$ が edge-homotopic な ので, f から g への self-crossing change の際出現する 1-singular embedding h は $h \in T_1(G_m) \ge$ なる.

> $f \longrightarrow \cdots \longrightarrow g$ あるムに関して up to edge-homotopy で locally parallel

2 44:

よって
$$v(f) = v(g)$$
.

Example 7.15. Theorem 7.14 を用いて vertex-homotopic であるが edge-homotopic でない例を構成することができる.

図 44 の $\widetilde{G_m}$ は任意の $|\Lambda| = m - 1$ となる $\Lambda \subset \{1, 2, ..., m\}$ に対して locally parallel. $\widetilde{G_m}$ を G_m の planar embedding とすると同様に任意の Λ に対して locally parallel.

 $\widetilde{G_m}' \mathcal{E} \widetilde{G_m}$ は図より vertex-homotopic である.更に edge-homotopic であると仮定する.

Theorem 7.14 より $\widetilde{G_m}$ と $\widetilde{G_m}$ が edge-homotopic ならば, $n \le m-1$ で

$$v(\widetilde{G_m}') = v(\widetilde{G_m}) \quad (v = (\{v_\gamma\}, \omega))$$

とならなければいけない.

$$\begin{cases} v_{\gamma} = \begin{cases} V_{\gamma}^{(n)}(1) : \gamma \not{n} \text{ m-cycle} \\ 0 : \text{ それ以外} \end{cases}$$
$$\omega(\gamma) = \begin{cases} 1 : \gamma \not{n} \text{ m-cycle } \mathfrak{C} \{d_1, d_2, \dots, d_m\} \text{ のうち偶数個を含む} \\ -1 : \gamma \not{n} \text{ m-cycle } \mathfrak{C} \{d_1, d_2, \dots, d_m\} \text{ のうち奇数個を含む} \\ 0 : \text{ それ以外} \end{cases}$$

と定める.

 $\widetilde{G_m}'$ において d_1, d_2, \ldots, d_m の m-cycle による knot を J_m とおくと,

$$V_{J_m}(t) = 1 + (1 + t^{-2})^{m-3}(t^2 + t + 1)(1 - t^{-1})^{m-1}$$
$$V_{J_m}^{(m-1)}(1) = 3 \cdot (m-1)! \cdot 2^{m-3}.$$

n = m - 1のとき,

$$v(\widetilde{G_m}') = \pm (-1)^m \cdot 3 \cdot (m-1)! \cdot 2^{m-3}$$
$$v(\widetilde{G_m}) = 0.$$

よって $\widetilde{G_m}'$ と $\widetilde{G_m}$ は edge-homotopic ではない.

参考文献

- D. Bar-Natan, On the Vassiliev knot invariants, Topology 34 (1995), No. 2, 423–472.
- [2] J. S. Birman, New point of view in knot theory, Bull. Amer. Math. Soc.(N.S.)
 28 (1993), 253-287.
- [3] J. S. Birman and X.-S. Lin, Knot polynomials and Vassiliev's invariants, Invent. Math. 111 (1993), No. 2, 225–270.
- [4] J. H. Conway and C. McA. Gordon, *Knots and links in spatial graphs*, J. Graph Theory 7 (1983), No. 4, 445–453.
- [5] M. N. Gusarov, On n-equivalence of knots and invariants of finite degree, in Topology of Manifold and Varieties (ed. O. Viro), Adv. Soviet Math. 18 (1994).
- [6] M. N. Goussarov, Knotted graphs and a geometrical technique of n-equivalence, POMI Sankt Petersburg preprint, circa 1995 (in Russian).
- [7] K. Habiro, Master Thesis, University of Tokyo, 1994.
- [8] K. Habiro, Clapers and finite type invariants of links, Geometry and Topology 4 (2000), 1–83.
- T. Kanenobu, Examples on polynomial invariants of knots and links, Math. Ann. 275 (1986), 555–572.
- [10] T. Kanenobu and Y. Miyazawa, HOMFLY polynomials as Vassiliev link invariants, Knot theory (Warsaw, 1995), Polish Acad. Sci., Warsaw, 1998, 165–185.

- [11] S. Kinoshita, On θ_n -curves in \mathbb{R}^3 and their constituent knots, Topology and computer science (Atami, 1986), Kinokuniya, Tokyo, 1987, 211–216.
- [12] X.-S. Lin, Finite type link invariants of 3-manifolds, Topology 33 (1994), No. 1, 45–71.
- [13] B. Matsuzaka, Master Thesis, International Christian University, 1998.
- [14] S. Matveev, Generalized Surgeries of three-dimensional manifolds and representations of homology sphere (in Russian), Mat. Zametki 42 (1987), 246-248;
 English translation: Math. Notes 42 (1987), 651-656.
- [15] H. Miyazawa, C_n-moves and polynomial invariants for links, Kobe J. Math. 17 (2000), No. 1, 99–117.
- [16] T. Motohashi and K. Taniyama, Delta unknotting operation and vertex homotopy of graphs in R³, Proceedings of Knots 96 (S.Suzuki ed.), World Sci. Co. (1997), 185-200.
- [17] H. Murakami and Y. Nakanishi, On a certain move generating link homology, Math. Ann. 284 (1989), 75-89.
- [18] Y. Nakanishi and Y. Ohyama, Knots with given finite type invariants and C_kdistances, J. Knot Theory Ramifications, **10** (2001), No. 7, 1041-1046.
- [19] Y. Nakanishi and Y. Ohyama, Delta link homotopy for two component links II,
 J. Knot Theory Ramifications, 11 (2002), No. 3, 353-362.
- [20] Y. Nakanishi and Y. Ohyama, Delta link homotopy for two component links III, Journal of the Mathematical Society of Japan, 55 (2003), No. 3, 641-654.

- [21] K. Y. Ng and T. Stanford, On Gusarov's groups of knots, Math. Proc. Cambridge Philos. Soc. 126 (1999), No. 1, 63–76.
- [22] Y. Ohyama, A new numerical invariant of knots induced from their regular diagrams, Topology Appl. 37 (1990), No. 3, 249–255.
- [23] Y. Ohyama, Vassiliev invariants and similarity of knots, Proc. Amer. Math. Soc., 123 (1995), No. 1, 287-291.
- [24] Y. Ohyama, Web diagrams and realization of Vassiliev invariants by knots, J. Knot Theory Ramifications, 9 (2000), No.5, 693-701.
- [25] Y. Ohyama and Y. Ogushi, On the triviality index of knots, Tokyo J. Math. 13 (1990), No. 1, 179–190.
- [26] Y. Ohyama and K. Taniyama, Vassiliev invariants of knots in a spatial graph, Pacific J. Math. 200 (2001), No. 1, 191-205.
- [27] Y. Ohyama, K. Taniyama, and S. Yamada, *Realization of Vassiliev invariants by unknotting number one knots*, Tokyo Journal of Mathematics, 25 (2002), No.1, 17-31.
- [28] Y. Ohyama and T. Tsukamoto, On Habiro's C_n-moves and Vassiliev invariants of order n, J. Knot Theory Ramifications 8 (1999), No. 1, 15–26.
- [29] Y. Ohyama and H. Yamada, Delta and clasp-pass distances and Vassiliev invariants of knots, J. Knot Theory Ramifications 11 (2002), No. 4, 515-526.
- [30] M. Okada, Delta-unknotting operation and the second coefficient of the Conway polynomial, J. Math. Soc. Japan 42 (1990), No. 4, 713–717.

- [31] T. Stanford, Braid commutators and Vassiliev invariants, Pacific J. Math. 174 (1996), No. 1, 269–276.
- [32] K. Taniyama, On similarity of links, Gakujutu Kenkyu (issued by the school of education of Waseda University) 14 (1992), 33-36.
- [33] K. Taniyama, Cobordism, homotopy and homology of graphs in R³, Topology 33 (1994), 509-523.
- [34] T. Tsukamoto, Clasp-pass moves and Vassiliev invariants of type three for knots, Proc. Amer. Math. Soc. 128 (2000), No. 6, 1859–1867.
- [35] H. Yamada, Delta distance and Vassiliev invariants of knots, J. Knot Theory Ramifications 9 (2000), No. 7, 967–974.
- [36] M. Yamamoto, Knots in spatial embeddings of the complete graph on four vertices, Topology Appl. 36 (1990), No. 3, 291–298.
- [37] A. Yasuhara, Delta-unknotting operation and adaptability of certain graphs, Proceedings of Knots 96 (S.Suzuki ed.), World Sci. Co. (1997), 115–121.
- [38] V. A. Vassiliev, Cohomology of knot space, in Theory of Singularities and its Applications (ed. V. I. Arnold), Adv. Soviet Math. 1, Amer. Math. Soc., 1990.