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Abstract

This article summarizes my talk on form factors in the reflectionless eight-vertex
model, given in the conference ‘Elliptic Integrable Systems’, held as a part of RIMS
Project, Department of Mathematics, Kyoto University, November 8-11, 2004. It
is shown that the form factors of σ̂z in the eight-vertex model at the so-called
reflectionless points can be expressed in terms of the sum of theta functions without
any integrals.

1 Introduction

The eight-vertex model can be specified by two parameters q and p, where p = (−q)2r. For
general r > 1 case, the bosonization recipe to obtain the eight-vertex form factor was given
by Lashkevich [1]. For rational r > 1, integral representations for the vertex operators
in the eight-vertex model were conjectured by using certain representations of deformed
W-algebras by Shiraishi [2]. As far as I know, the connection between the eight-vertex
model and deformed W-algebras is not clear. As a trial to clarify that connection, in
this article we consider form factors in the eight-vertex model at the reflectionless points.
Related topics were also discussed in [3].

Let r = rN := 1+ 1
N

(N = 1, 2, 3, · · · ). Then the eight-vertex model is at a reflectionless
point. In particular, the eight-vertex model at r = 2 (N = 1) reduces to the double Ising
model. When r = rN , S-matrix S(u) = −R(u; r−1, ε) becomes (anti-)diagonal. Thus, we
expect that the form factor formulae will be simple at reflectionless points. Form factors
are originally defined as matrix elements of local operators. In what follows, we consider
the case

O = σ̂z =
∑

ε=±

εΦ−ε(u − 1)Φε(u).

2 Basic definitions

The R-matrix of the eight-vertex model in the principal regime is given as follows:

R(u) =
1

κ(u)




a(u) d(u)
b(u) c(u)
c(u) b(u)

d(u) a(u)


 (2.1)

∗Partly based on a joint work with Michael Lashkevich.
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κ̃(u) = ζ
r−1

r
g(z)

g(z−1)
, (z = ζ2 = x2u, x = e−ε)

g(z) =
(x2z; x4, x2r)∞(x2r+2z; x4, x2r)∞
(x4z; x4, x2r)∞(x2rz; x4, x2r)∞

,

a(u) = g−−
−−(u), b(u) = g+−

+−(u), c(u) = g−+
+−(u), d(ζ) = −g++

−−(u),

gε1ε2
ε3− (u) =

hε1(u)hε2(1)

hε3(1 − u)h−(0)
, hε(u) :=

{
θ1(

u
2r

; π
√
−1

2εr
) (ε > 0)

θ2(
u
2r

; π
√
−1

2εr
), (ε < 0),

where 0 < u < 1, r > 1, ε > 0.
The nonzero Boltzmann weights of the eight-vertex SOS model in Regime III are given

as follows:

W

[
k ± 2 k ± 1
k ± 1 k

∣∣∣∣u
]

=
1

κ(u)
,

W

[
k k ± 1

k ± 1 k

∣∣∣∣u
]

=
1

κ(u)

[1][k ± u]

[1 − u][k]
,

W

[
k k ± 1

k ∓ 1 k

∣∣∣∣u
]

= − 1

κ(u)

[u][k ± 1]

[1 − u][k]
.

(2.2)

Here,

[u] = x
u2

r
−uΘx2r(x2u),

Θp(z) = (z; p)∞(pz−1; p)∞(p; p)∞ =
∑

n∈Z

pn(n−1)/2(−z)n.

The local state k ∈ Z + δ (δ is an irrational number), and the difference of adjoining sites
should be equal to 1. Then we have the so-called vertex-face correspondence [4]:

R(u1−u2)t
c
d(u0−u1)⊗tda(u0−u2) =

∑

b

W
[

c d
b a

∣∣∣ u1 − u2

]
tba(u0−u1)⊗tcb(u0−u2). (2.3)

¾
6

¾ <u2

∨

?
u1

c

a

d

=
∑

b ¾

66
¾

<¾u2

∨
?
u1

dc

ab
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Introduce the following basic bosons:

[βm, βn] = m
[m]x[(r − 1)m]x

[2m]x[rm]x
δm+n,0, [Q,P ] =

√
−1,

where

[m]x :=
xm − x−m

x − x−1
.

Let Fl,k := C[β−1, β−2, · · · ]|l, k〉 be the Fock space with the highest weight |l, k〉 for
k, l ∈ Z + δ (δ 6∈ Q) such that

βn|l, k〉 = 0 (n > 0), P |l, k〉 = (α1k + α2l)|l, k〉.

Here, α1 < α2 are two roots of the following quadratic equation:

t2 − α0

2
t − 1

2
= (t − α1)(t − α2), α0 =

√
2

r(r − 1)
. (2.4)

Introduce ϕj (j = 1, 2, 0) as

ϕ1(z) := α1(
√
−1Q + P log z) −

∑

m6=0

βm

m
z−m, (2.5)

ϕ2(z) := α2(
√
−1Q + P log z) +

∑

m6=0

βm

m

[rm]x
[(r − 1)m]x

(−z)−m

ϕ0(z) := −α0(
√
−1Q + P log(−z)) −

∑

m6=0

βm

m

[2m]x
[(r − 1)m]x

z−m.

Let

Φ+(u) = z
r−1
4r : exp(ϕ1(z)) :, A(v) = w

r−1
r : exp(−ϕ1(xw) − ϕ1(x

−1w)) :, (2.6)

where z = x2u, w = x2v. Then the type I vertex operator in the eight-vertex SOS model
on Fl,k:

Φk+1
k (u) =

1

[k]
Φ+(u), Φk−1

k (u) =
1

[k]
Φ+(u)X(u) = − 1

[k]
Y (u)Φ+(u), (2.7)

where

X(u) =
1

λ

∮

C

dw

2π
√
−1w

A(v)
[v − u + 1

2
− k]

[v − u − 1
2
]

,

Y (u) =
1

λ

∮

C

dw

2π
√
−1w

A(v)
[v − u + 3

2
− k]

[v − u + 1
2
]

.

(2.8)

Here, the contour C is chosen such that the poles from the factor [v−u− 1
2
] at w = x1+2nrz

are inside if n ∈ Z>0 (outside if n ∈ Z<0) and the poles resulting from the normal ordering
of Φ+(u)A(v) at w = x−1−2n′rz (n′ ∈ Z>0) are outside. The factor λ can be determined
from the inversion property of Φ and Φ∗:

Φ∗k′

k (u) = [k]Φk′

k (u − 1), λ =
x

1−r
2r

[1]
(x2r−2; x2r)∞

(x4; x4, x2r)∞(x2r+4; x4, x2r)∞
(x2; x4, x2r)∞(x2r+2; x4, x2r)∞

(2.9)
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Let

Ψ∗
+(u) = z

r
4(r−1) : exp(ϕ2(z)) :, B(v) = w

r
r−1 : exp(−ϕ2(xw) − ϕ2(x

−1w)) : . (2.10)

Then the type II vertex operator in the eight-vertex SOS model on Fl,k:

Ψ∗l+1
l (u) = Ψ∗

+(u), Ψ∗l−1
l (u) = Ψ∗

+(u)X ′(u), (2.11)

where

X ′(u) =
1

λ′

∮

C′

dw

2π
√
−1w

B(v)
[v − u − 1

2
+ l]′

[v − u + 1
2
]′

, (2.12)

and [u]′ = [u]|r→r−1. Here, the contour C ′ is chosen such that the poles from the factor
[v − u + 1

2
]′ at w = x−1+2n(r−1)z are inside if n ∈ Z>0 (outside if n ∈ Z<0) and the

poles resulting from the normal ordering of Ψ∗
+(u)B(v) at w = x1−2n′(r−1)z (n′ ∈ Z>0) are

outside. The factor λ′ can be determined from the inversion property of Ψ∗ and Ψ.

Ψl′

l (u) =
1

[l]′
Ψ∗l′

l (u − 1), λ′ =
x

r
2(r−1)

[1]′
(x2r; x2r−2)∞

(x2r−2; x2r−2)∞

(x2; x4, x2r−2)∞(x2r; x4, x2r−2)∞
(x4; x4, x2r−2)∞(x2r−2; x4, x2r−2)∞

(2.13)
Let us introduce one more vertex operator:

W−(u) = W (u − r−1
2

), W (u) = (−z)
1

r(r−1) : exp(ϕ0(z)). (2.14)

The objects of the eight-vertex model can be expressed in terms of those of the eight-
vertex SOS model and a certain nonlocal operator, the tail operator [5, 1]:

Λl′k
lk (u0) = T l′k′

(u0)Tlk(u0) (2.15)

=

k k1 k2 k3

k′ k′
1 k′

2 k′
3

l l+1 l

l′ l′+1 l′

∧

∨

?
u0

∧

∨

∧

∨

∧

∨

∧

∨

From vertex-face correspondence (2.3) we get the tail operators

Λlk′

lk (u0) = (−)s [k′]

[k]
Xs(u0), (2.16)

for k′ = k − 2s and l′ = l; and

Λl′k′

lk (u0) = Dl′k′

lk X ′t−1(u0 + ∆u0)W−(u0)Y
s−1(u0), ∆u0 = −1

2
+

π
√
−1

2ε
, (2.17)

where k′ = k − 2s, l′ = l − 2t, and Dl′k′

lk is some number. Later we use

Dl−2k−2
lk =

1

λλ′(x − x−1)

[l]′

[1]′
[k − 1][k − 2]

[k]∂[0]
. (2.18)
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Furthermore, we note that the inversion relation between the intertwining vector and
its dual

k′′k
∧

k′k
∨

= δk′

k′′ implies Λkl′

kl = δl′

l , and Λl′k′

lk = 0 if k > k′, l < l′ or k < k′, l > l′.

In what follows we assume that k > k′ and consequently l > l′.
Let ρ(i) be the product of four corner transfer matrices of the eight-vertex model, and

let ρ
(i)
lk be that of the eight-vertex SOS model. Character identity [5]

∑

k≡l+i

[k]χ
(i)
lk = [l]′χ(i) (2.19)

suggests

ρ(i) =
∑

k≡l+i (2)

1

[l]′
ρ

(i)
lk =

∑

k≡l+i (2)

Tlk(u0)
ρ

(i)
lk

[l]′
T lk(u0), (2.20)

where

ρ
(i)
lk = [k]x4Hlk , Hlk =

P 2

2
+

∑

m>0

[2m]x[rm]x
[m]x[(r − 1)m]x

β−mβm. (2.21)

ρ(i) =
1

[l]′

∑

k≡l+i
k

l

=
1

[l]′

∑

k≡l+i
k l

k l

∧ ∧

∨ ∨
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3 Vertex operators at the reflectionless points

In general, the eight-vertex model form factors can be obtained from the trace of product
of Φ±, Ψ∗

±, Λl′k′

lk and ρ
(i)
lk , by using vertex-face transformation [1].

Let r = 1 + 1
N

. Then [1]′ = 0 and therefore 1/λ′ = 0. Recall

Ψ∗l−1
l (u) =

1

λ′

∮

C′

dw

2π
√
−1w

Ψ∗
+(u)B(v)

[v − u − 1
2

+ l]′

[v − u + 1
2
]′

(3.1)

=
1

λ′

∮

C′

dw

2π
√
−1w

: Ψ∗
+(u)B(v) : z−

r
r−1

(x2r−1w/z; x2r−2)∞
(x−1w/z; x2r−2)∞

[v − u − 1
2

+ l]′

[v − u + 1
2
]′

.

The contour C ′ encircles the poles at w = x−1+2n(r−1)z (v = u− 1
2
+n(r−1)) with n ∈ Z>0

but not the poles at w = x1−2n′(r−1)z (v = u + 1
2
−n′(r− 1)) with n′ = 0, 1, · · · , N . Thus,

the pinching occurs when n + n′ = N . Hence we have

Ψ∗l−1
l (u) = [l]′

N∑

µ=0

cµ : Ψ∗
+(u)B(u + 1

2
− µ(r − 1)) :, (3.2)

where

cµ =
(−)µ+1xµr

x
r

2(r−1)

[1]x[1 − 1/N ]x · · · [1 − (µ − 1)/N ]x
[1/N ]x[2/N ]x · · · [µ/N ]x

(x4; x4, x2r−2)∞(x2r−2; x4, x2r−2)∞
(x2; x4, x2r−2)∞(x2r; x4, x2r−2)∞

,

(3.3)
and

: Ψ∗
+(u)B(u + 1

2
− µ(r − 1)) := x

r
r−1

−2µrz
5r

4(r−1)

× : exp

(
−α2(

√
−1Q + P log x4µ(r−1)−2z) −

∑

m6=0

βm

m
γm(−z)−m

)
:,

(3.4)

with

γm =
[rm]x

[(r − 1)m]x
(x2m(µ(r−1)−1) + x2mµ(r−1) − 1).

When N = 1 (r = 2), these are simplified as follows:

c0,1 = ∓x∓1, (3.5)

and
: Ψ∗

+(u)B(u ± 1
2
) := x±2z

5
2

× : exp

(
−(

√
−1Q + P log x∓2z) −

∑

m6=0

βm

m

[2m]x
[m]x

(−x±2z)−m

)
:,

(3.6)

For O = σ̂z =
∑

ε=±

εΦ−ε(u − 1)Φε(u), tail operator Λk′l′

kl with k′ = k, k ± 2 are needed.

When k′ = k,
Λkl′

kl (u0) = δl′

l .

For k′ = k − 2,
Λl−2t k−2

lk (u0) = Dl−2t k−2
lk X ′t−1(u0 + ∆u0)W−(u0).
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Since

B(v)W−(u) = w
2

r−1
(−x−2z/w; x2r−2)∞
(−x2z/w; x2r−2)∞

: B(v)W−(u) :,

no pinching occurs, and therefore Λl−2t k−2
lk = 0 if t > 1.

Thus, the only nontrivial tail operator is Λl−2k−2
lk (u0) ∝ W−(u0). Hence, Ψ∗l+1

l and
Λl−2k−2

lk can be expressed by the product of rational functions (zero modes parts) and
exponentiated bosons, and Ψ∗l−1

l is the sum of such product. For O = σ̂z, the form factors
are therefore expressed in terms of the sum of theta function without any integrals.

4 Form factors at the reflectionless points

The 2m-particle form factors (ζj = xuj) are given as follows:

F
(i)
m (ζ1, · · · , ζ2m)µ1···µ2m =

1

χ(i)
TrHi

(Ψ∗
µ2m

(ζ2m) · · ·Ψ∗
µ1

(ζ1)Oρ(i))

=
∑

l1···l2m

F (lk)
m (ζ)l1···l2ml

2m∏

j=1

t′
∗lj
lj+1

(uj − u0 − ∆u0)µj
,

(4.1)

where l2m+1 = l. From the generalized ice condition,

F (i)
m (ζ)µ1···µ2m = 0, unless ]{j|µj > 0} ≡ m (mod 2).

Note that from (4.2), nonzero terms in the sum on (4.1) results from the case l1 = l, l± 2.
When l1 = l (4.1) has an integral. On the other hand, (4.1) for l1 6= l can be expressed in
terms of the sum of theta function (without integrals), otherwise is equal to 0. Since

22m −
(

2m
m

)
> 22m−1,

we can obtain no-integral formulae for σ̂z form factors, in principle.

For O = σ̂z, we have

F (lk)
m (ζ)l1···l2ml =

1

χ(i)

∑

ε

∑

k≡l+i (2)

εt−ε(u − u0 − 1)k
k2

tε(u − u0)
k2
k1

(4.2)

× TrH(i)
lk

(Ψ∗l
l2m

(ζ2m) · · ·Ψ∗l2
l1

(ζ1)Φ
k
k2

(u − 1)Φk2
k1

(u)Λl1k1
lk (u0)

ρlk

[l]′
).

In what follows, for simplicity, we set m = 2 and u0 = u − π
√
−1

2ε
so that the terms for

the case k2 = k vanish. The quantity Fl′ l2 l3 l4 l for l′ 6= l has a non-integral expression.
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For example, let us calculate Fl−2 l−1 l l+1 l. Simple calculation shows

Ψ∗l
l+1(ζ4)Ψ

∗l+1
l (ζ3)Ψ

∗l
l−1(ζ2)Ψ

∗l−1
l (ζ1)Φ

k
k−1(u − 1)Φk−1

k (u)Λl−2 k−2
lk (u0)

ρlk

[l]′
=

[l + 1]′(x − x−1)−1

λλ′[1]′∂[0]

×
N∑

µ=0

cµ : Ψ∗
+(u4)Ψ

∗
+(u3)Ψ

∗
+(u2)Ψ

∗
+(u1)B(u

(µ)
4 )Φ+(u − 1)Φ+(u)W−(u0) : x4Hlk

×
∏

j<k

z
r

2(r−1)

k

(zj/zk; x
4, x2r−2)∞(x2r+2zj/zk; x

4, x2r−2)∞
(x2zj/zk; x4, x2r−2)∞(x2rzj/zk; x4, x2r−2)∞

3∏

j=1

w− r
r−1

(x(2r−2)(1+µ)zj/z4; x
2r−2)∞

(x(2r−2)µ−2zj/z4; x2r−2)∞

×
4∏

j=1

xzj

1 + x−1z/zj

× 2(x−1z)
1
r
(−x2r; x2r)∞
(−x4; x2r)∞

(x1−(2r−2)µz4 + z)(x1−(2r−2)µz4 + x−2z)

×
4∏

j=1

z
− 1

r−1

j

(xz/zj; x
2r−2)∞

(x−1z/zj; x2r−2)∞
.

Here, u
(µ)
4 = u4 + 1

2
− µ(r − 1), and note that λ′[1]′ is a constant. Let

: Ψ∗
+(u4)Ψ

∗
+(u3)Ψ

∗
+(u2)Ψ

∗
+(u1)B(u

(µ)
4 )Φ+(u− 1)Φ+(u)W−(u0) := U0 : exp

(∑

m6=0

Amβm

)
:,

where U0 is the zero-mode part. Then the trace over oscillator modes

Tr∗

(
: exp

(∑

m6=0

Amβm

)
: x4H∗

)
=

∞∏

m=1

∞∑

n=0

〈l, k|βn
meA−mβ−meAmβmβn

−m|l, k〉
〈l, k|βn

mβn
−m|l, k〉

x4mn (4.3)

can be calculated as follows. Note that

eA−mβ−meAmβmβn
−m|l, k〉 = eA−mβ−m

(
β−m + m

[m]x[(r − 1)m]m
[2m]x[rm]x

Am

)n

|l, k〉. (4.4)

Multiply x4mn by the coeeficient of βn
−m|l, k〉 on (4.4), and sum up with respect to n, we

get
∞∑

n=0

x4mn

n∑

s=0

nCs

s!

(
m

[m]x[(r − 1)m]m
[2m]x[rm]x

A−mAm

)s

=
∞∑

s=0

1

s!

(
m

[m]x[(r − 1)m]m
[2m]x[rm]x

A−mAm

)s ∞∑

n=s

nCsx
4mn

=
1

1 − x4m
exp

(
x4m

1 − x4m
m

[m]x[(r − 1)m]m
[2m]x[rm]x

A−mAm

)
.

(4.5)

Thus, we have

(4.3) =
1

(x4; x4)∞
exp

(
∞∑

m=1

x4m

1 − x4m
m

[m]x[(r − 1)m]m
[2m]x[rm]x

A−mAm

)
. (4.6)
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Since

mAm =
[rm]x

[(r − 1)m]x

4∑

j=1

(−zj)
−m − [2m]x[rm]x

[m]x[(r − 1)m]x
(−x1−2(r−1)µz4)

−m

− z−m

(
1 + x2m + (−x)m(r−1) [2m]x

[(r − 1)m]x

)
,

we obtain

(4.3) =
dµ

(x4; x4)∞

∏

j 6=k

(x4zj/zk; x
4, x4, x2r−2)∞(x2r+6zj/zk; x

4, x4, x2r−2)∞
(x6zj/zk; x4, x4, x2r−2)∞(x2r+4zj/zk; x4, x4, x2r−2)∞

×
4∏

j=1

(x2r+4−2(r−1)µz4/zj; x
4, x2r−2)∞(x2r+2+2(r−1)µzj/z4; x

4, x2r−2)∞
(x2r+4−2(r−1)µz4/zj; x4, x2r−2)∞(x2+2(r−1)µzj/z4; x4, x2r−2)∞

×
4∏

j=1

1

(−x3z/zj; x4)∞(−x5zj/z; x4)∞

(x5z/zj; x
4, x2r−2)∞(x2r+3zj/z; x4, x2r−2)∞

(x5z/zj; x4, x2r−2)∞(x2r+1zj/z; x4, x2r−2)∞

× (−x1+2(r−1)µz/z4; x
2)∞(−x5−2(r−1)µz4/z; x2)∞

× (x1+2(r−1)µz/z4; x
2r−2)∞(x1−2(r−1)(µ−1)z4/z; x2r−2)∞,

(4.7)
where dµ is some constant. Contribution from the trace over zero modes is equal to:

x
r

r−1
− r+1

2r
−2µr+ r

2(r−1)
(u1+u2+u3+5u4)+( r−1

r
+ 2

r(r−1)
)u+ r−1

r
k2−2kl+ r

r−1
l2

× x−k(2µ(r−1)+
2(r−1)

r
−1+u1+u2+u3−u4−2u)+l(2µr+2− r

(r−1)
+ r

r−1
(u1+u2+u3−u4)− 2ru

r−1
).

(4.8)

Multiply (4.8) by [k − 1] (resulting from
∑

ε

εt−ε(u − u0 − 1)k
k−1tε(u − u0)

k−1
k−2) and sum

up with respect to k ≡ l + i (mod 2). Then we have

F
(i)
l−2 l−1 l l+1 l(u1, u2, u3, u4; u) =

N∑

µ=0

Cµ(u1, u2, u3, u4; u) (4.9)

×
(

(−)µθ3

(
u1 + u2 + u3 − u4

2
− u + µ(r − 1);

π
√
−1

ε

)
θ1

(
l + u1+u2+u3−u4

2
− u

r − 1
;

π
√
−1

ε(r − 1)

)

+(−)1−i θ2

(
u1 + u2 + u3 − u4

2
− u + µ(r − 1);

π
√
−1

ε

)
θ4

(
l + u1+u2+u3−u4

2
− u

r − 1
;

π
√
−1

ε(r − 1)

))
,

where Cµ(u1, u2, u3, u4; u) is some function, which is almost equal to the product of [l+1]′cµ

and (4.7).

5 Summary and discussion

In this article, it is shown that the type II vertex operators and the type II part (X ′) of tail
operators can be bosonized without any integrals at reflectionless points. Consequently,
the form factors of O = σ̂z in the eight-vertex model can be expressed in terms of the
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sum of theta functions. We wish to report explicit expressions for σ̂z form factors of the
eight-vertex model at reflectionless points in a separate paper.

Concerning generic local operator O, the tail operator Λk′l′

kl with k′ = k ± 2s (s > 1)
are needed. Nevertheless, there is no pinching for l′ = l ± 2t with t > 1. Thus, the type
II part of Λk′l′

kl is always written without integrals. On the other hands, the type I part
(Y ) of tail operators has an integral representation. Furthermore, generic local operator
itself has an integral representation. Note that these integrals result from type I parts.

Let us remind Shiraishi’s observation [2], where the type II vertex operators in the
eight-vertex model (NOT SOS) at reflectionless points can be expressed in terms of certain
representations of deformed W -algebra DN+1. Such non-integral structure is very close to
our results here. However, Shiraishi’s formulae of the type I vertex operators are different
from ours. It is therefore a very important subject to find a connection between these
two schemes.
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