Form factors and vertex operators in the XYZ antiferromagnet*

Yas-Hiro Quano

Abstract

This article summarizes my talk on form factors in the reflectionless eight-vertex model, given in the conference 'Elliptic Integrable Systems', held as a part of RIMS Project, Department of Mathematics, Kyoto University, November 8-11, 2004. It is shown that the form factors of $\widehat{\sigma^{z}}$ in the eight-vertex model at the so-called reflectionless points can be expressed in terms of the sum of theta functions without any integrals.

1 Introduction

The eight-vertex model can be specified by two parameters q and p, where $p=(-q)^{2 r}$. For general $r>1$ case, the bosonization recipe to obtain the eight-vertex form factor was given by Lashkevich [1]. For rational $r>1$, integral representations for the vertex operators in the eight-vertex model were conjectured by using certain representations of deformed W-algebras by Shiraishi [2]. As far as I know, the connection between the eight-vertex model and deformed W-algebras is not clear. As a trial to clarify that connection, in this article we consider form factors in the eight-vertex model at the reflectionless points. Related topics were also discussed in [3].

Let $r=r_{N}:=1+\frac{1}{N}(N=1,2,3, \cdots)$. Then the eight-vertex model is at a reflectionless point. In particular, the eight-vertex model at $r=2(N=1)$ reduces to the double Ising model. When $r=r_{N}, S$-matrix $S(u)=-R(u ; r-1, \epsilon)$ becomes (anti-)diagonal. Thus, we expect that the form factor formulae will be simple at reflectionless points. Form factors are originally defined as matrix elements of local operators. In what follows, we consider the case

$$
\mathcal{O}=\widehat{\sigma^{z}}=\sum_{\varepsilon= \pm} \varepsilon \Phi_{-\varepsilon}(u-1) \Phi_{\varepsilon}(u) .
$$

2 Basic definitions

The R-matrix of the eight-vertex model in the principal regime is given as follows:

$$
R(u)=\frac{1}{\kappa(u)}\left[\begin{array}{llll}
a(u) & & & d(u) \tag{2.1}\\
& b(u) & c(u) & \\
& c(u) & b(u) & \\
d(u) & & & a(u)
\end{array}\right]
$$

[^0]\[

$$
\begin{aligned}
\tilde{\kappa}(u) & =\zeta^{\frac{r-1}{r}} \frac{g(z)}{g\left(z^{-1}\right)},\left(z=\zeta^{2}=x^{2 u}, x=e^{-\epsilon}\right) \\
g(z) & =\frac{\left(x^{2} z ; x^{4}, x^{2 r}\right)_{\infty}\left(x^{2 r+2} z ; x^{4}, x^{2 r}\right)_{\infty}}{\left(x^{4} z ; x^{4}, x^{2 r}\right)_{\infty}\left(x^{2 r} z ; x^{4}, x^{2 r}\right)_{\infty}}, \\
a(u) & =g_{--}^{--}(u), \quad b(u)=g_{+-}^{+-}(u), \quad c(u)=g_{+-}^{-+}(u), \quad d(\zeta)=-g_{--}^{++}(u), \\
g_{\varepsilon_{3}-}^{\varepsilon_{1} \varepsilon_{2}}(u) & =\frac{h_{\varepsilon_{1}}(u) h_{\varepsilon_{2}}(1)}{h_{\varepsilon_{3}}(1-u) h_{-}(0)}, \quad h_{\varepsilon}(u):= \begin{cases}\theta_{1}\left(\frac{u}{2 r} ; \frac{\pi \sqrt{-1}}{2 \epsilon r}\right) & (\varepsilon>0) \\
\theta_{2}\left(\frac{u}{2 r} ; \frac{\pi \sqrt{ }-1}{2 \epsilon r}\right), & (\varepsilon<0),\end{cases}
\end{aligned}
$$
\]

where $0<u<1, r>1, \epsilon>0$.
The nonzero Boltzmann weights of the eight-vertex SOS model in Regime III are given as follows:

$$
\begin{align*}
& W\left[\begin{array}{cc|c}
k \pm 2 & k \pm 1 & u \\
k \pm 1 & k &
\end{array}\right]=\frac{1}{\kappa(u)} \\
& W\left[\begin{array}{cc|c}
k & k \pm 1 & u \\
k \pm 1 & k &
\end{array}\right]=\frac{1}{\kappa(u)} \frac{[1][k \pm u]}{[1-u][k]} \tag{2.2}\\
& W\left[\begin{array}{cc|c}
k & k \pm 1 & u \\
k \mp 1 & k &
\end{array}\right]=-\frac{1}{\kappa(u)} \frac{[u][k \pm 1]}{[1-u][k]} .
\end{align*}
$$

Here,

$$
\begin{aligned}
{[u] } & =x^{\frac{u^{2}}{r}-u} \Theta_{x^{2 r}}\left(x^{2 u}\right) \\
\Theta_{p}(z) & =(z ; p)_{\infty}\left(p z^{-1} ; p\right)_{\infty}(p ; p)_{\infty}=\sum_{n \in \mathbb{Z}} p^{n(n-1) / 2}(-z)^{n} .
\end{aligned}
$$

The local state $k \in \mathbb{Z}+\delta$ (δ is an irrational number), and the difference of adjoining sites should be equal to 1 . Then we have the so-called vertex-face correspondence [4]:

$$
R\left(u_{1}-u_{2}\right) t_{d}^{c}\left(u_{0}-u_{1}\right) \otimes t_{a}^{d}\left(u_{0}-u_{2}\right)=\sum_{b} W\left[\begin{array}{ll|l}
c & d \tag{2.3}\\
b & a & u_{1}-u_{2}
\end{array}\right] t_{a}^{b}\left(u_{0}-u_{1}\right) \otimes t_{b}^{c}\left(u_{0}-u_{2}\right) .
$$

$$
=\sum_{b} u_{2}{ }_{b}^{c} \underbrace{\substack{1 \\ 1 \\ 1}}_{\substack{c \\ \vdots \\ u_{1}}}]_{a}^{d}
$$

Introduce the following basic bosons:

$$
\left[\beta_{m}, \beta_{n}\right]=m \frac{[m]_{x}[(r-1) m]_{x}}{[2 m]_{x}[r m]_{x}} \delta_{m+n, 0}, \quad[Q, P]=\sqrt{-1},
$$

where

$$
[m]_{x}:=\frac{x^{m}-x^{-m}}{x-x^{-1}} .
$$

Let $\mathcal{F}_{l, k}:=\mathbb{C}\left[\beta_{-1}, \beta_{-2}, \cdots\right]|l, k\rangle$ be the Fock space with the highest weight $|l, k\rangle$ for $k, l \in \mathbb{Z}+\delta(\delta \notin \mathbb{Q})$ such that

$$
\beta_{n}|l, k\rangle=0(n>0), \quad P|l, k\rangle=\left(\alpha_{1} k+\alpha_{2} l\right)|l, k\rangle .
$$

Here, $\alpha_{1}<\alpha_{2}$ are two roots of the following quadratic equation:

$$
\begin{equation*}
t^{2}-\frac{\alpha_{0}}{2} t-\frac{1}{2}=\left(t-\alpha_{1}\right)\left(t-\alpha_{2}\right), \quad \alpha_{0}=\sqrt{\frac{2}{r(r-1)}} . \tag{2.4}
\end{equation*}
$$

Introduce $\varphi_{j}(j=1,2,0)$ as

$$
\begin{align*}
& \varphi_{1}(z):=\alpha_{1}(\sqrt{-1} Q+P \log z)-\sum_{m \neq 0} \frac{\beta_{m}}{m} z^{-m}, \tag{2.5}\\
& \varphi_{2}(z):=\alpha_{2}(\sqrt{-1} Q+P \log z)+\sum_{m \neq 0} \frac{\beta_{m}}{m} \frac{[r m]_{x}}{[(r-1) m]_{x}}(-z)^{-m} \\
& \varphi_{0}(z):=-\alpha_{0}(\sqrt{-1} Q+P \log (-z))-\sum_{m \neq 0} \frac{\beta_{m}}{m} \frac{[2 m]_{x}}{[(r-1) m]_{x}} z^{-m} .
\end{align*}
$$

Let

$$
\begin{equation*}
\Phi_{+}(u)=z^{\frac{r-1}{4 r}}: \exp \left(\varphi_{1}(z)\right):, \quad A(v)=w^{\frac{r-1}{r}}: \exp \left(-\varphi_{1}(x w)-\varphi_{1}\left(x^{-1} w\right)\right): \tag{2.6}
\end{equation*}
$$

where $z=x^{2 u}, w=x^{2 v}$. Then the type I vertex operator in the eight-vertex SOS model on $\mathcal{F}_{l, k}$:

$$
\begin{equation*}
\Phi_{k}^{k+1}(u)=\frac{1}{[k]} \Phi_{+}(u), \quad \Phi_{k}^{k-1}(u)=\frac{1}{[k]} \Phi_{+}(u) X(u)=-\frac{1}{[k]} Y(u) \Phi_{+}(u), \tag{2.7}
\end{equation*}
$$

where

$$
\begin{align*}
X(u) & =\frac{1}{\lambda} \oint_{C} \frac{d w}{2 \pi \sqrt{-1} w} A(v) \frac{\left[v-u+\frac{1}{2}-k\right]}{\left[v-u-\frac{1}{2}\right]} \tag{2.8}\\
Y(u) & =\frac{1}{\lambda} \oint_{C} \frac{d w}{2 \pi \sqrt{-1} w} A(v) \frac{\left[v-u+\frac{3}{2}-k\right]}{\left[v-u+\frac{1}{2}\right]} .
\end{align*}
$$

Here, the contour C is chosen such that the poles from the factor $\left[v-u-\frac{1}{2}\right]$ at $w=x^{1+2 n r} z$ are inside if $n \in \mathbb{Z}_{\geqslant 0}$ (outside if $n \in \mathbb{Z}_{<0}$) and the poles resulting from the normal ordering of $\Phi_{+}(u) A(v)$ at $w=x^{-1-2 n^{\prime} r} z\left(n^{\prime} \in \mathbb{Z}_{\geqslant 0}\right)$ are outside. The factor λ can be determined from the inversion property of Φ and Φ^{*} :

$$
\begin{equation*}
\Phi_{k}^{* k^{\prime}}(u)=[k] \Phi_{k}^{k^{\prime}}(u-1), \quad \lambda=\frac{x^{\frac{1-r}{2 r}}}{[1]}\left(x^{2 r-2} ; x^{2 r}\right)_{\infty} \frac{\left(x^{4} ; x^{4}, x^{2 r}\right)_{\infty}\left(x^{2 r+4} ; x^{4}, x^{2 r}\right)_{\infty}}{\left(x^{2} ; x^{4}, x^{2 r}\right)_{\infty}\left(x^{2 r+2} ; x^{4}, x^{2 r}\right)_{\infty}} \tag{2.9}
\end{equation*}
$$

Let

$$
\begin{equation*}
\Psi_{+}^{*}(u)=z^{\frac{r}{4(r-1)}}: \exp \left(\varphi_{2}(z)\right):, \quad B(v)=w^{\frac{r}{r-1}}: \exp \left(-\varphi_{2}(x w)-\varphi_{2}\left(x^{-1} w\right)\right): . \tag{2.10}
\end{equation*}
$$

Then the type II vertex operator in the eight-vertex SOS model on $\mathcal{F}_{l, k}$:

$$
\begin{equation*}
\Psi_{l}^{* l+1}(u)=\Psi_{+}^{*}(u), \quad \Psi_{l}^{* l-1}(u)=\Psi_{+}^{*}(u) X^{\prime}(u) \tag{2.11}
\end{equation*}
$$

where

$$
\begin{equation*}
X^{\prime}(u)=\frac{1}{\lambda^{\prime}} \oint_{C^{\prime}} \frac{d w}{2 \pi \sqrt{-1} w} B(v) \frac{\left[v-u-\frac{1}{2}+l\right]^{\prime}}{\left[v-u+\frac{1}{2}\right]^{\prime}}, \tag{2.12}
\end{equation*}
$$

and $[u]^{\prime}=[u]_{r \rightarrow r-1}$. Here, the contour C^{\prime} is chosen such that the poles from the factor [v-u+ $\left.\frac{1}{2}\right]^{\prime}$ at $w=x^{-1+2 n(r-1)} z$ are inside if $n \in \mathbb{Z}_{\geqslant 0}$ (outside if $n \in \mathbb{Z}_{<0}$) and the poles resulting from the normal ordering of $\Psi_{+}^{*}(u) B(v)$ at $w=x^{1-2 n^{\prime}(r-1)} z\left(n^{\prime} \in \mathbb{Z}_{\geqslant 0}\right)$ are outside. The factor λ^{\prime} can be determined from the inversion property of Ψ^{*} and Ψ.
$\Psi_{l}^{l^{\prime}}(u)=\frac{1}{[l]^{\prime}} \Psi^{* \prime^{\prime}}(u-1), \quad \lambda^{\prime}=\frac{x^{\frac{r}{2(r-1)}}}{[1]^{\prime}} \frac{\left(x^{2 r} ; x^{2 r-2}\right)_{\infty}}{\left(x^{2 r-2} ; x^{2 r-2}\right)_{\infty}} \frac{\left(x^{2} ; x^{4}, x^{2 r-2}\right)_{\infty}\left(x^{2 r} ; x^{4}, x^{2 r-2}\right)_{\infty}}{\left(x^{4}, x^{2 r-2}\right)_{\infty}\left(x^{2 r-2} ; x^{4}, x^{2 r-2}\right)_{\infty}}$
Let us introduce one more vertex operator:

$$
\begin{equation*}
W_{-}(u)=W\left(u-\frac{r-1}{2}\right), \quad W(u)=(-z)^{\frac{1}{r(r-1)}}: \exp \left(\varphi_{0}(z)\right) \tag{2.14}
\end{equation*}
$$

The objects of the eight-vertex model can be expressed in terms of those of the eightvertex SOS model and a certain nonlocal operator, the tail operator [5, 1]:

$$
\begin{equation*}
\Lambda_{l k}^{l^{\prime} k}\left(u_{0}\right)=T^{l^{\prime} k^{\prime}}\left(u_{0}\right) T_{l k}\left(u_{0}\right) \tag{2.15}
\end{equation*}
$$

From vertex-face correspondence (2.3) we get the tail operators

$$
\begin{equation*}
\Lambda_{l k}^{l k^{\prime}}\left(u_{0}\right)=(-)^{s} \frac{\left[k^{\prime}\right]}{[k]} X^{s}\left(u_{0}\right) \tag{2.16}
\end{equation*}
$$

for $k^{\prime}=k-2 s$ and $l^{\prime}=l$; and

$$
\begin{equation*}
\Lambda_{l k}^{l^{\prime} k^{\prime}}\left(u_{0}\right)=D_{l k}^{l^{\prime} k^{\prime}} X^{\prime t-1}\left(u_{0}+\Delta u_{0}\right) W_{-}\left(u_{0}\right) Y^{s-1}\left(u_{0}\right), \quad \Delta u_{0}=-\frac{1}{2}+\frac{\pi \sqrt{-1}}{2 \epsilon} \tag{2.17}
\end{equation*}
$$

where $k^{\prime}=k-2 s, l^{\prime}=l-2 t$, and $D_{l k}^{l^{\prime} k^{\prime}}$ is some number. Later we use

$$
\begin{equation*}
D_{l k}^{l-2 k-2}=\frac{1}{\lambda \lambda^{\prime}\left(x-x^{-1}\right)} \frac{[l]^{\prime}}{[1]^{\prime}} \frac{[k-1][k-2]}{[k] \partial[0]} . \tag{2.18}
\end{equation*}
$$

Furthermore, we note that the inversion relation between the intertwining vector and its dual

$=\delta_{k^{\prime \prime}}^{k^{\prime}} \quad$ implies $\quad \Lambda_{k l}^{k l^{\prime}}=\delta_{l}^{l^{\prime}}$, and $\Lambda_{l k}^{l^{\prime} k^{\prime}}=0 \quad$ if $k>k^{\prime}, l<l^{\prime}$ or $k<k^{\prime}, l>l^{\prime}$.

In what follows we assume that $k \geqslant k^{\prime}$ and consequently $l \geqslant l^{\prime}$.
Let $\rho^{(i)}$ be the product of four corner transfer matrices of the eight-vertex model, and let $\rho_{l k}^{(i)}$ be that of the eight-vertex SOS model. Character identity [5]

$$
\begin{equation*}
\sum_{k \equiv l+i}[k] \chi_{l k}^{(i)}=[l]^{\prime} \chi^{(i)} \tag{2.19}
\end{equation*}
$$

suggests

$$
\begin{equation*}
\rho^{(i)}=\sum_{k \equiv l+i(2)} \frac{1}{[l]^{\prime}} \rho_{l k}^{(i)}=\sum_{k \equiv l+i(2)} T_{l k}\left(u_{0}\right) \frac{\rho_{l k}^{(i)}}{[l]^{\prime}} T^{l k}\left(u_{0}\right), \tag{2.20}
\end{equation*}
$$

where

$$
\begin{equation*}
\rho_{l k}^{(i)}=[k] x^{4 H_{l k}}, \quad H_{l k}=\frac{P^{2}}{2}+\sum_{m>0} \frac{[2 m]_{x}[r m]_{x}}{[m]_{x}[(r-1) m]_{x}} \beta_{-m} \beta_{m} . \tag{2.21}
\end{equation*}
$$

3 Vertex operators at the reflectionless points

In general, the eight-vertex model form factors can be obtained from the trace of product of $\Phi_{ \pm}, \Psi_{ \pm}^{*}, \Lambda_{l k}^{l^{\prime} k^{\prime}}$ and $\rho_{l k}^{(i)}$, by using vertex-face transformation [1].

Let $r=1+\frac{1}{N}$. Then $[1]^{\prime}=0$ and therefore $1 / \lambda^{\prime}=0$. Recall

$$
\begin{align*}
\Psi_{l}^{* l-1}(u) & =\frac{1}{\lambda^{\prime}} \oint_{C^{\prime}} \frac{d w}{2 \pi \sqrt{-1} w} \Psi_{+}^{*}(u) B(v) \frac{\left[v-u-\frac{1}{2}+l\right]^{\prime}}{\left[v-u+\frac{1}{2}\right]^{\prime}} \tag{3.1}\\
& =\frac{1}{\lambda^{\prime}} \oint_{C^{\prime}} \frac{d w}{2 \pi \sqrt{-1} w}: \Psi_{+}^{*}(u) B(v): z^{-\frac{r}{r-1}} \frac{\left(x^{2 r-1} w / z ; x^{2 r-2}\right)_{\infty}}{\left(x^{-1} w / z ; x^{2 r-2}\right)_{\infty}} \frac{\left[v-u-\frac{1}{2}+l\right]^{\prime}}{\left[v-u+\frac{1}{2}\right]^{\prime}} .
\end{align*}
$$

The contour C^{\prime} encircles the poles at $w=x^{-1+2 n(r-1)} z\left(v=u-\frac{1}{2}+n(r-1)\right)$ with $n \in \mathbb{Z}_{\geqslant 0}$ but not the poles at $w=x^{1-2 n^{\prime}(r-1)} z\left(v=u+\frac{1}{2}-n^{\prime}(r-1)\right)$ with $n^{\prime}=0,1, \cdots, N$. Thus, the pinching occurs when $n+n^{\prime}=N$. Hence we have

$$
\begin{equation*}
\Psi_{l}^{* l-1}(u)=[l]^{\prime} \sum_{\mu=0}^{N} c_{\mu}: \Psi_{+}^{*}(u) B\left(u+\frac{1}{2}-\mu(r-1)\right): \tag{3.2}
\end{equation*}
$$

where

$$
\begin{equation*}
c_{\mu}=\frac{(-)^{\mu+1} x^{\mu r}}{x^{\frac{2 r}{2(r-1)}}} \frac{[1]_{x}[1-1 / N]_{x} \cdots[1-(\mu-1) / N]_{x}}{[1 / N]_{x}[2 / N]_{x} \cdots[\mu / N]_{x}} \frac{\left(x^{4} ; x^{4}, x^{2 r-2}\right)_{\infty}\left(x^{2 r-2} ; x^{4}, x^{2 r-2}\right)_{\infty}}{\left(x^{2} ; x^{4}, x^{2 r-2}\right)_{\infty}\left(x^{2 r} ; x^{4}, x^{2 r-2}\right)_{\infty}}, \tag{3.3}
\end{equation*}
$$

and

$$
\begin{align*}
& : \Psi_{+}^{*}(u) B\left(u+\frac{1}{2}-\mu(r-1)\right):=x^{\frac{r}{r-1}-2 \mu r} \frac{z^{4 r}}{4(r-1)} \\
\times & : \exp \left(-\alpha_{2}\left(\sqrt{-1} Q+P \log x^{4 \mu(r-1)-2} z\right)-\sum_{m \neq 0} \frac{\beta_{m}}{m} \gamma_{m}(-z)^{-m}\right): \tag{3.4}
\end{align*}
$$

with

$$
\gamma_{m}=\frac{[r m]_{x}}{[(r-1) m]_{x}}\left(x^{2 m(\mu(r-1)-1)}+x^{2 m \mu(r-1)}-1\right) .
$$

When $N=1(r=2)$, these are simplified as follows:

$$
\begin{equation*}
c_{0,1}=\mp x^{\mp 1} \tag{3.5}
\end{equation*}
$$

and

$$
\begin{align*}
& : \Psi_{+}^{*}(u) B\left(u \pm \frac{1}{2}\right):=x^{ \pm 2} z^{\frac{5}{2}} \\
\times & : \exp \left(-\left(\sqrt{-1} Q+P \log x^{\mp 2} z\right)-\sum_{m \neq 0} \frac{\beta_{m}}{m} \frac{[2 m]_{x}}{[m]_{x}}\left(-x^{ \pm 2} z\right)^{-m}\right): \tag{3.6}
\end{align*}
$$

For $\mathcal{O}=\widehat{\sigma^{z}}=\sum_{\varepsilon= \pm} \varepsilon \Phi_{-\varepsilon}(u-1) \Phi_{\varepsilon}(u)$, tail operator $\Lambda_{k l}^{k^{\prime} l^{\prime}}$ with $k^{\prime}=k, k \pm 2$ are needed. When $k^{\prime}=k$,

$$
\Lambda_{k l}^{k l^{\prime}}\left(u_{0}\right)=\delta_{l}^{l^{\prime}} .
$$

For $k^{\prime}=k-2$,

$$
\Lambda_{l k}^{l-2 t k-2}\left(u_{0}\right)=D_{l k}^{l-2 t k-2} X^{\prime t-1}\left(u_{0}+\Delta u_{0}\right) W_{-}\left(u_{0}\right) .
$$

Since

$$
B(v) W_{-}(u)=w^{\frac{2}{r-1}} \frac{\left(-x^{-2} z / w ; x^{2 r-2}\right)_{\infty}}{\left(-x^{2} z / w ; x^{2 r-2}\right)_{\infty}}: B(v) W_{-}(u):
$$

no pinching occurs, and therefore $\Lambda_{l k}^{l-2 t k-2}=0$ if $t>1$.
Thus, the only nontrivial tail operator is $\Lambda_{l k}^{l-2 k-2}\left(u_{0}\right) \propto W_{-}\left(u_{0}\right)$. Hence, $\Psi^{* l+1}$ and $\Lambda_{l k}^{l-2 k-2}$ can be expressed by the product of rational functions (zero modes parts) and exponentiated bosons, and $\Psi_{l}^{* l-1}$ is the sum of such product. For $\mathcal{O}=\widehat{\sigma^{z}}$, the form factors are therefore expressed in terms of the sum of theta function without any integrals.

4 Form factors at the reflectionless points

The $2 m$-particle form factors $\left(\zeta_{j}=x^{u_{j}}\right)$ are given as follows:

$$
\begin{align*}
F_{m}^{(i)}\left(\zeta_{1}, \cdots, \zeta_{2 m}\right)_{\mu_{1} \cdots \mu_{2 m}} & =\frac{1}{\chi^{(i)}} \operatorname{Tr}_{\mathcal{H}_{i}}\left(\Psi_{\mu_{2 m}}^{*}\left(\zeta_{2 m}\right) \cdots \Psi_{\mu_{1}}^{*}\left(\zeta_{1}\right) \mathcal{O} \rho^{(i)}\right) \\
& =\sum_{l_{1} \cdots l_{2 m}} F_{m}^{(l k)}(\zeta)_{l_{1} \cdots l_{2 m}} \prod_{j=1}^{2 m} t_{l_{j+1}}^{\prime * l_{j}}\left(u_{j}-u_{0}-\Delta u_{0}\right)_{\mu_{j}} \tag{4.1}
\end{align*}
$$

where $l_{2 m+1}=l$. From the generalized ice condition,

$$
F_{m}^{(i)}(\zeta)_{\mu_{1} \cdots \mu_{2 m}}=0, \quad \text { unless } \sharp\left\{j \mid \mu_{j}>0\right\} \equiv m(\bmod 2) .
$$

Note that from (4.2), nonzero terms in the sum on (4.1) results from the case $l_{1}=l, l \pm 2$. When $l_{1}=l$ (4.1) has an integral. On the other hand, (4.1) for $l_{1} \neq l$ can be expressed in terms of the sum of theta function (without integrals), otherwise is equal to 0 . Since

$$
2^{2 m}-\binom{2 m}{m} \geqslant 2^{2 m-1}
$$

we can obtain no-integral formulae for $\widehat{\widehat{\sigma}^{z}}$ form factors, in principle.
For $\mathcal{O}=\widehat{\sigma}^{z}$, we have

$$
\begin{align*}
& F_{m}^{(l k)}(\zeta)_{l_{1} \cdots l_{2 m} l}=\frac{1}{\chi^{(i)}} \sum_{\varepsilon} \sum_{k \equiv l+i(2)} \varepsilon t_{-\varepsilon}\left(u-u_{0}-1\right)_{k_{2}}^{k} t_{\varepsilon}\left(u-u_{0}\right)_{k_{1}}^{k_{2}} \tag{4.2}\\
\times & \operatorname{Tr}_{\mathcal{H}_{l k}^{(i)}}\left(\Psi_{l_{2 m}}^{* l}\left(\zeta_{2 m}\right) \cdots \Psi_{l_{1}}^{* l_{2}}\left(\zeta_{1}\right) \Phi_{k_{2}}^{k}(u-1) \Phi_{k_{1}}^{k_{2}}(u) \Lambda_{l k}^{l_{1} k_{1}}\left(u_{0}\right) \frac{\rho_{l k}}{[l]^{\prime}}\right) .
\end{align*}
$$

In what follows, for simplicity, we set $m=2$ and $u_{0}=u-\frac{\pi \sqrt{ }-1}{2 \epsilon}$ so that the terms for the case $k_{2}=k$ vanish. The quantity $F_{l^{\prime} l_{2} l_{3} l_{4} l}$ for $l^{\prime} \neq l$ has a non-integral expression.

For example, let us calculate $F_{l-2 l-1 l l+1 l}$. Simple calculation shows

$$
\begin{aligned}
& \Psi_{l+1}^{* l}\left(\zeta_{4}\right) \Psi_{l}^{* l+1}\left(\zeta_{3}\right) \Psi_{l-1}^{* l}\left(\zeta_{2}\right) \Psi_{l}^{* l-1}\left(\zeta_{1}\right) \Phi_{k-1}^{k}(u-1) \Phi_{k}^{k-1}(u) \Lambda_{l k}^{l-2 k-2}\left(u_{0}\right) \frac{\rho_{l k}}{[l]^{\prime}}=\frac{[l+1]^{\prime}\left(x-x^{-1}\right)^{-1}}{\lambda \lambda^{\prime}[1]^{\prime} \partial[0]} \\
\times & \sum_{\mu=0}^{N} c_{\mu}: \Psi_{+}^{*}\left(u_{4}\right) \Psi_{+}^{*}\left(u_{3}\right) \Psi_{+}^{*}\left(u_{2}\right) \Psi_{+}^{*}\left(u_{1}\right) B\left(u_{4}^{(\mu)}\right) \Phi_{+}(u-1) \Phi_{+}(u) W_{-}\left(u_{0}\right): x^{4 H_{l k}} \\
\times & \prod_{j<k} z_{k}^{\frac{r}{2(r-1)}} \frac{\left(z_{j} / z_{k} ; x^{4}, x^{2 r-2}\right)_{\infty}\left(x^{2 r+2} z_{j} / z_{k} ; x^{4}, x^{2 r-2}\right)_{\infty}}{\left(x^{2} z_{j} / z_{k} ; x^{4}, x^{2 r-2}\right)_{\infty}\left(x^{2 r} z_{j} / z_{k} ; x^{4}, x^{2 r-2}\right)_{\infty}} \prod_{j=1}^{3} w^{-\frac{r}{r-1}} \frac{\left(x^{(2 r-2)(1+\mu)} z_{j} / z_{4} ; x^{2 r-2}\right)_{\infty}}{\left(x^{(2 r-2) \mu-2} z_{j} / z_{4} ; x^{2 r-2}\right)_{\infty}} \\
\times & \prod_{j=1}^{4} \frac{x z_{j}}{1+x^{-1} z / z_{j}} \times 2\left(x^{-1} z\right)^{\frac{1}{r}} \frac{\left(-x^{2 r} ; x^{2 r}\right)_{\infty}}{\left(-x^{4} ; x^{2 r}\right)_{\infty}}\left(x^{1-(2 r-2) \mu} z_{4}+z\right)\left(x^{1-(2 r-2) \mu} z_{4}+x^{-2} z\right) \\
\times & \prod_{j=1}^{4} z_{j}^{-\frac{1}{r-1}} \frac{\left(x z / z_{j} ; x^{2 r-2}\right)_{\infty}}{\left(x^{-1} z / z_{j} ; x^{2 r-2}\right)_{\infty}} .
\end{aligned}
$$

Here, $u_{4}^{(\mu)}=u_{4}+\frac{1}{2}-\mu(r-1)$, and note that $\lambda^{\prime}[1]^{\prime}$ is a constant. Let
$: \Psi_{+}^{*}\left(u_{4}\right) \Psi_{+}^{*}\left(u_{3}\right) \Psi_{+}^{*}\left(u_{2}\right) \Psi_{+}^{*}\left(u_{1}\right) B\left(u_{4}^{(\mu)}\right) \Phi_{+}(u-1) \Phi_{+}(u) W_{-}\left(u_{0}\right):=U_{0}: \exp \left(\sum_{m \neq 0} A_{m} \beta_{m}\right):$,
where U_{0} is the zero-mode part. Then the trace over oscillator modes

$$
\begin{equation*}
\operatorname{Tr}_{*}\left(: \exp \left(\sum_{m \neq 0} A_{m} \beta_{m}\right): x^{4 H_{*}}\right)=\prod_{m=1}^{\infty} \sum_{n=0}^{\infty} \frac{\langle l, k| \beta_{m}^{n} e^{A_{-m} \beta_{-m}} e^{A_{m} \beta_{m}} \beta_{-m}^{n}|l, k\rangle}{\langle l, k| \beta_{m}^{n} \beta_{-m}^{n}|l, k\rangle} x^{4 m n} \tag{4.3}
\end{equation*}
$$

can be calculated as follows. Note that

$$
\begin{equation*}
e^{A_{-m} \beta_{-m}} e^{A_{m} \beta_{m}} \beta_{-m}^{n}|l, k\rangle=e^{A_{-m} \beta_{-m}}\left(\beta_{-m}+m \frac{[m]_{x}[(r-1) m]_{m}}{[2 m]_{x}[r m]_{x}} A_{m}\right)^{n}|l, k\rangle \tag{4.4}
\end{equation*}
$$

Multiply $x^{4 m n}$ by the coeeficient of $\beta_{-m}^{n}|l, k\rangle$ on (4.4), and sum up with respect to n, we get

$$
\begin{align*}
& \sum_{n=0}^{\infty} x^{4 m n} \sum_{s=0}^{n} \frac{{ }_{n} C_{s}}{s!}\left(m \frac{[m]_{x}[(r-1) m]_{m}}{[2 m]_{x}[r m]_{x}} A_{-m} A_{m}\right)^{s} \\
= & \sum_{s=0}^{\infty} \frac{1}{s!}\left(m \frac{[m]_{x}[(r-1) m]_{m}}{[2 m]_{x}[r m]_{x}} A_{-m} A_{m}\right)^{s} \sum_{n=s}^{\infty}{ }_{n} C_{s} x^{4 m n} \tag{4.5}\\
= & \frac{1}{1-x^{4 m}} \exp \left(\frac{x^{4 m}}{1-x^{4 m}} m \frac{[m]_{x}[(r-1) m]_{m}}{[2 m]_{x}[r m]_{x}} A_{-m} A_{m}\right) .
\end{align*}
$$

Thus, we have

$$
\begin{equation*}
(4.3)=\frac{1}{\left(x^{4} ; x^{4}\right)_{\infty}} \exp \left(\sum_{m=1}^{\infty} \frac{x^{4 m}}{1-x^{4 m}} m \frac{[m]_{x}[(r-1) m]_{m}}{[2 m]_{x}[r m]_{x}} A_{-m} A_{m}\right) . \tag{4.6}
\end{equation*}
$$

Since

$$
\begin{aligned}
m A_{m} & =\frac{[r m]_{x}}{[(r-1) m]_{x}} \sum_{j=1}^{4}\left(-z_{j}\right)^{-m}-\frac{[2 m]_{x}[r m]_{x}}{[m]_{x}[(r-1) m]_{x}}\left(-x^{1-2(r-1) \mu} z_{4}\right)^{-m} \\
& -z^{-m}\left(1+x^{2 m}+(-x)^{m(r-1)} \frac{[2 m]_{x}}{[(r-1) m]_{x}}\right)
\end{aligned}
$$

we obtain

$$
\begin{align*}
(4.3) & =\frac{d_{\mu}}{\left(x^{4} ; x^{4}\right)_{\infty}} \prod_{j \neq k} \frac{\left.\left(x^{4} z_{j} / z_{k} ; x^{4}, x^{4}, x^{2 r-2}\right)_{\infty}\left(x^{2 r+6} z_{j} / z_{k} ; x^{4}, x^{4} ; x^{2 r-2}\right)_{\infty}, x^{4}, x^{2 r-2}\right)_{\infty}\left(x^{2 r+4} z_{j} / z_{k} ; x^{4}, x^{4}, x^{2 r-2}\right)_{\infty}}{2 r-2}{ }^{2 r\left(x^{2 r}\right)} \\
& \times \prod_{j=1}^{4} \frac{\left(x^{2 r+4-2(r-1) \mu} z_{4} / z_{j} ; x^{4}, x^{2 r-2}\right)_{\infty}\left(x^{2 r+2+2(r-1) \mu} z_{j} / z_{4} ; x^{4}, x^{2 r-2}\right)_{\infty}}{\left(x^{2 r+4-2(r-1) \mu} z_{4} / z_{j} ; x^{4}, x^{2 r-2}\right)_{\infty}\left(x^{2+2(r-1) \mu} z_{j} / z_{4} ; x^{4}, x^{2 r-2}\right)_{\infty}} \\
& \times \prod_{j=1}^{4} \frac{1}{\left(-x^{3} z / z_{j} ; x^{4}\right)_{\infty}\left(-x^{5} z_{j} / z ; x^{4}\right)_{\infty}} \frac{\left(x^{5} z / z_{j} ; x^{4}, x^{2 r-2}\right)_{\infty}\left(x^{2 r+3} z_{j} / z ; x^{4}, x^{2 r-2}\right)_{\infty}}{\left.x^{5} / z_{j} ; x^{4}, x^{2 r-2}\right)_{\infty}\left(x^{2 r+1} z_{j} / z ; x^{4}, x^{2 r-2}\right)_{\infty}} \\
& \times\left(-x^{1+2(r-1) \mu} z / z_{4} ; x^{2}\right)_{\infty}\left(-x^{5-2(r-1) \mu} z_{4} / z ; x^{2}\right)_{\infty} \\
& \times\left(x^{1+2(r-1) \mu} z / z_{4} ; x^{2 r-2}\right)_{\infty}\left(x^{1-2(r-1)(\mu-1)} z_{4} / z ; x^{2 r-2}\right)_{\infty}, \tag{4.7}
\end{align*}
$$

where d_{μ} is some constant. Contribution from the trace over zero modes is equal to:

$$
\begin{align*}
& x^{\frac{r}{r-1}-\frac{r+1}{2 r}-2 \mu r+\frac{r}{2(r-1)}\left(u_{1}+u_{2}+u_{3}+5 u_{4}\right)+\left(\frac{r-1}{r}+\frac{2}{r(r-1)}\right) u+\frac{r-1}{r} k^{2}-2 k l+\frac{r}{r-1} l^{2}} \\
\times \quad & x^{-k\left(2 \mu(r-1)+\frac{2(r-1)}{r}-1+u_{1}+u_{2}+u_{3}-u_{4}-2 u\right)+l\left(2 \mu r+2-\frac{r}{(r-1)}+\frac{r}{r-1}\left(u_{1}+u_{2}+u_{3}-u_{4}\right)-\frac{2 r u}{r-1}\right)} . \tag{4.8}
\end{align*}
$$

Multiply (4.8) by $[k-1]$ (resulting from $\left.\sum_{\varepsilon} \varepsilon t_{-\varepsilon}\left(u-u_{0}-1\right)_{k-1}^{k} t_{\varepsilon}\left(u-u_{0}\right)_{k-2}^{k-1}\right)$ and sum up with respect to $k \equiv l+i(\bmod 2)$. Then we have

$$
\begin{align*}
& \quad F_{l-2 l-1 l l+1 l}^{(i)}\left(u_{1}, u_{2}, u_{3}, u_{4} ; u\right)=\sum_{\mu=0}^{N} C_{\mu}\left(u_{1}, u_{2}, u_{3}, u_{4} ; u\right) \tag{4.9}\\
& \times\left((-)^{\mu} \theta_{3}\left(\frac{u_{1}+u_{2}+u_{3}-u_{4}}{2}-u+\mu(r-1) ; \frac{\pi \sqrt{-1}}{\epsilon}\right) \theta_{1}\left(\frac{l+\frac{u_{1}+u_{2}+u_{3}-u_{4}}{2}-u}{r-1} ; \frac{\pi \sqrt{-1}}{\epsilon(r-1)}\right)\right. \\
& \left.+(-)^{1-i} \theta_{2}\left(\frac{u_{1}+u_{2}+u_{3}-u_{4}}{2}-u+\mu(r-1) ; \frac{\pi \sqrt{-1}}{\epsilon}\right) \theta_{4}\left(\frac{l+\frac{u_{1}+u_{2}+u_{3}-u_{4}}{2}-u}{r-1} ; \frac{\pi \sqrt{-1}}{\epsilon(r-1)}\right)\right),
\end{align*}
$$

where $C_{\mu}\left(u_{1}, u_{2}, u_{3}, u_{4} ; u\right)$ is some function, which is almost equal to the product of $[l+1]^{\prime} c_{\mu}$ and (4.7).

5 Summary and discussion

In this article, it is shown that the type II vertex operators and the type II part (X^{\prime}) of tail operators can be bosonized without any integrals at reflectionless points. Consequently, the form factors of $\mathcal{O}=\widehat{\sigma^{z}}$ in the eight-vertex model can be expressed in terms of the
sum of theta functions. We wish to report explicit expressions for $\widehat{\sigma}^{z}$ form factors of the eight-vertex model at reflectionless points in a separate paper.

Concerning generic local operator \mathcal{O}, the tail operator $\Lambda_{k l}^{k^{\prime} l^{\prime}}$ with $k^{\prime}=k \pm 2 s(s>1)$ are needed. Nevertheless, there is no pinching for $l^{\prime}=l \pm 2 t$ with $t>1$. Thus, the type II part of $\Lambda_{k l}^{k^{\prime} l^{\prime}}$ is always written without integrals. On the other hands, the type I part (Y) of tail operators has an integral representation. Furthermore, generic local operator itself has an integral representation. Note that these integrals result from type I parts.

Let us remind Shiraishi's observation [2], where the type II vertex operators in the eight-vertex model (NOT SOS) at reflectionless points can be expressed in terms of certain representations of deformed W-algebra \mathcal{D}_{N+1}. Such non-integral structure is very close to our results here. However, Shiraishi's formulae of the type I vertex operators are different from ours. It is therefore a very important subject to find a connection between these two schemes.

References

[1] Lashkevich M: Free field construction for the eight-vertex model: representation for form factors, Nucl. Phys. B621 (2002) 587-621.
[2] Shiraishi J: Commutative family of integral transformations and matrix elements of the vertex operators for Baxter's eight-vertex model, a talk given in the conference 'Solvable Lattice Models 2004' - Recent Progress in Solvable lattice Models -, held as a part of RIMS project, RIMS, Kyoto University, 21 July 2004.
[3] Quano Y.-H: Form factors, correlation functions and vertex operators in the eight-vertex model at reflectionless points, hep-th/0410084, submitted to RIMS Kokyuroku, based on a talk given in the conference 'Solvable Lattice Models 2004 - Recent Progress in Solvable Lattice Models -', held as a part of RIMS project, RIMS, Kyoto University, 23 July 2004.
[4] Baxter R J: Eight-vertex model in lattice statistics and one-dimensional anisotropic Heisenberg chain. II. Equivalence to a generalized ice-type lattice model, Ann. Phys. (NY) 76 (1973) 25-47.
[5] Lashkevich M and Pugai Ya: Free field construction for correlation functions of the eight vertex model, Nucl. Phys. B516 (1998) 623-651.

Yas-Hiro Quano
Department of Clinical Engineering, Suzuka University of Medical Science
http://www2.suzuka-u.ac.jp/quanoy/quano.htm
email: quanoy@suzuka-u.ac.jp

[^0]: *Partly based on a joint work with Michael Lashkevich.

