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Abstract

In recent work on multivariate elliptic hypergeometric integrals, the author gen-
eralized a conjectural integral formula of van Diejen and Spiridonov to a ten pa-
rameter integral provably invariant under an action of the Weyl group E7. In the
present note, we consider the action of the affine Weyl group, or more precisely, the
recurrences satisfied by special cases of the integral. These are of two flavors: linear
recurrences that hold only up to dimension 6, and three families of bilinear recur-
rences that hold in arbitrary dimension, subject to a condition on the parameters.
As a corollary, we find that a codimension one special case of the integral is a tau
function for the elliptic Painlevé equation.

1 Introduction

In [10], we studied the following hypergeometric integral (generalizing the “Type II”
integral of [5]), defined for |p|, |q|, |t| < 1, t0, . . . , t7 ∈ C∗:
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where (p; p) =
∏

1≤i(1 − pi), Γp,q is the elliptic Gamma function (see below), and C is a
suitable choice of contour (which may be taken to be the unit circle when all parameters are
inside the unit circle). We found that if the parameters satisfied the following “balancing”
condition:

t2n−2t0t1t2t3t4t5t6t7 = p2q2, (1.2)

then the integral satisfied a certain transformation which, together with the obvious per-
mutation symmetry of the arguments, generated an action of the Weyl group W (E7).
More precisely, assuming balanced parameters, the renormalized integral

ĨI
(n)

t;p,q(t0, t1, . . . , t7) :=
∏

0≤r<s≤7

Γ+
t,p,q(ttrts) II

(n)
t;p,q(t

1/2t0, t
1/2t1, . . . , t

1/2t7) (1.3)

is invariant under this action, which we now explain.
We first observe that we can view the above integral (given the balancing condition)

as a function on an algebraic torus, the maximal torus Hom(ΛE8 , C∗) of the complex Lie
group E8 (where ΛE8 is the root lattice). Indeed, we first observe that the integral is
invariant under the symmetry

(t0, t1, . . . , t7) 7→ (−t0,−t1, . . . ,−t7), (1.4)
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simply by negating the z variables; as a result, it is only a function of the pairwise products
and ratios t±1

r t±1
s . In other words, it is a function on the maximal torus Hom(ΛD8 , C∗).

But the balancing condition forces a choice of square root

√
t0t1 . . . t7 = pq/tn+1 (1.5)

and thus the parameters in fact determine a homomorphism from the lattice ΛE8 to C∗,
mapping ω := (1/2, 1/2, . . . , 1/2) to pq/tn+1.

If φ : ΛE8 → C∗ is a homomorphism such that

pq

tφ(ω)
= tn (1.6)

for some (uniquely determined) integer n, we define

ĨI t;p,q(φ) (1.7)

as follows. If n < 0, then

ĨI t;p,q(φ) = 0; (1.8)

otherwise, we set

ĨI t;p,q(φ) = ĨI
(n)

t;p,q(φ(e0), . . . , φ(e7)) (1.9)

where e0, . . . , e7 are the coordinate vectors and we have chosen an extension of φ to Λ∗
D8

(which as remarked above does not affect the value of the integral).

Theorem 1.1. [10] Suppose φ ∈ Hom(ΛE8 , C∗) Then for any element g ∈ W (E8) =
Aut(ΛE8) such that

〈ω, gω〉 ∈ {1, 2}, (1.10)

we have

ĨI t;p,q(φ) = ĨI t;p,q(g
∗φ) (1.11)

whenever
pq

tφ(ω)
,

pq

tφ(gω)
∈ tZ, (1.12)

so that both sides are defined.

Note that if 〈ω, gω〉 = 2, then gω = ω. In other words, g is in the stabilizer W (E7)
of ω, and the statement becomes that ĨI t;p,q(φ) is invariant under W (E7) whenever it is
defined.

In addition to the natural action of the finite Weyl group W (E8) on Hom(ΛE8 , C∗),
there is a nearly natural action of the affine Weyl group. To be precise, if v ∈ ΛE8 , we
define a shift operator τv by

(τv(φ))(w) = φ(w)q〈v,w〉, (1.13)

for all φ ∈ Hom(ΛE8 , C∗), w ∈ ΛE8 . (It will be notationally convenient to extend this
definition to v ∈ ΛE8 ⊗ Q by fixing a consistent family of mth roots of q.) The price of



Recurrences for elliptic hypergeometric integrals 185

enlarging the group is that we no longer have invariance; instead, the most we can expect
is that ĨI t;p,q should satisfy recurrences with respect to different shifts.

The purpose of the present note is to show that in certain special cases, such recur-
rences do indeed arise. These come in two main flavors. The first set of recurrences
arises from the observation that certain shifts (by coordinate vectors, say) have the effect
of multiplying the integrand by a relatively simple function; in low dimensions (n ≤ 6),
these functions must be linearly dependent, and thus give rise to a linear recurrence.

The other set of recurrences are somewhat more subtle. The above integral can be
viewed as a generalization of the Selberg integral, which suggests that the speical cases t ∈
{q1/2, q, q2} should be particularly nice. Indeed, it turns out that in those cases the integral
can be expressed (in many ways) as a determinant or pfaffian of one- or two-dimensional
integrals. In particular, we can arrange for several minors of said determinant/pfaffian to
themselves be special cases of our integral, with the result that the Plücker relations give
rise to recurrences of our integral. Since the Plücker relations are bilinear, the resulting
recurrences are also bilinear; for t = q (the determinantal case), we obtain a three-term
bilinear recurrence, while for t = q1/2, q2 (pfaffian cases), we obtain a four-term bilinear
recurrence. The significance of these recurrences is perhaps underscored by the fact that
the recurrence for t = q has arisen in the theory of Sakai’s elliptic Painlevé equation
[12, 7].

The plan of the paper is as follows. After defining some notation for generalized
q-symbols and theta functions, we proceed in section 2 to prove some theta function
identities needed in the derivation of our recurrences. In section 3, we use these to give
the aforementioned linear recurrences in low dimensions. Section 4 describes a general
setting in which Plücker relations give rise to bilinear relations of integrals, which is then
specialized in section 5 to give our bilinear Painlevé-type recurrences.
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Notation

Aside from the integral itself, most of the functions that appear in the sequel are most
simply expressed as infinite products; as a result, we will need a shorthand notation for
certain such products. Here p, q, t are complex numbers inside the open unit disc.

θp(x) :=
∏

0≤k

(1 − pk+1/x)(1 − pkx) (1.14)

Γp,q(x) :=
∏

0≤j,k

(1 − pj+1qk+1/x)(1 − pjqkx)−1 (1.15)

Γ+
p,q,t(x) :=

∏

0≤i,j,k

(1 − pi+1qj+1tk+1/x)(1 − piqjtkx). (1.16)

The first function is simply a version of Jacobi’s theta function, while the second func-
tion is Ruijsenaars’ elliptic Gamma function [11]. As these are generalized q-symbols
(indeed, Γ0,q(x)−1 is precisely the usual q-symbol), we take the standard convention that
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the presence of multiple arguments indicates a product; thus, for instance, in the above
integral,

Γp,q(z
±1
i z±1

j ) = Γp,q(zizj)Γp,q(zi/zj)Γp,q(zj/zi)Γp,q(1/zizj). (1.17)

The main properties of these functions are reflection symmetry:

θp(p/x) = θp(x) (1.18)

Γp,q(pq/x) = Γp,q(x)−1 (1.19)

Γ+
p,q,t(pqt/x) = Γp,q,t(x), (1.20)

and a functional equation:

θp(px) =
1 − 1/x

1 − x
θp(x) = −x−1θp(x) (1.21)

Γp,q(qx) = θp(x)Γp,q(x) (1.22)

Γ+
p,q,t(tx) = Γp,q(x)Γ+

p,q,t(x), (1.23)

with similar identities following by the symmetry of Γp,q and Γ+
p,q,t in the parameters.

We recall that a (p-)theta function (in multiplicative notation) is a holomorphic func-
tion f(x) on C∗ such that

f(px) = C(−x)−mf(x) (1.24)

for some constant C (the multiplier), and some integer m (the degree). The canonical
example of this is the function θp(x/a); indeed, any p-theta function is proportional to a
function of the form

xk
∏

1≤i≤m

θp(x/ai), (1.25)

with multiplier

pk
∏

1≤i≤m

ai, (1.26)

and thus the multiplier of a theta function is determined up to powers of p by its zeros.
A meromorphic theta function is a ratio of holomorphic theta functions.

Similarly, a BCn-symmetric theta function of degree m is defined to be a function on
(C∗)n invariant under permutations and inversions of its variables, and such that as a
function of each variable it is a theta function of degree 2m with multiplier p−m. Since
the quotient of the elliptic curve C∗/〈p〉 by x 7→ 1/x is a projective line, it follows that
the space of BC1-symmetric theta functions of degree m is m + 1-dimensional.

2 Theta function relations

Define a function ψp(x, y) on C∗ × C∗ as follows:

ψp(x, y) = x−1θp(xy)θp(x/y). (2.1)

This is readily seen to satisfy the relations

ψp(x, y) = ψp(x, 1/y) = −ψp(y, x) (2.2)
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and
ψp(x, py) = (py2)−1ψp(x, y). (2.3)

Somewhat less trivial is the following:

Lemma 2.1. For x, y, z, w ∈ C∗,

ψp(x, y)ψp(z, w) − ψp(x, z)ψp(y, w) + ψp(x,w)ψp(y, z) = 0. (2.4)

Proof. Consider the skew-symmetric 4 × 4 matrix

A =




ψp(x, x) ψp(x, y) ψp(x, z) ψp(x,w)
ψp(y, x) ψp(y, y) ψp(y, z) ψp(y, w)
ψp(z, x) ψp(z, y) ψp(z, z) ψp(z, w)
ψp(w, x) ψp(w, y) ψp(w, z) ψp(w,w)


 (2.5)

The functions ψp(x, ), ψp(y, ), ψp(z, ), ψp(w, ) all lie in the 2-dimensional space of BC1-
symmetric theta functions of degree 1, and thus any three of them satisfy a linear relation.
In particular, it follows that the matrix A has rank at most 2, and thus has pfaffian 0;
this is precisely the desired identity.

Remark. This, of course, is simply the addition law for elliptic theta functions in disguise.

Proposition 2.2. We have the following Cauchy-type determinant:

det
1≤i,j≤n

(
1

ψp(xi, yj)
) = (−1)n(n−1)/2

∏
1≤i<j≤n ψp(xi, xj)ψp(yi, yj)∏

1≤i,j≤n ψp(xi, yj)
(2.6)

Proof. ¿From the lemma, we can write

1

ψp(xi, yj)
=

ψp(z, w)

ψp(z, xi)ψp(w, yj) − ψp(z, yj)ψp(w, xi)
(2.7)

=
ψp(z, w)

ψp(w, xi)ψp(w, yj)

1

(ψp(z, xi)/ψp(w, xi)) − (ψp(z, yj)/ψp(w, yj))
(2.8)

for arbitrary z, w. The result thus follows immediately from the usual Cauchy determi-
nant.

Remark. That this identity is a special case of the usual Cauchy determinant is no acci-
dent: any function ψ satisfying the above identity can be written in the form

ψ(x, y) =
ψ(z, x)ψ(w, y) − ψ(z, y)ψ(w, x)

ψ(z, w)
(2.9)

using the n = 2 instance of the identity.

Corollary 2.3. For generic x1,. . . ,xn+2, y1,. . . ,yn,

∑

1≤k≤n+2

∏
1≤j≤n ψp(xk, yj)∏

i6=k ψp(xk, xi)
= 0. (2.10)
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Proof. Expand the n + 1 dimensional instance of the above determinant along the last
row, set yn+1 = xn+2, then simplify. Alternatively, observe that some such relation must
hold by dimensionality, and deduce the constants by setting yj = xk for various choices
of j, k.

Fix p ∈ C, t ∈ C∗, and define for u0, u1, u2, u3, u4 ∈ C∗ a function g
(n)
u0,u1,u2,u3,u4 on

(C∗)n by

g(n)
u0,u1,u2,u3,u4

(. . . zi . . . ) =
∏

1≤i≤n

(1+R(zi))

∏
0≤r≤4 θp(urzi)θp(zi/t

n−1u0u1u2u3u4)

z2
i θp(z2

i )

∏

1≤i<j≤n

θp(tzizj)

θp(zizj)
,

(2.11)
where R(zi) is the operator zi 7→ 1/zi. We also define a function

f (n)
u0

(. . . zi . . . ) =
∏

1≤i≤n

θp(u0zi, u0/zi). (2.12)

The following lemma shows that this is a special case of the first family.

Lemma 2.4. We have the identity

g
(n)
u0,u1,u2,u3,1/u0

(. . . zi . . . ) = f (n)
u0

(. . . zi . . . )
∏

1≤i≤n

θp(t
n−iu1u2, t

n−iu1u3, t
n−iu2u3)

tn−1u0u1u2u3

. (2.13)

Proof. If we divide both sides by f
(n)
u0 (. . . zi . . . ), the result is simply Lemma 6.2 of [10].

Theorem 2.5. For u0, u1, u2, u3, v0, . . . , vn+1 ∈ C∗, and z ∈ (C∗)n,

∑

0≤i≤n+1

g
(n)
u0,u1,u2,u3,vi(z)∏

r 6=i v
−1
r θp(vr/vi, tn−1u0u1u2u3vivr)

= 0. (2.14)

Proof. If we pull the sum inside the symmetrization operation, we find that the result
would follow from the identity

∑

0≤k≤n+1

∏
1≤i≤n z−1

i θp(vkzi, zi/t
n−1u0u1u2u3vk)∏

r 6=k v−1
r θp(vr/vk, tn−1u0u1u2u3vkvr)

= 0. (2.15)

But this is the special case of Corollary 2.3 with

xk = vk−1

√
tn−1u0u1u2u3 yk =

zk√
tn−1u0u1u2u3

. (2.16)

If we set one of the variables in g
(n)
u0u1u2u3u4 equal to u0, half of the terms vanish, and

we thus find

g(n)
u0u1u2u3u4

(u0, z) =
θp(1/t

n−1u1u2u3u4)
∏

1≤r≤4 θp(u0ur)

u2
0

g
(n−1)
tu0,u1,u2,u3,u4

(z). (2.17)

This in some cases allows us to deduce relations between these functions. We concentrate
on the case n = 4, as this seems to be the primary source of identities between functions
f (n) and g(n) not contained in Corollary 2.3 or Theorem 2.5; all other such identities we
have been able to find are obtained by specializing the variables.
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Proposition 2.6. For any parameters u0, u1, u2, u3, u4 ∈ C, z ∈ C4,

g(4)
u0,u1,u2,u3,u4

(z) =
∏

0≤i<j≤4

θp(uiuj, tuiuj)
∑

0≤r≤4

∏

i6=r

θp(ui/t
3u0u1u2u3u4)

u2
i θp(ur/ui, urui, turui)

f (4)
ur

(z) (2.18)

Proof. The five functions f
(4)
ur (z) span the space of BC4-symmetric theta functions of

degree 1, so it remains only determine the coefficients of the expansion. If we evaluate
g

(4)
u0,u1,u2,u3,u4(z) at the point z = (u1, u2, u3, u4), only the f

(4)
u0 (z) term survives, and we

thus can solve for its coefficient; the other coefficients are symmetrical.

There is a sort of inverse to the above expansion, expressing f
(4)
u0 (z) in terms of the

five functions
g(4)

u0,u2,u3,u4,u5
(z), g(4)

u0,u1,u3,u4,u5
(z), . . . , g(4)

u0,u1,u2,u3,u4
(z).

Proposition 2.7. For any parameters u0, u1, u2, u3, u4, u5 ∈ C, z ∈ C4,

f (4)
u0

(z) =

∏
1≤i≤5 θp(u0ui/t

3U)∏
1≤i<j≤5 θp(uiuj, tuiuj)

∑

1≤r≤5

gu0,...,cur,...(z)

θ(u0ui/t3U)

∏

0≤i≤3

θp(t
iu0ur)

θp(ti−6/U)

∏

1≤i6=r

u2
i θp(uiur, tuiur)

θp(ur/ui)
,

(2.19)
where U = u0u1u2u3u4u5.

Proof. ¿From Proposition 2.6 above, we obtain six different identities expressing the six
functions g

(4)
...,cur,...(z) in terms of the six functions f

(4)
ur (z). It turns out, in fact, that up to

rescaling of rows and columns, the resulting 6 × 6 matrix is antisymmetric, and thus the
inverse matrix can be expressed via pfaffians. The closed forms for the desired pfaffians
can be obtained via the special case a = 1, b = t, c = 1/t3U of the following identity.

Theorem 2.8. [9] For arbitrary parameters u0, . . . , u2n−1, a, b, c ∈ C, we have

pf0≤i,j<2n

(
ujθp(ui/uj, auiuj, buiuj)

θp(cuiuj)

)

= cn(n−1)θp(a/c, b/c)n−1θp(acn−1U, bcn−1U)
∏

0≤i<j<2n

ujθp(ui/uj)

θp(cuiuj)
, (2.20)

where U =
∏

0≤i<2n ui

Proof. We first consider both sides as functions in a; we find that they are both theta
functions with the same multiplier. Moreover, if we set a = c on the left, we obtain a
matrix of rank 2, and thus the pfaffian must have a zero of order n − 1 at that point.
This accounts for all but one zero in a fundamental region, and the remaining zero can be
determined from the multiplier. Arguing similarly for b, we conclude that the left-hand
side is a multiple of

θp(a/c, b/c)n−1θp(acn−1U, bcn−1U). (2.21)

Since the pfaffian also vanishes whenever ui = uj, and has at most simple poles at points
with cuiuj = 1, it follows that the ratio of the two sides is in fact constant. The value of
this constant can then be determined from the asymptotics as u2i → 1/cu2i−1.
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Associated to this is the following analogue of Corollary 2.3.

Corollary 2.9. For arbitrary parameters a, b ∈ C, u ∈ Cn+1,

∑

0≤r≤n

θp(aur, bur, aU/ur, bU/ur)
∏

0≤i≤n;i 6=r

θp(uiur)

uiθp(ur/ui)
= δn evenθp(a, b, aU, bU), (2.22)

where U =
∏

0≤r≤n ur.

Proof. The case n even can be obtained by setting c = u2n−1 = 1 and expanding the
pfaffian along the last row; the case n odd then follows by setting u2n−2 = 1.

Similarly, the fact that the pfaffians are nice gives rise to a relation between the
functions

f (4)
u0

(z), f (4)
u1

(z), f (4)
u2

(z), g(4)
u0u1u2u3u4

(z), g(4)
u0u1u2u3u5

(z), g(4)
u0u1u2u4u5

(z). (2.23)

If we also use the relation between f
(4)
ur (z), 0 ≤ r ≤ 5 coming from Corollary 2.3, then we

can obtain similar relations involving 4, 2, or 0 of the f functions; we omit the details.
Finally, we will also need the following pfaffian identity.

Theorem 2.10. We have the pfaffian

pf1≤i<j≤2n(
z−1

i θ(ziz
±1
j ; t2)

θ(tziz
±1
j ; t2)

) =
tn(n−1)

∏
1≤i<j≤2n z−1

i θ(ziz
±1
j ; t2)

θ(tziz
±1
j ; t2)

(2.24)

Proof. Both sides are BCn-antisymmetric abelian functions with the same polar divisor,
and are thus proportional. Multiplying both sides by

∏

1≤i≤n

θ(tz2i−1/z2i; t
2) (2.25)

and taking the limit z2i → tz2i−1 shows that the constant is 1.

3 Recurrences in low dimensions

We can obtain recurrences for low-dimensional instances of our integral by observing
that there are two ways in which shifting the parameters corresponds to multiplying the
integrand by a degree 1 theta function. If we multiply tr by q, this simply multiplies the
integrand by

f
(n)
tr (. . . zi . . . ) =

∏

1≤i≤n

θp(trz
±1
i ) = tnr

∏

1≤i≤n

ψp(tr, zi). (3.1)

Somewhat more subtly, if t2n−2t0t1t2t3t4t5t6t7 = p2q, multiplying the integrand by

∏

0≤i<n

q2p3

(t5t6t7)2t2n−2θp(pq/tit5t6, pq/tit5t7, pq/tit6t7)
g

(n)
t0,t1,t2,t3,t4(. . . zi . . . ) (3.2)
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simply has the effect of multiplying t0 through t4 by
√

q and dividing t5, t6, t7 by
√

q.
Indeed, this follows immediately by an adjointness argument as in the second proof of
Theorem 6.1 of [10].

As a result, any linear dependence between the 8 functions f (n) and the 56 functions
g(n) gives rise to a relation of integrals. Thus in principle we would obtain recurrences
all the way up to dimension 62 (since the space of degree 1 BCn-symmetric theta func-
tions has dimension n + 1); in practice, however, the coefficients of such relations do not
appear to have nice closed forms in general. There is, however, one special case in which
the coefficients are nice. Each function corresponds to a vector (by which it shifts the
parameters); if the difference of any two such vectors in the collection is a root of E7, the
corresponding relation has nice coefficients. This, however, greatly reduces the possible
number of theta functions in the relation, with the result that we only obtain recurrences
for n ≤ 6.

The simplest case is the linear relations between the functions f (n) from Corollary 2.3,
which gives the following recurrence.

Theorem 3.1. For 1 ≤ n ≤ 6, let t0,. . . , t7, t, p, q be parameters such that |p|, |q|, |t| < 1.
Then

∑

0≤i≤n+1

tiII
(n)
t;p,q(t0, . . . , qti, . . . , t7)∏
0≤j≤n+1;j 6=i θp(tit

±1
j )

= 0. (3.3)

Another source of such recurrences is Theorem 2.5, especially in combination with
Lemma 2.4. The upshot is that we obtain (relatively) nice relations between any n + 2 of
the 8 functions

f
(n)
t0 , f

(n)
t1 , f

(n)
t2 , f

(n)
t3 , g

(n)
t0,t1,t2,t3,t4 , g

(n)
t0,t1,t2,t3,t5 , g

(n)
t0,t1,t2,t3,t6 , g

(n)
t0,t1,t2,t3,t7 ; (3.4)

we simply apply Theorem 2.5 with ui = ti; v0, . . . , vn+1 ∈ {1/t0, 1/t1, 1/t2, 1/t3, t4, t5, t6, t7}.
The coefficients of the resulting relations are, unfortunately, rather complicated (albeit
products of theta functions). In fact, the resulting recurrences are simply images of the re-
currence of Theorem 3.1 under the action of the Weyl group W (E7) (assuming, of course,
that t2n−2t0t1t2t3t4t5t6t7 = p2q, so that W (E7) actually does act). Ideally, we would prefer
to give a manifestly W (E7)-invariant description of the recurrences; in the absence of such
a description, we leave the details to the reader, rather than list all of the superficially
different recurrences arising in this way.

Another W (E7)-orbit of recurrences arises from Propositions 2.6 and 2.7 above. For
instance, from Proposition 2.6, we obtain the following.

Theorem 3.2. For n = 4, let t0,. . . , t7, t, p, q be parameters such that |p|, |q|, |t| < 1,
t6t0t1t2t3t4t5t6t7 = p2q. Then

II
(4)
t;p,q(q

1/2t0, q
1/2t1, q

1/2t2, q
1/2t3, q

1/2t4, q
−1/2t5, q

−1/2t6, q
−1/2t7) (3.5)

=
t24(t0t1 . . . t4)

8
∏

0≤i<j≤4 θp(titj, ttitj)

p4
∏

0≤i<4 θp(pq/tit5t6, pq/tit5t7, pq/tit6t7)

×
∑

0≤r≤4

∏

0≤i≤4;i6=r

θp(ti/t
3t0t1t2t3t4)

t2i θp(tr/ti, trti, ttrti)
II

(4)
t;p,q(t0, . . . , qtr, . . . , t7)
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In fact, the W (E7)-images of this identity and those of Theorem 3.1 include every
linear recurrence in which the differences of any two shifts is a root of E7.

4 Generalized Fay identities

Suppose ψ(x, y), ψ′(x, y) are antisymmetric measurable functions on X2 for some space
X that satisfy the identity of Proposition 2.2; for instance, ψ(x, y) = ψp(x, y). There is
a natural family of multidimensional integrals attached to these functions in such a way
that the Plücker relations between minors of a matrix translate into bilinear identities
satisfied by integrals.

We define, for any measure µ

τ (n)(µ; ψ, ψ′) =
1

n!

∫

Xn

∏

1≤i<j≤n

ψ(xi, xj)
∏

1≤i<j≤n

ψ′(xi, xj)
∏

1≤i≤n

µ(dxi), (4.1)

assuming this integral converges. In addition, for notational convenience, we define

τ (n)(µ[a1, . . . , ak][b1, . . . , bl]
′; ψ, ψ′)

:=
∏

1≤i<j≤k

ψ(ai, aj)
∏

1≤i<j≤l

ψ′(bi, bj)τ
(n)

( ∏

1≤i≤k

[ai]
∏

1≤i≤l

[bi]
′µ; ψ, ψ′

)
(4.2)

where [ai](x) = 1/ψ(ai, x), [bi]
′(x) = 1/ψ′(bi, x). Since we will for the most part be fixing

ψ, ψ′, we will suppress them from the notation when no confusion will result.
Using the fact that ψ, ψ′ satisfy Cauchy-type identities, we find that τ (n) is the integral

of a product of two determinants, and thus by the integral analogue of Cauchy-Binet, is
itself a determinant of univariate integrals, and can be written as such a determinant in
many different ways.

Theorem 4.1. Assuming all integrals are defined,

τ (n)(µ[a1, . . . , ak][b1, . . . , bl]
′) = det

1≤i,j≤n
τ (1)(µ[ai][bj]

′). (4.3)

Proof. We have

∏

1≤i<j≤n

ψ(xi, xj) = (−1)n(n−1)/2

∏
1≤i,j≤n ψ(ai, xj)∏
1≤i<j≤n ψ(ai, aj)

det
1≤i,j≤n

(
1

ψ(ai, xj)
) (4.4)

and similarly

∏

1≤i<j≤n

ψ′(xi, xj) = (−1)n(n−1)/2

∏
1≤i,j≤n ψ′(bi, xj)∏
1≤i<j≤n ψ′(bi, bj)

det
1≤i,j≤n

(
1

ψ′(bi, xj)
) (4.5)

and thus

τ (n)(µ[a1, . . . , an][b1, . . . , bn]′) =

∫

Xn

det
1≤i,j≤n

(
1

ψ(ai, xj)
) det

1≤i,j≤n
(

1

ψ′(bi, xj)
)µ(dxi) (4.6)

= det
1≤i,j≤n

∫

X

1

ψ(ai, x)ψ′(bj, x)
µ(dx). (4.7)
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Now, any minor of the above determinant is itself a determinant of the same form. As
a consequence, any polynomial equation satisfied by minors of a general matrix translates
immediately into a relation satisfied by our family of integrals. The ideal of such relations
is known to be generated by a family of bilinear equations, known as the Plücker relations.
For our purposes, we restrict our attention to the simplest such identities.

For any matrix M , we let detS,T (M) denote the determinant of the submatrix of M
with coordinates i ∈ S, j ∈ T . (This has a sign ambiguity which we can eliminate by
fixing an ordering on the coordinates.) These determinants satisfy the following three
identities:

det
S∪{a,b},T∪{c,d}

(M) det
S,T

(M)− det
S∪{a},T∪{c}

(M) det
S∪{b},T∪{d}

(M)+ det
S∪{a},T∪{d}

(M) det
S∪{b},T∪{c}

(M) = 0,

(4.8)
where |S| = |T | and the coordinates are ordered so that S < a < b; T < c < d,

det
S∪{a},T∪{c,d}

(M) det
S,T∪{b}

(M)− det
S∪{a},T∪{b,d}

(M) det
S,T∪{c}

(M) + det
S∪{a},T∪{b,c}

(M) det
S,T∪{d}

(M) = 0,

(4.9)
where |S| = |T | + 1 and the coordinates are ordered so that S < a; T < b < c < d, and

det
S,T∪{a,b}

(M) det
S,T∪{c,d}

(M)− det
S,T∪{a,c}

(M) det
S,T∪{b,d}

(M)+ det
S,T∪{a,d}

(M) det
S,T∪{b,c}

(M) = 0, (4.10)

where |S| = |T | + 2 and the coordinates are ordered so that T < a < b < c < d.
Applying these identities to the matrix with entries

τ (1)(µ[ai][bj]
′), (4.11)

and rescaling µ, we obtain the following identities.

Theorem 4.2. Assuming the integrals in question are all defined, we have the following
identities.

τ (n+1)(µ[a, b][c, d]′)τ (n−1)(µ) − τ (n)(µ[a][c]′)τ (n)(µ[b][d]′) + τ (n)(µ[a][d]′)τ (n)(µ[b][c]′) = 0
(4.12)

τ (n−1)(µ[b])τ (n)(µ[c, d][a]′) − τ (n−1)(µ[c])τ (n)(µ[b, d][a]′) + τ (n−1)(µ[d])τ (n)(µ[c, d][a]′) = 0
(4.13)

τ (n)(µ[c, d])τ (n)(µ[a, b]) − τ (n)(µ[b, d])τ (n)(µ[a, c]) + τ (n)(µ[b, c])τ (n)(µ[a, d]) = 0.
(4.14)

If we set τ (n) = 0 for n < 0, these identities remain valid for all integers n.

Proof. The Plücker identity argument immediately gives the first identity for n ≥ 1 and
the other identities for n ≥ 2. Similarly, the first two identities are trivial for n ≤ 0, and
the third identity is trivial for n ≤ −1. So it remains to show the second identity for
n = 1 and the third identity for n = 0, n = 1. The second identity for n = 1 is a linear
relation between univariate integrals that follows immediately from the relation

ψ(c, d)ψ(b, x) − ψ(b, d)ψ(d, x) + ψ(b, c)ψ(c, x). (4.15)

The third identity for n = 0 is just the case x = a of this identity. Finally, for n = 1, the
third identity is the pfaffian of a 4×4 matrix which has rank 2 by the second identity.
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Remark. When ψ(x, y) = ψ′(x, y) = x − y, these are instances of the generalized Fay
identities of [2]. By the remark after Proposition 2.2, this can be used to obtain the
general ψ = ψ′ case via a change of variables. Similarly, the case ψ 6= ψ′ can be obtained
via a change of variables and a delta function limit from the identities of [1]. The above
more elementary proof based on the Cauchy determinant appears to be new, however.

Similarly, if ε is an arbitrary antisymmetric function on X, define, for n even,

τ
(n)
1/2(µ; ε; ψ) =

1

n!

∫
pf1≤i,j≤n(ε(xi, xj))

∏

1≤i<j≤n

ψ(xi, xj)
∏

1≤i≤n

µ(dxi) (4.16)

For n odd, we also need a univariate function φ, and then define

τ
(n)
1/2(µ; φ, ε; ψ) =

1

n!

∫
pf1≤i,j≤n(φ(xi); ε(xi, xj))

∏

1≤i<j≤n

ψ(xi, xj)
∏

1≤i≤n

µ(dxi) (4.17)

Here, for n odd,
pf1≤i,j≤n(φ(xi); ε(xi, xj)) (4.18)

represents the pfaffian of the n+1×n+1 antisymmetric matrix obtained from the n×n
matrix ε(xi, xj) by adjoining a row φ(xi) and a column −φ(xi). Again, we will fix φ, ε, ψ
and suppress them from the notation; whether φ appears is determined from the parity
of n. Similarly, we extend the notation to cover negative integers by setting τ

(n)
1/2 = 0 for

n < 0.
It follows by an identity of de Bruijn [4] (also see [13] for a discussion in the context

of Selberg integrals) that these pfaffian τ functions can be written as pfaffians.

Proposition 4.3. Assuming the integrals are all defined, we have the following expres-
sions. For n even,

τ
(n)
1/2(µ[a1, . . . , an]) = pf1≤i,j≤n

(
τ

(2)
1/2(µ[ai, aj])

)
(4.19)

and for n odd,

τ
(n)
1/2(µ[a1, . . . , an]) = pf1≤i,j≤n

(
τ

(1)
1/2(µ[ai]); τ

(2)
1/2(µ[ai, aj])

)
(4.20)

Similarly to the determinantal case, there are a number of bilinear identities satisfied
by the pfaffian minors of an antisymmetric matrix. For our purposes, we will restrict our
attention to the following pair of four-term identities.

pfS(A) pfS∪{a,b,c,d}(A) − pfS∪{a,b}(A) pfS∪{c,d}(A)

+ pfS∪{a,c}(A) pfS∪{b,d}(A) − pfS∪{a,d}(A) pfS∪{b,c}(A) = 0, (4.21)

where |S| is even, S < a < b < c < d, and

pfS∪{a}(A) pfS∪{b,c,d}(A) − pfS∪{b}(A) pfS∪{a,c,d}(A)

+ pfS∪{c}(A) pfS∪{a,b,d}(A) − pfS∪{d}(A) pfS∪{a,b,c}(A) = 0, (4.22)

where |S| is odd, S < a < b < c < d. See [8] for these, and other such identities.
These give rise to identities between our pfaffian τ functions; since in the odd-dimensional

case one row and column is special, we obtain a total of six such identities. However, the
resulting identities turn out to behave the same for n odd and n even, giving us a total
of three identities.
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Theorem 4.4. Assuming the integrals are all defined, we have the following identities for
all integers n.

τ
(n+4)
1/2 (µ[a1, a2, a3, a4])τ

(n)
1/2(µ) − τ

(n+2)
1/2 (µ[a1, a2])τ

(n+2)
1/2 (µ[a3, a4])

+ τ
(n+2)
1/2 (µ[a1, a3])τ

(n+2)
1/2 (µ[a2, a4]) − τ

(n+2)
1/2 (µ[a1, a4])τ

(n+2)
1/2 (µ[a2, a3]) = 0. (4.23)

τ
(n+3)
1/2 (µ[a2, a3, a4])τ

(n+1)
1/2 (µ[a1]) − τ

(n+3)
1/2 (µ[a1, a3, a4])τ

(n+1)
1/2 (µ[a2])

+ τ
(n+3)
1/2 (µ[a1, a2, a4])τ

(n+1)
1/2 (µ[a3]) − τ

(n+3)
1/2 (µ[a1, a2, a3])τ

(n+1)
1/2 (µ[a4]) = 0. (4.24)

τ
(n+3)
1/2 (µ[a1, a2, a3])τ

(n)
1/2(µ) − τ

(n+2)
1/2 (µ[a2, a3])τ

(n+1)
1/2 (µ[a1])

+ τ
(n+2)
1/2 (µ[a1, a3])τ

(n+1)
1/2 (µ[a2]) − τ

(n+2)
1/2 (µ[a1, a2])τ

(n+1)
1/2 (µ[a3]) = 0. (4.25)

Proof. For n ≥ 0, these identities are just relations between minors of the antisymmetric
matrix

(τ
(1)
1/2(µ[ai]); τ

(2)
1/2(µ[ai, aj])) (4.26)

For n ≤ −1, the first and third identities follow from Theorem 4.2 (as, when nontrivial,
they relate univariate integrals and scalars). The only remaining nontrivial case is the
instance n = −1 of the second identity. But this is a linear relation between bivariate
integrals coming from a linear relation of the integrands.

Remark. Again, these could be obtained via a change of variables from the pfaffian Fay
identities of [3], but our elementary proof is new.

5 Painlevé recurrences

If we apply the generalized Fay identities to an integral of the form ĨIq;p,q, we find that
for suitable choices of ai, the integrals that appear are of the same form, with shifted
parameters. As a result, Theorem 4.2 gives rise to three special cases of the following
recurrence.

Theorem 5.1. Let v0, v1, v2 ∈ 1
2
ΛE8 be unit vectors in a common coset of ΛE8, and let

φ ∈ Hom(ΛE8 , C∗) be such that pq/(τv0φ)(ω) ∈ qZ. Then

∑

0≤r≤2

ĨIq;p,q(τvrφ)ĨIq;p,q(τ−vrφ)∏
s6=r ψp(φ(vr), φ(vs))

= 0. (5.1)

Proof. First, we observe as remarked that Theorem 4.2 gives essentially three special
cases (up to signed permutations within the triples and the natural action of S8 on the
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coordinates), namely:

v0 = (
1

2
,
1

2
,
1

2
,
1

2
, 0, 0, 0, 0) v1 = (

1

2
,
1

2
,−1

2
,−1

2
, 0, 0, 0, 0) v2 = (

1

2
,−1

2
,−1

2
,
1

2
, 0, 0, 0, 0)

(5.2)

v0 = (
1

2
,−1

2
,
1

2
,
1

2
, 0, 0, 0, 0) v1 = (

1

2
,
1

2
,−1

2
,
1

2
, 0, 0, 0, 0) v2 = (

1

2
,
1

2
,
1

2
,−1

2
, 0, 0, 0, 0)

(5.3)

v0 = (
1

2
,
1

2
,−1

2
,−1

2
, 0, 0, 0, 0) v1 = (

1

2
,−1

2
,
1

2
,−1

2
, 0, 0, 0, 0) v2 = (

1

2
,−1

2
,−1

2
,
1

2
, 0, 0, 0, 0)

(5.4)

Now, we know that ĨIq;p,q is invariant under the action of W (E7), so it suffices to prove
the theorem for one (unsigned, unordered) triple from each W (E7)-orbit. There are four
such orbits, so we still have one orbit remaining to consider, one representative of which
is:

v0 = (
1

2
,
1

2
,
1

2
,
1

2
, 0, 0, 0, 0) v1 = (0, 0, 0, 0,

1

2
,
1

2
,
1

2
,
1

2
) v2 = (0, 0, 0, 0,

1

2
,
1

2
,−1

2
,−1

2
).

(5.5)
Now, consider the following two representatives of the orbit of our first special case:

v0 = (
1

2
,
1

2
,
1

2
,
1

2
, 0, 0, 0, 0) v1 = (0, 0, 0, 0,

1

2
,−1

2
,
1

2
,−1

2
) v2 = (0, 0, 0, 0,

1

2
,
1

2
,−1

2
,−1

2
)

(5.6)

v0 = (0, 0, 0, 0,
1

2
,
1

2
,
1

2
,
1

2
) v1 = (0, 0, 0, 0,

1

2
,−1

2
,
1

2
,−1

2
) v2 = (0, 0, 0, 0,

1

2
,
1

2
,−1

2
,−1

2
).

(5.7)

If we take a linear combination of these two bilinear identities in such a way as to elim-
inate the term corresponding to (0, 0, 0, 0, 1/2,−1/2, 1/2,−1/2), we find that the result
is precisely the desired bilinear identity corresponding to the above representative of the
missing orbit.

As the above scheme of bilinear recurrences has appeared elsewhere in the literature
[7, Theorem 5.2], we immediately obtain the following corollary. Compare also the results
of [6] for the Selberg limit.

Corollary 5.2. The function ĨIq;p,q is a tau function for the elliptic Painlevé equation.

Remark. We should mention in this context that Sakai’s version of elliptic Painlevé [12] is
geometrically described in terms of the blow-up of P2 at 9 points. This has a natural S9

symmetry, but the S8 symmetry it gives is not conjugate to the natural S8 symmetry on
our integral. This suggests that, at least from the integral perspective, the more natural
geometric context for elliptic Painlevé is the blow-up of P1 × P1 at 8 points.

We next turn to the case t = q2. Here, the cross term in the integral is

∏

1≤i<j≤n

θp(z
±1
i z±1

j )θp(qz
±1
i z±1

j ). (5.8)



Recurrences for elliptic hypergeometric integrals 197

As it stands, this does not appear to be amenable to either generalized Fay identity.
However, we can write this as

qn(n−1)
∏

1≤i<j≤n

ψp(q
±1/2zi, q

±1/2zj), (5.9)

which can in turn be written as

q5n(n−1)/4
∏

1≤i≤n

1

z−1
i θp(z2

i )

∏

1≤i<j≤2n

ψp(wi, wj), (5.10)

where w2i−1 = q1/2zi, w2i = q−1/2zi. But, aside from a factor of (2n)!/2nn!, this corre-

sponds to a limiting case of τ
(2n)
1/2 , taking

ε(xi, xj) = δ(xi − qxj) − δ(xj − qxi). (5.11)

As a result, we again obtain bilinear identities, this time with four terms each.

Theorem 5.3. Let v0, v1, v2, v3 ∈ 1
2
ΛE8 be unit vectors in a common coset of ΛE8, and

let φ ∈ Hom(ΛE8 , C∗) such that pq/(τ2v0φ)(ω) ∈ q2Z. Then

∑

0≤r≤3

ĨIq2;p,q(τ2vrφ)ĨIq2;p,q(τ−2vrφ)∏
s6=r ψp(φ(vr), φ(vs))

= 0. (5.12)

Proof. Here, the generalized Fay identities give us two of the four W (E7)-orbits we require:

v0 = (
1

2
,
1

2
,
1

2
,
1

2
, 0, 0, 0, 0), v1 = (

1

2
,
1

2
,−1

2
,−1

2
, 0, 0, 0, 0),

v2 = (
1

2
,−1

2
,
1

2
,−1

2
, 0, 0, 0, 0), v3 = (

1

2
,−1

2
,−1

2
,
1

2
, 0, 0, 0, 0), (5.13)

and

v0 = (−1

2
,
1

2
,
1

2
,
1

2
, 0, 0, 0, 0), v1 = (

1

2
,−1

2
,
1

2
,
1

2
, 0, 0, 0, 0),

v2 = (
1

2
,
1

2
,−1

2
,
1

2
, 0, 0, 0, 0), v3 = (

1

2
,
1

2
,
1

2
,−1

2
, 0, 0, 0, 0). (5.14)

But again, we can obtain the bilinear identities corresponding to the missing orbits as
linear combinations of W (E7)-images of the identities coming from the generalized Fay
identities. The key point here is that if two of our identities have three monomials in
common, and we take a linear combination to eliminate one of those monomials, the
result is another of our identities.

For t = q1/2, we apply Theorem 2.10 (as an identity of q-theta functions!) to write

the integrand as an instance of τ
(n)
1/2. The first two generalized Fay identities turn out

to give us a recurrence strikingly like the one we have just seen; again, by taking linear
combinations of W (E7)-images, we can obtain the entire W (E8)-orbit.
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Theorem 5.4. Let v0, v1, v2, v3 ∈ 1
2
ΛE8 be unit vectors in a common coset of ΛE8, and

let φ ∈ Hom(ΛE8 , C∗) such that pq/(τv0φ)(ω) ∈ qZ/2. Then

∑

0≤r≤3

ĨIq1/2;p,q(τvrφ)ĨIq1/2;p,q(τ−vrφ)∏
s6=r ψp(φ(vr), φ(vs))

= 0. (5.15)

The third Fay identity corresponds to a different W (E8)-orbit. Unfortunately, we can
no longer combine instances of the W (E7)-orbit, and have in fact been unable to prove
the presumable general form of the recurrence. We do, however, have the following.

Theorem 5.5. Suppose the unordered, unsigned quadruple (v0, v1, v2, v3) is in the W (E7)-
orbit of

((
1

2
,
1

2
,
1

2
, 0, 0, 0, 0, 0), (

1

2
,−1

2
,−1

2
, 0, 0, 0, 0, 0), (−1

2
,−1

2
,
1

2
, 0, 0, 0, 0, 0), (−1

2
,
1

2
,−1

2
, 0, 0, 0, 0, 0)).

(5.16)
Then equation (5.15) still holds.

Unlike the determinantal case, the recurrences corresponding to the pfaffian cases
(t ∈ {q2, q1/2}) appear to be new, even in the Painlevé setting. It would be very interesting
to know a geometric interpretation for these recurrences, and more generally to understand
how they relate to the usual elliptic Painlevé equation.
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