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Abstract. We survey the definitions of the Hamiltonians of AN−1/BCN -type, clas-
sical/quantum, NR(nonrelativistic)/REL(relativistic) models and survey eigenfunction
literature in the quantum case.

1. Introduction

In recent years, various elliptic models have been researched, such as elliptic analogue
of well-known Calogero-Sutherland model and its relativistic analogue called Ruijsenaars-
Schneider model both in the classical and the quantum cases [43, 46, 52, 58]. Moreover
these models are generalized to those associated with affine root systems. In this article,
we survey the definitions of the Hamiltonians of AN−1 and BCN -type, the classical and
the quantum, nonrelativistic and relativistic models and eigenfunction literature in the
quantum case.

In Section 2, we give a brief introduction to the notion of integrability. In the classical
case, a system is called integrable if there are sufficiently many independent Poisson-
commuting functions including the Hamiltonian. In addition, if the flows are complete,
the global structure can be analyzed. We call such system Liouville integrable. In contrast
with the classical case, quantum integrability is not established and includes ambiguity.
We clarify its definition employed in this survey. Moreover we introduce the notion of
Hilbert integrability, since the commutativity among the infinitesimal generators is not
sufficient for that of the evolutions, which is required by quantum mechanics.

In Section 3 and 4, we investigate AN−1 and BCN -type models, respectively. We
present the Hamiltonian functions and the Hamiltonian operators of nonrelativistic and
relativistic models. In the classical case, the main tool is the Lax matrix and we give
some information about it. In the quantum case, though we have no general theory, we
see that R-operators, elliptic quantum groups and Hecke algebras play some important
roles.

In section 5, we survey eigenfunction literature in the quantum case. It is a quite
important problem and there are many results. However we have not arrived at fully
understanding.

This survey is based on the first lecture and the transparencies by Professor S. N. M.
Ruijsenaars. The author adds some other related results and topics and the references,
but they are not complete; the reader is referred to the original articles for proofs and for
complete references. If this survey includes any errors, Y.K is responsible for them.
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2. Integrability

A-type systems of Calogero-Moser type are surveyed extensively in [53]. We sketch the
notion of integrability both at the classical and at the quantum levels. For the general
theory of classical mechanics, see [1], and for quantum mechanics, see [48,50].

2.1. Classical Regime. We consider an N -particle system in a one-dimensional space
and the position of N -particles is described by an element of an N -dimensional manifold
M . Then the phase space is a 2N -dimensional symplectic manifold 〈Ω, ω〉, where Ω =
T ∗M is the cotangent bundle of M and its standard symplectic form ω is defined as follows:
on a local coordinate system (U, x) of M , we have corresponding local coordinate system

(π−1(U) ' U × RN , (x, p)) of T ∗M as
∑N

i=1 pidxi where π : T ∗M → M is the natural

projection, and 2-form
∑N

i=1 dxi∧dpi globally defines ω. Since ω is nondegenerate 2-form,
for a 1-form α, a vector field X(α) is uniquely determined by the condition

(2.1) ω(X(α), X) = α(X),

for arbitrary vector fields X. For a smooth function f , let Xf be a vector field defined by
X(df). Then the Poisson bracket is defined for f , g by

(2.2) {f, g} = ω(Xf , Xg) = df(Xg) = Xgf.

The Poisson bracket satisfies the following properties:

{f, g} = −{g, f},(2.3)

{αf + βg, h} = α{f, h} + β{g, h},(2.4)

{fg, h} = f{g, h} + g{f, h},(2.5)

{f, {g, h}} + {g, {h, f}} + {h, {f, g}} = 0,(2.6)

where α, β ∈ R, and is given explicitly on a local coordinate system by

(2.7) {f, g} =
N∑

j=1

( ∂f

∂xj

∂g

∂pj

− ∂f

∂pj

∂g

∂xj

)
.

The motion of particles is governed by a smooth function called the Hamiltonian as

(2.8)
du

dt
= XH(u) = {u,H}.

Let exp(tXH) or, for brevity, etH denotes the flow generated by H. Thus u(t) = etH(u0)
for the initial point u0.

If there exist functions Ij for j = 1, . . . , N such that their differentials dIj are linearly
independent on dense open subset and they are involutive, {Ij, Ik} = {Ij, H}, then this
system is called a completely integrable system or simply a integrable system.

By use of the relation

(2.9) [Xf , Xg] = X−{f,g},

we obtain involutive vector fields Xj = XIj
, i.e., [Xj, Xk] = 0. Hence for a point u0

where dIj(u0) are linearly independent, the map u : U → Ω, u(t) = et1I1 · · · etN IN (u0)
gives rise to a local diffeomorphism from some open neighborhood U ⊂ RN of the origin
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to the submanifold of its image. Let a ∈ RN be a regular value of the moment map
I = (I1, . . . , IN). Then the level set I−1(a) is a Lagrangian submanifold. If all the
flows generated by Ij are complete, for a connected component M0 of the Lagrangian
submanifold and u0 ∈ M0, one obtains M0 = {u(t) | t ∈ RN} ' Tk × RN−k for some
k ∈ N, where T = R/2πZ. Here we call such system Liouville integrable [53]. The term
“Liouville integrability” is also used for “complete integrability” in other references.

In the A-type root system, we consider N -particle systems where no collision occurs and
particles are on a circle T. Thus M is one of the connected components of TN \ {xi ≡ xj}
and in particular we choose M as the image of M̃ = {x ∈ RN | xN < · · · < x1} by the
natural projection. Similarly in the BC-type root system, we set M to be one of the
connected components of TN \ {xi ≡ xj, xi ≡ −xi}. Note that in a general root system,
M ⊂ R⊗Z Q∨/2πQ∨ is chosen as the image of the fundamental domain, where Q∨ is the
coroot lattice. For the other possible phase spaces, see [53].

2.2. Quantum Regime. For our convenience, first we discuss the case of the A-type
root system and thus assume that particles are on a circle T and let M be the same as in
the previous section. Then the canonical quantization implies pj → p̂j = −i~∂/∂xj where
~ is the Planck constant. p̂j is a linear operator on the Hilbert space V = L2(TN , dx)
of square-integrable complex-valued functions. A unit vector ψ of V is called a state,
and

∫
A
|ψ(x)|2dx is interpreted as the probability to find the particles in the region A.

The symmetric or antisymmetric subspace, L2
s(TN , dx) and L2

a(TN , dx) respectively, is
physically chosen, and both are uniquely determined by their restrictions to M . In fact,
we have L2

s(TN , dx) ' L2
a(TN , dx) ' L2(M,dx). In this survey, we work with L2

s(TN , dx).
In quantum cases, the time evolution of a state ψ is governed by the Hamiltonian

operator Ĥ as ψ(t) = e−itĤψ0 for the initial state ψ0. Hence ψ obeys

(2.10)
dψ

dt
= −iĤψ,

if the initial state ψ0 is in the domain of Ĥ.
In contrast with the classical case, only commutativity does not make any sense, because

if an operator A is selfadjoint, which is required by quantum mechanics, then all the
spectral projections commute with A. Hence we have no direct quantum analogue of the
integrability. We adopt the definition of the quantum integrability in an algebraic sense
or in a formal sense. Namely, for a Hamiltonian of the form

(2.11) Ĥ =
N∑

j=1

p̂2
j + V (x),

with V meromorphic and SN -invariant function, it is said that Ĥ is integrable when
there exist algebraically independent SN -invariant partial differential operators (PDOs)

over C, I1 = Ĥ, I2(x, p̂), . . . , IN(x, p̂) that commute pairwise. To be more precise, we
interpret these operators as elements of the polynomials (M[p̂])SN where M is a field of
meromorphic functions on (C/2πZ)N .

From the view point of the Hilbert space theory, the definition above is not sufficient,
since it is required that all Ij are essentially selfadjoint on the same core. Moreover in
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general, the commutativity among Ij does not imply that of evolutions eiIjtj , where the
latter condition is called strong commutativity. The strong commutativity is equivalent
to the commutativity of spectral projections and in particular it is sufficient that all Ij

are simultaneously diagonalized. Here we call such system Hilbert integrable [53].
In the relativistic case, as a quantum analogue of eap, we introduce an operator of the

form eap̂. In an obvious way, we interpret this operator as a difference (shift) operator

(2.12) (eap̂jψ)(x1, . . . , xj, . . . , xN) = ψ(x1, . . . , xj − i~a, . . . , xN),

where ψ should be at least analytic and analytically continued to some strip including
real axis. Similarly to differential cases, we regard gauge-transformed Hamiltonians as
elements of (M[ep̂])SN in a formal sense, where the gauge function is an element of M1/2.

For the BC-type root system, we have only to employ the corresponding M and replace
the symmetric group SN by SN n (Z/2Z)N in the above, where the nontrivial element
of Z/2Z acts on function spaces as sign flip of a variable. Note that in a general root
system, the corresponding Weyl group plays the same role as the symmetric group and
M is a field of meromorphic functions on C ⊗Z Q∨/2πQ∨

3. The Defining AN−1 Hamiltonians

3.1. Classical Regime.

3.1.1. Nonrelativistic case. The Hamiltonian, the momentum and the Galilei boost are
given by

H =
1

2

N∑

j=1

p2
j + g2

∑

1≤j<k≤N

℘(xj − xk),(3.1)

P =
N∑

j=1

pj,(3.2)

B = −
N∑

j=1

xj,(3.3)

where g ∈ R is a coupling constant and ℘(x) is Weierstrass elliptic function (6.8) with
half periods ω1, ω2. We set ω1 = π, iω2 ∈ R for ℘(x) to be real on T. Note that though
the boost B is well defined only in the case that the phase space is T ∗M̃ , the vector field
XB descends to T ∗M .

H, P and B satisfy a central extension of the Lie algebra of the Galilei group:

(3.4) {H, P} = 0, {P,B} = N, {H, B} = P.

Calogero showed that this system has a Lax representation [7] and Olshanetsky/Perelomov
showed that the system is completely integrable, i.e., all the conserved quantities are
involutive, by showing the involutivity of the eigenvalues of the Lax matrix [43]. The
following Lax representation with a spectral parameter is due to Krichever [34], which
was found through the study of the relation between the KP equation and the Calogero
model, and includes the Lax matrix L due to Calogero as a special case.
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A Poisson-commuting family is given by the traces of the Lax matrix

Hk =
1

k
Tr Lk

NR, k = 1, . . . , N,(3.5)

(LNR)jk = δjkpj + ig(1 − δjk)
σ(xj − xk + λ)

σ(λ)σ(xj − xk)
,(3.6)

where λ ∈ C is a spectral parameter, H1 = P and H2 = H − g2N(N − 1)℘(λ)/2.
Another proof of the integrability using classical r-matrix structure was found by

Sklyanin [62], and Braden/Suzuki [6] independently. Yet another proof is a direct conse-
quence of its quantum version. See Section 3.2.1 and Appendix 6.4.1.

The Liouville integrability, i.e., the completeness of the flows is shown in [53].

3.1.2. Relativistic case. A relativistic variant of the elliptic Calogero-Sutherland model
was introduced in [58]. The Hamiltonian, the momentum and the Lorentz boost are given
by

H =
1

2β2
(S1 + S−1) =

1

β2

N∑

j=1

ch(βpj)
∏

k 6=j

v(xj − xk),(3.7)

P =
1

2β
(S1 − S−1),(3.8)

B = −
N∑

j=1

xj,(3.9)

where β = 1/c is the inverse of the speed of light and µ = iβg,

S±1 =
N∑

j=1

e±βpj

∏

k 6=j

v(xj − xk),(3.10)

v(x) =
(σ(µ + x)σ(µ − x)

σ(x)σ(−x)

)1/2

.(3.11)

H, P and B satisfy the Lie algebra of the Poincaré group,

(3.12) {H, P} = 0, {H, B} = P, {P,B} = H/c2.

From (6.12), we have the following expansion:

Hrel =
1

β2

N∑

j=1

(1 +
p2

j

2
β2 + O(β4))

∏

k 6=j

(1 +
g2

2
℘(xj − xk)β

2 + O(β4)),(3.13)

Prel =
1

β

N∑

j=1

(pjβ + O(β3))
∏

k 6=j

(1 +
g2

2
℘(xj − xk)β

2 + O(β4)).(3.14)
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Thus when the speed of light goes to infinity, we have

lim
c→∞

Hrel − Nc2 = Hnr,(3.15)

lim
c→∞

Prel = Pnr,(3.16)

lim
c→∞

Brel = Bnr.(3.17)

A Poisson-commuting family is given in terms of Sk which are symmetric functions of
the Lax matrix L for k = 1, . . . , N [52]:

det(L + αI) =
N∑

l=0

αlΣN−l, Σk = ckSk,(3.18)

ck =
σ(λ − µ)k−1σ(λ + (k − 1)µ)

σ(λ)k
,(3.19)

which directly follows from formula (6.7). Here λ is a spectral parameter and

(LREL)jk = djcjk,(3.20)

dj = eβpj

∏

k 6=j

v(xj − xk),(3.21)

cjk =
σ(µ)

σ(λ)

σ(xj − xk + λ)

σ(xj − xk + µ)
,(3.22)

S±l =
∑

I⊂{1,...,N}
|I|=l

exp(±β
∑

j∈I

pj)
∏

j∈I
k 6∈I

v(xj − xk).(3.23)

Since

(3.24) S−N = S−1
N = exp(−β

N∑

j=1

pj),

we have

(3.25) S−j = SN−jS
−1
N .

For instance, the first two quantities are given by

S1 = Tr L(β),(3.26)

S2 = (Tr(L(β)2) − (Tr L(β))2)/(2σ(µ)2(℘(µ) − ℘(λ))).(3.27)

Note that the Lax matrix LNR of the nonrelativistic case is obtained as LREL(β) =
1N + βLNR + O(β2), β → 0.

The integrability was originally shown in [52], and is also a direct consequence of its
quantum version. See Section 3.2.2 and Appendix 6.4.2. In [40], M matrix is also given
and the integrability is shown by use of quadratic r-matrix formalism.

3.2. Quantum Regime.
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3.2.1. Nonrelativistic case. The Hamiltonian, the momentum and the Galilei boost oper-
ators are given by

Ĥ =
1

2

N∑

j=1

p̂2
j + g(g − ~)

∑

1≤j<k≤N

℘(xj − xk),(3.28)

P̂ =
N∑

j=1

p̂j,(3.29)

B̂ = −
N∑

j=1

xj.(3.30)

These satisfy a central extension of the Lie algebra of the Galilei group. The integrability
is due to Olshanetsky/Perelomov [44]. Explicit forms of the commuting PDOs Ĥk (k =
1, . . . , N) are given by Oshima/Ochiai/Sekiguchi [42, 45,46].

So far, the Hilbert integrability is not known. The essential selfadjointness of the
Hamiltonian is easily shown by perturbation of the trigonometric case with the same
domain, because the Hamiltonian of the trigonometric model is diagonalized by Jack-
Sutherland polynomials and the perturbation is a bounded multiplication operator, while
the selfadjointness of the higher order operators are unknown.

3.2.2. Relativistic case. A relativistic analogue was introduced in [52]. The Hamiltonian,
the momentum and the Lorentz boost operators are given by

Ĥ =
1

2β2
(Ŝ1 + Ŝ−1),(3.31)

P̂ =
1

2β
(Ŝ1 − Ŝ−1),(3.32)

B̂ = −
N∑

j=1

xj.(3.33)

Ĥ and P̂ are obtained by reordering the classical counterparts (3.7), (3.8), and Ĥ, P̂ and

B̂ satisfy the Lie algebra of the Poincaré group. Here for l = 1, . . . , N ,

Ŝ±l =
∑

I⊂{1,...,N}
|I|=l

∏

j∈I
k 6∈I

v∓(xj − xk) · exp(±β
∑

j∈I

p̂j) ·
∏

j∈I
k 6∈I

v±(xj − xk),(3.34)

vδ(x) =
(σ(x + δµ)

σ(x)

)1/2

, µ = iβg.(3.35)

Similarly to the classical case, we have

(3.36) Ŝ−N = Ŝ−1
N = exp(−β

N∑

j=1

p̂j), Ŝ−j = ŜN−jŜ
−1
N .
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The commutativity is encoded in the sequence of functional equations for Weierstrass’
sigma function:

(3.37)
∑

I⊂{1,...,N}
|I|=l

∏

m∈I
n6∈I

σ(xm − xn − µ)σ(xm − xn − γ + µ)

σ(xm − xn)σ(xm − xn − γ)
= (x → −x),

For integer couplings, it can be shown in the context of elliptic quantum groups [15]. For
other approaches, a completion of Hecke algebras [9], and R-matrix formalism [29,31] are
utilized. [27].

A gauge-transformation of Ŝ±l via elliptic gamma function (6.18) [54] yields

(3.38) A±l =
∑

I⊂{1,...,N}
|I|=l

∏

j∈I
k 6∈I

σ(xj − xk ∓ µ)

σ(xj − xk)
exp(±β

∑

j∈I

p̂j),

which is an elliptic generalization of Macdonald operators [38]

(3.39) M±l =
∑

I⊂{1,...,N}
|I|=l

∏

j∈I
k 6∈I

1 − t∓1Xj/Xk

1 − Xj/Xk

∏

j∈I

T±1
j ,

where t = e2πiµ, Xj = e2πixj and (Tjf)(X1, . . . , Xj, . . . , XN) = f(X1, . . . , qXj, . . . , XN),
and M±l acts on C[X]SN .

The Hilbert integrability is not known while in the trigonometric case, it is shown
because the Macdonald operators are explicitly diagonalized by the Macdonald polyno-
mials [38]. The essential selfadjointness of Ŝ1 is shown by use of perturbation from the
free particle system i~β = µ [26].

4. The Defining BCN Hamiltonians

In the other root system than AN−1 type, the terms “nonrelativistic” and “relativistic”
are meaningless. However we abuse these terms for the purpose of comparison to AN−1-
type models.

4.1. Classical Regime.

4.1.1. Nonrelativistic case. The Hamiltonian of Inozemtsev model is given by

(4.1) H =
1

2

N∑

j=1

p2
j + g2

∑

1≤j<k≤N

(
℘(xj − xk) + ℘(xj + xk)

)
+

1

2

3∑

t=0

g2
t

N∑

j=1

℘(xj + ωt),

where ω0 = 0, ω3 = −ω1 − ω2. Since this model is not translationally invariant, the
momentum is not a conserved quantity. A Lax matrix is known by Inozemtsev [22],
which is a 3N × 3N matrix and in N = 1 case, a 2× 2 Lax matrix is found by Zotov [72].
Thus there exist N independent conserved quantities, but it has not been shown yet that
these are in involution. However the integrability can be independently shown by use of
its quantum version. See Section 4.2.1 and Appendix 6.4.1. Note that a special case is
dealt in a systematic way in [4, 5, 10].
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4.1.2. Relativistic case. The Hamiltonian of van Diejen model [29, 31,68] is given by

H =
N∑

j=1

2 ch(βpj)ve(xj)
∏

k 6=j

v(xj − xk)v(xj + xk) +
3∑

t=0

qt

N∏

j=1

vt(xj),(4.2)

v(x) =

(
σ(µ + x)σ(µ − x)

σ(x)σ(−x)

)1/2

(4.3)

ve(x) =

(
3∏

t=0

σt(µt + x)σt(µt − x)

σt(x)σt(−x)

σt(µ
′
t + x)σt(µ

′
t − x)

σt(x)σt(−x)

)1/2

(4.4)

qt =
2

σ(µ)2

3∏

s=0

σs(µπt(s))σs(µ
′
πt(s)), vt(x) =

σt(µ + x)σt(µ − x)

σt(x)σt(−x)
,(4.5)

where π0 = id, π1 = (01)(23), π2 = (02)(13), π3 = (03)(12).
No Lax matrix is known. For the trigonometric case, see [2,8]. However the integrability

of this model was shown by van Diejen in two body case with the constraint
∑3

t=0 µt+µ′
t =

0, i.e., the product of potentials is elliptic with respect to x. This fact follows directly from
the quantum version of this model as in the AN−1-type case [68]. Since the constraint on
the parameter was removed with arbitrary number of particles in [29,31] in the quantum
case, the integrability of the classical version follows. See Section 4.2.2 and Appendix
6.4.2.

Let µ = iβg, µi = iβg̃i, µ′
i = iβg̃′

i. Then the Hamiltonian has the following expansion:

HREL = 2
N∑

j=1

(1 +
p2

j

2
β2 + O(β4))

×
3∏

t=0

(1 +
g̃2

t

2
℘(xj + ωt)β

2 + O(β4))(1 +
g̃′2

t

2
℘(xj + ωt)β

2 + O(β4))

×
∏

k 6=j

(1 +
g2

2
℘(xj − xk)β

2 + O(β4))(1 +
g2

2
℘(xj + xk)β

2 + O(β4))

+
3∑

t=0

(2g̃tg̃
′
t

g2
+ ctβ

2 + O(β4)
) N∏

j=1

(1 + g2℘(xj + ωt)β
2 + O(β4))

(4.6)

= 2N +
3∑

t=0

2g̃tg̃
′
t

g2
+ (2HNR + c)β2 + O(β4)(4.7)

where ct is a constant independent of x, c =
∑3

t=0 ct and gt = g̃t + g̃′
t. Hence one sees that

this Hamiltonian is a five-parameter generalization of the Hamiltonian of the Inozemtsev
model.

4.2. Quantum Regime.
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4.2.1. Nonrelativistic case. The Hamiltonian of the quantum Inozemtsev model is given
by

(4.8) Ĥ =
1

2

N∑

j=1

p̂2
j + g(g − ~)

∑

1≤j<k≤N

(
℘(xj − xk) + ℘(xj + xk)

)

+
1

2

3∑

t=0

gt(gt − ~)
N∑

j=1

℘(xj + ωt),

The conserved operators are explicitly given by Oshima/Ochiai/Sekiguchi in [42,45,46].
In [41], it was clarified that in N = 2 case, exceptional systems exist.

4.2.2. Relativistic case. The Hamiltonian of van Diejen model was introduced in [68], and
their commutative operators are given in [29,31]. The Hamiltonian reads

(4.9) Ĥ =
∑

1≤j≤N
ε=±1

V
1/2
εj e−εβp̂jV

1/2
−εj + U,

where

Vεj = ve(εxj)
∏

k 6=j

v(εxj − xk)v(εxj + xk),(4.10)

U =
3∑

t=0

qt

N∏

j=1

vt(xj),(4.11)

v(x) =
σ(µ + x)

σ(x)
,(4.12)

ve(x) =
3∏

t=0

σt(µt + x)

σt(x)

σt(µ
′
t + γ + x)

σt(x + γ)
,(4.13)

qt =
2

σ(µ)σ(µ − 2γ)

3∏

s=0

σs(µπt(s) − γ)σs(µ
′
πt(s)), vt(x) =

σt(µ − γ + x)

σt(−γ + x)

σt(µ − γ − x)

σt(−γ − x)
,

(4.14)

with γ = iβ~/2. This Hamiltonian does play an important role since it reduces to finite
Toda chains and various A-type models in external fields [69].

A gauge-transformation yields

(4.15) A =
∑

1≤j≤N
ε=±1

Vεje
−εβp̂j + U.

If the parameters satisfy the elliptic condition
∑

µt + µ′
t = 0, then the operator reduces

to the form

(4.16) A =
∑

1≤j≤N
ε=±1

Vεj(e
−εβp̂j − 1) + c,
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with a certain constant c. Hence the operator (4.15) is regarded as an elliptic generaliza-
tion of Macdonald-Koornwinder operator [33] with extra 4 parameters,
(4.17)

M =
∑

1≤j≤N
ε=±1

(1 − aXε
j )(1 − bXε

j )(1 − cXε
j )(1 − dXε

j )

(1 − X2ε
j )(1 − qX2ε

j )

∏

k 6=j

1 − tXε
j/Xk

1 − Xε
j/Xk

1 − tXε
jXk

1 − Xε
jXk

(T ε
j − 1),

where M acts on C[X, X−1]SN nZ/2Z.
Exceptional systems corresponding to the nonrelativistic systems with N = 2, can be

obtained by use of the results in [28,30].
It can be seen from [24] that the BC1 system with a special eigenvalue is identified

with the reduction to elliptic hypergeometric equation from elliptic difference Painlevé

equation and thus have E
(1)
7 symmetry. The relation to elliptic hypergeometric equation

can be also seen in [63]. A direct relation is clarified in [25] or Y.K’s article in this volume.

It is also shown in [57] that the Hamiltonian itself possesses D8 symmetry if Ĥ is
rewritten with an additional constant as follows: Let a+, a− > 0 and µ, hn (n = 0, . . . , 7)
be coupling constants. We define

(4.18) Ĥ =
N∑

j=1

(Vj(x)1/2 exp(−ia−∂xj
)Vj(−x)1/2 + (x → −x)) + V(x),

where using functions in Appendix,

(4.19) Vj(x) =

∏7
n=0 R+(xj − hn − ia−/2)

R+(2xj + ia+/2)R+(2xj − ia− + ia+/2)
×

∏

k 6=j

R+(xj + xk − µ + ia+/2)

R+(xj + xk + ia+/2)

R+(xj − xk − µ + ia+/2)

R+(xj − xk + ia+/2)
,

V(x) =
1

2R+(µ − ia+/2)R+(µ − ia− − ia+/2)

3∑

t=0

pt

(
N∏

j=1

Et(xj) − Et(zt)
N

)
,(4.20)

Et(z) =
R+(z + µ − ia − ωt)R+(z − µ + ia − ωt)

R+(z − ia − ωt)R+(z + ia − ωt)
, t = 0, . . . , 3,(4.21)
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with constants

ω0 = 0, ω1 = π/2r, ω2 = ia+/2, ω3 = −ω1 − ω2,(4.22)

z0 = z2 = π/2r, z1 = z3 = 0, a = (a+ + a−)/2,(4.23)

p0 =
7∏

n=0

R+(hn), p1 =
7∏

n=0

R+(hn − π/2r),(4.24)

p2 = exp(−2ra+)
7∏

n=0

exp(−irhn)R+(hn − ia+/2),(4.25)

p3 = exp(−2ra+)
7∏

n=0

exp(irhn)R+(hn − ω3).(4.26)

Then the Hamiltonian (4.18) is invariant under arbitrary permutations and even sign flips
of hn, hence has D8 symmetry.

5. Eigenfunctions

In this section, we set ~ = 1 for simplicity, and for r, a > 0, we set ω1 = π/2r,
ω2 = ia/2. We treat eigenfunctions which may not possess desired symmetry or may not
be square-integrable.

5.1. Nonrelativistic case.

5.1.1. A1 case. We solve time-independent Schrödinger equation. We set z = x1−x2 and
consider

(5.1) −F ′′(z) + g(g − 1)℘(z)F (z) = E F (z),

which appeared more than a century ago, and is called Lamé equation. For this eigenvalue
problem, we have following approaches:

• general method: Iterate Volterra type integral equation to get 2-dimensional solution
space. This method works for arbitrary g, E. However it uses only the fact that the
problem is an ordinary differential equation and we have no explicit information.

• analytic method: We have power series solutions around analytic points, and frac-
tional power series solutions around regular singularities. This method works for
arbitrary g, E and uses the analyticity of the equation. Thus we have some informa-
tion. For instance, solutions near z = 0 behave as zg and z1−g.

• ’Bethe Ansatz’ works for g = M + 1 ∈ N∗ which is due to Hermite [70], yielding
’explicit’ solutions F (±z, y) for generic E with

(5.2) F (z, y) =
M∏

j=1

s(z + zj)

s(z)
exp(izy), E = −(2M − 1)

∑

j

℘(zj),

where y = i
∑

j s′(zj)/s(zj) and z1, . . . , zM satisfy

(5.3) M
s′(zk)

s(zk)
+

∑

j 6=k

s′(zj − zk)

s(zj − zk)
−

∑

j

s′(zj)

s(zj)
= 0, (k = 1, . . . ,M).
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An integral representation is also obtained in [70].
• For g = M + 1 ∈ N∗ and (2M + 1) E-values, elliptic solutions exist, which are

called Lamé polynomials (Lamé functions) and correspond to band edges in finite-
gap picture in the system

(5.4) −F ′′(z) + g(g − 1)℘(z + ω2)F (z) = E F (z),

with L2(R, dx), cf. Chapter XIII.16 in [49].

5.1.2. AN−1 case.

• Explicit Ĥ-eigenfunctions for g = 2 and N = 3 are constructed (Dittrich/Inozemtsev
[11]).

• For g ∈ N∗ ’Bethe Ansatz’ Ĥ-eigenfunctions are known (Felder/Varchenko [13,16]);
properties of joint eigenfunctions are unclear.

• For g > 0, perturbation theory in small parameter 1/a can be used to exploit known
joint eigenfunctions (Jack polynomials) in trigonometric regime (a = ∞); when
convergent, this yields joint eigenfunctions (Y.K/Takemura [32]). Open problems
include:
– region of convergence
– analytic character of eigenfunctions
– connection to Bethe Ansatz solutions for g ∈ N∗

– connection to Langmann’s algorithm (formal solutions) in [36,37]

5.1.3. BC1 case.

(5.5) −F ′′(z) +
3∑

t=0

gt(gt − 1)℘(z + ωt)F (z) = E F (z)

The eigenvalue problem of the Inozemtsev model is transformed into the Heun equation,
which is a general form of second-order Fuchsian differential equations with four regular
singular points.

• General and analytic methods apply again but with little information. In [39], the
complete list of the 192 solutions of the Heun equation is given, which is analogous
to Kummer’s 24 solutions of the Gauss hypergeometric equation.

• For integer couplings we have extensive information (Treibich/Verdier [67], Gesztesy/Weikard
[18], Takemura [66]). and ’Bethe Ansatz’ (Takemura [65]).

5.1.4. BCN case. With linear constraint on couplings, finite-dimensional Ĥj-invariant
subspaces are known at once for all 1 ≤ j ≤ N (Takemura [64], Madrid school [19], for
the trigonometric case, Sasaki/Takasaki [59]).

5.2. Relativistic case.

5.2.1. A1 case.

(5.6)
σ(z − iβg)

σ(z)
F (z − iβ) +

σ(z + iβg)

σ(z)
F (z + iβ) = E F (z)

• Meromorphic solutions exist for arbitrary β, g, E. But very little is known about
them.
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• For g ∈ N∗ Hermite’s eigenfunctions can be generalized (Ruijsenaars [55,56], Krichever/Zabrodin
[35,71], Felder/Varchenko [14]).

• More generally, Bethe Ansatz type eigenfunctions exist for a dense set in parameter
space {a, β > 0, g ∈ R} (Ruijsenaars [55,56]).

• For g ∈ N∗/2, generalizations of the Lamé polynomials were found by Sklyanin,
yielding (2g + 1)-dimensional representation space for Sklyanin algebra [51,60,61].

5.2.2. AN−1 case.

• The g ∈ N∗ Bethe Ansatz eigenfunctions of Felder/Varchenko can be generalized
(Billey [3]); properties for the higher order operators are not known.

• The g ∈ N∗ Sklyanin A1-solutions generalize to finite dimensional spaces of θ-
functions invariant under A±l (l = 1, . . . , N) (Hasegawa [20])

5.2.3. BC1 case.

(5.7) ve(z)F (z − iβ) + ve(−z)F (z + iβ) + U(z)f(z) = E F (z),

where U and ve are defined in (4.11) and (4.13). Note that U is independent of µ though
U includes µ apparently.

• Meromorphic solutions exist for arbitrary β, µ0, . . . , µ3, µ
′
0, . . . , µ

′
3, E.

• When
∑

µt + µ′
t = 0, one gets elliptic coefficients ve(±z) so that U(z) = −ve(z) −

ve(−z)+c. Hence F (z) = 1 is an eigenfunction for A (4.16) with E = c, and a gauge

function is an eigenfunction for Ĥ (’ground state’). Generally if
∑

µt + µ′
t = iβg for

g ∈ N, there exist a finite dimensional invariant subspace (Hikami/Y.K [21]).
• Elliptic hypergeometric series and integral solutions exist. Elliptic hypergeometric

integral can be reparametrized so that they solve (5.7) for one E-value, provided µ,
µ′ satisfies ellipticity constraint

∑
µt +µ′

t = 0 (balancing condition) and one further
constraint. Hence one gets a 6-dimensional subfamily of µj, µ

′
j. If we set one of

µj or µ′
j to be an integer M , then the elliptic hypergeometric integral reduces to

terminating elliptic hypergeometric series 12V11 (10E9 in some references). Hence for
M fixed one gets a 5-dimensional subfamily of µj, µ′

j (for elliptic hypergeometric
series, Kajiwara/Masuda/Noumi/Ohta/Yamada [24] and Spiridonov [63], for elliptic
hypergeometric integrals, Y.K/Noumi [25]).

5.2.4. BCN case.

• With linear constraint on µj, µ
′
j, µ, there exist finite-dimensional spaces of θ-functions

invariant under the commuting BCN A∆Os (Hikami/Y.K [21]). This result is gen-

eralized to arbitrary root systems, where the reduced root system of type A
(2)
2N corre-

sponds to the root system of type BCN and invariant spaces consist of theta functions
of positive level associated to the corresponding affine Lie algebra [27].

6. Appendix

6.1. Weierstrass’ sigma function. Let ω1, ω2 ∈ C be basic half periods such that
ω1/ω2 6∈ R and set ω0 = 0 and ω3 = −ω1 − ω2.
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Weierstrass’ sigma function is defined by the following:

(6.1) σ(z; ω1, ω2) = σ(z) = z
∞∏

m,n=−∞
(m,n)6=(0,0)

[(
1 − z

Ωmn

)
exp

( z

Ωmn

+
z2

2Ω2
mn

)]
,

where Ωmn = 2mω1 + 2nω2.
σ(z) is an entire function and satisfies the following periodicity:

σ(z + 2ω1) = −e2η1(z+ω1)σ(z),(6.2)

σ(z + 2ω2) = −e2η2(z+ω2)σ(z).(6.3)

with simple zeros at 2ω1Z+2ω2Z, where ηj = ζ(ωj) and ζ(z) is Weierstrass’ zeta function
ζ(z) = σ′(z)/σ(z). The Taylor expansion of σ(z) at the origin is

(6.4) σ(z) = z + O(z5)

Conversely, these properties determine the sigma function uniquely.
The cosigma functions are defined by

(6.5) σj(z) = e−ηjz σ(z + ωj)

σ(ωj)
, (j = 1, 2, 3).

The cosigma functions are even functions and σj(0) = 1 while the sigma function is an
odd function. In addition, we set σ0(z) = σ(z).

By use of the following Cauchy type determinant formula

(6.6) det

(
σ(xi − yj + λ)

σ(xi − yj)σ(λ)

)N

i,j=1

=
σ(λ +

∑N
i=1 xi − yi)

σ(λ)

∏
1≤i<j≤N σ(xi − xj)σ(yi − yj)∏

1≤i,j≤N σ(xi − yj)
,

we have
(6.7)

det

(
σ(xi − xj + λ)σ(µ)

σ(xi − xj + µ)σ(λ)

)N

i,j=1

=
σ(λ − µ)N−1σ(λ + (N − 1)µ)

σ(λ)N

∏
1≤i<j≤N σ(xi − xj)

2

∏
1≤i<j≤N σ(xi − xj + µ)

.

The formula (6.6) was first obtained by Frobenius [17]. Later on, it showed up in several
distinct contexts, giving rise to different proofs, cf. [12, 23,47,52].

6.2. Weierstrass’ ℘ function. Weierstrass’ ℘ function is an even elliptic function de-
fined by

(6.8) ℘(z; ω1, ω2) = ℘(z) =
1

z2
+

∞∑

m,n=−∞
(m,n) 6=(0,0)

[ 1

(z − Ωmn)2
− 1

Ω2
mn

]
,

whose Laurent expansion at the origin is given by,

(6.9) ℘(z) =
1

z2
+ O(z2).
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We have the following relations between the functions ℘ and σ.

℘(z1) − ℘(z2) = −σ(z1 − z2)σ(z1 + z2)

σ(z1)2σ(z2)2
,(6.10)

− d

dz

σ′
j(z)

σj(z)
=

σj(z)σ′′
j (z) − σ′

j(z)2

σj(z)2
= ℘(z + ωj), (j = 0, 1, 2, 3).(6.11)

It follows that

(6.12)
σt(iβg + x)σt(iβg − x)

σt(x)σt(−x)
= 1 + g2℘(x + ωt)β

2 + O(β4).

6.3. Elliptic gamma and allied functions. For the detail of this subsection, see [54].
Starting from Weierstrass sigma function σ(z), introduce

s(r, a; z) = exp(−η1z
2/2ω1)σ(z; ω1, ω2),(6.13)

R(r, a; z) = c(r, a)eirzs(r, a; z + ia/2), c(r, a) = −2ire−ar/2

∞∏

k=1

(1 − e−2rak)2(6.14)

where ω1 = π/2r, ω2 = ia/2, for r, a > 0. The function s(r, a; z) is odd function and
π/r-antiperiodic, and satisfies

lim
a→∞

=
sin rz

r
,(6.15)

lim
r→∞

=
sinh πz/a

πz/a
,(6.16)

uniformly on compacts.
Now consider first order analytic difference equation:

(6.17)
G(z + ib/2)

G(z − ib/2)
= R(r, a; z), r, a, b > 0.

The ’simplest’ (=minimal) solution is elliptic gamma function:

(6.18) G(r, a, b; z) =
∞∏

m,n=0

1 − exp(−(2m + 1)ra − (2n + 1)rb − 2irz)

1 − exp(−(2m + 1)ra − (2n + 1)rb + 2irz)
.

Noting a ↔ b invariance, we work with G(r, a+, a−; z) obeying

G(z + ia−δ/2)

G(z − ia−δ/2)
= Rδ(z), δ = +,−(6.19)

Rδ(z) = R(r, aδ; z).(6.20)

Likewise we define

(6.21) sδ(z) = s(r, aδ; z).
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Useful G-features are as follows:

G(r, a+, a−; z) = G(r, a−, a+; z),(6.22)

G(λ−1r, λa+, λa−; λz) = G(r, a−, a+; z),(6.23)

G(z + π/r) = G(z),(6.24)

G(−z) = G(z),(6.25)

G(z) = exp
(
i

∞∑

n=1

sin(2nrz)

2n sh(nra+) sh(nra−)

)
, |=z| < (a+ + a−)/2,(6.26)

lim
a−↓0

G(r, a+, a−; z − ia−κ)

G(r, a+, a−; z − ia−λ)
= exp[(λ − κ) ln R(r, a+; z)].(6.27)

Multiplication formulae:

G(2r, a+, a−; z) = G(r, a+, a−; z)G(r, a+, a−; z − π/2r)(6.28)

G
(
r,

a+

M
,
a−

N
; z

)
=

M∏

j=1

N∏

k=1

G
(
r, a+, a−; z + ia+

M + 1 − 2j

2M
+ ia−

N + 1 − 2k

2N

)
(6.29)

In particular, we get duplication formula

G(r, a+, a−; 2z) =
∏

l,m=+,−

G
(
r, a+, a−; z + i

la+ + ma−

4

)

·G
(
r, a+, a−; z + i

la+ + ma−

4
− π/2r

)(6.30)

6.4. Classical Limit. The integrability of the classical models follows directly from that
of the quantum counterparts. In this subsection, we give the proof of this assertion both
in the nonrelativistic and the relativistic cases.

6.4.1. Nonrelativistic case.

Lemma 6.1. Let nj ∈ NN (j = 1, 2) be multi-indices and δk = (0, . . . ,
k

1, . . . , 0). Assume
that Vj(x, ~) (j = 1, 2) are holomorphic in ~ around ~ = 0, and holomorphic in x on U ,
where U is an open dense subset of RN . Let

Ôj = Vj(x, ~)p̂nj , (j = 1, 2),(6.31)

Oj = Vj(x, 0)pnj , (j = 1, 2).(6.32)

Then the brackets are of the forms

[Ô1, Ô2] =
∑

k≤max{n1,n2}

V[1,2],k(x, ~)p̂n1+n2−k,(6.33)

{O1, O2} =
N∑

j=1

V{1,2},j(x)pn1+n2−δj ,(6.34)
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and

(6.35) lim
~→0

V[1,2],k(x, ~)

i~
=

{
V{1,2},j(x), if k = δj.

0, otherwise.

In particular,

(6.36) [Ô1, Ô2] = 0 =⇒ {O1, O2} = 0.

Proof. The commutator is calculated as

(6.37) [Ô1, Ô2] =
∑

k≤n1

V1(x, ~)(−i~)|k|
(

n1

k

)
V

(k)
2 (x, ~)p̂n1+n2−k

−
∑

k≤n2

V2(x, ~)(−i~)|k|
(

n2

k

)
V

(k)
1 (x, ~)p̂n1+n2−k.

and the Poisson bracket as

(6.38) {O1, O2} =
N∑

j=1

(
n

(j)
2 V

(δj)
1 (x, 0)V2(x, 0) − n

(j)
1 V

(δj)
2 (x, 0)V1(x, 0)

)
pn1+n2−δj ,

where n
(j)
k denotes the j-th index of nk. One sees that the coefficient of p̂n1+n2 vanishes

and

(6.39) V[1,2],k(x, ~) =

{
V{1,2},j(x)i~ + O(~2), if k = δj.

O(~2), otherwise.

6.4.2. Relativistic case.

Lemma 6.2 (van Diejen [68]). Let κj ∈ CN (j = 1, 2). Assume that Vj(x, ~) (j = 1, 2)
are holomorphic in ~ around ~ = 0, and holomorphic in x on U + iκ3−jR, where U is an
open dense subset of RN . Let

Ôj = Vj(x, ~)e−κj ·p̂, (j = 1, 2),(6.40)

Oj = Vj(x, 0)e−κj ·p, (j = 1, 2).(6.41)

Then the brackets are of the forms

[Ô1, Ô2] = V[1,2](x, ~)e−(κ1+κ2)·p̂,(6.42)

{O1, O2} = V{1,2}(x)e−(κ1+κ2)·p,(6.43)

and

(6.44) lim
~→0

V[1,2](x, ~)

i~
= V{1,2}(x).

In particular,

(6.45) [Ô1, Ô2] = 0 =⇒ {O1, O2} = 0.
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Proof. The functions V[1,2](x, ~) and V{1,2}(x) are explicitly calculated as

V[1,2](x, ~) = V1(x, ~)V2(x + i~κ1, ~) − V2(x, ~)V1(x + i~κ2, ~),(6.46)

V{1,2}(x) = V1(x, 0)(κ1 · ∇V2)(x, 0) − V2(x, 0)(κ2 · ∇V1)(x, 0).(6.47)

The Taylor expansion of (6.46) around ~ = 0 yields

(6.48) V[1,2](x, ~) = V{1,2}(x)i~ + O(~2).
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