
ELLIPTIC INTEGRABLE SYSTEMS

AN ELLIPTIC DETERMINANT TRANSFORMATION

HJALMAR ROSENGREN

Abstract. We prove a transformation formula relating two determinants involving el-
liptic shifted factorials. Similar determinants have been applied to multiple elliptic hy-
pergeometric series.

1. Introduction

Determinant evaluations play an important role in mathematics, perhaps most notably
in combinatorics, see Krattenthaler’s surveys [K2] and [K3]. Many useful determinant
evaluations are rational identities, which rises the question of finding generalizations to
the elliptic level. In recent work with Schlosser [RS2], we gave an approach to elliptic
determinant evaluations that encompasses most results in the literature, from the classical
Frobenius determinant to the Macdonald identities for non-exceptional affine root systems.

As an example of an elliptic determinant evaluation, we mention Warnaar’s determinant
[W, Corollary 5.4], which we write as

det
1≤j,k≤n

(
(bxj, c/xj)k−1

(a/bxj, axj/c)k−1

)

= c(
n
2)q(

n
3)

∏

1≤i<j≤n

x−1
i θ(xi/xj)θ(bxixj/c)

n∏

j=1

(a/bc, aqj−2)j−1

(a/bxj, axj/c)n−1

. (1)

Here, we use the notation

θ(x) =
∞∏

j=0

(1 − pjx)(1 − pj+1/x),

(a)k = θ(a)θ(aq) · · · θ(aqk−1),

(a1, . . . , an)k = (a1)k · · · (an)k,

where p and q are fixed parameters with |p| < 1. In the trigonometric case, p = 0, we
recover the usual q-shifted factorials, which we denote

(a)trig
k = (1 − a)(1 − aq) · · · (1 − aqk−1).

The case p = 0 of (1) is a special case of a determinant evaluation due to Krattenthaler
[K1, Lemma 34].

Warnaar used (1) to derive a multivariable extension of the elliptic Jackson summation.
In the terminology of [DS], this is a “Schlosser-type” sum, which is obtained by taking
the determinant of one-dimensional summations. In spite of its conceptual simplicity,
Warnaar’s sum is a key result for multiple elliptic hypergeometric series, since it can
be used both to derive an “Aomoto–Itô–Macdonald-type” sum (conjectured in [W] and
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proved in [R1]) and a “Gustafson–Milne-type” sum (conjectured in [DS] and proved in
[R2]). Alternative proofs of these summations were found by Rains [Ra1, Ra2]. See [S]
for an application of (1) to elliptic hypergeometric integrals.

In [RS1, Eq. (7.27)], as a by-product of deriving transformation formulas for Schlosser-
type series, we discovered the identity

det
1≤j,k≤n

(
(zj)

trig
k−1

(ajzj)
trig
k−1

)
= (−1)(

n
2)q(

n
3) det

1≤j,k≤n

(
zk−1

j

(aj)
trig
k−1

(ajzj)
trig
k−1

)
. (2)

Krattenthaler found a more natural proof of (2), based on the q-Chu–Vandermonde sum-
mation, which was included in [RS1].

The purpose of the present note is to obtain an elliptic extension of (2). In fact, as we
will explain at the end, such an identity can be derived from the results of [RS1]. However,
we prefer to give a self-contained proof, which is a straight-forward generalization of
Krattenthaler’s proof of (2), based on the elliptic Jackson summation

n∑

l=0

θ(aq2l)

θ(a)

(a, b, c, d, e, q−n)l

(q, aq/b, aq/c, aq/d, aq/e, aqn+1)l

=
(aq, aq/bc, aq/bd, aq/cd)n

(aq/b, aq/c, aq/d, aq/bcd)n

, (3)

where a2qn+1 = bcde. The identity (3) was obtained by Date et al. [D] for special pa-
rameter values and by Frenkel and Turaev [FT] in general; see [R3] for an elementary
proof.

Theorem 1. Let a and bj, cj, dj, j = 1, . . . , n, be parameters such that the product bjcjdj

is independent of j. Then the determinant transformation

det
1≤j,k≤n

(
(bj, cj, dj)k−1

(a/bj, a/cj, a/dj)k−1

)

=
(a

e

)(n
2)

n∏

j=2

(aqj−2)j−1

(eqj−2)j−1

det
1≤j,k≤n

(
(a/bjcj, a/bjdj, a/cjdj)k−1

(a/bj, a/cj, a/dj)k−1

)
(4)

holds, where

e = a2/bjcjdj. (5)

Note that if dj is independent of j, we may write bj = bxj, cj = c/xj and evaluate both
determinants using (1). Thus, in this special case, Theorem 1 follows from Warnaar’s
determinant evaluation.

As far as we know, Theorem 1 is new even in the case p = 0. In that case, letting
a → 0, cj → 0 and dj → ∞, keeping bj and a/cj fixed, so that e → 0, one recovers (2)
after a change of variables.

In view of its close relation to Warnaar’s determinant, one may hope that Theorem 1
will also find applications to multiple elliptic hypergeometric series. However, so far we
have not found any interesting results in that direction. Perhaps Theorem 1 serves to
indicate that when encountering a determinant that cannot be evaluated in closed form,
one should keep in mind that it may still satisfy some, potentially useful, transformation.
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2. Proof of Theorem 1

Let X = (Xjk)
n
j,k=1 and Y = (Yjk)

n
j,k=1 be the matrices

Xjk =
(bj, cj, dj)k−1

(a/bj, a/cj, a/dj)k−1

, (6)

Yjk =
θ(aq2j−3)

θ(aq−1)

(aq−1, q1−k, eqk−2)j−1

(q, aqk−1, aq2−k/e)j−1

qj−1.

Note that Y is triangular, with determinant

det(Y ) =
n∏

j=1

Yjj =
n∏

j=2

θ(aq2j−3)

θ(aq−1)

(aq−1, q1−j, eqj−2)j−1

(q, aqj−1, aq2−j/e)j−1

qj−1

=
(e

a

)(n
2)

n∏

j=2

(a, eqj−2)j−1

(aqj−2, e/a)j−1

,

(7)

where we used the elementary identity

(x)j−1

(y)j−1

=

(
x

y

)j−1
(q2−j/x)j−1

(q2−j/y)j−1

(8)

in the last step. Moreover,

(XY )jk =
n−1∑

l=0

Xj,l+1Yl+1,k =
k−1∑

l=0

θ(aq2l−1)

θ(aq−1)

(aq−1, q1−k, bj, cj, dj, eq
k−2)l

(q, aqk−1, a/bj, a/cj, a/dj, aq2−k/e)l

ql.

Assuming (5), the elliptic Jackson summation (3) gives

(XY )jk =
(a, a/bjcj, a/bjdj, a/cjdj)k−1

(e/a, a/bj, a/cj, a/dj)k−1

. (9)

Writing out the equation det(X) = det(XY )/ det(Y ) using (6), (7) and (9) we arrive at
(4).

3. An S3 symmetry

Besides the non-trivial symmetry of Theorem 1, determinants of the form

det
1≤j,k≤n

(
(bj, cj, dj)k−1

(a/bj, a/cj, a/dj)k−1

)
, bjcjdj independent of j,

also have a trivial symmetry. Namely, reversing the order of the columns, we have

det
1≤j,k≤n

(
(bj, cj, dj)k−1

(a/bj, a/cj, a/dj)k−1

)
= (−1)(

n
2) det

1≤j,k≤n

(
(bj, cj, dj)n−k

(a/bj, a/cj, a/dj)n−k

)

= (−1)(
n
2)

n∏

j=1

(bj, cj, dj)n−1

(a/bj, a/cj, a/dj)n−1

× det
1≤j,k≤n

(
(qn−ka/bj, q

n−ka/cj, q
n−ka/dj)k−1

(qn−kbj, qn−kcj, qn−kdj)k−1

)
.
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Using (8) and introducing the parameter e as in (5) gives

det
1≤j,k≤n

(
(bj, cj, dj)k−1

(a/bj, a/cj, a/dj)k−1

)
=

(
−e2

a

)(n
2) n∏

j=1

(bj, cj, dj)n−1

(a/bj, a/cj, a/dj)n−1

× det
1≤j,k≤n

(
(q2−nbj/a, q2−ncj/a, q2−ndj/a)k−1

(q2−n/bj, q2−n/cj, q2−n/dj)k−1

)
. (10)

Denoting by σ and τ the transformation from the left-hand to the right-hand side of
(4) and (10), respectively, one may check that σ2 = τ 2 = (στ)3 = id, that is, σ and τ
generate an S3 symmetry. Thus, there are three additional expressions, corresponding to
στ , τσ and στσ = τστ . These may be written, respectively, as

det
1≤j,k≤n

(
(bj, cj, dj)k−1

(a/bj, a/cj, a/dj)k−1

)

= q−6(n
3)

( e

a2

)(n
2)

n∏

j=1

(bj, cj, dj)n−1

(a/bj, a/cj, a/dj)n−1

n∏

j=2

(aqj−2)j−1

(qj−ne/a)j−1

× det
1≤j,k≤n

(
(a/bjcj, a/bjdj, a/cjdj)k−1

(q2−n/bj, q2−n/cj, q2−n/dj)k−1

)

=

(
−a3

e2

)(n
2) n∏

j=1

(a/bjcj, a/bjdj, a/cjdj)n−1

(a/bj, a/cj, a/dj)n−1

n∏

j=2

(aqj−2)j−1

(eqj−2)j−1

× det
1≤j,k≤n

(
(q2−nbj/a, q2−ncj/a, q2−ndj/a)k−1

(q2−nbjcj/a, q2−nbjdj/a, q2−ncjdj/a)k−1

)

= q−6(n
3)

(
a2

e3

)(n
2) n∏

j=1

(a/bjcj, a/bjdj, a/cjdj)n−1

(a/bj, a/cj, a/dj)n−1

n∏

j=2

(aqj−2)j−1

(qj−na/e)j−1

× det
1≤j,k≤n

(
(bj, cj, dj)k−1

(q2−nbjcj/a, q2−nbjdj/a, q2−ncjdj/a)k−1

)
.

(11)

To verify this, the elementary identities

n∏

j=2

(aqj−2)j−1 =
n∏

j=2

(aq2n−2j)j−1 = (−a)(
n
2)q3(n

3)
n∏

j=2

(q2−2n+j/a)j−1

are useful. Although each of the three transformations in (11) are equivalent to Theorem 1,
it may be worthwhile to state them explicitly.
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Finally, we explain how to obtain Theorem 1 from the results of [RS1]. In that paper
(the elliptic extension of Corollary 7.3 contained in Theorem 8.1), we obtained the identity

m1,...,mn∑

k1,...,kn=0

∏

1≤i<j≤n

qkiθ(qkj−ki)θ(aqki+kj)

×
n∏

j=1

θ(aq2kj)

θ(a)

(a, b, cj, dj, ej, q
−mj)kj

(q, aq/b, aq/cj, aq/dj, aq/ej, aq1+mj)kj

qkj

= b−(n
2)q−2(n

3)
n∏

j=1

(aq2−n/b)n−1(b)j−1

(aq2+n−2j/b)n−1

(aq, aq/cjdj, aq/cjej, aq/djej)mj

(aq/cj, aq/dj, aq/ej, aq/cjdjej)mj

× det
1≤j,k≤n

(
(cj, dj, ej, q

−mj)k−1

(aq2−n/bcj, aq2−n/bdj, aq2−n/bej, aq2−n+mj/b)k−1

)
, (12)

where bcjdjej = a2q2−n+mj for j = 1, . . . , n. Note that the case n = 1 is (3). Consider
the special case when mi = n − 1 for each i. Then, the terms in the sum vanish unless
(k1, . . . , kn) is a permutation of (0, 1, . . . , n − 1). Moreover, since

∏

1≤i<j≤n

qkiθ(qkj−ki) = sgn(k)
∏

0≤i<j≤n−1

qiθ(qj−i),

the sum can be written as a determinant. After some elementary computation and a
change of variables, one is reduced to the equality between the first and last member of
(11). Thus, Theorem 1 can also be obtained as a special case of (12).
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Birkhäuser, Boston, 1997, pp. 171–204.

[K1] C. Krattenthaler, The major counting of nonintersecting lattice paths and generating functions for
tableaux, Mem. Amer. Math. Soc. 115 (1995), no. 552.

[K2] C. Krattenthaler, Advanced determinant calculus, Sémin. Lothar. Comb. 42 (1999), B42q.
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