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Introduction

Elliptic Quantum Planes means here non-commutative deformations of the complex pro-
jective plane P2(C). We consider deformations in the realm of non-commutative (complex)
algebraic geometry. As we recall in the first section, elliptic modulus parameter enters
into the game. Hence the adjective “elliptic” is used. Note also that, in that world, the
complex projective line P1(C), namely the Riemann sphere, does not admit even a non-
trivial non-commutative deformation, unlike in the world of non-commutative differential
geometry.

The aim of this article is twofold. In the first two sections, we briefly review the
non-commutative projective geometry mainly focusing on the case of non-commutative
deformation of the projective plane.

In the third section, we formulate a theorem pertaining to Hochschild cohomology of
algebraic varieties, which generalizes a theorem of Keller [6].

In author’s actual talk at the workshop on Elliptic Integrable Systems, he had only
time to explain the first two sections of this article. The title of this article is left the
same as that of the talk, while the half of the content is not specialized so much to the
elliptic quantum plane.

The author would like to thank Profs. A.Kato and Y.Saito for discussion. He would
also like to thank Prof. K.Ikeda of Keio Univ. for an occasion in the Algebraic Analysis
Seminar about the content of the first half of this article. He would also like to thank
Profs. K.Takasaki and M.Noumi, the organizers of the workshop, for giving him a chance
to talk and for support.

1 Elliptic quantum planes – What are they ?

There are a few approaches to non-commutative generalization of algebraic geometry.
Non-commutative projective geometry is one of these approaches. It is based on Serre’s
theorem characterizing the category of coherent sheaves on a projective variety recalled
below.

Definition 1.1 A non-commutative(=NC) projective variety is the quotient category
qgr(S) of the category of finitely generated graded S-modules by the epaisse subcategory
consisting of those graded S-modules whose graded components in sufficiently high degrees
are zero. Here S is a noetherian graded k-algebra with nice properties. We will assume
that the ground field k is C for simplicity, but most of the definitions and results make
sense for an algebraically closed field k.
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Remark 1.2 Let X be a projective variety over a field k and O(1) an ample invertible
O-module. Then, after Serre, we have an equivalence of categories

Coh(X) ' qgr(S), S := ⊕n≥0H
0(X,O(n))

where the left hand side means the category of coherent sheaves on X. For X = P2, we
have S = k[x, y, z].

Definition 1.3 A NC projective plane is defined to be a category of the form qgr(S),
where S is an Artin-Schelter regular algebra of dimension 3 with Hilbert series 1/(1− t)3.

Here a graded algebra S = ⊕n≥0Sn (S0 = C) is called Artin-Schelter regular algebra of
dimension 3 if (1) S has homological dimension 3, (2) dimC Sn grows quadratically in n,
and (3) one has

Exti
S(C, S) =

{
0 i 6= 3
C(m) i = 3

for some m, where (m) means the shift in degrees. The Hilbert series of S is by definition∑
n≥0(dim Sn)tn.

M.Artin and his collaborators [1], [2] classified Artin-Schelter regular algebras S of
dimension 3 with Hilbert series 1/(1 − t)3. Their results say the following:

If qgr(S) is not equivalent to the category Coh(P2), then there exists a
cubic element g ∈ S3 such that gS = Sg and S/gS ' B(E,L, σ) for some
elliptic curve E, a line bundle L on E, and an automorphism σ of E.

Remark 1.4 Here B(X,L, σ) denotes the twisted homogeneous coordinate ring of the
data (X,L, σ) :

B(X,L, σ) = ⊕n≥0H
0(X,L ⊗ Lσ · · · Lσn−1

)

equipped with the naturally defined product and Lσm
= (σm)∗L.

It is known that qgr(B(X,L, σ)) ' qgr(B(X,O(1), id)) = Coh(X).
The algebra B(X,L, σ) itself is more subtle object. For example, one has B(P1,O(1), σ) =

C{x, y}/(xy−yx−x2) for σ(u) = u+1. Here C{x, y} denotes the non-commutative poly-
nomial ring over C.

By the classification [1], [2], a non-trivial NC P2 is determined by data (E,L, σ), hence
the name “elliptic quantum plane.”

The graded algebras for NC P2 include the following cases.
(1) Weyl algebra D(A1)

S = C{x, y, z}/(yx − xy − z2, zx − xz, zy − yz)

(2) 3 dimensional Sklyanin algebra Skl3

S = C{x, y, z}/(axy + byx + cz2, ayz + bzy + cx2, azx + bxz + cy2)

where (3abc)3 6= (a3 + b3 + c3)3. In this case, E is given by the cubic

abc(x3 + y3 + z3) − (a3 + b3 + c3)xyz = 0

and σ is the translation by the point (a : b : c).
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Remark 1.5 The above examples have some link with integrable systems.
Cannings-Holland [4] found a one-to-one correspondence between the following two:

{ right ideals of D(A1) } ↔ Grad (Wilson’s adelic Grassmannian)
This last Grassmannian is partitioned into the Calogero-Moser phase space Cn : Grad =∐

n≥0 Cn. The space Cn is also identified with a deformation of the Hilbert scheme of n

points (A2)[n].
The elliptic version of this story is considered by Nevins-Stafford [8].

2 Hochschild cohomology of some varieties – a moti-

vation

NC “deformations” of complex smooth algebraic vaieties appear in the context of stability
conditions in the derived category of coherent sheaves Db(Coh(X)) formulated by M.
Douglas and T. Bridgeland [3]. The deformations of Coh(X) arise as family of abelian
subcategories of Db(Coh(X)) parameterized by elements of the complexified ample cone
in H2(X, R) +

√
−1NS(X)R.

According to the Homological Mirror Symmetry Conjecture by Kontsevich, deforma-
tions of Db(Coh(X)) are parametrized by the so-called extended moduli space. Its tangent
space is given by the Hochschild cohomology

HH∗(X) ' ⊕p,qH
p(X, ΛqTX),

where TX denotes the sheaf of holomorphic tangent vector fields on X.
The geometric meaning of deformations is not fully clear at his moment. The second

Hochschild cohomology group

HH2(X) ' H2(X,OX) ⊕ H1(X,TX) ⊕ H0(X, Λ2TX)

contains the tangent space to the moduli sapce of complex structures H1(X, TX). The
remaining components seems to have also geometric meaning; H0(X, Λ2TX) corresponds
to deforming the product of the structure sheaf OX [11] and H2(X,OX) corresponds to
deforming the gluing compatibility. For the latter, the deformed objects are nothing but
the twisted sheaves [5].

Let us look at the case X = P2. The total Hochschild cohomology is given by

HH∗(P2) ' H0(P2,O) ⊕ H0(P2, T ) ⊕ H0(P2, Λ2T )

The right hand sides are the 0th, 1st and 2nd Hochschild cohomology groups. The di-
mension is 1, 8, 10 respectively.

The 1st group is the tangent space to the automprphism group of P2. Since Λ2T =
K−1 = O(3), the 2nd group is isomorphic to H0(P2,O(3)) whch is the space of cubic
equations. This suggests that the extended moduli classifies much finer objects with
additional structure than the abelian subcategories of the derived category of coherent
sheaves.

It would be desirable to find an appropriate framework of “non-commutative algebraic
geometry” in which we can discuss deformations and analog of Kodaira-Spencer theory.
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3 Derived Picard group of a quasi-coherent ringed

scheme

In this section, we describe a generalization of Keller’s interpretation of the Hochschild
cohomology groups as the tangent spaces of the derived Picard group functor. It might
shed some light on the consideration in the previous section.

Keller [6] defined, for an associative algebra A over a field k, the derived Picard group
functor DPicA from the category cdg(k) of (graded-)commutative differential graded k-
algebras to the category of groups. He then proved that

Ker
(
DPicA(k[ε−i]/(ε

2
−i)) → DPicA(k)

)
' HH i+1(A)

where ε−i has degree −i.
We formulate a generalization of this result, leaving the detail to [9].

Definition 3.1 Let X = (X,OX) be a(n ordinary) scheme over a field k and A a quasi-
coherent OX-algebra. Then a pair (X,A) is called a quasi-coherent ringed scheme over
k.

We assume, from here on, that the product A £ Aop =: Ae on X × X = X2 exists.
Let R ∈ cdg(k) be a commutative differential graded k-algebra. Keller [7] introduced

R-relative derived category DR(E) for differential graded R-algebra E. The objects are
differential graded E-modules. The morphisms in DR(E) are obtained by inverting the
morphisms of dg E-modules which become homotopy equivalences when the scalars are
restricted to R. This definition can be generalized to quasi-coherent ringed schemes.

In addition to R-relative derived category, Keller introduced the notion of relative
derived tensor product ⊗L,rel.

Definition 3.2 Let X = (X,A) be a quasi-coherent ringed scheme over k.
A complex of R⊗Ae-modules U is called an invertible complex of bimodules in DR(R⊗

Ae) if (1) its underlying complex of graded R-modules are locally R-free and if (2) there
exists an object V ∈ DR(R ⊗ Ae) which is represented by locally R-free modules and is
such that

U ⊗L,rel
R⊗A V ' R ⊗A, V ⊗L,rel

R⊗A U ' R ⊗A.

An invertible complex of bimodules is also called as a tilting complex.

Definition 3.3 Let R ∈ cdg(k) be a commutative differential graded k-algebra and (X,A)
a quasi-coherent ringed scheme over k.

The set of isomorphism classes in DR(R ⊗ Ae) of invertible complex of bimodules is
denoted by DPicX,A(R). It has a structure of group with the product being the derived
tensor product.

DPicX,A becomes a contravariant functor from cdg(k) to the category of groups. We
define its i-th piece of Lie superalgebra of DPicX,A to be

LieDPici
X,A := Ker

(
DPicX,A(k[ε−i]/(ε

2
−i)) → DPicX,A(k)

)
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where ε−i has degree −i and the differential d = 0.
The totality of these pieces form a Lie superalgebra:

LieDPic∗X,A := ⊕iLieDPici
X,A

Definition 3.4 The Hochschild cohomology of a quasi-coherent ringed scheme (X,A) is
defined to be :

HH i(X,A) = HH i(A) := ExtiAe(A,A)

The totality of Hochschild cohomology groups equipped with the Gerstenhaber bracket form
a Lie superalgebra:

HH∗+1(X,A) := ⊕iHH i+1(X,A)

Theorem 3.5 Let (X,A) a quasi-coherent ringed scheme over k such that the product
A £ Aop =: Ae on X × X = X2 exists.

Then we have the following isomorphism of Lie superalgebras:

LieDPic∗X,A ' HH∗+1(X,A)

The theorem is more generally valid for quasi-coherent dg scheme.
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[5] A. Căldăraru, Derived categories of twisted sheaves on elliptic threefolds. J. Reine
Angew. Math. 544 (2002), 161–179.

[6] B.Keller, Hochschild cohomology and derived Picard groups. J. Pure Appl. Algebra
190 (2004), no. 1-3, 177–196.

[7] B.Keller, Invariance and localization for cyclic homology of DG algebras, J. Pure
Appl. Algebra 123 (1998), 223–273.

[8] T.A. Nevins and J.T. Stafford, Sklyanin algebras and Hilbert schemes of points,
math.AG/0310045.

[9] Y. Shimizu, Derived Picard group of a quasi-coherent ringed scheme, In preparation.



252 Y. Shimizu

[10] J. T. Stafford, Noncommutative projective geometry, Proceedings of the ICM, Beijing
2002, vol. 2, 93–104.

[11] A. Yekutieli, Deformation quantization of algebraic varieties, math.AG/0310399.

Yuji Shimizu
Division of Natural Sciences,
International Christian University


