
ELLIPTIC INTEGRABLE SYSTEMS

CLASSICAL ELLIPTIC HYPERGEOMETRIC
FUNCTIONS AND THEIR APPLICATIONS

V. P. SPIRIDONOV

To the memory of A. A. Bolibrukh

Abstract. General theory of elliptic hypergeometric series and integrals is outlined.
Main attention is paid to the examples obeying properties of “classical” special functions.
In particular, an elliptic analogue of the Gauss hypergeometric function and some of its
properties are described. Present review is based on the author’s habilitation thesis
[Spi7] containing a more detailed account of the subject.
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Formal contour integrals
∫

C
∆(u)du and series

∑
n∈Z cn are called elliptic hypergeomet-

ric integrals and series, if there exist three constants ω1, ω2, ω3 ∈ C such that

• ∆(u + ω1) = h(u)∆(u),

where h(u) is an elliptic function of u with periods ω2, ω3, i.e.,

h(u) is meromorphic and

h(u + ω2) = h(u + ω3) = h(u), Im(ω2/ω3) 6= 0;

• cn+1 = h(nω1)cn,

where h(nω1) is an elliptic function of n with periods
ω2

ω1

,
ω3

ω1

.

There is a functional freedom in the definition of integrals: ∆(u) → ϕ(u)∆(u), where
ϕ(u) is an arbitrary ω1-periodic function, ϕ(u+ω1) = ϕ(u) (such a freedom is not essential
for series).

NARROW DEFINITION OF INTEGRALS.
Formal contour integrals

∫
C

∆(u)du are called elliptic hypergeometric integrals, if ∆(u)
is a meromorphic solution of three linear first order difference equations

∆(u + ωi) = hi(u)∆(u), i = 1, 2, 3,

where hi(u) are elliptic functions with the periods ωi+1, ωi+2 (we set ωi+3 = ωi).
If all hi(u) 6= const, then Im(ωi/ωj) 6= 0, i 6= j. Interesting situations occur when one

hi(u) = const, in which case we can have either Im(ωi/ωi+1) = 0 or Im(ωi/ωi+2) = 0. For
pairwise incommensurate ωi, the functional freedom in the definition of ∆(u) is absent
due to the non-existence of triply periodic functions.

Thus, we have in general three elliptic curves, but only two of them are independent.
One can consider also elliptic hypergeometric functions in a more general context, when
hi(u) are N × N matrices with elliptic function entries.

It is possible to abandon the requirement of double periodicity of h(u) in favor of its
double quasiperiodicity similar to the Jacobi theta or Weierstrass sigma functions. This
leads to a more general family of theta hypergeometric series and integrals (theta analogs
of the Meijer function) [Spi2, Spi4], but we skip their consideration. In the next section
we describe certain “classical” special functions of hypergeometric type and their elliptic
generalizations.

2. An overview of classical hypergeometric functions

The Euler’s beta integral [AAR]
∫ 1

0

xα−1(1 − x)β−1dx =
Γ(α)Γ(β)

Γ(α + β)
, Re α, Re β > 0,

determines: i) the measure for Jacobi polynomials; ii) an integral representation for the

2F1 series. Namely, Jacobi polynomials

Pn(x) =
(α)n

n!
2F1

(
−n, n + α + β − 1

γ
; x

)
,



Elliptic hypergeometric functions 255

where (α)n = α(α+1) · · · (α+n−1) is the Pochhammer symbol, satisfy the orthogonality
relations

〈Pn, Pm〉 =

∫ 1

0

xα−1(1 − x)β−1Pn(x)Pm(x)dx

=
δnm

2n + α + β − 1

Γ(n + α)Γ(n + β)

Γ(n + α + β − 1)n!
.

The Gauss hypergeometric function has the form

2F1

(
a, b

c
; x

)
=

∞∑

n=0

(a)n(b)n

n!(c)n

xn

=
Γ(c)

Γ(b)Γ(b − c)

∫ 1

0

tb−1(1 − t)b−c−1(1 − xt)−adt,

where we skip for brevity relevant constraints upon the parameters. It defines a solution
of the hypergeometric equation

y′′(x) +

(
c

x
+

a + b − c + 1

x − 1

)
y′(x) +

ab

x(x − 1)
y(x) = 0,

which is analytical near the origin x = 0.
Two integrals described above fit into the general pattern

∫
C

∆(x)dx with the kernel

∆(x) =
∏k

j=1(x− xj)
αj and some free parameters xj and αj. This kernel is characterized

by the condition that its logarithmic derivative ∆′(x)/∆(x) = R(x) is a rational function
of x. A very natural generalization of this criterion consists in the requirement that the
kernel ∆(x) satisfies the first order linear finite difference equation ∆(x+ω1) = R(x)∆(x)
with rational R(x) (such a treatment is valid already for the 2F1 function via the Mellin-
Barnes integral representation). By definition, we obtain general plain hypergeometric
integrals for which

∆(x) =

∏s−1
j=0 Γ(x/ω1 + uj)∏r
j=0 Γ(x/ω1 + vj)

ϕ(x) yx/ω1 , ϕ(x + ω1) = ϕ(x),

and Γ(x) is the Euler’s gamma function.
The Pochhammer series have the form

∑∞
n=0 cn with

cn+1

cn

= R(n) =

∏s−1
j=0(n + uj)

(n + 1)
∏r

j=1(n + vj)
y,

which leads automatically to the expression
∞∑

n=0

cn = sFr

(
u0, . . . , us−1

v1, . . . , vr

; y

)
=

∞∑

n=0

(u0)n · · · (us−1)n

n!(v1)n · · · (vr)n

yn.

These series admit confluence limits like sFr(y) ∼ s−1Fr(u0y) for u0 → ∞. Their q-
generalization has by definition cn+1/cn = R(qn) for q ∈ C and some rational R(x), which
leads uniquely to the series

sϕr

(
t0, . . . , ts−1

w1, . . . , wr

; q; y

)
=

∞∑

n=0

(t0; q)n · · · (ts−1; q)n

(q; q)n(w1; q)n · · · (wr; q)n

yn,
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where (t; q)n = (1 − t)(1 − tq) · · · (1 − tqn−1) denotes the q-Pochhammer symbol. This
definition differs from the one given in [AAR, GR] by the inversion q → q−1 and appro-
priate change of notation for parameters. For ti = qui , wi = qvi and q → 1−, we formally
have sϕr(y) → sFr(ỹ) for some renormalized value of the argument ỹ. In a similar way
one can reconstruct the bilateral series sHr and sψr.

Elliptic hypergeometric series, directly derived from the definition given in the first
section, have the form (the unilateral case)

r+1Er

(
t0, t1, . . . , tr
w1, . . . , wr

; q, p; y

)
=

∞∑

n=0

(t0)n(t1)n · · · (tr)n

(w0)n(w1)n · · · (wr)n

yn,

where w0 = q (the canonical normalization) and

• (t)n = θ(t, tq, . . . , tqn−1; p) ≡
∏n−1

j=0 θ(tqj; p),

θ(t; p) = (t; p)∞(pt−1; p)∞,

(t; p)∞ =
∏∞

n=0(1 − tpn), |p| < 1;

•
∏r

j=0 tj =
∏r

j=0 wj, the balancing condition.

The elliptic Pochhammer symbol (t)n (denoted also in some other places as (t; q, p)n, θ(t)n,
or θ(t; p; q)n) degenerates to (t; q)n for p → 0, (t)n → (t; q)n. Therefore for generic fixed
tj, wj we have the termwise limiting relation r+1Er → r+1ϕr with the balancing restriction
indicated above (which does not coincide with the balancing condition usually accepted
for q-hypergeometric series [GR]).

For p = e2πiτ , Im(τ) > 0, and any σ, u ∈ C, q = e2πiσ, we have the following relation
between θ(t; p) and the Jacobi θ1(x) ≡ θ1(x|τ) function

θ1(σu|τ) = −i
∞∑

k=−∞

(−1)kp(2k+1)2/8q(k+1/2)u

= ip1/8q−u/2 (p; p)∞ θ(qu; p).

Properties θ1(x+1) = −θ1(x), θ1(x+τ) = −e−πiτ−2πixθ1(x) and θ1(−x) = −θ1(x) simplify
to θ(pz; p) = θ(z−1; p) = −z−1θ(z; p).

For r+1Er series we have

cn+1

cn

= y
r∏

j=0

θ(tjq
n; p)

θ(wjqn; p)
= h(nω1),

an elliptic function of n ∈ C with periods ω2/ω1, ω3/ω1 for

q = e2πiω1/ω2 , p = e2πiω3/ω2 .

The integer r + 1 is called the order of h(x) and it counts the number of zeros or poles
of h(x) inside the fundamental parallelogram of periods. Due to the balancing condition,
we have an interesting (and useful) property

r+1Er

(
t0, t1, . . . , tr
w1, . . . , wr

; q, p; y

)
= r+1Er

(
t−1
0 , t−1

1 , . . . , t−1
r

w−1
1 , . . . , w−1

r

; q−1, p; y

)
.
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In the table below we describe known special functions with properties generalizing in
a natural way the 2F1 hypergeometric function features. It is rather sketchy and does
not pretend on completeness. The 2F1 series is the classical special function investigated
by such giants as Euler, Gauss, Jacobi, Riemann and many other mathematicians. Its
q-analogue has been proposed by Heine as far back as 1850. However, until the relatively
recent time (landmarked by the appearance of quantum algebras from exactly solvable
models of statistical mechanics) q-special functions did not attract much attention.

Chebyshev put forward general theory of orthogonal polynomials which played a major
role in the search of classical special functions. Jacobi polynomials satisfy a three term
recurrence relation and the hypergeometric equation. The general discrete set of 3F2

polynomials was constructed by Chebyshev (I am indebted to R. Askey and A. Zhedanov
for pointing this fact to me). Their continuous analogues and the 3φ2 series generalizations,
known as Hahn polynomials, were proposed much later. These polynomials satisfy a
second order difference equation (instead of the differential equation) in their argument
lying on some non-trivial “grids”. The next level of generalization is given by the Racah
and Wilson polynomials described by special 4F3 series. In 1985, Askey and Wilson have
found [AW] the most general set of orthogonal polynomials with the self-duality property.
They are expressed in terms of a special 4ϕ3 series and their argument “lives” on the most
general admissible grid for polynomials.

CLASSICAL SPECIAL FUNCTIONS OF HYPERGEOMETRIC TYPE

2F1




Euler
Gauss

Jacobi
Riemann


 −−−→ 2ϕ1

(
Heine

1850

)

y
y

3F2

(
Chebyshev
1875
Hahn

)
−−−→ 3ϕ2

(
Hahn
1949

)

y
y

4F3




Racah

1942
Wilson
1978


 −−−→ 4ϕ3

(
Askey,

Wilson
1985

)

y self-dual orthogonal
y polynomials

7F6

(
Dougall
1907

)
−−−→ 8ϕ7

(
Jackson
1921

)
−−−→ 10E9

(
Frenkel,
Turaev

1997

)

ysummation formulas
y

y

9F8




Wilson
1978
Rahman
1986


 −−−→ 10ϕ9




Rahman
1986
Wilson
1991


 −−−→ 12E11




[SZ1]
2000

[Spi4]
2003




self-dual biorthogonal rational functions
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The next level of complexification of functions indicated in the table refers to the
most general known summation formulas for terminating series of hypergeometric type.
Sequentially, these are the Dougall’s 7F6 and Jackson’s 8ϕ7 sums going back to the first
quarter of the last century, and the recent result by Frenkel and Turaev [FT] at the level
of 10E9 series to be described below.

Finally, until very recent time the most general set of known special functions satisfy-
ing some orthogonality relations and obeying other “classical” properties were given by
biorthogonal rational functions related to the very well poised 9F8 and 10ϕ9 series. The
discrete measure functions were discovered by Wilson [Wil] and their continuous mea-
sure generalizations were derived by Rahman [Rah]. An elliptic extension of the Wilson’s
biorthogonal functions with the key self duality property was constructed by Zhedanov
and the author [SZ1]. The Rahman’s family of rational functions was lifted to the elliptic
level by the author [Spi4]. These functions “live” on the grids described by the second
order elliptic functions—the most general type of grids for rational functions admitting
a lowering divided difference operator [SZ3]. Moreover, in the elliptic case there ap-
peared even more complicated objects existing only at this level [Spi4], which go beyond
the space of rational functions of some argument and which satisfy unusual two index
biorthogonality relations.

There exist also non-self-dual three parameter extension of the last row functions de-
scribed by the very well poised 9F8, 10ϕ9, and 12E11 series [SZ1], but many of their
properties remain unknown.

In the following we restrict ourselves only to the elliptic hypergeometric functions and
for further details concerning plain and q-hypergeometric objects we refer to the textbooks
[AAR] and [GR], handbook [KS] and the original papers [AW, Rah, Wil]. For a description
of general formal unilateral sEr and bilateral sGr theta hypergeometric series, see [GR,
Spi2, Spi7].

Elliptic hypergeometric integrals are described with the help of the bases q, p and

q̃ = e−2πiω2/ω1 , p̃ = e−2πiω2/ω3 , r = e2πiω3/ω1 , r̃ = e−2πiω1/ω3 ,

where q̃, p̃, r̃ are modular transforms of q, p, and r.

Theorem 1. (An elliptic analogue of the Meijer function [Spi4])
For incommensurate ωi and |p|, |q|, |r| < 1 general solution of the equations

∆(u + ωi) = hi(u)∆(u), i = 1, 2, 3,

where

ell. fun-s periods bases moduli

h1(u) ω2, ω3 p τ1 = ω3/ω2

h2(u) ω1, ω3 r τ2 = ω3/ω1

h3(u) ω1, ω2 q τ3 = ω1/ω2

τ1 = τ2τ3,

is:

∆(u) =
m∏

j=0

Γ(tje
2πiu/ω2 ; p, q)

Γ(wje2πiu/ω2 ; p, q)

m′∏

j=0

Γ(t′je
−2πiu/ω1 ; r, q̃)

Γ(w′
je

−2πiu/ω1 ; r, q̃)
eγu × constant,
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where
m∏

j=0

tj =
m∏

j=0

wj,
m′∏

j=0

t′j =
m′∏

j=0

w′
j,

and

Γ(z; p, q) =
∞∏

j,k=0

1 − z−1pj+1qk+1

1 − zpjqk
, |q|, |p| < 1,

is the standard elliptic gamma function [Rui2].

The function Γ(z; p, q) satisfies equations

Γ(z; p, q) = Γ(z; q, p), Γ(pq/z; p, q) = 1/Γ(z; p, q),

Γ(qz; p, q) = θ(z; p)Γ(z; p, q),

Γ(pz; p, q) = θ(z; q)Γ(z; p, q).

If we denote f(u) = Γ(e2πiu/ω2 ; p, q), then this function solves uniquely (up to a multi-
plicative factor independent on u) the following system of three linear first order finite
difference equations 




f(u + ω1) = θ(e2πiu/ω2 ; p)f(u),

f(u + ω2) = f(u),
f(u + ω3) = θ(e2πiu/ω2 ; q)f(u).

There are two choices of parameters with additional nice properties:

1) γ = 0 and no t′k, w
′
k (the “standard” case |p|, |q| < 1);

2) γ = 0 and m′ = m, t′j = rtj, w′
j = rwj (the “unit circle” case).

In the second case, gamma function factors combine into the modified elliptic gamma
function introduced in [Spi4]:

G(u; ω1, ω2, ω3) = Γ(e2πiu/ω2 ; p, q)Γ(re−2πiu/ω1 ; r, q̃).

This function solves uniquely another system of three equations:



f(u + ω1) = θ(e2πiu/ω2 ; p)f(u),

f(u + ω2) = θ(e2πiu/ω1 ; r)f(u),
f(u + ω3) = e−πiB2,2(u)f(u),

where

B2,2(u) =
u2

ω1ω2

− u

ω1

− u

ω2

+
ω1

6ω2

+
ω2

6ω1

+
1

2
.

These equations allow us to prove the representation [DS4]

G(u; ω) = e−πiP (u)Γ(e
−2πi u

ω3 ; r̃, p̃),

P

(
u +

3∑

n=1

ωn

2

)
=

u(u2 − 1
4

∑3
k=1 ω2

k)

3ω1ω2ω3

related to modular transformations for the standard elliptic gamma function [FV]. From
this representation it is easy to see that G(u; ω) is well defined for |p|, |r| < 1 and |q| ≤ 1
(i.e., the |q| = 1 case is permitted in sharp difference from the Γ(z; p, q) function!).
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Permutations r̃ ↔ p̃ and ω1 ↔ ω2 are equivalent. Therefore, we have

G(u; ω1, ω2, ω3) = G(u; ω2, ω1, ω3).

Due to the property P (
∑3

k=1 ωk − u) = −P (u), we have the reflection equation

G(a; ω)G(b; ω) = 1, a + b =
3∑

k=1

ωk.

In the limit ω3 → ∞, taken in such a way that simultaneously p, r → 0, the modified
elliptic gamma function is reduced to the “unit circle” q-gamma function

lim
p,r→0

1

G(u; ω)
= S(u; ω1, ω2) =

(e2πiu/ω2 ; q)∞
(e2πiu/ω1 q̃; q̃)∞

,

which remains well defined in the limit |q| → 1. This function appeared in the mod-
ern time mathematics in the work of Shintani [Shi] as a ratio of Barnes’ double gamma
functions [Bar]; in the works of Faddeev and coauthors [Fad, FKV] on the modular dou-
ble of quantum groups and quantum Liouville theory; in the work of Jimbo and Miwa
[JM] on solutions of a q-difference equation and related correlation functions in statistical
mechanics; in eigenfunctions of the q-Toda chain Hamiltonian [KLS]. In several inde-
pendent studies it was named as the double sign function [Kur], or hyperbolic gamma
function [Rui2, Rui3], or non-compact quantum dilogarithm [FKV]. For the operator
algebra aspects of this nice function, see [Vol].

3. Elliptic functions versus balanced, well poised and very well poised
hypergeometric functions

Some convenient terminology.
Theta functions: holomorphic functions f(x) such that

f(x + ω2) = eax+bf(x), f(x + ω3) = ecx+df(x),

for some a, b, c, d ∈ C. They have a finite number of zeros in the parallelogram of periods
ω2, ω3, Im(ω2/ω3) 6= 0. It is not difficult to deduce that

f(x) = eP2(x)

r∏

j=0

θ1(x + uj), uj ∈ C,

for some polynomial of the second order P2(x).
Meromorphic theta functions: ratios of theta functions with different parameters r, uj and
P2(x).
Elliptic functions: balanced meromorphic theta functions

f(x) =
r∏

j=0

θ1(x + uj)

θ1(x + vj)
=

r∏

j=0

θ(tjz; p)

θ(wjz; p)
,

where p = e2πiτ , z = e2πix, tj = e2πiuj , wj = e2πivj with the balancing constraint∏r
j=0 tj =

∏r
j=0 wj, or

∑r
j=0 uj =

∑r
j=0 vj (mod 1) guaranteeing that f(x + 1) = f(x)
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and f(x + τ) = f(x). We can multiply these functions by arbitrary independent variable
y which is omitted for brevity.
Modular invariant elliptic functions: elliptic functions invariant under the action of full
PSL(2; Z) group generated by the relations

f(x; τ + 1) = f(x; τ), f(x/τ ;−1/τ) = f(x; τ).

Due to the symmetry properties

θ1(u|τ + 1) = eπi/4θ1(u|τ),

θ1

(u

τ

∣∣∣ − 1

τ

)
= −i(−iτ)1/2eπiu2/τθ1(u|τ),

elliptic functions are modular if
∑r

j=0 u2
j =

∑r
j=0 v2

j (mod 2τ). A useful form of the second

transformation is
θ(e

−2πi u
ω3 ; e

−2πi
ω2
ω3 )

θ(e
2πi u

ω2 ; e
2πi

ω3
ω2 )

= ie
πi

ω2+ω3
6ω2ω3 e

πi
u2−u(ω2+ω3)

ω2ω3 ,

which indicates that the true modular transformation corresponds to the change (ω2, ω3) →
(−ω3, ω2).
Totally elliptic functions: elliptic f(x) which are elliptic also in uj, vj with the same

periods. These are elliptic functions with the constraints vj = −uj(mod 1) or wj = t−1
j

known in the theory of q-hypergeometric series as the well poisedness conditions. The
balancing condition for such well poised elliptic functions

∏r
j=0 tj =

∏r
j=0 t−1

j is reduced to
∏r

j=0 tj = ±1, i.e. we have a sign ambiguity! Totally elliptic functions are invariant under

the shifts tj → ptj (j = 0, 1, . . . , r − 1) and z → pz. Moreover, they are automatically
modular invariant and satisfy the relation f(−x) = 1/f(x) (this relation reduces y, the
arbitrary multiplier of f(x), to y = ±1).

We scale now z → t0z and replace parameters tjt0 by tj (in particular, we change
t20 → t0). As a result, we obtain

f(z, t) =
r∏

j=0

θ(tjz; p)

θ(t−1
j z; p)

→
r∏

j=0

θ(tjz; p)

θ(t0t
−1
j z; p)

≡ h(z, t).

The balancing condition takes now the form
∏r

j=1 tj = ±t
(r−1)/2
0 . Let us take r = 2k +

1 odd and resolve the sign ambiguity in favor of the relation
∏2k+1

j=1 tj = +tk0. Only

for this case there are non-trivial summation and transformation formulas for series of
hypergeometric type. In this case h(z, t) is invariant under the shift t0 → pt0 (accompanied
by the compensating transformation t2k+1 → pkt2k+1), i.e. it is an elliptic function of log t0
with the same periods as for the log z variable. Equivalently, we have

f(p1/2z, p1/2t0, . . . , p
1/2tr−1, p

−r/2tr) = f(z, t0, . . . , tr),

i.e. there appears interesting symmetry playing with the half period shifts. We conclude
that the total ellipticity requirement (in appropriate parametrization) fixes the correct
form of the balancing condition in the most interesting case of odd r.
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Another important structural constraint leading to interesting elliptic functions is called
the very well poisedness condition. It consists in imposing on the well poised elliptic
functions of the restrictions

tr−3 = q
√

t0, tr−2 = −q
√

t0, tr−1 = q
√

t0/p, tr = −q
√

pt0

related to the doubling of the θ1(x) function argument.
We call elliptic hypergeometric series and integrals modular, well poised, or very well

poised, if the ratios of their kernels cn+1/cn and ∆(u+ω1)/∆(u) are modular, well poised,
or very well poised elliptic functions. It is convenient to introduce special notation for the
very well poised elliptic hypergeometric series [Spi3]:

r+1Er

(
t0, t1, . . . , tr−4, q

√
t0,−q

√
t0, q

√
t0/p,−q

√
pt0

qt0/t1, . . . , qt0/tr−4,
√

t0,−
√

t0,
√

pt0,−
√

t0/p
; q, p;−y

)

=
∞∑

n=0

θ(t0q
2n; p)

θ(t0; p)

r−4∏

m=0

(tm)n

(qt0t−1
m )n

(qy)n ≡ r+1Vr(t0; t1, . . . , tr−4; q, p; y),

where
∏r−4

k=1 tk = ±t
(r−5)/2
0 q(r−7)/2 (for odd r we assume the positive sign, due to the

property described above). All known applications of these series use a special value
of the argument y, y = 1. Therefore, we shall drop y in the notation of r+1Vr series
for this special case. For p → 0, these series reduce to the very well poised r−1ϕr−2

series denoted by the symbol r−1Wr−2 in the monograph [GR]. Remarkably, the elliptic
balancing condition coincides in this case with the usual balancing condition accepted for
these particular basic hypergeometric series [GR, Spi2].

Various forms of the ellipticity requirement provide thus an explanation of the origin of
the notions of balancing and very well poisedness for series of hypergeometric type [Spi2].
It is the clarification of these points that forced the author to change previous notation
for elliptic hypergeometric series [Spi2, Spi3]. In particular, in this system of conventions
accepted in [GR, Ros3, Spi4], etc the symbol r+1Er used in the papers [DS1, KMNOY, SZ1]
should read as r+3Er+2 or r+3Vr+2.

If we take r = 9, t4 = q−N(N ∈ N),
∏5

m=1 tm = qt20, y = 1, then

10V9(t0; t1, . . . , t5; q, p) =
(qt0)N( qt0

t1t2
)N( qt0

t1t3
)N( qt0

t2t3
)N

( qt0
t1t2t3

)N( qt0
t1

)N( qt0
t2

)N( qt0
t3

)N

.

This is the Frenkel-Turaev summation formula [FT] (for its elementary proofs, see, e.g.,
[Ros3, SZ2]), which is reduced in the limit p → 0 to the Jackson sum for terminating very
well poised balanced 8ϕ7 series.

4. The univariate elliptic beta integral

The elliptic beta integral is the simplest very well poised elliptic hypergeometric integral.

Theorem 2. (The standard elliptic beta integral [Spi1])
Let t1, . . . , t6 ∈ C, |tj| < 1,

∏6
j=1 tj = pq, and |p|, |q| < 1. Then
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κ

∫

T

∏6
k=1 Γ(tkz; p, q)Γ(tkz

−1; p, q)

Γ(z2; p, q)Γ(z−2; p, q)

dz

z
=

∏

1≤j<k≤6

Γ(tjtk; p, q),

where T is the positively oriented unit circle |z| = 1 and

κ =
(q; q)∞(p; p)∞

4πi
.

The first proof of this integration formula used an elliptic generalization of the Askey’s
method [Ask] which required some contiguous relations for the left-hand side expression
and Bailey’s 2ψ2 summation formula. A very simple proof has been found later on in
[Spi6].

The elliptic beta integral is the most general univariate beta type integral found so
far. It serves as a measure in the biorthogonality relations for a particular system of
functions to be described below. After taking the limit p → 0, our integral is reduced to
the Rahman’s q-beta integral [Rah]

(q; q)∞
4πi

∫

T

(z2; q)∞(z−2; q)∞(Az; q)∞(Az−1; q)∞∏5
m=1(tmz; q)∞(tmz−1; q)∞

dz

z

=

∏5
m=1(At−1

m ; q)∞∏
1≤j<k≤5(tjtk; q)∞

,

where A =
∏5

m=1 tm, |tm| < 1. This integral determines the measure for Rahman’s family
of continuous biorthogonal rational functions [Rah].

If we take now the limit t5 → 0, then we obtain the celebrated Askey-Wilson integral

(q; q)∞
4πi

∫

T

(z2; q)∞(z−2; q)∞∏4
m=1(tmz; q)∞(tmz−1; q)∞

dz

z
=

(t1t2t3t4; q)∞∏
1≤j<k≤4(tjtk; q)∞

,

determining the measure in orthogonality relations for the most general set of classical
orthogonal polynomials [AW].

Careful analysis of the structure of residues of the integrand’s poles allows one to deduce
the Frenkel-Turaev summation formula out of the elliptic beta integral [DS1]. We suppose
that |tm| < 1, m = 1, . . . , 4, |pt5| < 1 < |t5|, |pq| < |A|, A =

∏5
s=1 ts, and assume also that

the arguments of all ts, s = 1, . . . , 5, and p, q are linearly independent over Z. We denote
C a contour separating sequences of integrand’s poles at z = tsq

jpk and A−1qj+1pk+1, from
their reciprocals at z = t−1

s q−jp−k, Aq−j−1p−k−1, j, k ∈ N. Then we obtain the following
residue formula:

κ

∫

C

∆E(z, t)
dz

z
= κ

∫

T
∆E(z, t)

dz

z
+ c0(t)

∑

n≥0

|t0qn|>1

νn(t),

with

∆E(z, t) =

∏5
m=1 Γ(tmz±; p, q)

Γ(z±2; p, q)Γ(Az±; p, q)
,
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Γ(az±; p, q) ≡ Γ(az; p, q)Γ(az−1; p, q), and

c0(t) =

∏4
m=1 Γ(tmt±5 ; p, q)

Γ(t−2
5 ; p, q)Γ(At±5 ; p, q)

,

νn(t) = qn θ(t25q
2n; p)

θ(t25; p)

5∏

m=0

(tmt5)n

(qt−1
m t5)n

,

where we have introduced a new parameter t0 via the relation
∏5

m=0 tm = q. In the limit
t5t4 → q−N , N ∈ N, values of the integral on the left-hand side of this formula and of the
factor c0(t) in front of the residues sum on the right-hand side blow up, but the integral
over the unit circle T remains finite. Dividing all the terms by c0(t) and taking the limit,
we obtain the summation formula presented in the end of the previous section.

Using the modified elliptic gamma function it is not difficult to deduce out of the
standard elliptic beta integral its “unit circle” analogue remaining well defined for |q| = 1.

Theorem 3. (The modified elliptic beta integral [DS4])
We suppose that Im(ω1/ω2) ≥ 0 and Im(ω3/ω1) > 0, Im(ω3/ω2) > 0 and gj ∈ C,

j = 1, . . . , 6, Im(gj/ω3) < 0, together with the constraint
∑6

j=1 gj =
∑3

k=1 ωk. Then

κ̃

∫ ω3/2

−ω3/2

∏6
j=1 G(gj ± u; ω)

G(±2u; ω)

du

ω2

=
∏

1≤j<m≤6

G(gj + gm; ω),

where

κ̃ = −(q; q)∞(p; p)∞(r; r)∞
2(q̃; q̃)∞

.

Here the integration is taken along the cut with the end points −ω3/2 and ω3/2. We use
also the convention that G(a ± b; ω) ≡ G(a + b; ω)G(a − b; ω).

If we take Im(ω3) → ∞ in such a way that p, r → 0, then this integral reduces to
a Mellin-Barnes type q-beta integral. More precisely, for ω1,2 such that Im(ω1/ω2) ≥ 0

and Re(ω1/ω2) > 0, we substitute g6 =
∑3

k=1 ωk −A, where A =
∑5

j=1 gj and apply the

inversion formula for G(u; ω). Then we set ω3 = itω2, t → +∞, and obtain formally

∫

L

S(±2u,A± u; ω)∏5
j=1 S(gj ± u; ω)

du

ω2

= −2
(q̃; q̃)∞
(q; q)∞

∏5
j=1 S(A− gj; ω)∏

1≤j<m≤5 S(gj + gm; ω)
,

where the integration is taken along the line L ≡ iω2R. Here parameters are subject to
the constraints Re(gj/ω2) > 0 and Re((A − ω1)/ω2) < 1. This integral was rigorously
proven first in [Sto] and a quite simple proof was given in [Spi6] in a more general setting.

5. An elliptic analogue of the 2F1 function

We consider the double integral

κ

∫

C2

∏3
j=1 Γ(ajz

±, bjw
±) Γ(cz±w±)

Γ(z±2, w±2, c2Az±, c2Bw±)

dz

z

dw

w
,
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where aj, bj, c ∈ C, A = a1a2a3, B = b1b2b3, and C is a contour separating converging to
zero sequences of poles in z and w from the diverging ones, and

Γ(t1, . . . , tk) ≡ Γ(t1; p, q) · · ·Γ(tk; p, q).

Applying the elliptic beta integral formula to integrations with respect to z or w (permu-
tation of integrations is allowed since the integrand is bounded), we obtain a symmetry
transformation for a pair of elliptic hypergeometric integrals [Spi4]

3∏

j=1

Γ(A/aj)

Γ(c2A/aj)

∫

C

∏3
j=1 Γ(cajz

±, bjw
±)

Γ(z±2, cAz±, c2Bw±)

dz

z

=
3∏

j=1

Γ(B/bj)

Γ(c2B/bj)

∫

C

∏3
j=1 Γ(ajz

±, cbjw
±)

Γ(z±2, c2Az±, cBw±)

dz

z
.

This is an elliptic analogue of the four term Bailey transformation for non-terminating 10ϕ9

series. It cannot be written yet as some relation for infinite 12V11 elliptic hypergeometric
series due to the severe problems with their convergence at the boundary values of the
argument |y| = 1.

We denote t1,2,3 = ca1,2,3, t4 = pq/cA, t5,6,7 = b1,2,3, t8 = pq/c2B and introduce the
elliptic hypergeometric function—an elliptic analogue of the Gauss hypergeometric func-
tion

V (t; p, q) = κ

∫

C

∏8
j=1 Γ(tjz

±)

Γ(z±2)

dz

z
,

8∏

j=1

tj = p2q2.

Due to the reflection equation for Γ(z; p, q) function, we have

V (t; p, q)
∣∣∣
t7t8=pq

=
∏

1≤j<k≤6

Γ(tjtk; p, q),

which is the elliptic beta integration formula (evidently, in this relation t7 and t8 can be
replaced by any other pair of parameters).

In the notation V (t) = V (t; p, q), the transformation derived above reads

(i) V (t) =
∏

1≤j<k≤4

Γ(tjtk, tj+4tk+4) V (s),

where {
sj = ε−1tj (j = 1, 2, 3, 4)
sj = εtj (j = 5, 6, 7, 8)

ε =

√
t1t2t3t4

pq
=

√
pq

t5t6t7t8
.

We repeat this transformation with s3, s4, s5, s6 playing the role of t1, t2, t3, t4 and per-
mute parameters t3, t4 with t5, t6 in the result. This yields

(ii) V (t) =
4∏

j,k=1

Γ(tjtk+4) V (T
1
2/t1, . . . , T

1
2/t4, U

1
2/t5, . . . , U

1
2/t8),

where T = t1t2t3t4 and U = t5t6t7t8.
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We equate now the right-hand sides of relations (i) and (ii), express tj parameters in
terms of sj and obtain

(iii) V (s) =
∏

1≤j<k≤8

Γ(sjsk) V (
√

pq/s),

where
√

pq/s = (
√

pq/s1, . . . ,
√

pq/s8).
Transformations (ii) and (iii) were proven by Rains [Rai1] in a straightforward man-

ner using evaluations of determinants of theta functions on a dense set of parameters.
However, as we just have seen [Spi7], they are mere repetitions of the key transformation
(i).

It is convenient to set temporarily tj = e2πixj(pq)1/4. We take vectors x ∈ R8 and denote

as x =
∑8

i=1 xiei their standard decomposition in the orthonormal basis ei, 〈ei, ej〉 =

δij. Then the balancing condition implies
∑8

i=1 xi = 0 which defines a hyperplane Y
orthogonal to the vector e1 + . . . + e8. Considering reflections x → x − 2〈v, x〉 v/〈v, v〉
with respect to the hyperplane normal to some vector v ∈ Y , it is not difficult to see that
the transformation of coordinates in (i) corresponds to the reflection with respect to the
vector v = (

∑8
i=5 ei −

∑4
i=1 ei)/2, which has the canonical normalization of the length

〈v, v〉 = 2.
The elliptic hypergeometric function V (t) appeared for the first time in our paper [Spi4]

together with the transformation (i). However, it was not recognized there that (i) and
permutations of parameters ti ↔ tj generate the exceptional E7 Weyl group of symmetries:

the function V (t)/
∏

1≤k<l≤8

√
Γ(tktl) is simply invariant under these transformations.

This fact was understood at the level of series in [KMNOY] (where, actually, only the E6

group is valid since one of the parameters is fixed to terminate the series) and for general
function V (t) in [Rai1].

For elliptic hypergeometric functions it is convenient to keep two systems of notation—
the “multiplicative” system, described above, and the “additive” one [GR, Spi2, Spi3].
Therefore we define the function

v(g; ω1, ω2, ω3) ≡ V (e2πig1/ω2 , . . . , e2πig8/ω2 ; e2πiω1/ω2 , e2πiω3/ω2),

where
∑8

j=1 gk = 2
∑3

k=1 ωk. It will be useful for a description of elliptic hypergeometric
equation solutions.

6. Contiguous relations and the elliptic hypergeometric equation

The fundamental addition formula for elliptic theta functions can be written in the
following form

θ
(
xw,

x

w
, yz,

y

z
; p

)
− θ

(
xz,

x

z
, yw,

y

w
; p

)
=

y

w
θ

(
xy,

x

y
, wz,

w

z
; p

)
,
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where w, x, y, z are arbitrary complex variables. If we denote y = t1, w = t2, and x = q−1t8,
then this identity for theta functions is equivalent to the following q-difference equation

∆(z, t1, . . . , t5, qt6, t7, q
−1t8) −

θ(t6t
±
7 ; p)

θ(q−1t8t
±
7 ; p)

∆(z, t)

=
t6
t7

θ(q−1t8t
±
6 ; p)

θ(q−1t8t
±
7 ; p)

∆(z, t1, . . . , t6, qt7, q
−1t8),

where ∆(z, t) =
∏8

k=1 Γ(tkz
±)/Γ(z±2) is the V -function integrand. Integrating now this

equality over z along the contour C, we derive the first contiguous relation

t7θ (t8t7/q, t8/qt7; p) V (qt6, q
−1t8) − (t6 ↔ t7)

= t7θ (t6t7, t6/t7; p) V (t),

which was used in the first proof of the elliptic beta integral [Spi1]. Here V (qt6, q
−1t8)

denotes V (t) with the parameters t6 and t8 replaced by qt6 and q−1t8 respectively and
(t6 ↔ t7) means permutation of the parameters in the preceding expression.

In the same way as in the case of series [SZ2], we can substitute symmetry transfor-
mation (iii) of the previous section into this equation and obtain the second contiguous
relation

t6θ(t7/qt8; p)
5∏

k=1

θ(t6tk/q; p)V (q−1t6, qt8) − (t6 ↔ t7)

= t6θ(t7/t6; p)
5∏

k=1

θ(t8/tk; p)V (t).

An appropriate combination of these two equations yields

b(t)
(
U(qt6, q

−1t7) − U(t)
)

+ (t6 ↔ t7) + U(t) = 0,

where

U(t) =
V (t)∏7

k=1 Γ(tkt8, tk/t8)

and the potential

b(t) =
θ(t6/qt8, t6t8, t8/t6; p)

θ(t6/t7, t7/qt6, t6t7/q; p)

5∏

k=1

θ(t7tk/q; p)

θ(t8tk; p)

=
θ(qt0/t6, t0t6, t0/t6; p)

θ(t6/t7, qt6/t7, q/t6t7; p)

5∏

k=1

θ(q/t7tk; p)

θ(t0tk; p)

(the second expression is obtained after setting t8 = p2t0) is a modular invariant elliptic
function of variables g1, . . . , g7 (tj = e2πigj/ω2).

If we substitute t6 = az, t7 = a/z and replace U(t) by some unknown function f(z), then
we obtain a q-difference equation of the second order called the elliptic hypergeometric
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equation:

θ(az/qt8, at8z, t8/az; p)

θ(z2, 1/qz2; p)

5∏

k=1

θ(atk/qz; p) (f(qz) − f(z))

+
θ(a/qt8z, at8/z, t8z/a; p)

θ(1/z2, z2/q; p)

5∏

k=1

θ(atkz/q; p)
(
f(q−1z) − f(z)

)

+ θ(a2/q; p)
5∏

k=1

θ(tkt8; p) f(z) = 0,

where t8 = p2q2/a2
∏5

k=1 tk. We have found already one functional solution of this equa-
tion U(t) in the restricted region of parameters. The second independent solution can
be obtained after scaling any of the parameters a, t1, . . . , t5 or z by p. We can replace
also the standard elliptic gamma functions in the definition of U(t) by the modified el-
liptic gamma functions and get new solutions of the elliptic hypergeometric equation.
Indeed, we can rewrite the elliptic hypergeometric equation in the “additive” notation
tj = e2πigj/ω2 . Then the function

vmod(g; ω) =

∫ ω3/2

−ω3/2

∏8
j=1 G(gj ± x; ω)

G(±2x; ω)

dx

ω2

,

where
∑8

j=1 gj = 2
∑3

k=1 ωk, defines its solution, which is linearly independent from V (t),
provided we impose appropriate restrictions upon the parameters. Namely, we should line
up sequences of the integrand’s poles to the left or right of the line passing through the
points −ω3/2 and ω3/2. Evidently, E7 symmetry remains intact which follows from the
fact that in the derivation of relevant properties of the V (t) function we used only the
first (boxed) equation for the elliptic gamma function Γ(z; q, p) which coincides with one
of the equations for G(u; ω). Simple computations yield the relation

vmod(g; ω) =
2ω3e

2πi(P (0)−
P8

j=1 P (gj))

ω2(p̃; p̃)∞(r̃; r̃)∞
v(g; ω1,−ω3, ω2),

showing that this solution is proportional to the modular transformation of the function
v(g; ω1, ω2, ω3).

Now we shift g7,8 → g7,8 +
∑3

k=1 ωk and take the limit Im(ω3) → ∞ in such a way that
p, r → 0. Then our vmod-function is reduced to

s(g; ω1, ω2) =

∫

L

S(±2u,−g7 ± u,−g8 ± u; ω)∏6
j=1 S(gj ± u; ω)

du

ω2

,

where
∑8

j=1 gj = 0. This is a q-hypergeometric function which is well defined for |q| =
1 and which provides a functional solution of the p = 0 degeneration of the elliptic
hypergeometric equation.

It should be noticed that V (t) satisfies not one, but much more equations of the derived
type due to the permutational symmetry in all its parameters, including the equation
obtained after the permutation of q and p. Most probably there is only one function



Elliptic hypergeometric functions 269

satisfying all of them, since the linearly independent solutions break one of its symmetries,
E7 or p ↔ q.

At the level of q-hypergeometric functions, in the limit p → 0 we obtain the equation
investigated in detail by Gupta and Masson [GM]. They derived its functional solutions in
the form of special combinations of non-terminating 10ϕ9 series, the integral representation
for which has been found earlier by Rahman [Rah] and to which our representation for
V (t) is reduced in the limit p → 0.

In a similar way one can construct contiguous relations for elliptic 12V11 series with y =
1. Denoting E(t) ≡ 12V11(t0; t1, . . . , t7; q, p), where

∏7
m=1 tm = t30q

2 and tm = q−n, n ∈ N,
for some m, we have the first relation [SZ1, SZ2]

E(t) − E(q−1t6, qt7) =
θ(qt0, q

2t0, qt7/t6, t6t7/qt0; p)

θ(qt0/t6, q2t0/t6, t0/t7, t7/qt0; p)

×
5∏

r=1

θ(tr; p)

θ(qt0/tr; p)
E(q2t0; qt1, . . . , qt5, t6, qt7),

and the second one

θ(t7; p)
∏5

r=1 θ(trt6/qt0; p)

θ(t6/qt0, t6/q2t0, t6/t7; p)
E(q2t0; qt1, . . . , qt5, t6, qt7)

+
θ(t6; p)

∏5
r=1 θ(trt7/qt0; p)

θ(t7/qt0, t7/q2t0, t7/t6; p)
E(q2t0; qt1, . . . , qt6, t7)

=

∏5
r=1 θ(qt0/tr; p)

θ(qt0, q2t0; p)
E(t).

These relations can also be obtained after application of the residue calculus similar to
the one described above. For this it is necessary to take one of the parameters of V (t)
outside of the contour C and represent this elliptic hypergeometric function as a sum of
an integral over C and of the residues picked up during this procedure. An accurate limit
for one of the parameters converting the sum of residues into the terminating 12V11 series
brings in the needed contiguous relations, which take the described form after changing
notation.

An appropriate combination of these two relations yields

θ(t6, t0/t6, qt0/t6; p)

θ(qt6/t7, t6/t7; p)

5∏

r=1

θ(qt0/t7tr; p)
(
E(qt6, q

−1t7) − E(t)
)

+
θ(t7, t0/t7, qt0/t7; p)

θ(qt7/t6, t7/t6; p)

5∏

r=1

θ(qt0/t6tr; p)
(
E(q−1t6, qt7) − E(t)

)

+ θ(qt0/t6t7; p)
5∏

r=1

θ(tr; p) E(t) = 0,

which is another form of the elliptic hypergeometric equation.
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7. Applications in mathematical physics

The theory outlined above did not emerge from scratch. It appeared from long time
developments in mathematical physics related to classical and quantum completely inte-
grable systems. Below we list some of the known applications of elliptic hypergeometric
series and integrals.

(1) Elliptic solutions of the Yang-Baxter equation (elliptic 6j-symbols) sequentially de-
rived by Baxter [Bax], Andrews, Baxter and Forrester [ABF], Date, Jimbo, Kuniba,
Miwa, and Okado [DJKMO] appear to combine into terminating 12V11 series with
special discrete values of parameters, as it was shown by Frenkel and Turaev in their
profound paper [FT]. For a recent work in this direction including the algebraic
aspects of the elliptic 6j-symbols, see [Kon, Rai2, Ros3, Ros4]. Since solvable two-
dimensional statistical mechanics models are related to the conformal field theory
[BM, Zub], it is natural to expect that elliptic hypergeometric functions will emerge
there as well.

(2) In a joint work with Zhedanov [SZ1], the terminating 12V11 series with arbitrary
continuous parameters were discovered as solutions of the linear problem for some
classical integrable system. More precisely, these series emerged from self-similar
solutions of the discrete time chain associated with biorthogonal rational functions
which generalizes ordinary and relativistic discrete-time Toda chains.

(3) As shown by Kajiwara, Masuda, Noumi, Ohta, and Yamada [KMNOY], Sakai’s el-
liptic Painlevé equation [Sak] has a solution expressed in terms of the terminating

12V11 series. This observation follows from the reduction of corresponding nonlin-
ear second order finite difference equation to the elliptic hypergeometric equation.
Therefore, V (t) also provides its solution. Moreover, the function v(g; ω1,−ω3, ω2),
well defined in the |q| = 1 region, plays a similar role [Spi7] since it defines an in-
dependent solution of the elliptic hypergeometric equation with the E7 symmetry.
More complicated solutions of this equation expressed in terms of the multiple elliptic
hypergeometric integrals were presented by Rains at this workshop [Rai3].

(4) Elliptic hypergeometric functions provide particular solutions of the finite difference
(relativistic) analogues of the elliptic Calogero-Sutherland type models [Spi7]. This
application is outline below and in the last section.

The original investigations of completely integrable many particles systems on the line
(or circle) by Calogero, Sutherland and Moser were continued by Olshanetsky and Perelo-
mov [OP] who showed that such models are naturally associated with the root systems.
Relativistic (or finite-difference) generalizations of these models have been discovered by
Ruijsenaars [Rui1] who worked out the An root system case in detail. The corresponding
eigenvalue problem is also known to be related to the Macdonald polynomials [Mac]. In-
ozemtsev [Ino] has investigated the most general BCn root system extension of the Heun
equation absorbing previously derived differential operator models. In a further step,
van Diejen [Die] has unified Inozemtsev and Ruijsenaars models by coming up with even
more general integrable model, which was investigated in detail by Komori and Hikami
[KH]. A special degeneration of this model to the trigonometric level corresponds to the
Koornwinder polynomials [Koo].
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The Hamiltonian of the van Diejen model has the form

H =
n∑

j=1

(
Aj(z)Tj + Aj(z

−1)T−1
j

)
+ u(z),

where u(z) is some complicated explicit combination of theta functions, Tjf(. . . , zj, . . .) =
f(. . . , qzj, . . .), and

Aj(z) =

∏8
m=1 θ(tmzj; p)

θ(z2
j , qz

2
j ; p)

n∏

k=1
6=j

θ(tzjzk, tzjz
−1
k ; p)

θ(zjzk, zjz
−1
k ; p)

.

If we impose the constraint t2n−2
∏8

m=1 tm = p2q2, then the operator H can be rewritten
in the form

D =
n∑

j=1

(
Aj(z)(Tj − 1) + Aj(z

−1)(T−1
j − 1)

)

up to some additive constant independent on variables zj (for details, see [Die, KH, Rui4]).
The standard eigenvalue problem, Df(z) = λf(z), in the univariate case n = 1 looks

like ∏8
j=1 θ(tjz; p)

θ(z2, qz2; p)
(f(qz) − f(z))

+

∏8
j=1 θ(tjz

−1; p)

θ(z−2, qz−2; p)
(f(q−1z) − f(z)) = λf(z).

Comparing it with the elliptic hypergeometric equation in the form derived in [Spi4],
which will be described in the next section, we see that they coincide for a restricted
choice of parameters t6 = t5/q and a special eigenvalue for the Hamiltonian D, λ = −κµ

(a similar observation has been done by Komori).
However, connections between the elliptic hypergeometric functions and Calogero-

Sutherland type models are deeper than it is just indicated. Let us introduce the inner
product

〈ϕ, ψ〉 = κ

∫

C

∏8
m=1 Γ(tmz±)

Γ(z±2)
ϕ(z) ψ(z)

dz

z
,

where contour C separates sequences of the kernel’s poles converging to z = 0 from
those diverging to infinity. Additionally, we impose restrictions upon values of tj and
functions ϕ(z), ψ(z), such that we can scale the contour C by q and q−1 with respect
to the point z = 0 without crossing any poles. Under these conditions, the operator D
formally becomes hermitian with respect to the taken inner product: 〈ϕ,Dψ〉 = 〈Dϕ, ψ〉.
However, this property is not unique—the weight function in the inner product can be
multiplied by any elliptic function ρ(z), ρ(qz) = ρ(z), with an accompanying change of
the contour of integration.

In a trivial way, f(z) = 1 is an eigenfunction of D with the eigenvalue λ = 0 (actually, it
solves simultaneously two such equations—the second equation is obtained by permutation
of q and p). Evidently, the norm of this eigenfunction equals to the elliptic hypergeometric
function, ‖1‖2 = V (t). This relation holds for |p|, |q| < 1. If we change the integration
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variable in the taken inner product z = e2πiu/ω2 , then, instead of f(z) = 1, we could have
chosen as an λ = 0 eigenfunction of D (where the operator T is acting now as a shift,
Tv(u) = v(u + ω1)) any function h(u) with the property h(u + ω1) = h(u), but then the
normalization of this function would not be related to V (t) in a simple way. For a special
choice of this h(u), we can obtain ‖h‖2 = vmod(g; ω), the modified elliptic hypergeometric
function for which we can take |q| = 1. Equivalently, we could have changed the inner
product by replacing the standard elliptic gamma functions by their modified version and
considering the pair of equations Dv(u) = 0 and its ω1 ↔ ω2 permuted partner. Similar
picture holds in the multivariable case considered in the end of this paper.

Because of these relations between V (t) and the Calogero-Sutherland type models,
it is natural to expect that elliptic hypergeometric functions will play a major role in
the solution of the standard eigenvalue problem for the operator D. In particular, we
conjecture that the E7 group of symmetries of V (t) can be lifted to E8 at the level of
unconstrained Hamiltonian H and that there is some direct relation of this model with
the elliptic Painlevé equation (for this it would be desirable to understand an analogue of
the Painlevé-Calogero correspondence principle [LO, Man] at the level of finite difference
equations).

8. Biorthogonal functions

8.1. Difference equation and three term recurrence relation. For n = 0, 1, . . . ,
we define a sequence of functions [Spi4]

Rn(z; q, p) = 12V11

(
t3
t4

;
q

t0t4
,

q

t1t4
,

q

t2t4
, t3z,

t3
z

, q−n,
Aqn−1

t4
; q, p

)
,

where A =
∏4

m=0 tm. They solve the elliptic hypergeometric equation rewritten in the
form

Dµf(z) = 0, Dµ = Vµ(z)(T − 1) + Vµ(z−1)(T−1 − 1) + κµ,

where Tf(z) = f(qz) and

Vµ(z) = θ
(pqµz

t4
,
pq2z

Aµ
,
t4z

q
; p

)∏4
r=0 θ(trz; p)

θ(z2, qz2; p)
,

κµ = θ
(Aµ

qt4
, µ−1; p

) 3∏

r=0

θ(trt4; p),

provided we quantize one of the parameters µ = qn (“the spectrum”). Equivalently, this

equation can be rewritten as a generalized eigenvalue problem

Dηf(z) = λDξf(z)

with the spectral variable lying on the elliptic curve

λ =
θ(µAη

qt4
, µ

η
; p)

θ(µAξ
qt4

, µ
ξ
; p)

, ξ, η ∈ C, ξ 6= ηpn,
qt4
Aη

pn, n ∈ Z,
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where ξ and η are gauge parameters. Out of this representation one obtains formal
biorthogonality 〈Tn, Rm〉 = 0 for n 6= m, where 〈·, ·〉 is some inner product and Tn(z; q, p)
is a solution of a dual generalized eigenvalue problem.

From the elliptic hypergeometric equation one can derive also the three-term recurrence
relation

(γ(z) − αn+1)ρ(Aqn−1/t4)
(
Rn+1(z; q, p) − Rn(z; q, p)

)

+ (γ(z) − βn−1)ρ(q−n)
(
Rn−1(z; q, p) − Rn(z; q, p)

)

+ δ
(
γ(z) − γ(t3)

)
Rn(z; q, p) = 0,

with the initial conditions R−1 = 0, R0 = 1 and

ρ(x) =
θ(x, t3

t4x
, qt3

t4x
, qx

t0t1
, qx

t0t2
, qx

t1t2
, q2ηx

A
, q2x

Aη
; p)

θ( qt4x2

A
, q2t4x2

A
; p)

,

δ = θ

(
q2t3
A

,
q

t0t4
,

q

t1t4
,

q

t2t4
, t3η,

t3
η

; p

)
,

γ(z) =
θ(zξ, z/ξ; p)

θ(zη, z/η; p)
, αn = γ(qn/t4), βn = γ(qn−1A).

Since the whole z-dependence in this relation is concentrated in the γ(z) function, Rn(z; q, p)
are rational functions of γ(z) with poles at γ(z) = α1, . . . , αn.

From the general theory of biorthogonal rational functions [Zhe1] it follows that Rn(z; q, p)
can be orthogonal to a rational function Tn(z; q, p) with poles at γ(z) = β1, . . . , βn. The
involution t4 → pq/A permutes αn and βn, therefore the dual functions are obtained after
an application of this transformation to Rn(z; q, p):

Tn(z; q, p) = 12V11

(
At3
q

;
A

t0
,
A

t1
,
A

t2
, t3z,

t3
z

, q−n,
Aqn−1

t4
; q, p

)
,

where the p-dependence in parameters drops out due to the total ellipticity property (in
particular, we have Rn(pz; q, p) = Rn(z; q, p)).

8.2. Two-index biorthogonality. Let us denote the operator Dµ introduced above as
Dq,p

µ . Then the product Rnm(z) ≡ Rn(z; q, p)·Rm(z; p, q) solves two generalized eigenvalue
problems

Dq,p
µ f(z) = 0, Dp,q

µ f(z) = 0

with the spectrum µ = qnpm. Similar property is valid for the dual product Tnm(z) ≡
Tn(z; q, p) · Tm(z; p, q) for a different choice of parameters in Dq,p

µ .

Theorem 4. (Two-index biorthogonality [Spi4])
If we denote

∆(z, t) =
(q; q)∞(p; p)∞

4πi

∏4
m=0 Γ(tmz, tmz−1)

Γ(z2, z−2, Az, Az−1)
,

N (t) =

∏
0≤m<k≤4 Γ(tmtk)∏4

m=0 Γ(At−1
m )

,
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where |q|, |p| < 1, |tm| < 1, |pq| < |A|, then
∫

Cmn,kl

Tnl(z)Rmk(z)∆(z, t)
dz

z
= hnl N (t) δmn δkl,

where Cmn,kl is a contour separating points

tjp
aqb (j = 0, 1, 2, 3), t4p

a−kqb−m, pa+1−lqb+1−n/A, a, b ∈ N,

from their z → z−1 reciprocals and normalization constants

hnl = hn(q, p) · hm(p, q),

hn(q, p) =
θ(A/qt4; p)(q, qt3/t4, t0t1, t0t2, t1t2, At3)n q−n

θ(Aq2n/t4q; p)(1/t3t4, t0t3, t1t3, t2t3, A/qt3, A/qt4)n

.

Only for k = l = 0 there exists the p → 0 limit and functions Rn(z; q, 0) and Tn(z; q, 0)
coincide with the Rahman’s family of continuous 10ϕ9 biorthogonal rational functions
[Rah]. Note also that only for k = l = 0 or n = m = 0 we have rational functions of some
argument depending on z; the general functions Rnm(z) and Tnm(z) should be considered
as some meromorphic functions of z with essential singularities at z = 0 and z = ∞.

For some quantized values of z and one of the parameters tj the functions Rn(z; q, p)
and Tn(z; q, p) are reduced to the finite dimensional set of biorthogonal rational functions
constructed by Zhedanov and the author in [SZ1]. They generalize to the elliptic level
Wilson’s family of discrete very well poised 10ϕ9 biorthogonal functions [Wil]. As described
by Zhedanov at this workshop [Zhe2], these functions have found nice applications within
the general Padé interpolation scheme.

Functional solutions of the elliptic hypergeometric equation open the road to construc-
tion of the associated biorthogonal functions following the procedure described in [IR] and
this is one of the interesting open problems for the future. A terminating continued frac-
tion generated by the three term recurrence relation described above has been calculated
in [SZ2]. It is expressed in terms of a terminating 12V11 series and, again, the function
V (t) is expected to appear in the description of non-terminating convergent continued
fractions generalizing q-hypergeometric examples of [GM].

8.3. The unit circle case. In order to describe biorthogonal functions for which the
measure is defined by the modified elliptic beta integral, we parametrize tj = e2πigj/ω2 and
introduce new notation for the functions Rn(z; q, p):

rn(u; ω1, ω2, ω3) = 12V11

(
e2πi(g3−g4)/ω2 ; e2πi(ω1−g0−g4)/ω2 ,

e2πi(ω1−g1−g4)/ω2 , e2πi(ω1−g2−g4)/ω2 , e2πi(A+(n−1)ω1−g4)/ω2 ,

e−2πinω1/ω2 , e2πi(g3+u)/ω2 , e2πi(g3−u)/ω2 ; e2πiω1/ω2 , e2πiω3/ω2

)
,

where A =
∑4

j=0 gj. Similarly, we redenote the functions Tn(z; q, p) as sn(u; ω1, ω2, ω3).

The q ↔ p symmetric situation (the standard set of biorthogonal functions with
|p|, |q| < 1) is defined as the ω1 ↔ ω3 symmetric product of these functions:

Rnm(e2πiu/ω2) = rn(u; ω1, ω2, ω3) · rm(u; ω3, ω2, ω1),
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with a similar relation for Tnm(e2πiu/ω2). As described above, we have the biorthogonality
relations 〈Tnl, Rmk〉 = hnlδmnδkl, where 〈1, 1〉 = 1 coincides with the normalized standard
elliptic beta integral with a special contour of integration Cmn,kl and

hnl = hn(ω1, ω2, ω3)hl(ω3, ω2, ω1)

with hn(ω1, ω2, ω3) ≡ hn(q, p). These functions are modular invariant: rn(u; ω1, ω2, ω3) =
rn(u; ω1,−ω3, ω2), hn(ω1, ω2, ω3) = hn(ω1,−ω3, ω2).

In the unit circle case we define functions

rmod
nm (u) = rn(u; ω1, ω2, ω3) · rm(u; ω2, ω1, ω3),

smod
nm (u) = sn(u; ω1, ω2, ω3) · sm(u; ω2, ω1, ω3),

which are now symmetric with respect to the permutations ω2 ↔ ω1 and n ↔ m. These
functions satisfy the biorthogonality relations 〈smod

nl , rmod
mk 〉 = hmod

nl δmnδkl, where 〈1, 1〉 = 1
coincides with the normalized modified elliptic beta integral with the integration contour
C̃mn,kl chosen in an appropriate way and

hmod
nl = hn(ω1, ω2, ω3) · hl(ω2, ω1, ω3).

In sharp difference from the previous case, the limit p → 0 (taken in such a way that
simultaneously r → 0, i.e. Im(ω3/ω1), Im(ω3/ω2) → +∞) exists for all values of indices
n, l, k, m and we obtain:

rnm(u; ω1, ω2) = 10W9

(
e2πi(g3−g4)/ω2 ; . . . , e2πi(g3−u)/ω2 ; q, q

)

× 10W9

(
e2πi(g3−g4)/ω1 ; . . . , e2πi(g3−u)/ω1 ; q̃−1, q̃−1

)
.

Their partners from the dual space snm(u; ω1, ω2) are defined in a similar way. These
functions rnm(u; ω1, ω2) and snm(u; ω1, ω2) are not rational functions of some particular
combination of the variable u for n,m 6= 0. They satisfy the two index biorthogonality
relations

〈rnl, smk〉 = νnlδmnδkl,

where νnl are obtained from hmod
nl after setting Im(ω3/ω1), Im(ω3/ω2) → +∞ and 〈1, 1〉 = 1

coincides with the normalized “unit circle” partner of the Rahman’s integral [Sto] with
a special contour of integration. Further simplification of these relations to the Askey-
Wilson polynomials level is highly non-trivial due to some problems with the convergence
of the integral and requires a thorough investigation. In a similar way it is possible
to define unit circle partners of the Rains’ multivariable generalization of the author’s
univariate biorthogonal functions [Rai2] as well as their limiting two-index q-biorthogonal
functions.

9. Multiple elliptic beta integrals

9.1. General definition. Multiple integrals
∫

D

∆(u1, . . . , un) du1 · · · dun,
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where D ⊂ Cn are some n-dimensional cycles, are called elliptic hypergeometric integrals
if ∆(u1, . . . , un) are meromorphic functions of u1, . . . , un satisfying the following system
of equations

∆(u1, . . . , uk + ω1, . . . , un) = h(k)(u1, . . . , un) ∆(u1, . . . , un),

where h(k)(u), k = 1, . . . , n, are elliptic functions of all uj, i.e.,

h(k)(uj + ω2) = h(k)(uj + ω3) = h(k)(u), Im(ω2/ω3) 6= 0.

This is a “broad” definition of the integrals introduced in [Spi4]; one can make it
“narrow” by tripling the number of equations for ∆(u) using the shifts by all quasiperiods
ωi.

In order to describe general possible forms of the integrand, we need an elliptic extension
of the Ore-Sato theorem on the general form of terms in plain hypergeometric series (see,
e.g., [GGR]). For all “good” known elliptic hypergeometric integrals, the kernels ∆(u) are
equal to ratios of elliptic gamma functions Γ(z; q, p) with an integer power dependence on
the variables zj = e2πiuj/ω2 . However, in general case we can multiply the integrands by
elliptic functions of all uj’s with the periods ω2, ω3 which do not have such a representation.

Multiple elliptic hypergeometric series are defined in a similar way. It is simply neces-
sary to replace integrals by discrete sums over some sublattices of u1, . . . , un ∈ Zn keeping
other properties of ∆(u). We shall not consider them in the present review.

The most interesting elliptic hypergeometric integrals are related to multiple general-
izations of the elliptic beta integral, which are split formally into three different groups.
Type I integrals contain 2n + 3 free parameters and bases p and q and their proofs use in
one or another way analytical continuation procedure over discrete values of parameters.
Type II integrals contain less than 2n + 3 free parameters and they can be proved by
purely algebraic means on the basis of type I integrals. Finally, type III elliptic beta in-
tegrals arise through computations of n-dimensional determinants with entries composed
of one-dimensional integrals. It goes without saying that all these integrals have their
partners expressed in terms of the modified elliptic gamma function.

9.2. Integrals for the root system Cn. In order to define n-dimensional type I elliptic
beta integral for the root system Cn (abbreviated as the CI integral), we take bases
|p|, |q| < 1 and parameters t1, . . . , t2n+4 ∈ C such that

∏2n+4
j=1 tj = pq and |t1|, . . . , |t2n+4| <

1.

Theorem 5. (Type I Cn elliptic beta integral [DS2])

κC
n

∫

Tn

n∏

j=1

∏2n+4
i=1 Γ(tiz

±
j )

Γ(z±2
j )

∏

1≤i<j≤n

1

Γ(z±i z±j )

dz

z
=

∏

1≤i<j≤2n+4

Γ(titj),

where Γ(z) ≡ Γ(z; q, p) and

κC
n =

(p; p)n
∞(q; q)n

∞
(2πi)n2nn!

.

Different complete proofs of this formula were given by Rains [Rai1] and the author
[Spi6]. In the limit p → 0 it is reduced to one of the Gustafson results [Gus1]. Its modified
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elliptic gamma function partner has been established by the author [Spi6] together with
its q-degeneration valid for |q| ≤ 1 (which we skip for brevity).

Type II integral for this root system (abbreviated as the CII integral) depends on seven
parameters t and tm, m = 1, . . . , 6, and bases q, p constrained by one relation. It can be
derived as a consequence of the CI integral.

Theorem 6. (Type II Cn elliptic beta integral [DS1])
Let nine complex parameters t, tm(m = 1, . . . , 6), p and q be constrained by the condi-

tions |p|, |q|, |t|, |tm| < 1, and t2n−2
∏6

m=1 tm = pq. Then,

κC
n

∫

Tn

∏

1≤j<k≤n

Γ(tz±j z±k )

Γ(z±j z±k )

n∏

j=1

∏6
m=1 Γ(tmz±j )

Γ(z±2
j )

dz

z

=
n∏

j=1

(
Γ(tj)

Γ(t)

∏

1≤m<s≤6

Γ(tj−1tmts)

)
.

This is an elliptic analogue of the Selberg integral which appears after a number of
reductions, the first step being the p → 0 limit leading to one of the Gustafson’s integrals
[Gus2]. In order to take this limit it is necessary to express t6 in terms of other parameters
and remove the multipliers pq by the inversion formula for Γ(z; q, p) (see [DS2]). During
this procedure the integral takes a less symmetric form—in the given form it has the ex-
plicit S6 symmetry in parameters (see [Rai1]). For the modified version of this integration
formula valid for |q| ≤ 1 and its q-degeneration, see [DS4].

Presently the author knows only one type III elliptic beta integral [Spi4]. It is ascribed
to the Cn root system (we abbreviate it as the CIII integral) and it is computed by
evaluation of a determinant of the univariate elliptic beta integrals which is reduced to
the computation of the Warnaar’s determinant [War1]. We skip it for brevity, but it is
expected that there are much more such integrals due to the universality of the method
used for their derivation (see, e.g., [TV]) and existence of several nice exact determinant
evaluations for elliptic theta functions.

9.3. Integrals for the root system An. Classification of the An elliptic beta integrals
follows the same line as in the Cn case. We start from the description of the simplest type

I integral introduced by the author in [Spi4], which we symbolize as A
(1)
I .

Theorem 7. (The A
(1)
I integral [Spi4])

κA
n

∫

Tn

∏

1≤j<k≤n+1

1

Γ(ziz
−1
j , z−1

i zj)

n+1∏

j=1

n+2∏

m=1

Γ(smzj, tmz−1
j )

dz

z

=
n+2∏

m=1

Γ(Ss−1
m , T t−1

m )
n+2∏

k,m=1

Γ(sktm),

where z1z2 · · · zn+1 = 1 and

κA
n =

(p; p)n
∞(q; q)n

∞
(2πi)n(n + 1)!
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with the parameters satisfying the constraints |tm|, |sm| < 1, m = 1, . . . , n + 2, and

ST = pq, S =
∏n+2

m=1 sm, T =
∏n+2

m=1 tm.

For complete proofs of this formula, see [Rai1, Spi6]. Here we have a split of 2n + 4
parameters (homogeneous in the Cn case) with one constraint into two homogeneous
groups with n + 2 entries in each group. The p → 0 limiting value of this integral was
derived by Gustafson [Gus1]. The unit circle analogue together with the appropriate
q-degeneration valid for |q| ≤ 1 were derived in [Spi6]. Another type I An integral is
described below.

There are several type II integrals on the An root system, the first of which we abbreviate

as A
(1)
II . For its description we define the kernel

∆
(1)
II (z) =

∏

1≤i<j≤n+1

Γ(tzizj)

Γ(ziz
−1
j , z−1

i zj)

n+1∏

j=1

n+1∏

k=1

Γ(tkz
−1
j )

4∏

i=1

Γ(sizj),

where tn−1
∏n+1

k=1 tk
∏4

i=1 si = pq and
∏n+1

j=1 zj = 1.

Theorem 8. (The A
(1)
II integral [Spi4])

As a consequence of the CI and A
(1)
I integration formulas, we have for odd n

κA
n

∫

Tn

∆
(1)
II (z)

dz

z
=

Γ(t
n+1

2 , A)

Γ(t
n+1

2 A)

n+1∏

k=1

4∏

i=1

Γ(tksi)

×
∏

1≤j<k≤n+1

Γ(ttjtk)
∏

1≤i<m≤4

Γ(t
n−1

2 sism).

where A =
∏n+1

k=1 tk.
For even n, we have

κA
n

∫

Tn

∆
(1)
II (z)

dz

z
= Γ(A)

n+1∏

k=1

4∏

i=1

Γ(tksi)

×
∏

1≤j<k≤n+1

Γ(ttjtk)
4∏

i=1

Γ(t
n
2 si)

Γ(t
n
2 Asi)

.

These formulas contain only n+5 free parameters. In the p → 0 limit they are reduced
to the main result of [GuR].

We abbreviate the second type II An integral as A
(2)
II . For its description we need the

kernel

∆
(2)
II (z) =

∏

1≤i<j≤n+1

Γ(tzizj, sz
−1
i z−1

j )

Γ(ziz
−1
j , z−1

i zj)

n+1∏

j=1

3∏

k=1

Γ(tkzj, skz
−1
j ),

where ten variables p, q, t, s, t1, t2, t3, s1, s2, s3 ∈ C satisfy one constraint (ts)n−1
∏3

k=1 tksk =
pq.

Theorem 9. (The A
(2)
II integral [Spi4])
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As a consequence of the A
(1)
I , CI , and CII integration formulas, we have an additional

type II elliptic beta integral for the An root system. For odd n, we have

κA
n

∫

Tn

∆
(2)
II (z)

dz

z
= Γ(t

n+1
2 , s

n+1
2 )

∏

1≤i<k≤3

Γ(t
n−1

2 titk, s
n−1

2 sisk)

×
(n+1)/2∏

j=1

3∏

i,k=1

Γ((ts)j−1tisk)

×
(n−1)/2∏

j=1

(
Γ((ts)j)

∏

1≤i<k≤3

Γ(tj−1sjtitk, t
jsj−1sisk)

)
.

For even n, we have

κA
n

∫

Tn

∆
(2)
II (z)

dz

z
=

3∏

i=1

Γ(t
n
2 ti, s

n
2 si)

× Γ(t
n
2
−1t1t2t3, s

n
2
−1s1s2s3)

n/2∏

j=1

(
Γ((ts)j)

×
3∏

i,k=1

Γ((ts)j−1tisk)
∏

1≤i<k≤3

Γ(tj−1sjtitk, t
jsj−1sisk)

)
.

In this and previous theorems we assume constraints on the parameters guaranteeing that
all sequences of integrands’ poles converging to zero (or their reciprocals) lie within (or
outside) of T.

This theorem formulas contain only seven free parameters. In the p → 0 limit we obtain
one of the integrals in [Gus2].

Recently, Warnaar and the author have found a complementary type I elliptic beta
integral for the An root system.

Theorem 10. (The A
(2)
I integral [SW])

κA
n

∫

Tn

∏

1≤i<j≤n+1

Γ(Sz−1
i z−1

j )

Γ(ziz
−1
j , z−1

i zj)

n+1∏

j=1

∏n
k=1 Γ(tkzj)

∏n+3
m=1 Γ(smz−1

j )∏n
k=1 Γ(Stkz

−1
j )

dz

z

=
n∏

k=1

n+3∏

m=1

Γ(tksm)

Γ(Stks−1
m )

∏

1≤l<m≤n+3

Γ(Ss−1
l s−1

m ),

where |tk| < 1 (k = 1, 2, . . . , n), |sm| < 1 (m = 1, 2, . . . , n+3), |pq| < |tjS|, S =
∏n+3

m=1 sm,
and z1 · · · zn+1 = 1.

Here we have a split of 2n+3 independent parameters into two groups with n and n+3
homogeneous entries. This integration formula appeared to be new even in the p → 0
limit as well as in its further degeneration to the plain hypergeometric level q → 1. Its
unit circle analogue valid for |q| ≤ 1 is constructed in [Spi6].

For each of the described integrals we can apply the residue calculus similar to the
one described above in the univariate case and derive summation formulas for particular
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multiple elliptic hypergeometric series on root systems generalizing the Frenkel-Turaev
sum. For the CI integral, the corresponding formula was derived by van Diejen and the
author [DS3] and its recursive proof was given by Rosengren [Ros2]. For the CII integral,
the corresponding sum was conjectured first by Warnaar [War1], it was deduced from the
residue calculus by van Diejen and the author [DS1] and proven recursively by Rosengren

[Ros1]. The A
(1)
I resides sum was deduced by the author [Spi4], leading to an elliptic

generalization of the Milne’s sum [Mil]. Residue calculus for the A
(2)
I integral performed

by Warnaar and the author [SW] leads to an elliptic generalization of the Bhatnagar-

Schlosser “Dn” summation formula [BS]. These elliptic A
(1)
I and A

(2)
I summation formulas

were proven first inductively by Rosengren [Ros2]. A summation formula following from

the A
(1)
II integral was conjectured by the author [Spi4], but it still remains unproven.

Residue calculus for the CIII integral is expected to lead to a Warnaar’s sum [War1], but
this question was not investigated either.

All the described integrals are expected to serve as measures in the orthogonality re-
lations for some biorthogonal functions. A program of searching multivariable analogues
of the 12V11 biorthogonal functions was put forward in [DS1, Spi2]. The first example
of a multivariable extension of the author’s two-index continuous biorthogonal functions
was found by Rains [Rai2] on the basis of the CII elliptic beta integral (these functions
generalize also the Okounkov’s interpolating polynomials [Oko]).

The notion of root systems provides the main guiding principle in the construction
of multiple elliptic beta integrals. Although this connection is not straightforward, it
is natural to expect that there exist other such integrals attached, in particular, to the
exceptional Lie algebras. In this respect it is worth analyzing whether all multiple Askey-
Wilson type integrals classified by Ito [Ito] admit a further lift up to the levels of Rahman’s
q-beta integral and the author’s elliptic beta integral.

10. Univariate integral Bailey chains

The Bailey chains techniques is well known as a powerful tool for derivation of infinite
sequences of identities for series of hypergeometric type [AAR]. The most general known
q-hypergeometric Bailey chain was proposed by Andrews [And]. It is related to the
Bressoud’s matrix inverse [Bre] and has at the bottom the original constructions by Rogers
and Bailey used for proving the Rogers-Ramanujan identities [BM]. It was generalized to
the elliptic hypergeometric series by the author [Spi3] (for some further developments in
this direction, see [War2]). We shall not describe these chains here, although they have
quite interesting consequences. Instead, we present Bailey chains for integrals discovered
in [Spi5].

DEFINITION. Two functions α(z, t) and β(z, t) form an elliptic integral Bailey pair with
respect to the parameter t, if

β(w, t) = κ

∫

T
Γ(tw±z±)α(z, t)

dz

z
.

Theorem 11. (First integral Bailey lemma [Spi5])
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For a given integral Bailey pair α(z, t), β(z, t) with respect to t, the functions

α′(w, st) =
Γ(tuw±)

Γ(ts2uw±)
α(w, t),

β′(w, st) = κ
Γ(t2s2, t2suw±)

Γ(s2, t2, suw±)

∫

T

Γ(aw±x±, ux±)

Γ(x±2, t2s2ux±)
β(x, t)

dx

x
,

where w ∈ T, form a new Bailey pair with respect to the parameter st.

The proof is quite simple, it is necessary to substitute the key relation for β(x, t) into the
definition of β′(w, st), to change the order of integrations, and to apply the elliptic beta
integral (under some mild restrictions upon parameters). Note that these substitution
rules introduce two new parameters u and s into the Bailey pairs at each step of their
iterative application.

Theorem 12. (Second integral Bailey lemma [Spi5])
For a given integral Bailey pair α(z, t), β(z, t) with respect to the parameter t, the

functions

α′(w, t) = κ
Γ(s2t2, uw±)

Γ(s2, t2, w±2, t2s2uw±)

∫

T

Γ(t2sux±, sw±)

Γ(sux±)
α(x, st)

dx

x
,

β′(w, t) =
Γ(tuw±)

Γ(ts2uw±)
β(w, st)

form a new Bailey pair with respect to t.

It appears that these two lemmas are related to each other by inversion of the integral
operator figuring in the definition of integral Bailey pairs [SW]. Application of these
lemmas is algorithmic: one should take the initial α(z, t) and β(z, t) defined by the elliptic
beta integral and apply to them described transformations in all possible ways, which
yields a binary tree of identities for multiple elliptic hypergeometric integrals of different
dimensions. In particular, the very first step yields the key transformation (i) for the
elliptic hypergeometric function V (t). The residue calculus is supposed to recover elliptic
Bailey chains for the r+1Vr series [Spi3]. We can take the limit p → 0 and reduce all
elliptic results to the level of standard q-hypergeometric integrals which admit further
simplification down to identities generated by the plain hypergeometric beta integrals.

As to the unit circle case, we can start from the relation

β̃(v, g) = κ̃

∫ ω3/2

−ω3/2

G(g ± v ± u; ω) α̃(u, g)
du

ω2

and apply the modified elliptic beta integral for building needed analogues of the Bailey
lemmas. In this case, the p, r → 0 limit brings in identities for q-hypergeometric integrals
defined over the non-compact contour L with the kernels well defined for |q| = 1.

11. Elliptic Fourier-Bailey type integral transformations on root
systems

Similar to the situation with elliptic beta integrals, the univariate integral transfor-
mation of the previous section has been generalized by Warnaar and the author to root
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systems [SW]. It appears that in the multivariable setting the original space of functions
and its image can belong to different root systems.

For the (A,A) pair of root systems, we take the space of meromorphic functions fA(z; t)
with An symmetry in its variables z1, . . . , zn+1,

∏n+1
j=1 zj = 1, and define its image space

by setting

f̂A(w; t) = κA
n

∫

D

ρ(z, w; t−1)fA(z; t)
dz

z
,

where the kernel has the form

ρ(z, w; t) =

∏n+1
i,j=1 Γ(tw−1

i z−1
j )

Γ(tn+1)
∏

1≤i<j≤n+1 Γ(ziz
−1
j , z−1

i zj)
.

In a relatively general situation this map can be inverted explicitly.

Theorem 13. (The (A,A) transform inversion [SW])
For a suitable n-dimensional cycle D, the inverse of the (A, A) transform is given by

the map

fA(x; t) = κA
n

∫

Tn

ρ(w−1, x−1; t)f̂A(w; t)
dw

w
,

where it is assumed that functions fA(x; t) are analytical in a sufficiently wide annulus
encircling T.

The proof consists in a quite tedious residue calculus with the use of the A
(1)
I integration

formula.
In the (A,C)-case, we map functions fA(z; t) to its image space belonging to the Cn

root system:

f̂C(w; t) = κA
n

∫

D

δA(z, w; t−1)fA(z; t)
dz

z
,

where the kernel has the form

δA(z, w; t) =

∏n
i=1

∏n+1
j=1 Γ(tw±

i z±j )
∏

1≤i<j≤n+1 Γ(ziz
−1
j , z−1

i zj, t−2zizj, t2z
−1
i z−1

j )
.

Theorem 14. (The (A,C) transform inversion [SW])
For a suitable n-dimensional cycle D, the inverse of the (A,C) integral transform looks

as follows

fA(x; t) = κC
n

∫

Tn

δC(w, x; t)f̂C(w; t)
dw

w
,

with the kernel

δC(w, x; t) =

∏n
i=1

∏n+1
j=1 Γ(tw±

i xj)∏n
i=1 Γ(w±2

i )
∏

1≤i<j≤n Γ(w±
i w±

j )
,

where it is assumed that functions fA(x; t) are analytical in a sufficiently wide annulus
containing T.
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Corollary 15. If we choose f̂C(w; t) such that the product δC(w, x; t) · f̂C(w; t) is equal to

the CI elliptic beta integral kernel, then the original relation f̂C ∼
∫

D
δA · fA dz/z defines

the A
(2)
I integration formula.

There are more such Fourier-Bailey type integral transforms with explicit inversions
some of which still are in the conjectural form. All of them can be put into the integral
Bailey chains setting yielding many infinite sequences of transformations for the elliptic
hypergeometric integrals on root systems.

12. Applications to the Calogero-Sutherland type models

After discussing multiple elliptic beta integrals, we would like to return to applications
of elliptic hypergeometric functions to the Calogero-Sutherland type models [Spi7].

First, we define the inner product

〈ϕ, ψ〉I,II = κC
n

∫

Tn

∆I,II(z, t)ϕ(z)ψ(z)
dz

z
.

Let us take the Hamiltonian of the van Diejen model [Die] with the restriction t2n−2
∏8

m=1 tm =
p2q2

DII =
n∑

j=1

(
Aj(z)(Tj − 1) + Aj(z

−1)(T−1
j − 1)

)
,

Aj(z) =

∏8
m=1 θ(tmzj; p)

θ(z2
j , qz

2
j ; p)

n∏

k=1
6=j

θ(tzjzk, tzjz
−1
k ; p)

θ(zjzk, zjz
−1
k ; p)

.

Under some relatively mild restrictions upon parameters, this operator is formally her-
mitian with respect to the above inner product, 〈ϕ,DIIψ〉II = 〈DIIϕ, ψ〉II , for the weight
function

∆II(z, t) =
∏

1≤j<k≤n

Γ(tz±j z±k )

Γ(z±j z±k )

n∏

j=1

∏8
k=1 Γ(tkz

±
j )

Γ(z±2
j )

.

Evidently, f(z) = 1 is a λ = 0 solution of the standard eigenvalue problem DIIf(z) =
λf(z). The norm of this eigenfunction

‖1‖2 = V (t; CII) = κC
n

∫

Tn

∆II(z, t)
dz

z

is a multivariable analogue of the elliptic hypergeometric function V (t) for the type II Cn

elliptic beta integral.
We conjecture that with all multiple elliptic beta integrals one can associate Calogero-

Sutherland type models in the described fashion. Let us take the weight function

∆I(z, t) =
1∏

1≤i<j≤n Γ(z±i z±j )

n∏

j=1

∏2n+6
k=1 Γ(tkz

±
j )

Γ(z±2
j )

.
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We associate with it the Hamiltonian

DI =
n∑

j=1

(
Aj(z)(Tj − 1) + Aj(z

−1)(T−1
j − 1)

)
,

Aj(z) =

∏2n+6
k=1 θ(tkzj; p)

θ(z2
j , qz

2
j ; p)

n∏

k=1
6=j

1

θ(zjz
±
k ; p)

,

2n+6∏

k=1

tk = p2q2,

which is formally hermitian with respect to the taken inner product, 〈ϕ,DIψ〉I = 〈DIϕ, ψ〉I ,
for some mild restrictions upon the parameters. Again, f(z) = 1 is a λ = 0 eigenfunction
of the operator DI and its normalization

‖1‖2 = V (t; CI) = κC
n

∫

Tn

∆I(z, t)
dz

z

defines type I generalization of the elliptic hypergeometric function for the root system
Cn. The functions V (t; CI,II) were considered first by Rains [Rai1] in the context of
symmetry transformations for multiple elliptic hypergeometric integrals. It is not difficult
to define their unit circle analogues which also play similar role in the context of Calogero-
Sutherland type models.

One can construct analogues of the V (t) function for multiple elliptic beta integrals on
the An root system and build corresponding Hamiltonians (all of which coincide in the
rank 1 case). Although all these models are degenerate—their particles’ pairwise coupling
constant is fixed in one or another way, it would be interesting to clarify whether these
models define new completely integrable quantum systems.
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