
ELLIPTIC INTEGRABLE SYSTEMS

HEUN EQUATION AND PAINLEVÉ EQUATION

KOUICHI TAKEMURA

Abstract. We relate two parameter solutions of the sixth Painlevé equation and finite-
gap solutions of the Heun equation by considering monodromy on a certain class of
Fuchsian differential equations. In the appendix, we present formulae on differentials
of elliptic modular functions, and obtain the ellitic form of the sixth Painlevé equation
directly.

1. Introduction

In this paper we make a study on two differential equations. One is the Heun equation,
and the other is the sixth Painlevé equation.

Heun’s differential equation (or the Heun equation) is a differential equation given by
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with the condition

(1.2) γ + δ + ε = α + β + 1.

The Heun equation is the standard canonical form of a Fuchsian equation with four
singularities. It is well known that the Fuchsian equation with three singularities is the
hypergeometric differential equation.

In the 1980’s, Treibich and Verdier [16] found that the Heun equation is related with
the theory of the finite-gap potential, and several others have produced more precise
statements and concerned results on this subject. Namely, integral representations of
solutions, global monodromy in terms of hyperelliptic integrals and the Hermite-Krichever
Ansatz for the case γ, δ, ε, α − β ∈ Z + 1

2
are investigated (see [1, 2, 9, 11–14] etc.).

The sixth Painlevé equation is a non-linear ordinary differential equation written as
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.

A remarkable property of this differential equation is that its solutions do not have movable
singularities other than poles. Although generic solutions of the sixth Painlevé equation
are trancedental, it may have classical solutions for special cases. If κ0 = κ1 = κt =
κ∞ = 0, then Eq.(1.3) has two parameter solutions called Picard’s solution [7], and if
κ0 = κ1 = κt = κ∞ = 1/2, then Eq.(1.3) has two parameter solutions called Hitchin’s
solution [3].
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In this paper we investigate a family of solutions to the sixth Painlevé equation includ-
ing Hitchin’s solutions by applying Hermite-Krichever Ansatz which is used to study the
Heun equation in [14]. More precisely, we develop the Hermite-Krichever Ansatz for a
certain class of Fuchsian differential equations which include the linear differential equa-
tion that produce the sixth Painlevé equation by monodromy preserving deformation. By
considering monodromy preserving deformation for the solutions to the linear differential
equation, we obtain solutions to the sixth Painlevé equation including Hitchin’s solutions.

This paper is organized as follows. In section 2, we obtain integral representations
of solutions to a certain class of Fuchsian differential equations and rewrite them to the
form of the Hermite-Krichever Ansatz. In section 3, we apply the results in section 2
for the Heun equation. In section 4, we show that the solutions to the linear differential
equations considered in section 2 produce two parameter solutions to the sixth Painlevé
equation by monodromy preserving deformation. Some explicit solutions that include
Hitchin’s solution are displayed. In section 5, we give concluding remarks and present an
open problem. In the appendix, we present formulae on differentials of elliptic modular
functions, and obtain the ellitic form of the sixth Painlevé equation directly.

2. Fuchsian differential equation and Hermite-Krichever Ansatz

In this section, we consider differential equations which have additional apparent sin-
gularities to the Heun equation. More precisely, we consider the equation

{
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+
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+
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(2.1)

+
(
∑3

i=0 li +
∑M

i′=1 ri′)(−1 − l0 +
∑3

i=1 li +
∑M

i′=1 ri′)w + p̃ +
∑M

i′=1
õi′

w−b̃i′

4w(w − 1)(w − t)



 f̃(w) = 0,

for the case li ∈ Z≥0 (0 ≤ i ≤ 3), ri′ ∈ Z>0 (1 ≤ i′ ≤ M) and the regular singular points

b̃i′ (1 ≤ i′ ≤ M) are apparent. Here, a regular singular point x = a of a linear differential
equation of order two is said to be apparent, if and only if the differential equation does
not have a logarithmic solution at x = a and the exponents at x = a are integers.

Let ℘(x) be the Weierstrass ℘-function with periods (2ω1, 2ω3). We set ω0 = 0, ω1 = 1/2
ω3 = τ/2, ω2 = −ω1 − ω3 and ei = ℘(ωi) (i = 1, 2, 3). It is known that, if t 6= 0, 1,∞,
then there exists a value τ ∈ R +

√
−1R>0 such that t = (e3 − e1)/(e2 − e1). By a certain

transformation, Eq.(2.1) is rewritten in terms of elliptic functions such as

(2.2) (Hg − Ẽ)fg(x) = 0,
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where

Hg = − d2

dx2
+

M∑

i′=1

ri′℘
′(x)

℘(x) − ℘(δi′)

d

dx
+

(
l0 +

M∑

i′=1

ri′

)(
l0 + 1 −

M∑

i′=1

ri′

)
℘(x)(2.3)

+
3∑

i=1

li(li + 1)℘(x + ωi) +
M∑

i′=1

s̃i′

℘(x) − ℘(δi′)
,

℘(δi′) = bi′ , (i′ = 1, . . . , M).(2.4)

The parameter s̃i′ (i′ = 1, . . . ,M) corresponds to the parameter õi′ , and the parameter
p̃ corresponds to Ẽ. Apparency of the singularity at w = ±δi′ on Eq.(2.2) inherits from
apparency of the singularity at w = bi′ on Eq.(2.1).

We now review the propositions on solutions to Eq.(2.2) obtained in [15]. The first one
is an integral representation of solutions in terms of elliptic functions. We set

Ψg(x) =
M∏

i′=1

(℘(x) − ℘(δi′))
ri′/2.

Proposition 2.1. [15] Assume that l0, . . . , l3 ∈ Z≥0, r1, . . . , rk ∈ Z≥1, and the regular sin-
gular points {b1, . . . , bk} are apparent. Then there exists an even doubly-periodic function
Ξ(x) and a value Q such that

(2.5) Λg(x) = Ψg(x)
√

Ξ(x) exp

∫ √
−Qdx

Ξ(x)

is a solution to the differential equation (2.2).

For the constructions of Ξ(x) and Q, see [15]
We now show that a solution to Eq.(2.2) can be expressed in the form of the Hermite-

Krichever Ansatz. In our situation, the Hermite-Krichever Ansatz asserts that the differ-
ential equation has solutions that are expressed as a finite series in the derivatives of an
elliptic Baker-Akhiezer function, multiplied by an exponential function. We set

(2.6) Φi(x, α) =
σ(x + ωi − α)

σ(x + ωi)
exp(ζ(α)x), (i = 0, 1, 2, 3),

where σ(x) (resp. ζ(x)) is the Weierstrass sigma (resp. zeta) function. Then we have

(2.7)

(
d

dx

)j

Φi(x + 2ωk, α) = exp(−2ηkα + 2ωkζ(α))

(
d

dx

)j

Φi(x, α)

for i = 0, 1, 2, 3, j ∈ Z≥0 and k = 1, 3, where ηk = ζ(ωk) (k = 1, 3). The following
proposition asserts that a solution to Eq.(2.2) is written in the form of the Hermite-
Krichever Ansatz.

Proposition 2.2. [15] (i) Set l̃0 = l0 +
∑M

i′=1 ri′ and l̃i = li (i = 1, 2, 3). The function
Λg(x) in Eq.(2.5) is expressed as

Λg(x) = exp(κx)




3∑

i=0

l̃i−1∑

j=0

b̃
(i)
j

(
d

dx

)j

Φi(x, α)


(2.8)
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for some values α, κ and b̃
(i)
j (i = 0, . . . , 3, j = 0, . . . , l̃i − 1), or

Λg(x) = exp(κ̄x)p(x)(2.9)

for some value κ̄ and doubly-periodic function p(x). (For a detailed expression of p(x),
see [15].)
(ii) If l0, . . . , l3 ∈ Z≥0, r1, . . . , rk ∈ Z≥1, and the regular singular points {b1, . . . , bk} are
apparent, then there exists a non-zero solution to Eq.(2.2) that is expressed as Eq.(2.8)
or Eq.(2.9).

The monodromy of the function Λg(x) is expressed in terms of α and κ. In fact, if the
function Λg(x) is written as Eq.(2.8), then

Λg(x + 2ωk) = exp(−2ηkα + 2ωkζ(α) + 2κωk)Λg(x), (k = 1, 3).(2.10)

3. Heun equation

For the case M = 0, Eq.(2.1) is regarded as the Heun equation (see Eq.(1.1)), and it is
transformed to the equation

(3.1)

(
− d2

dx2
+

3∑

i=0

li(li + 1)℘(x + ωi)

)
f(x) = Ef(x),

If l0, l1, l2, l3 ∈ Z≥0, then the function
∑3

i=0 li(li +1)℘(x+ωi) is called the Treibich-Verdier
potential, and is an example of algebro-geometric finite-gap potential (see [2, 9, 13, 16]).
For the case M = 0 and l0, l1, l2, l3 ∈ Z≥0, there is no constraint relation for the apparency
of additional regular singularity. Hence Propositions 2.1 and 2.2 holds true. The function
Ξ(x) in Proposition 2.1 is written as

(3.2) Ξ(x) = c0(E) +
3∑

i=0

li−1∑

j=0

b
(i)
j (E)℘(x + ωi)

li−j,

where the coefficients c0(E) and b
(i)
j (E) are polynomials in E, they do not have common

divisors and the polynomial c0(E) is monic. The value Q is expressed as

Q = Ξ(x)2

(
E −

3∑

i=0

li(li + 1)℘(x + ωi)

)
+

1

2
Ξ(x)

d2Ξ(x)

dx2
− 1

4

(
dΞ(x)

dx

)2

.(3.3)

It follows from Eq.(3.1) that Q is independent of x, and it is a monic polynomial in E
(see [11]). A solution to Eq.(3.1) is expressed by an integral (see Eq.(2.5)), and it is
also expressed in a form of the Hermite-Krichever Ansatz (see Proposition 2.2). It is
shown in [14] that the values ℘(α), ℘′(α)/

√
−Q and κ/

√
−Q are expressed as rational

functions in E, and it follows that global monodromy of the Heun equation for the case
l0, l1, l2, l3 ∈ Z≥0 is written as an elliptic integral. On the other hand, it is known that
global monodromy is also expressed by a hyperelliptic integral (see [13]). By comparing the
two expressions, we obtain a hyperelliptic-to-elliptic integral reduction formula (see [14]).

We expressed the functions appeared in this section for the case l0 = 2, l1 = l2 = l3 = 0.
Note that Eq.(3.1) for the case l1 = l2 = l3 = 0 is called the Lamé equation.
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3.1. The case M = 0, l0 = 2, l1 = l2 = l3 = 0. The differential equation (see Eq.(3.1))
is written as

(3.4)

(
− d2

dx2
+ 6℘(x)

)
f(x) = Ef(x).

Set

Ξ(x) = 9℘(x)2 + 3E℘(x) + E2 − 9g2/4, Q = (E2 − 3g2)
3∏

i=1

(E − 3ei),(3.5)

where g2 = −4(e1e2 + e2e3 + e3e1). Then the function

(3.6) Λg(x) =
√

Ξ(x) exp

∫ √
−Qdx

Ξ(x)
,

is a solution to Eq.(3.4). The monodromy formula in terms of hyperelliptic integral is
written as

(3.7) Λg(x + 2ωk) = Λg(x) exp


−1

2

∫ E

√
3g2

−6ηkẼ + 2ωk(Ẽ
2 − 3g2/2)√

−(Ẽ2 − 3g2)
∏3

i=1(Ẽ − 3ei)
dẼ




for k = 1, 3.
The function Λg(x) is also expressed in the form of the Hermite-Krichever Ansatz as

Λg(x) = exp(κx)

{
b̄
(0)
0 Φ0(x, α) + b̄

(0)
1

d

dx
Φ0(x, α)

}
(3.8)

for the case E2 6= 3g2, and the values α and κ are determined as

℘(α) = − E3 − 27g3

9(E2 − 3g2)
, κ =

2

3

√
−(E − 3e1)(E − 3e2)(E − 3e3)

(E2 − 3g2)
,(3.9)

where g3 = 4e1e2e3. The monodromy is written by using the values α and κ (see
Eq.(2.10)). By comparing two expressions of monodromy, we obtain that

∫ ξ

∞

dξ̃√
4ξ̃3 − g2ξ̃ − g3

= −3

2

∫ E

∞

ẼdẼ√
−(Ẽ2 − 3g2)

∏3
i=1(Ẽ − 3ei)

,(3.10)

κ = −1

2

∫ E

ei

Ẽ2 − 3g2/2√
−(Ẽ2 − 3g2)

∏3
i=1(Ẽ − 3ei)

dẼ +

∫ ξ

3ei

ξ̃dξ̃√
4ξ̃3 − g2ξ̃ − g3

,(3.11)

(i = 1, 2, 3) for the transformation

(3.12) ξ = − E3 − 27g3

9(E2 − 3g2)
.

These formulae reduce hyperelliptic integrals of genus two to elliptic integrals.
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4. Sixth Painlevé equation

We consider the Fuchsian differential equation (2.1) for the case M = 1, r1 = 1. Then
Eq.(2.1) is transformed to
(4.1){

− d2

dx2
+

℘′(x)

℘(x) − ℘(δ1)

d

dx
+

s̃1

℘(x) − ℘(δ1)
+

3∑

i=0

li(li + 1)℘(x + ωi) − Ẽ

}
fg(x) = 0.

We set

b1 = ℘(δ1), µ1 =
−s̃1

4b3
1 − g2b1 − g3

+
3∑

i=1

li
2(b1 − ei)

,(4.2)

p = Ẽ − 2(l1l2e3 + l2l3e1 + l3l1e2) +
3∑

i=1

li(liei + 2(ei + b1)).(4.3)

The condition that, the regular singular points x = ±δ1 is apparent, is written as

p = (4b3
1 − g2b1 − g3)

{
−µ2

1 +
3∑

i=1

li + 1
2

b1 − ei

µ1

}
(4.4)

− b1(l1 + l2 + l3 − l0)(l1 + l2 + l3 + l0 + 1).

¿From now on we assume that l0, l1, l2, l3 ∈ Z≥0 and the eigenvalue Ẽ satisfies Eqs.(4.3,
4.4). Then Propositions 2.1 and 2.2 hold true. It is known [15] that the function Ξ(x) in
Proposition 2.1 is written as

(4.5) Ξ(x) = c0 +
d0

(℘(x) − ℘(δ1))
+

3∑

i=0

li−1∑

j=0

b
(i)
j ℘(x + ωi)

li−j.

Ratios of the coefficients c0/d0 and b
(i)
j /d0 (i = 0, 1, 2, 3, j = 0, . . . , li − 1) are written as

rational functions in variables b1 and µ1. The value Q in Proposition 2.1 is expressed as
a rational function in b1 and µ1 multiplied by d2

0. By Proposition 2.2, the eigenfunction
Λg(x) in Eq.(2.5) is also expressed in the form of the Hermite-Krichever Ansatz. Namely,
it is expressed as

Λg(x) = exp (κx)




3∑

i=0

l̃i−1∑

j=0

b̃
(i)
j

(
d

dx

)j

Φi(x, α)


(4.6)

or

Λg(x) = exp (κ̄x) p(x)(4.7)

for some doubly-periodic function p(x), where l = l0 + l1 + l2 + l3 + 1, l̃0 = l0 + 1 and

l̃i = li (i = 1, 2, 3). For the values α and κ, we have

Proposition 4.1. [15] Assume that M = 1, r1 = 1, l0, l1, l2, l3 ∈ Z≥0 and the value p
satisfies Eq.(4.4). Let α and κ be the values determined by the Hermite-Krichever Ansatz
(see Eq.(4.6)). Then ℘(α) is expressed as a rational function in variables b1 and µ1, ℘′(α)
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is expressed as a product of
√
−Q and a rational function in variables b1 and µ1, and κ

is expressed as a product of
√
−Q and a rational function in variables b1 and µ1.

If α 6≡ 0 (mod 2ω1Z ⊕ 2ω3Z), then the function Λg(x) is expressed as Eq.(4.6) and we
have

Λg(x + 2ωk) = exp(−2ηkα + 2ωjζ(α) + 2κωk)Λg(x), (k = 1, 3).(4.8)

We now discuss the relationship between the monodromy preserving deformation of
Fuchsian equations and the sixth Painlevé equation. For this purpose we recall other
expressions of the sixth Painlevé equation. The sixth Painlevé equation given as Eq.(1.3)
is also written in terms of a Hamiltonian system by adding the variable µ, which is called
the sixth Painlevé system:

(4.9)
dλ

dt
=

∂HV I

∂µ
,

dµ

dt
= −∂HV I

∂λ

with the Hamiltonian

HV I =
1

t(t − 1)

{
λ(λ − 1)(λ − t)µ2(4.10)

−{κ0(λ − 1)(λ − t) + κ1λ(λ − t) + (κt − 1)λ(λ − 1)}µ + κ(λ − t)} ,

where κ = ((κ0 + κ1 + κt − 1)2 − κ2
∞)/4. The sixth Painlevé equation for λ is obtained by

eliminating µ in Eq.(4.9). Set ω1 = 1/2, ω3 = τ/2 and write

(4.11) t =
e3 − e1

e2 − e1

, λ =
℘(δ) − e1

e2 − e1

.

Then the sixth Painlevé equation is equivalent to the following equation (see [6, 10]):
(4.12)

d2δ

dτ 2
= − 1

4π2

{
κ2
∞
2

℘′ (δ) +
κ2

0

2
℘′

(
δ +

1

2

)
+

κ2
1

2
℘′

(
δ +

τ + 1

2

)
+

κ2
t

2
℘′

(
δ +

τ

2

)}
,

where ℘′(z) = (∂/∂z)℘(z). In the appendix, we obtain the elliptic form of the sixth
Painlevé equation (i.e., Eq.(4.12)) from the original sixth Painlevé equation (i.e., Eq.(1.3)).

It is widely known that the sixth Painlevé equation is obtained by the monodnomy
preserving deformation of a certain linear differential equation. Let us introduce the
following Fuchsian differential equation:

(4.13)
d2y

dw2
+ p1(w)

dy

dw
+ p2(w)y = 0,

where

p1(w) =
1 − κ0

w
+

1 − κ1

w − 1
+

1 − κt

w − t
− 1

w − λ
,(4.14)

p2(w) =
κ

w(w − 1)
− t(t − 1)HV I

w(w − 1)(w − t)
+

λ(λ − 1)µ

w(w − 1)(w − λ)
.(4.15)

This equation has five regular singular points {0, 1, t,∞, λ} and the exponents at w = λ
are 0 and 2. It follows from Eq.(4.10) that the regular singular point w = λ is apparent.
Then the sixth Painlevé equation is obtained by the monodromy preserving deformation
of Eq.(4.9), i.e., the condition that the monodromy of Eq.(4.13) is preserved as deforming



312 K. Takemura

the variable t is equivalent to that µ and λ satisfy the Painlevé system (see Eq.(4.9)),
provided κ0, κ1, κt, κ∞ 6∈ Z. For details, see [5].

We transform Eq.(4.13) into the form of Eq.(4.1). We set

w =
℘(x) − e1

e2 − e1

, y = fg(x)
3∏

i=1

(℘(x) − ei)
li/2,(4.16)

t =
e3 − e1

e2 − e1

, λ =
b1 − e1

e2 − e1

, ℘(δ1) = b1.(4.17)

Then we obtain Eq.(4.1) by setting

κ0 = l1 + 1/2, κ1 = l2 + 1/2, κt = l3 + 1/2, κ∞ = l0 + 1/2,(4.18)

µ = (e2 − e1)µ1, κ = (l1 + l2 + l3 + l0 + 1)(l1 + l2 + l3 − l0),(4.19)

HV I =
1

t(1 − t)

{
p + κe3

e2 − e1

+ λ(1 − λ)µ

}
,(4.20)

(see Eqs.(4.2–4.3)), and Eq.(4.10) is equivalent to Eq.(4.4), that means that the apparency
of regular singularity is inheritted. Note that the monodromy preserving deformation of
Eq.(4.13) in t corresponds to the monodromy preserving deformation of Eq.(4.1) in τ .

Now we consider the monodromy preserving deformation in the variable τ (ω1 =
1/2, ω3 = τ/2) by applying solutions obtained by the Hermite-Krichever Ansatz for the
case li ∈ Z≥0 (i = 0, 1, 2, 3). Let α and κ be values determined by the Hermite-Krichever
Ansats (see Eq.(4.6)). We consider the case Q 6= 0. Then a basis for solutions to Eq.(2.2)
is given by Λg(x) and Λg(−x), and the monodromy matrix with respect to the cycle
x → x+2ωk (k = 1, 3) is diagonal with the eigenvalues exp(±(−2ηkα +2ωkζ(α)+ 2κωk))
(see Eq.(4.8)). The values −2ηkα + 2ωkζ(α) + 2κωk (k = 1, 3) are preserved by the
monodromy preserving deformation. We set

− 2η1α + 2ω1ζ(α) + 2κω1 = π
√
−1C1,(4.21)

− 2η3α + 2ω3ζ(α) + 2κω3 = π
√
−1C3,(4.22)

for contants C1 and C3. By Legendre’s relation η1ω3 − η3ω1 = π
√
−1/2, we have

α = C3ω1 − C1ω3,(4.23)

κ = ζ(C1ω3 − C3ω1) + C3η1 − C1η3,(4.24)

¿From Proposition 4.1, the values ℘(C3ω1 −C1ω3))(= ℘(α)), ℘′(C3ω1 −C1ω3)/
√
−Q and

(ζ(C1ω3 −C3ω1) + C3η1 −C1η3)/
√
−Q are expressed as rational functions in variables b1

and µ1. By solving these equations for b1 and µ1 and evaluating them into Eq.(4.1), the
monodromy of the solutions to the differential equation (4.1) on the cycles x → x + 2ωk

(k = 1, 3) are preserved for the fixed values C1 and C3. Thus we obtain the following
proposition which was established in [15].

Proposition 4.2. [15] We set ω1 = 1/2, ω3 = τ/2 and assume that li ∈ Z≥0 (i = 0, 1, 2, 3)
and Q 6= 0. By solving the equations in Proposition 4.1 in variable b1 = ℘(δ1) and µ1,
we express ℘(δ1) and µ1 in terms of ℘(α), ℘′(α) and κ, and we replace ℘(α), ℘′(α) and
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κ with ℘(C3ω1 − C1ω3), ℘′(C3ω1 − C1ω3) and ζ(C1ω3 − C3ω1) + C3η1 − C1η3. Then δ1

satisfies the sixth Painlevé equation in the elliptic form

(4.25)
d2δ1

dτ 2
= − 1

8π2

{
3∑

i=0

(li + 1/2)2℘′(δ1 + ωi)

}
.

We observe the expressions of b1 and µ1 in detail for the cases l0 = l1 = l2 = l3 = 0 and
l0 = 1, l1 = l2 = l3 = 0.

4.1. The case M = 1, r1 = 1, l0 = l1 = l2 = l3 = 0. We investigate the case M = 1,
r1 = 1, l0 = l1 = l2 = l3 = 0 in detail. The differential equation (4.1) is written as

(4.26)

{
− d2

dx2
+

℘′(x)

℘(x) − b1

d

dx
− µ1(4b

3
1 − g2b1 − g3)

℘(x) − b1

− p

}
fg(x) = 0,

We assume that b1 6= e1, e2, e3. The condition that the regular singular points x = ±δ1

(℘(δ1) = b1) are apparent is written as

p = −(4b3
1 − g2b1 − g3)µ

2
1 + (6b2

1 − g2/2)µ1(4.27)

(see Eq.(4.4)). The doubly-periodic function Ξ(x) (see Eq.(4.5)) is calculated as

(4.28) Ξ(x) = 2µ1 +
1

℘(x) − b1

.

The value Q is calculated as

Q = 2µ1(2µ1(e1 − b1) + 1)(2(e2 − b1)µ1 + 1)(2µ1(e3 − b1) + 1).(4.29)

We set

(4.30) Λg(x) =
√

Ξ(x)(℘(x) − b1) exp

∫ √
−Qdx

Ξ(x)
.

Then a solution to Eq.(4.26) is written as Λg(x), and is expressed in the form of the
Hermite-Krichever Ansatz as

Λg(x) = b̄
(0)
0 exp(κx)Φ0(x, α)(4.31)

for generic (µ1, b1). The values α and κ are determined as

℘(α) = b1 −
1

2µ1

, ℘′(α) = −
√
−Q

2µ2
1

, κ =

√
−Q

2µ1

.(4.32)

Hence we have

µ1 = − κ

℘′(α)
, b1 = ℘(α) − ℘′(α)

2κ
.(4.33)

¿From Proposition 4.2, the function δ1 determined by

℘(δ1) = b1 = ℘(C1ω3 − C3ω1) +
℘′(C1ω3 − C3ω1)

2(ζ(C1ω3 − C3ω1) − (C1η3 − C3η1))
(4.34)

is a solution to the sixth Painlevé equation in the elliptic form (see Eq.(4.25)). This
solution coincides with the one found by Hitchin [3].
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Now we consider the case Q = 0. If Q = 0, then µ1 = 0 or µ1 = 1/(2(b1 − ei)) for some
i ∈ {1, 2, 3}. For the case µ1 = 0, the function δ1, which is determined by

(4.35) ℘(δ1) = b1 = − D1η3 − D3η1

D1ω3 − D3ω1

,

is a solution to the sixth Painlevé equation for constants D1 and D3. For the case µ1 =
1/(2(b1 − ei)) (i ∈ {1, 2, 3}), the function δ1 determined by

(4.36) ℘(δ1) = b1 =
(g2/4 − 2e2

i )(D1ω3 − D3ω1) + ei(D1η3 − D3η1)

ei(D1ω3 − D3ω1) + (D1η3 − D3η1)

is a solution to the sixth Painlevé equation.
Eqs.(4.35 ,4.36) are also obtained by suitable limits from Eq.(4.34) (see [15]), and the

space of the parameters of the solutions to the sixth Painlevé equation (i.e. the space of
initial conditions) for the case l0 = l1 = l2 = l3 = 0 is obtained by blowing up four points
on the surface C/2Z × C/2Z. This reflects the A1 × A1 × A1 × A1 structure of Riccati
solutions by Saito and Terajima [8].

4.2. The case M = 1, r1 = 1, l0 = 1, l1 = l2 = l3 = 0. The differential equation (4.1)
for this case is written as

(4.37)

{
− d2

dx2
+

℘′(x)

℘(x) − b1

d

dx
− µ1(4b

3
1 − g2b1 − g3)

℘(x) − b1

+ 2℘(x) − p

}
fg(x) = 0,

We assume that b1 6= e1, e2, e3. The condition that the regular singular points x = ±δ1

(℘(δ1) = b1) are apparent is written as

p = −(4b3
1 − g2b1 − g3)µ

2
1 + (6b2

1 − g2/2)µ1 + 2b1.(4.38)

The doubly-periodic function Ξ(x) is calculated as

Ξ(x) =℘(x) + ((−4b3
1 + b1g2 + g3)µ

2
1 + (6b2

1 − g2/2)µ1 − b1)(4.39)

+ ((−4b3
1 + b1g2 + g3)µ1/2 + 3b2

1 − g2/4)/(℘(x) − b1),

and the value Q is calculated as

Q = −((2(4b3
1 − b1g2 − g3)µ

3
1 − (12b2

1 − g2)µ
2
1 + 4)(2(b2

1 + e1b1 + e2e3)µ1 − 2b1 − e1)

(4.40)

(2(b2
1 + e2b1 + e1e2)µ1 − 2b1 − e2)(2(b2

1 + e3b1 + e1e3)µ1 − 2b1 − e3).

We set

(4.41) Λg(x) =
√

Ξ(x)(℘(x) − b1) exp

∫ √
−Qdx

Ξ(x)
.

Then a solution to Eq.(4.37) is written as Λg(x), and it is expressed in the form of the
Hermite-Krichever Ansatz as

Λg(x) = exp(κx)

{
b̄
(0)
0 Φ0(x, α) + b̄

(0)
1

d

dx
Φ0(x, α)

}
(4.42)
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for generic (µ1, b1). The values α and κ are determined as

℘(α) =
2(4b3

1 − b1g2 − g3)b1µ
3
1 + (−24b3

1 + 4g2b1 + 3g3)µ
2
1 + (24b2

1 − 2g2)µ1 − 8b1

2(4b3
1 − b1g2 − g3)µ3

1 − (12b2
1 − g2)µ2

1 + 4
,

(4.43)

℘′(α) =
−4((4b3

1 − b1g2 − g3)µ
3
1 − (12b2

1 − g2)µ
2
1 + 12b1µ1 − 4)

(2(4b3
1 − b1g2 − g3)µ3

1 − (12b2
1 − g2)µ2

1 + 4)2

√
−Q,

κ =
2µ1

2(4b3
1 − b1g2 − g3)µ3

1 − (12b2
1 − g2)µ2

1 + 4

√
−Q.

Hence we have

b1 =
2℘(α)κ3 − 3℘′(α)κ2 + (6℘(α)2 − g2)κ − ℘(α)℘′(α)

2(κ3 − 3℘(α)κ + ℘′(α))
,(4.44)

µ1 =
2(κ3 − 3℘(α)κ + ℘′(α))κ

−2℘′(α)κ3 + (12℘(α)2 − g2)κ2 − 6℘(α)℘′(α)κ + ℘′(α)2
.(4.45)

¿From Proposition 4.2, the function δ1 determined by

℘(δ1) = b1 =(4.46)

2℘(ω)(ζ(ω) − η)3 + 3℘′(ω)(ζ(ω) − η)2 + (6℘(ω)2 − g2)(ζ(ω) − η) + ℘(ω)℘′(ω)

2((ζ(ω) − η)3 − 3℘(ω)(ζ(ω) − η) − ℘′(ω))
,

(ω = C1ω3 − C3ω1, η = C1η3 − C3η1),

is a solution to the sixth Painlevé equation in the elliptic form (see Eq.(4.25)). In the
sixth Painlevé equation, it is known that the case (κ0, κ1, κt, κ∞) = (1/2, 1/2, 1/2, 3/2)
is linked to the case (κ0, κ1, κt, κ∞) = (1/2, 1/2, 1/2, 1/2) by Bäcklund transformation
(see [17]). By transformating the solution in Eq.(4.34) of the case (κ0, κ1, κt, κ∞) =
(1/2, 1/2, 1/2, 1/2) to the one of the case (κ0, κ1, κt, κ∞) = (1/2, 1/2, 1/2, 3/2), we recover
the solution in Eq.(4.46).

Now we consider the case Q = 0. If Q = 0, then µ1 is a solution to the equation
2(4b3

1 − b1g2 − g3)µ
3
1 − (12b2

1 − g2)µ
2
1 +4 = 0 or µ1 = (2b1 + ei)/(2(b2

1 + eib1 + e2
i − g2/4)) for

some i ∈ {1, 2, 3}. We set ω = D1ω3 −D3ω1 and η = D1η3 −D3η1, where D1 and D3 are
constants. For the case that µ1 is a solution to the equation 2(4b3

1− b1g2−g3)µ
3
1− (12b2

1−
g2)µ

2
1 + 4 = 0, the corresponding solutions to the sixth Painlevé equation are written as

the function δ1, where

(4.47) ℘(δ1) = b1 =
4η3 + g2ω

2η − 2g3ω
3

ω(g2ω2 − 12η2)
.

For the case µ1 = (2b1 + ei)/(2(b2
1 + eib1 + e2

i − g2/4)) (i ∈ {1, 2, 3}), we have

(4.48) ℘(δ1) = b1 =
−g2eiω/2 + (6e2

i − g2)η

(6e2
i − g2)ω − 6eiη

.
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5. Summary and concluding remarks

The Heun equation (see Eq.(1.1)) is the standard canonical form of a Fuchsian equation
with four singularities. By transforming the Heun equation to the form of elliptic func-
tions, we find that solving the Heun equation is equivalent to investigating spectral and
eigenstates of quantum BC1 Inozemtsev model (see Eq.(3.1)). Note that the Hamiltonian
of the quantum BC1 Inozemtsev model [4] is given by

(5.1) H = − d2

dx2
+

3∑

i=0

li(li + 1)℘(x + ωi).

On the other hand, by adding an apparent singularity to the Heun equation, we obtain
Fuchsian differential equations that produce the sixth Painlevé equation by monodromy
preserving deformation (see section 4).

The sixth Painlevé equation is rewritten as Eq.(4.12), and it is equivalent to the Hamil-
tonian system (see [10])

2π
√
−1

dδ

dτ
=

∂H
∂γ

, 2π
√
−1

dγ

dτ
= −∂H

∂δ
,(5.2)

H =
1

2

(
γ2 −

3∑

i=0

(li + 1/2)2℘(δ + ωi)

)
.(5.3)

If we replace 2π
√
−1 d

dτ
by d

ds
(s: time variable, independent of τ) formally, we obtain

the classical BC1 Inozemtsev system [4]. In other words, the sixth Painlevé equation is
a non-autonomous version of the classical BC1 Inozemtsev system. To summarize, we
present the following diagram.

Heun equation
(quamtum BC1 Inozemtsev model)

Fuchsian equation with
an apparent singularity

Classical BC1
Inozemtsec model

Sixth Painlevé equation

-
adding apparent
singularity

-
non-autonomous
version

?

classical limit

?

monodromy preserving
deformation

Before starting this work, the author noticed that the parameters, that the monodromy
of solutions to the Heun equation have expressions in terms of elliptic or hyperelliptic
integrals, resemble the ones in the sixth Painlevé equation that has explicit two-parameter
solutions. Typical two-parameter solutions are Picard’s and Hitchin’s solutions. In this
paper, we partially obtain an explanation of this phenomena by intermediating Fuchsian
differential equations with an apparent singularity, though the corresponding parameters
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on the sixth Painlevé equation are a little off as O1 and O1 ∪ O2, where

O1 =

{
(κ0, κ1, κt, κ∞)|κ0, κ1, κt, κ∞ ∈ Z +

1

2

}
,(5.4)

O2 =

{
(κ0, κ1, κt, κ∞)

∣∣∣∣
κ0, κ1, κt, κ∞ ∈ Z
κ0 + κ1 + κt + κ∞ ∈ 2Z

}
.(5.5)

For the case (κ0, κ1, κt, κ∞) ∈ O1, solutions of the linear differential equation are investi-
gated by our method, and solutions of the sixth Painlevé equation follow from them (see
Proposition 4.2). By Bäcklund transformation of the sixth Painlevé equation (see [17]
etc.), Hitchin’s solution (i.e., solutions for the case (κ0, κ1, κt, κ∞) = (1

2
, 1

2
, 1

2
, 1

2
)) is trans-

formed to the solutions for the case (κ0, κ1, κt, κ∞) ∈ O1 ∪ O2. But we cannot obtain
results on integral representation and the Hermite-Krichever Ansatz by our method for
the case (κ0, κ1, κt, κ∞) ∈ O2. Note that the condition (κ0, κ1, κt, κ∞) ∈ O2 corresponds
to the condition l0, . . . , l3 ∈ Z + 1

2
, l0 + l1 + l2 + l3 ∈ 2Z. How can we investigate solutions

and their monodromy of the linear differential equation for the cases l0, . . . , l3 ∈ Z + 1
2
,

l0 + l1 + l2 + l3 ∈ 2Z?

Appendix A. Elliptic form of sixth Painvé equation

We calculate the differentiation of modular functions, which will be used to rewrite the
sixth Painlevé equation.

Proposition A.1. (c.f. [6]) Set ω1 = 1/2, ω3 = τ/2, t = (e3 − e1)/(e2 − e1). Then we
have

dt

dτ
=

(e2 − e1)t(t − 1)

π
√
−1

,(A.1)

d

dτ

(
1

(e2 − e1)1/2

)
=

η1 + e3/2

π
√
−1(e2 − e1)1/2

,(A.2)

d

dτ
((e2 − e1)

α) = −α(2η1 + e3)(e2 − e1)
α

π
√
−1

.(A.3)

Proof. Set u = (z − e1)/(e2 − e1). Then

τ

2
=

∫ (1+τ)/2

1/2

dx =

∫ e2

e1

dz

℘′(x)
(A.4)

=

∫ e2

e1

dz

2
√

(z − e1)(z − e2)(z − e3)
=

1

2(e2 − e1)1/2

∫ 1

0

du√
u(u − 1)(u − t)

,

− 1

2
=

∫ ∞

e1

dz

2
√

(z − e1)(z − e2)(z − e3)
=

1

2(e2 − e1)1/2

∫ ∞

0

du√
u(u − 1)(u − t)

,(A.5)
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By differentiating Eq.(A.4) in variable τ , we have

1

2
=

d

dτ

(
1

2(e2 − e1)1/2

) ∫ 1

0

du√
u(u − 1)(u − t)

(A.6)

+
1

2

(
dt

dτ

)
1

2(e2 − e1)1/2

∫ 1

0

du

(u − t)
√

u(u − 1)(u − t)
,

and it follows from Eq.(A.4) that

1

2(e2 − e1)1/2

∫ 1

0

du

(u − t)
√

u(u − 1)(u − t)
= (e2 − e1)

∫ e2

e1

dz

(℘(x) − e3)℘′(x)
(A.7)

=
e2 − e1

(e3 − e2)(e3 − e1)

∫ (1+τ)/2

1/2

(℘(x + τ/2) − e3)dx

=
e2 − e1

(e3 − e2)(e3 − e1)
(−η(1/2 + τ) + η(1/2 + τ/2) − e3τ/2)

=
e2 − e1

(e3 − e2)(e3 − e1)
(−η3 − e3τ/2).

Hence

1

2
= (e2 − e1)

1/2τ
d

dτ

(
1

2(e2 − e1)1/2

)
+

1

2

(
dt

dτ

)
(e2 − e1)(−η3 − e3τ/2)

(e3 − e2)(e3 − e1)
.(A.8)

Similarly it follows from differentiating Eq.(A.5) that

0 = −(e2 − e1)
1/2 d

dτ

(
1

2(e2 − e1)1/2

)
+

1

2

(
dt

dτ

)
(e2 − e1)(η1 + e3/2)

(e3 − e2)(e3 − e1)
.(A.9)

¿From these equalities we have

(A.10)

(
dt

dτ

)
(e2 − e1)(τη1 − η3)

(e3 − e2)(e3 − e1)
= 1.

By Legendre’s relation η1τ − η3 = π
√
−1 and definition of t, it follows that

(A.11)
dt

dτ
=

(e2 − e1)t(t − 1)

π
√
−1

.

Combining with Eq.(A.9), we obtain that

(A.12)
d

dτ

(
1

(e2 − e1)1/2

)
=

η1 + e3/2

π
√
−1(e2 − e1)1/2

.

The derivation of the function (e2 − e1)
α is calculated as

(A.13)
d

dτ
(e2 − e1)

α = −2α(e2 − e1)
α+1/2 d

dτ

(
1

(e2 − e1)1/2

)
= −α(2η1 + e3)(e2 − e1)

α

π
√
−1

.
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Proposition A.2. Set g2 = −4(e1e2 + e2e3 + e3e1). We have

dei

dτ
=

−2η1ei + e2
i − g2/6

π
√
−1

,(A.14)

for i = 1, 2, 3.

Proof. It follows from Proposition A.1 that

(A.15)
d

dτ
(e2 − e1)

±1 = ∓(2η1 + e3)(e2 − e1)
±1

π
√
−1

.

Combining with Eq.(A.1), we obtain that

(A.16)
d

dτ
(e3 − e1) = −(2η1 + e2)(e3 − e1)

π
√
−1

.

By adding two functions, we have

(A.17)
d

dτ
(−3e1) = −−6e1η1 + 2e2e3 − e2

1

π
√
−1

.

Hence, we obtain Eq.(A.14) for the case i = 1. Eq.(A.14) for the case i = 2 (resp. i = 3)
follows from Eqs.(A.17, A.15) (resp. Eqs.(A.17, A.16)).

Proposition A.3.

(A.18)
dη1

dτ
=

−η2
1 + g2/48

π
√
−1

.

Proof. It follows similarly to Eq.(A.7) that

(A.19)
1

2

∫ ∞

0

du

(u − t)
√

u(u − 1)(u − t)
=

(e2 − e1)
3/2

(e3 − e2)(e3 − e1)
(η1 + e3/2).

We differentiate Eq.(A.19) in t. From the l.h.s, we have

3

2

∫ ∞

0

du

2(u − t)2
√

u(u − 1)(u − t)
=

3

2

(e2 − e1)
5/2

(e3 − e2)2(e3 − e1)2

∫ 0

1/2

(℘(x + τ/2) − e3)
2dx,

∫ 0

1/2

(℘(x + τ/2) − e3)
2dx =

∫ 0

1/2

(
℘′′(x + τ/2)2

6
− 2e3℘(x + τ/2) + e2

3 +
g2

12

)
dx

= −2e3η1 −
1

2

(
e2
3 +

g2

12

)
.

¿From the r.h.s, we have

(e2 − e1)
3/2

(e3 − e2)2(e3 − e1)2

{(
η1 +

e3

2

) (
η1 −

5e3

2

)
+ π

√
−1

d

dτ

(
η1 +

e3

2

)}
.

Hence, we obtain

(A.20)
d

dτ

(
η1 +

e3

2

)
=

1

π
√
−1

{
−η2 − η1e3 +

e2
3

2
− g2

16

}
,

and Eq.(A.18).
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We now we show that the sixth Painlevé equation (see Eq.(1.3)) can be rewritten to an
elliptic form (see Eq.(4.12)).

Proposition A.4. [6] Set

(A.21) ω1 = 1/2, ω3 = τ/2, t =
e3 − e1

e2 − e1

, λ =
℘(δ) − e1

e2 − e1

.

Then the sixth Painlevé equation

d2λ

dt2
=

1

2

(
1

λ
+

1

λ − 1
+

1

λ − t

)(
dλ

dt

)2

−
(

1

t
+

1

t − 1
+

1

λ − t

)
dλ

dt
(A.22)

+
λ(λ − 1)(λ − t)

t2(t − 1)2

{
κ2
∞
2

− κ2
0

2

t

λ2
+

κ2
1

2

(t − 1)

(λ − 1)2
+

(1 − κ2
t )

2

t(t − 1)

(λ − t)2

}

is equivalent to the equation
(A.23)

d2δ

dτ 2
= − 1

4π2

{
κ2
∞
2

℘′ (δ) +
κ2

0

2
℘′

(
δ +

1

2

)
+

κ2
1

2
℘′

(
δ +

τ + 1

2

)
+

κ2
t

2
℘′

(
δ +

τ

2

)}
.

Proof. It follows from the relation λ = (℘(δ) − e1)/(e2 − e1) that

(A.24) δ =

∫ δ

0

dx =

∫ λ

∞

e2 − e1

℘′(x)
du =

1

2(e2 − e1)1/2

∫ λ

∞

du√
u(u − 1)(u − t)

.

We differentiate Eq.(A.24) by the variable τ . Then we have

dδ

dτ
=

η1 + e3/2

π
√
−1

δ +
(e2 − e1)

1/2t(t − 1)

2π
√
−1

{
dλ

dt

1√
λ(λ − 1)(λ − t)

(A.25)

+
1

2

∫ λ

∞

du

(u − t)
√

u(u − 1)(u − t)

}
.

Note that we used Proposition A.1. We differentiate Eq.(A.25) once more. By applying
formulae on the differentiation of modular functions, we obtain that

d2δ

dτ 2
=

t2(t − 1)2(e1 − e3)
3/2

−2π2

[
1√

λ(λ − 1)(λ − t)

{
d2λ

dt2
(A.26)

−1

2

(
1

λ
+

1

λ − 1
+

1

λ − t

)(
dλ

dt

)2

+

(
1

t
+

1

t − 1
+

1

λ − t

)
dλ

dt

}

+
1

4t(t − 1)

∫ λ

∞

(u2 + 2tu − 2u − t)du

(u − t)2
√

u(u − 1)(u − t)

]
,

and we have

(A.27)

∫ λ

∞

(u2 + 2tu − 2u − t)du

(u − t)2
√

u(u − 1)(u − t)
= −2

√
λ(λ − 1)

(λ − t)3
.
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It follows from λ = (℘(δ) − e1)/(e2 − e1) that

℘′(δ) = 2(e1 − e2)
3/2

√
λ(λ − 1)(λ − t),

℘′(δ + 1/2)

℘′(δ)
= − t

λ2
,(A.28)

℘′(δ + (τ + 1)/2)

℘′(δ)
=

t − 1

(λ − 1)2
,

℘′(δ + τ/2)

℘′(δ)
=

t(1 − t)

(λ − t)2
.

By combining Eqs.(A.26-A.28), we obtain the equivalence of Eq.(A.22) and Eq.(A.23).
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