q-difference shift for van Diejen's BC_n type Jackson integral arising from 'elementary' symmetric polynomials *

Masahiko Ito

Abstract

We study a q-difference equation of a BC_n type Jackson integral, which is a multiple q-series generalized from a q-analogue of Selberg's integral. The equation is characterized by some new symmetric polynomials defined via the symplectic Schur functions. As an application of it, we give another proof of a product formula for the BC_n type Jackson integral, which is equivalent to the so-called q-Macdonald-Morris identity for the root system BC_n first obtained by Gustafson and van Diejen.

1 Introduction

As it is known, the beta integral

$$B(\alpha,\beta) := \int_0^1 z^{\alpha-1} (1-z)^{\beta-1} dz$$
 (1)

is written as the following product of the gamma functions $\Gamma(\alpha)$:

$$B(\alpha,\beta) = \frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha+\beta)}.$$
(2)

Since the gamma function satisfies $\Gamma(\alpha + 1) = \alpha \Gamma(\alpha)$, we easily see the following recurrence relations:

$$B(\alpha+1,\beta) = \frac{\alpha}{\alpha+\beta}B(\alpha,\beta), \quad B(\alpha,\beta+1) = \frac{\beta}{\alpha+\beta}B(\alpha,\beta).$$
(3)

We regard these relations as difference equations with respect to parameters. Among the solutions of (3), the beta function $B(\alpha, \beta)$ is characterized by the following asymptotic behavior:

$$B(\alpha + N, \beta + N) \sim 2^{-\alpha - \beta + 1 - 2N} \sqrt{\pi/N} \qquad (N \to +\infty).$$
(4)

Conversely, we can recover the formula (2) from (3) and (4). Since

$$B(\alpha+1,\beta) = \int_0^1 z\Phi(z)dz \quad \text{or} \quad B(\alpha,\beta+1) = \int_0^1 \Phi(z)dz - \int_0^1 z\Phi(z)dz,$$

*This work was supported in part by Grant-in-Aid for Scientific Research (C) no.15540045 of the Ministry of Education, Culture, Sports, Science and Technology, Japan.

where $\Phi(z)$ denotes the integrand $z^{\alpha-1}(1-z)^{\beta-1}$, if we want to have the recurrence relations (3) without using (2), we usually prove the following relation from the definition (1) using integration by part:

$$\int_0^1 z \Phi(z) dz = \frac{\alpha}{\alpha + \beta} \int_0^1 \Phi(z) dz,$$

which provides the equation between the integral (1) and that multiplied by a monomial z to the integrand $\Phi(z)$.

Next we consider the following q-Selberg integral [4, 6, 7, 10, 18, 20] defined by using the Jackson integral which is a sum over the lattice \mathbb{Z}^n (For the definition of the Jackson integral, see Section 3):

$$S_q(\alpha,\beta,\tau;\xi) := \int_0^{\xi\infty} \Phi_{\mathcal{S}_n}(z) \Delta_{\mathcal{S}_n}(z) \overline{\omega}_q, \quad \overline{\omega}_q = \frac{d_q z_1}{z_1} \cdots \frac{d_q z_n}{z_n}$$

where the integrand is defined by

$$\Phi_{\mathcal{S}_n}(z) := \prod_{i=1}^n z_i^{\alpha} \frac{(qz_i)_{\infty}}{(bz_i)_{\infty}} \prod_{1 \le j < k \le n} z_k^{2\tau} \frac{(qt^{-1}z_j/z_k)_{\infty}}{(tz_j/z_k)_{\infty}}$$
$$\Delta_{\mathcal{S}_n}(z) := \prod_{1 \le j < k \le n} (z_k - z_j)$$

and $q^{\alpha} = a, q^{\beta} = b, q^{\tau} = t$. Let $\eta \in (\mathbb{C}^*)^n$ be the point defined by

$$\eta := (t^{n-1}, t^{n-2}, ..., t, 1).$$

For the Jackson integral $S_q(\alpha, \beta, \tau; \xi)$, if we put $\xi = \eta$ and take the limit $q \to 1$, then the sum $S_q(\alpha, \beta, \tau; \eta)$ becomes the following so-called Selberg integral:

$$S(\alpha, \beta, \tau) = \int_{0 \le z_1 \le \dots \le z_n \le 1} \prod_{i=1}^n z_i^{\alpha - 1} (1 - z_i)^{\beta - 1} \Delta_{\mathcal{S}_n}(z)^{2\tau} dz_1 \dots dz_n$$
(5)

e.,

which can be expressed as a product of gamma functions as

$$S(\alpha,\beta,\tau) = \prod_{i=1}^{n} \frac{\Gamma(i\tau)\Gamma(\alpha+(n-i)\tau)\Gamma(\beta+(n-i)\tau)}{\Gamma(\tau)\Gamma(\alpha+\beta+(2n-i-1)\tau)}.$$

The Selberg integral (5) is nothing but the beta function if n = 1. For the q-Selberg integral $S_q(\alpha, \beta, \tau; \xi)$, it is also possible to express it as a product of q-gamma functions by using its q-difference equation and its asymptotic behavior. To carry it out we need the q-difference equation first. According to Aomoto [3], the following formula is known:

Proposition 1.1 Let
$$e_i(z)$$
, $0 \le i \le n$, be the ith elementary symmetric polynomial, i.
 $e_i(z) = \sum_{1 \le j_1 < \ldots < j_i \le n} z_{j_1} z_{j_2} \ldots z_{j_i}$. Then

$$\int_0^{\xi \infty} e_i(z) \Phi_{\mathcal{S}_n}(z) \Delta_{\mathcal{S}_n}(z) \varpi_q$$

$$= t^{i-1} \frac{(1-t^{n-i+1})(1-at^{n-i})}{(1-t^i)(1-abt^{2n-i-1})} \int_0^{\xi \infty} e_{i-1}(z) \Phi_{\mathcal{S}_n}(z) \Delta_{\mathcal{S}_n}(z) \varpi_q.$$

q-difference shift

Since $S_q(\alpha + 1, \beta, \tau; \xi) = \int_0^{\xi \infty} z_1 z_2 \dots z_n \Phi_{S_n}(z) \Delta_{S_n}(z) \varpi_q$, we easily have the following *q*-difference equation by repeated use of Proposition 1.1:

$$S_q(\alpha+1,\beta,\tau;\xi) = \prod_{i=1}^n \frac{t^{i-1}(1-at^{n-i})}{(1-abt^{2n-i-1})} S_q(\alpha,\beta,\tau;\xi),$$
(6)

which can be found in [20] and in [1, 2] for the case $\xi = \eta$ and $q \to 1$. For the q-Selberg integral $S_q(\alpha, \beta, \tau; \xi)$, we can construct its product expression of q-gamma functions from its q-difference equation (6) and asymptotic behavior of $S_q(\alpha + N, \beta, \tau; \eta)$ at $N \to +\infty$. (For explicit form of it, see [4, 20].)

In this paper we discuss a structure of product expression of a multiple sum generalized from the q-Selberg integral. We call it the BC_n type Jackson integral (See Section 3 for its definition). Like the q-Selberg integral case, for the BC_n type Jackson integral there also exist symmetric polynomials $e'_i(z)$ of middle degree $i, 0 \le i \le n$, such that they interpolate a q-difference equation with respect to the parameter shift $a_1 \rightarrow qa_1$ as follows:

Theorem 1.2 There exist symmetric Laurent polynomials $e'_i(z)$ of degree $i, 0 \le i \le n$, such that

$$\int_{0}^{\xi \infty} e_{i}'(z) \Phi_{B_{n}}(z) \Delta_{C_{n}}(z) \varpi_{q}$$

= $-\frac{t^{i-1}(1-t^{n-i+1}) \prod_{k=2}^{4} (1-a_{k}a_{1}t^{n-i})}{t^{n-i}(1-t^{i})a_{1}(1-a_{1}a_{2}a_{3}a_{4}t^{2n-i-1})} \int_{0}^{\xi \infty} e_{i-1}'(z) \Phi_{B_{n}}(z) \Delta_{C_{n}}(z) \varpi_{q}.$

Considering an analogy to Proposition 1.1, we call the polynomials $e'_i(z)$ the 'elementary' symmetric polynomials, which are different from the symplectic Schur functions $\chi_{(1^i)}(z)$ though the polynomials $\chi_{(1^i)}(z)$ are sometimes called the elementary symmetric polynomials. (See Section 2 for the definition of $\chi_{(1^i)}(z)$). Moreover, the explicit forms of them are the following (Note the number of variables in the RHS):

$$\begin{aligned} e_0'(z) &= 1, \\ e_1'(z) &= \chi_{(1)}(z_1, z_2, ..., z_n) - \chi_{(1)}(a_1, a_1 t, ..., a_1 t^{n-1}), \\ e_2'(z) &= \chi_{(1^2)}(z_1, z_2, ..., z_n) \\ &- \chi_{(1)}(z_1, z_2, ..., z_n) \chi_{(1)}(a_1, a_1 t, ..., a_1 t^{n-2}) \\ &+ \chi_{(2)}(a_1, a_1 t, ..., a_1 t^{n-2}), \\ &\vdots \\ e_i'(z) &= \sum_{j=0}^i (-1)^j \chi_{(1^{i-j})}(\underbrace{z_1, z_2, ..., z_n}_n) \chi_{(j)}(\underbrace{a_1, a_1 t, ..., a_1 t^{n-i}}_{n-i+1}), \\ &\vdots \\ e_n'(z) &= \sum_{j=0}^n (-1)^j \chi_{(1^{n-j})}(z_1, z_2, ..., z_n) \chi_{(j)}(a_1). \end{aligned}$$

This paper is organized as follows. In Section 2, we first state a relation between the symplectic Schur functions $\chi_{(1^i)}(z)$ and $\chi_{(j)}(z)$. The relation is used in Section 4 for proving a property of the 'elementary' symmetric function. In Section 3, we introduce the BC_n type Jackson integral and its *truncated* case. In Section 4, we define the 'elementary' symmetric function for the BC_n type Jackson integral. Section 5 is devoted to the proof of Theorem 1.2, which is a main result of this paper. In Section 6, as a corollary of Theorem 1.2, we construct a product formula for the BC_n type Jackson integral as if we recover the product expression (2) of the beta function from q-difference equations (3) and asymptotic behavior (4). This is to be another proof of the product formula, which is equivalent to the so-called q-Macdonald-Morris identity [21, 25] for the root system BC_n first obtained by Gustafson [9] and van Diejen [26]. (See also [16, 23] for relations between q-Macdonald-Morris identities and the Jackson integrals associated with root systems.)

Throughout this paper we use the notations $(x)_{\infty} := \prod_{i=0}^{\infty} (1 - q^i x)$ and $(x)_N := (x)_{\infty}/(q^N x)_{\infty}$ where 0 < q < 1.

2 Symplectic Schur functions $\chi_{\lambda}(z)$

Before introducing the BC_n type Jackson integral, we prove Proposition 2.4, which will be used technically when we state a property of the 'elementary' symmetric polynomials in Section 4. The formula in Proposition 2.4 indicates some relation among the symplectic Schur functions $\chi_{\lambda}(z)$. The relation is very similar to those between the elementary symmetric functions and the complete symmetric functions (see [8, 22] for instance).

2.1 Definition of the symplectic Schur functions $\chi_{\lambda}(z)$

Let $\mathcal{A}_{(i_1,i_2,\ldots,i_n)}(z)$ be the function of $z \in (\mathbf{C}^*)^n$ defined in the form of the following determinant:

$$\mathcal{A}_{(i_1,i_2,...,i_n)}(z) := \det \left(z_j^{i_k} - z_j^{-i_k} \right)_{1 \le j,k \le n}$$

for $(i_1, i_2, ..., i_n) \in \mathbf{Z}^n$. For example,

$$\mathcal{A}_{(3,2,1)}(z_1, z_2, z_3) = \begin{vmatrix} z_1^3 - z_1^{-3} & z_2^3 - z_2^{-3} & z_3^3 - z_3^{-3} \\ z_1^2 - z_1^{-2} & z_2^2 - z_2^{-2} & z_3^2 - z_3^{-2} \\ z_1 - z_1^{-1} & z_2 - z_2^{-1} & z_3 - z_3^{-1} \end{vmatrix},$$
$$\mathcal{A}_{(5,2)}(z_1, z_2) = \begin{vmatrix} z_1^5 - z_1^{-5} & z_2^5 - z_2^{-5} \\ z_1^2 - z_1^{-2} & z_2^2 - z_2^{-2} \end{vmatrix} \text{ and so on.}$$

Let W_{C_n} be the Weyl group of type C_n , which is isomorphic to $(\mathbf{Z}/2\mathbf{Z})^n \rtimes S_n$ where S_n is the symmetric group of *n*th order. W_{C_n} is generated by the following transformations of the coordinates $(z_1, z_2, ..., z_n) \in (\mathbf{C}^*)^n$:

$$\begin{array}{lll} (z_1, z_2, ..., z_n) & \to & (z_1^{-1}, z_2, ..., z_n), \\ (z_1, z_2, ..., z_n) & \to & (z_{\sigma(1)}, z_{\sigma(2)}, ..., z_{\sigma(n)}) & \sigma \in \mathcal{S}_n. \end{array}$$

For a function f(z) of $z \in (\mathbf{C}^*)^n$, we denote by $\mathcal{A}f(z)$ the alternating sum over W_{C_n} defined by

$$\mathcal{A}f(z) := \sum_{w \in W_{C_n}} (\operatorname{sgn} w) w f(z).$$

q-difference shift

In particular, by definition of determinant, $\mathcal{A}_{(i_1,i_2,\ldots,i_n)}(z)$ is expanded as the following alternating sum of the monomial $z_1^{i_1} z_2^{i_2} \ldots z_n^{i_n}$:

$$\mathcal{A}_{(i_1, i_2, \dots, i_n)}(z) = \mathcal{A}(z_1^{i_1} z_2^{i_2} \dots z_n^{i_n})$$

for $(i_1, i_2, ..., i_n) \in \mathbf{Z}^n$. This implies that

$$\mathcal{A}_{\rho}(z) = \prod_{i=1}^{n} (z_i - z_i^{-1}) \prod_{1 \le j < k \le n} \frac{(z_k - z_j)(1 - z_j z_k)}{z_j z_k}$$
(7)

where

$$\rho := (n, n - 1, ..., 2, 1) \in \mathbf{Z}^n,$$

which is the so-called Weyl denominator formula. Let ${\cal P}$ be the set of partitions defined by

$$P := \{ (\lambda_1, \lambda_2, ..., \lambda_n) \in \mathbf{Z}^n ; \lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_n \ge 0 \}.$$

For $\lambda = (\lambda_1, \lambda_2, ..., \lambda_n) \in P$, we define the symplectic Schur function $\chi_{\lambda}(z)$ as follows:

$$\chi_{\lambda}(z) := \frac{\mathcal{A}_{\lambda+\rho}(z)}{\mathcal{A}_{\rho}(z)} = \frac{\mathcal{A}_{(\lambda_1+n,\lambda_2+n-1,\dots,\lambda_{n-1}+2,\lambda_n+1)}(z)}{\mathcal{A}_{(n,n-1,\dots,2,1)}(z)},$$

which occurs in the Weyl character formula. For $\lambda = (\lambda_1, \lambda_2, ..., \lambda_n) \in P$, if we denote by m_i the multiplicity of i in λ , i.e., $m_i = \#\{j; \lambda_j = i\}$, it is convenient to use the notations

$$\lambda = (1^{m_1} 2^{m_2} \dots r^{m_r} \dots)$$
 and $\chi_{\lambda}(z) = \chi_{(1^{m_1} 2^{m_2} \dots r^{m_r} \dots)}(z).$

For example, we use them like $\chi_{(2,1,1,0)}(z_1, z_2, z_3, z_4) = \chi_{(1^22)}(z_1, z_2, z_3, z_4)$.

2.2 A relation among $\chi_{\lambda}(z)$

For i = 0, 1, 2, ..., n, we define the determinant $D_i^{(n)}(z, y)$ of a matrix of degree n + i + 1 as follows:

$$D_i^{(n)}(z,y) := \begin{vmatrix} A_{n+1,n}(z) & A_{n+1,i+1}(y) \\ A_{i,n}(z) & -A_{i,i+1}(y) \end{vmatrix}$$

where $A_{\mu,\nu}(z)$ is the $\mu \times \nu$ matrix defined by

$$A_{\mu,\nu}(z) := \begin{pmatrix} z_1^{\mu} - z_1^{-\mu} & z_2^{\mu} - z_2^{-\mu} & \cdots & z_{\nu}^{\mu} - z_{\nu}^{-\mu} \\ z_1^{\mu-1} - z_1^{-(\mu-1)} & z_2^{\mu-1} - z_2^{-(\mu-1)} & \cdots & z_{\nu}^{\mu-1} - z_{\nu}^{-(\mu-1)} \\ \vdots & \vdots & \ddots & \vdots \\ z_1^2 - z_1^{-2} & z_2^2 - z_2^{-2} & \cdots & z_{\nu}^2 - z_{\nu}^{-2} \\ z_1 - z_1^{-1} & z_2 - z_2^{-1} & \cdots & z_{\nu} - z_{\nu}^{-1} \end{pmatrix}$$

Lemma 2.1 The determinant $D_i^{(n)}(z, y)$ is divided out by

$$\sum_{k=i+1}^{n+1} (-1)^{k+1} \mathcal{A}_{(n+1,n,n-1,\dots,k+1,k-1,\dots,2,1)}(z_1,\dots,z_n) \\ \times \mathcal{A}_{(k,i,i-1,i-2,\dots,2,1)}(y_1,\dots,y_{i+1}).$$
(8)

Proof. Separating (n+1) columns of $D_i^{(n)}(z, y)$ into two parts which are the forward part to the *n*th column and that backward from the n+1 one, we have a Laplace expansion (8) of $D_i^{(n)}(z, y)$ by minors of sizes n and i+1 up to constant. \square

Corollary 2.2 The following holds for $\chi_{\lambda}(z)$ and $\mathcal{A}_{\rho}(z)$:

$$\frac{\mathcal{A}_{(n+1,n,\dots,1)}(z_1,z_2,\dots,z_n,z_{n+1})}{\mathcal{A}_{(n,n-1,\dots,1)}(z_1,\dots,z_n)\mathcal{A}_{(1)}(z_{n+1})} = \sum_{j=0}^n (-1)^j \chi_{(1^{n-j})}(z_1,\dots,z_n)\chi_{(j)}(z_{n+1})$$

Proof. If we put $y_1 = z_{n+1}$ for $D_0^{(n)}(z, y)$, then

$$D_0^{(n)}(z,y) = \mathcal{A}_{(n+1,n,\dots,1)}(z_1, z_2, \dots, z_n, z_{n+1}).$$
(9)

On the other hand, from Lemma 2.1, we have

$$D_0^{(n)}(z,y)$$

$$= \sum_{k=1}^{n+1} (-1)^{k+1} \mathcal{A}_{(n+1,n,n-1,\dots,k+1,k-1,\dots,2,1)}(z_1,\dots,z_n) \mathcal{A}_{(k)}(y_1).$$
(10)

From (9) and (10), it follows that

$$\mathcal{A}_{(n+1,n,\dots,1)}(z_1, z_2, \dots, z_n, z_{n+1})$$

$$= \sum_{k=1}^{n+1} (-1)^{k+1} \mathcal{A}_{(n+1,n,n-1,\dots,k+1,k-1,\dots,2,1)}(z_1,\dots,z_n) \mathcal{A}_{(k)}(z_{n+1}).$$
(11)

Dividing both sides of (11) by $\mathcal{A}_{(n,n-1,\dots,1)}(z_1,\dots,z_n)\mathcal{A}_{(1)}(z_{n+1})$, we obtain Corollary 2.2.

Lemma 2.3 If we put $y_j = z_j$ for all $j \in \{1, 2, ..., i + 1\}$, then $D_i^{(n)}(z, z) = 0$.

Proof. Set $y_j = z_j$ $(1 \le j \le i+1)$. For the determinant

$$D_i^{(n)}(z,z) = \begin{vmatrix} A_{n+1,n}(z) & A_{n+1,i+1}(z) \\ A_{i,n}(z) & -A_{i,i+1}(z) \end{vmatrix},$$

if we subtract the *j*th column from the (n+j)th one for j = 1, 2, ..., i+1, by the elementary column operations, we have

$$D_{i}^{(n)}(z,z) = \begin{vmatrix} A_{n+1,n}(z) & O \\ A_{i,n}(z) & -2A_{i,i+1}(z) \end{vmatrix}$$
$$= (-2)^{i+1} \begin{vmatrix} A_{n+1,n}(z) & O \\ A_{i,n}(z) & A_{i,i+1}(z) \end{vmatrix}$$

Moreover, since the rank of the $i \times (i+1)$ matrix $A_{i,i+1}(z)$ is less than or equal to *i*, after the processes of the elementary column operations the matrix $A_{i,i+1}(z)$ can be deformed into an $i \times (i+1)$ matrix B which has at least one column consisting of zeros only. Thus, the determinant

$$\begin{vmatrix} A_{n+1,n}(z) & O \\ A_{i,n}(z) & A_{i,i+1}(z) \end{vmatrix}$$
$$\begin{vmatrix} A_{n+1,n}(z) & O \\ A_{i,n}(z) & B \end{vmatrix},$$

is divided out by

which has the column consisting of zeros and is equal to zero. This implies $D_i^{(n)}(z,z) = 0$, which completes the proof.

Proposition 2.4 The following holds for i = 0, 1, 2, ..., n:

$$\sum_{j=0}^{i} (-1)^{j} \chi_{(1^{i-j})}(z_1, z_2, ..., z_n) \chi_{(j)}(z_1, z_2, ..., z_{n-i+1}) = \begin{cases} 0 & (i \neq 0), \\ 1 & (i = 0). \end{cases}$$

Proof. From Lemma 2.3 and 2.1, it follows that

$$\sum_{k=i+1}^{n+1} (-1)^{k+1} \mathcal{A}_{(n+1,n,n-1,\dots,k+1,k-1,\dots,2,1)}(z_1,\dots,z_n) \\ \times \mathcal{A}_{(k,i,i-1,i-2,\dots,2,1)}(z_1,\dots,z_{i+1}) = 0.$$
(12)

Divide both sides of (12) by $\mathcal{A}_{(n,n-1,\dots,1)}(z_1,\dots,z_n)\mathcal{A}_{(i+1,i,\dots,1)}(z_1,\dots,z_{i+1})$. Exchanging i with n-i, we obtain Proposition 2.4. \square

3 Definition of BC_n type Jackson integral

For $z = (z_1, z_2, ..., z_n) \in (\mathbf{C}^*)^n$, we set

$$\Phi_{B_n}(z) := \prod_{i=1}^n \prod_{m=1}^4 z_i^{1/2 - \alpha_m} \frac{(q a_m^{-1} z_i)_\infty}{(a_m z_i)_\infty} \\ \times \prod_{1 \le j < k \le n} z_j^{1 - 2\tau} \frac{(q t^{-1} z_j / z_k)_\infty}{(t z_j / z_k)_\infty} \frac{(q t^{-1} z_j z_k)_\infty}{(t z_j z_k)_\infty},$$
$$\Delta_{C_n}(z) := \prod_{i=1}^n \frac{1 - z_i^2}{z_i} \prod_{1 \le j < k \le n} \frac{(1 - z_j / z_k)(1 - z_j z_k)}{z_j}$$

where $q^{\alpha_m} = a_m, q^{\tau} = t$. We abbreviate $\Phi_{B_n}(z)$ and $\Delta_{C_n}(z)$ to $\Phi(z)$ and $\Delta(z)$ respectively. Weyl's denominator formula (7) says

$$\Delta(z) = (-1)^n \mathcal{A}_{(n,n-1,\dots,1)}(z).$$
(13)

For an arbitrary $\xi = (\xi_1, \xi_2, ..., \xi_n) \in (\mathbf{C}^*)^n$, we define the *q*-shift $\xi \to q^{\nu}\xi$ by a lattice point $\nu = (\nu_1, \nu_2, ..., \nu_n) \in \mathbf{Z}^n$, where

$$q^{\nu}\xi := (q^{\nu_1}\xi_1, q^{\nu_2}\xi_2, ..., q^{\nu_n}\xi_n) \in (\mathbf{C}^*)^n.$$

For $\xi = (\xi_1, \xi_2, ..., \xi_n) \in (\mathbf{C}^*)^n$ and a function h(z) of $z \in (\mathbf{C}^*)^n$, we define the sum over the lattice \mathbf{Z}^n by

$$\int_{0}^{\xi_{1}\infty} \int_{0}^{\xi_{n}\infty} h(z) \, \frac{d_{q}z_{1}}{z_{1}} \cdots \frac{d_{q}z_{n}}{z_{n}} := (1-q)^{n} \sum_{\nu \in \mathbf{Z}^{n}} h(q^{\nu}\xi), \tag{14}$$

which we call the *Jackson integral* if it converges. We abbreviate the LHS of (14) to $\int_0^{\xi \infty} h(z) \, \varpi_q$. We now define the Jackson integral whose integrand is $\Phi(z)\Delta(z)$ as follows:

$$J(\xi) := \int_0^{\xi\infty} \Phi(z) \Delta(z) \varpi_q, \tag{15}$$

which converges if

 $|a_1 a_2 a_3 a_4 t^{n+i-2}| > q$ for i = 1, 2, ..., n

and

$$\begin{cases} t\xi_j/\xi_k, t\xi_j\xi_k \notin \{q^l ; l \in \mathbf{Z}\} & \text{for} \quad 1 \le j < k \le n, \\ a_m\xi_i \notin \{q^l ; l \in \mathbf{Z}\} & \text{for} \quad 1 \le m \le 4, \ 1 \le i \le n. \end{cases}$$

We call the sum $J(\xi)$ the BC_n type Jackson integral. The sum $J(\xi)$ is invariant under the shifts $\xi \to q^{\nu}\xi$ for $\nu \in \mathbb{Z}^n$.

Since $(q^{1+m})_{\infty} = 0$ if m is a negative integer, for the special point

$$\zeta := (t^{n-1}a_1, t^{n-2}a_1, ..., ta_1, a_1) \in (\mathbf{C}^*)^n,$$

it follows that

$$\Phi(q^{\nu}\zeta) = 0 \quad \text{if} \quad \nu \notin D$$

where D forms the cone in the lattice \mathbf{Z}^n defined by

$$D := \{ \nu \in \mathbf{Z}^n ; \nu_1 - \nu_2 \ge 0, \nu_2 - \nu_3 \ge 0, ..., \nu_{n-1} - \nu_n \ge 0 \text{ and } \nu_n \ge 0 \}.$$

This implies that $J(\zeta)$ is written as a sum over the cone D as follows:

$$J(\zeta) = (1-q)^n \sum_{\nu \in D} \Phi(q^\nu \zeta) \Delta(q^\nu \zeta)$$
(16)

We call its Jackson integral summed over D truncated. We just write

$$J(\zeta) = \int_0^{\zeta} \Phi(z) \Delta(z) \varpi_{q}$$

omitting the notation ∞ in its region only if $\xi = \zeta$.

Let $\Theta(\xi)$ be the function defined by

$$\Theta(\xi) := \prod_{i=1}^{n} \frac{\xi_i \,\theta(\xi_i^2)}{\prod_{m=1}^{4} \xi_i^{\alpha_m} \theta(a_m \xi_i)} \prod_{1 \le j < k \le n} \frac{\theta(\xi_j / \xi_k) \theta(\xi_j \xi_k)}{\xi_j^{2\tau} \theta(t \xi_j / \xi_k) \theta(t \xi_j \xi_k)} \tag{17}$$

where $\theta(x) := (x)_{\infty}(q/x)_{\infty}$. We state a lemma for the subsequent section.

Lemma 3.1 The Jackson integral $J(\xi)$ is expressed as

$$J(\xi) = C \,\Theta(\xi) \tag{18}$$

where C is a constant not depending on $\xi \in (\mathbf{C}^*)^n$

Proof. See [14].

We will discuss the constant C later in Section 6.

4 'Elementary' symmetric polynomials $e'_i(z)$

For i = 0, 1, 2, 3, ..., n, we define the following symmetric polynomials in terms of $\chi_{\lambda}(z)$:

$$e_i'(z) := \sum_{j=0}^i (-1)^j \chi_{(1^{i-j})}(\underbrace{z_1, z_2, \dots, z_n}_n) \chi_{(j)}(\underbrace{a_1, a_1 t, \dots, a_1 t^{n-i}}_{n-i+1}),$$
(19)

which we call the *ith 'elementary' symmetric polynomials* as we mentioned in Introduction. In particular,

Lemma 4.1 The product expression of the nth 'elementary' symmetric polynomial $e'_n(z)$ is the following:

$$e'_{n}(z) = \prod_{i=1}^{n} \frac{(a_{1} - z_{i})(1 - a_{1}z_{i})}{a_{1}z_{i}}.$$
(20)

Proof. By using Weyl's denominator formula (7), we have

$$\prod_{i=1}^{n} \frac{(a_1 - z_i)(1 - a_1 z_i)}{a_1 z_i} = \frac{\mathcal{A}_{(n+1,n,\dots,1)}(z_1, z_2, \dots, z_n, a_1)}{\mathcal{A}_{(n,n-1,\dots,1)}(z_1, \dots, z_n)\mathcal{A}_{(1)}(a_1)}$$
(21)

Taking $z_{n+1} = a_1$ at Corollary 2.2, we have

$$\frac{\mathcal{A}_{(n+1,n,\dots,1)}(z_1, z_2, \dots, z_n, a_1)}{\mathcal{A}_{(n,n-1,\dots,1)}(z_1, \dots, z_n)\mathcal{A}_{(1)}(a_1)} = \sum_{j=0}^n (-1)^j \chi_{(1^{n-j})}(z_1, \dots, z_n)\chi_{(j)}(a_1)
= e'_n(z).$$
(22)

From (21) and (22), we have (20). \Box

Let x be a real number satisfying x > 0. For i = 1, 2, 3, ..., n + 1, we set

$$\zeta_i = (\zeta_{i1}, \zeta_{i2}, \dots, \zeta_{in}) \in (\mathbf{C}^*)^n, \tag{23}$$

where

$$\zeta_{ij} := \begin{cases} x^{i-j} & \text{if} \quad 1 \le j < i, \\ t^{n-j}a_1 & \text{if} \quad i \le j \le n. \end{cases}$$

M. ITO

The explicit expression of ζ_i is the following:

$$\begin{split} \zeta_1 &= (t^{n-1}a_1, t^{n-2}a_1, \dots, ta_1, a_1), \\ \zeta_2 &= (x, t^{n-2}a_1, t^{n-3}a_1, \dots, ta_1, a_1), \\ \zeta_3 &= (x^2, x, t^{n-3}a_1, t^{n-4}a_1, \dots, ta_1, a_1), \\ &\vdots \\ \zeta_n &= (x^{n-1}, \dots, x^2, x, a_1), \\ \zeta_{n+1} &= (x^n, x^{n-1}, \dots, x^2, x). \end{split}$$

In particular, the point $\zeta_1 \in (\mathbf{C}^*)^n$ is nothing but $\zeta \in (\mathbf{C}^*)^n$ which is defined in Section 3.

Lemma 4.2 If $1 \le j \le i \le n$, then

$$e'_i(z_1, z_2, ..., z_{j-1}, a_1 t^{n-j}, a_1 t^{n-j-1}, ..., a_1 t, a_1) = 0.$$

Proof. Since $\chi_{\lambda}(z)$ is symmetric, by definition (19), we have

$$e'_{i}(z_{1}, z_{2}, ..., z_{j-1}, a_{1}t^{n-j}, a_{1}t^{n-j-1}, ..., a_{1}t, a_{1})$$

$$= \sum_{k=0}^{i} (-1)^{k} \chi_{(1^{i-k})}(z_{1}, z_{2}, ..., z_{j-1}, a_{1}t^{n-j}, a_{1}t^{n-j-1}, ..., a_{1}t, a_{1})$$

$$\times \chi_{(k)}(a_{1}, a_{1}t, ..., a_{1}t^{n-i})$$

$$= \sum_{k=0}^{i} (-1)^{k} \chi_{(1^{i-k})}(a_{1}, a_{1}t, ..., a_{1}t^{n-i}, a_{1}t^{n-i+1}, ..., a_{1}t^{n-j}, z_{1}, z_{2}, ..., z_{j-1})$$

$$\times \chi_{(k)}(a_{1}, a_{1}t, ..., a_{1}t^{n-i}).$$

Applying Proposition 2.4, the RHS of the above equation is equal to 0. This completes the proof. []

The explicit expression of Lemma 4.2 is the following:

$$\begin{aligned} e_1'(a_1t^{n-1}, a_1t^{n-2}, \dots, a_1t, a_1) &= 0, \\ e_2'(z_1, a_1t^{n-2}, \dots, a_1t, a_1) &= 0, \\ &\vdots \\ e_n'(z_1, z_2, \dots, z_{n-1}, a_1) &= 0. \end{aligned}$$

In particular,

Corollary 4.3 If $1 \leq j \leq i \leq n$, then $e'_i(\zeta_j) = 0$.

Proof. It is straightforward from definition (23) of ζ_i and Lemma 4.2.

5 Main theorem

In this section, to specify the number of variables n, we simply use the notations $e_i^{(n)}(z)$ and $\mathcal{A}^{(n)}(z)$ instead of the 'elementary' symmetric polynomials $e'_i(z)$ and Weyl's denominator $\mathcal{A}_{\rho}(z)$ respectively. The notation (n) on the right shoulder of e_i or \mathcal{A} indicates the number of variables of $z = (z_1, z_2, ..., z_n)$ for $e'_i(z)$ or $\mathcal{A}_{\rho}(z)$.

Let T_{z_1} be the q-shift of variable z_1 such that $T_{z_1}: z_1 \to qz_1$. Set

$$\nabla\varphi(z) := \varphi(z) - \frac{T_{z_1}\Phi(z)}{\Phi(z)} T_{z_1}\varphi(z), \qquad (24)$$

where $T_{z_1}\Phi(z)/\Phi(z)$ is written as follows by definition:

$$\frac{T_{z_1}\Phi(z)}{\Phi(z)} = q^{n+1} \prod_{k=1}^4 \frac{(1-a_k z_1)}{(a_k - q z_1)} \prod_{j=2}^n \frac{(1-tz_1/z_j)(1-tz_1 z_j)}{(t-qz_1/z_j)(t-qz_1 z_j)}$$

Lemma 5.1 Let $\varphi(z)$ be an arbitrary function such that $\int_0^{\xi \infty} \varphi(z) \Phi(z) \varpi_q$ converges. The following holds for $\varphi(z)$:

$$\int_0^{\xi\infty} \Phi(z) \, \nabla \varphi(z) \, \varpi_q = 0.$$

In particular,

$$\int_{0}^{\xi\infty} \Phi(z) \,\mathcal{A}\nabla\varphi(z) \,\varpi_q = 0.$$
⁽²⁵⁾

Proof. See [17, Lemma 5.1].

Let τ_1 and σ_i be the reflections of the coordinates $z = (z_1, z_2, ..., z_n)$ defined as follows:

$$\begin{aligned} \tau_1 &: & z_1 \longleftrightarrow z_1^{-1}, \\ \sigma_i &: & z_1 \longleftrightarrow z_i \quad \text{for} \quad i=2,3,...,n. \end{aligned}$$

Since the Weyl group W_{C_n} of type C_n is isomorphic to $(\mathbf{Z}/2\mathbf{Z})^n \rtimes \mathcal{S}_n$, we may write

$$W_{C_n} = \langle \tau_1, \sigma_2, \sigma_3, ..., \sigma_n \rangle, \tag{26}$$

which means W_{C_n} is generated by τ_1 and σ_i , i = 2, 3, ..., n.

Let f(z) and g(z) be the functions defined as follows:

$$f(z) := \prod_{m=1}^{4} (a_m - z_1) \prod_{j=2}^{n} (t - z_1/z_j) (t - z_1 z_j),$$

$$g(z) := \prod_{m=1}^{4} (1 - a_m z_1) \prod_{j=2}^{n} (1 - t z_1/z_j) (1 - t z_1 z_j).$$

For i = 2, 3, ..., n, we set

$$f_i(z) := \sigma_i f(z), \quad g_i(z) := \sigma_i g(z) \tag{27}$$

M. ITO

and simply $f_1(z) := f(z)$, $g_1(z) := g(z)$. For i = 1, 2, ..., n, the explicit forms of $f_i(z)$ and $g_i(z)$ are the following:

$$f_i(z) = \prod_{m=1}^4 (a_m - z_i) \prod_{j \in I_i} (t - z_i/z_j) (t - z_i z_j),$$
(28)

$$g_i(z) = \prod_{m=1}^4 (1 - a_m z_i) \prod_{j \in I_i} (1 - t z_i / z_j) (1 - t z_i z_j),$$
(29)

where $I_i := \{1, 2, ..., i - 1, i + 1, ...n\}$. By definition, we have

$$\tau_1\left(\frac{f_1(z)}{z_1^{n+1}}\right) = \frac{g_1(z)}{z_1^{n+1}}.$$
(30)

Let $\overline{\varphi}_i(z), 1 \leq i \leq n$, be the function defined by

$$\overline{\varphi}_i(z) := \frac{\mathcal{A} \nabla \varphi_i(z)}{2}$$

where

$$\varphi_i(z) := \frac{f(z)}{z_1^{n+1}} \ z_2^{n-1} z_3^{n-2} \dots z_n \ e_{i-1}^{(n-1)}(z_2, z_3, \dots, z_n).$$
(31)

Lemma 5.2 The functions $\overline{\varphi}_i(z)$ are expressed as

$$\overline{\varphi}_i(z) = \sum_{k=1}^n (-1)^{k+1} \frac{f_k(z) - g_k(z)}{z_k^{n+1}} e_{i-1}^{(n-1)}(\widehat{z}_k) \mathcal{A}^{(n-1)}(\widehat{z}_k)$$
(32)

where $(\widehat{z}_k) := (z_1, ..., z_{k-1}, z_{k+1}, ..., z_n)$. On the other hand, $\overline{\varphi}_i(z)$ are expanded by the functions $e_j^{(n)}(z)\mathcal{A}^{(n)}(z), 0 \leq j \leq i$, as follows:

$$\overline{\varphi}_i(z) = \sum_{j=0}^i c_{ij} e_j^{(n)}(z) \mathcal{A}^{(n)}(z).$$
(33)

Proof. By definition (24) of ∇ and (31), we have

$$\nabla \varphi_i(z) = \frac{f(z) - g(z)}{z_1^{n+1}} z_2^{n-1} z_3^{n-2} \dots z_n e_{i-1}^{(n-1)}(\widehat{z}_1).$$

Then, from (26) and (30), it follows that

$$\overline{\varphi}_{i}(z) = \mathcal{A}\nabla\varphi_{i}(z)/2$$

$$= \frac{f_{1}(z) - g_{1}(z)}{z_{1}^{n+1}} e_{i-1}^{(n-1)}(\widehat{z}_{1}) \mathcal{A}^{(n-1)}(\widehat{z}_{1})$$

$$+ \sum_{k=2}^{n} (\operatorname{sgn} \sigma_{k}) \sigma_{k} \Big[\frac{f_{1}(z) - g_{1}(z)}{z_{1}^{n+1}} e_{i-1}^{(n-1)}(\widehat{z}_{1}) \mathcal{A}^{(n-1)}(\widehat{z}_{1}) \Big].$$
(34)

q-difference shift

Thus, we obtain the expression (32) by substituting (27) and the following for (34):

sgn
$$\sigma_k = -1$$
, $\sigma_k e_{i-1}^{(n-1)}(\widehat{z}_1) = e_{i-1}^{(n-1)}(\widehat{z}_k)$, $\sigma_k \mathcal{A}^{(n-1)}(\widehat{z}_1) = (-1)^k \mathcal{A}^{(n-1)}(\widehat{z}_k)$.

Next, from the degrees of the monomials in the expansion of (31), we can obtain the expression (33). This completes the proof.

Lemma 5.3 The following hold for $f_k(z)$, $g_k(z)$ and $\zeta_j \in (\mathbf{C}^*)^n$:

$$\begin{aligned} f_k(\zeta_j) &= 0 \quad if \quad j \leq k \leq n, \\ g_k(\zeta_j) &= 0 \quad if \quad j < k \leq n. \end{aligned}$$

Moreover,

$$\lim_{x \to 0} \left[z_1 z_2 \dots z_{i-1} \frac{g_i(z)}{z_i^{n+1}} \right]_{z=\zeta_i}$$

$$= (-t)^{i-1} \frac{\prod_{k=2}^4 (1 - a_k a_1 t^{n-i})}{(1 - t)(t^{n-i} a_1)^{n-i+2}} \prod_{j=0}^{n-i} (1 - t^{j+1})(1 - t^{n-i+j} a_1^2).$$
(35)

Proof. From (28), $f_k(z)$ has the factor $(t - z_k/z_{k+1})$ if $1 \le k \le n-1$, and has the factor $(a_1 - z_n)$ if k = n. When $z = \zeta_j$, from definition (23) of ζ_j , it follows that $t - z_k/z_{k+1} = 0$ if $j \le k \le n-1$ and $a_1 - z_n = 0$ if $j \le n$. Thus $f_k(\zeta_j) = 0$ if $j \le k \le n$. From (29), it follows that $g_k(z)$ has the factor $(1 - tz_k/z_{k-1})$, so that $g_k(\zeta_j) = 0$ if $j + 1 \le k \le n$.

Next, we prove the latter part of Lemma 5.3. From (29), it follows that

$$z_{1}z_{2}...z_{i-1}\frac{g_{i}(z)}{z_{i}^{n+1}} = \frac{\prod_{k=1}^{4}(1-a_{k}z_{i})}{z_{i}^{n+1}} \times (z_{1}-tz_{i})(z_{2}-tz_{i})...(z_{i-1}-tz_{i}) \times (1-tz_{1}z_{i})(1-tz_{2}z_{i})...(1-tz_{i-1}z_{i}) \times (1-tz_{i}/z_{i+1})(1-tz_{i}/z_{i+2})...(1-tz_{i}/z_{n}) \times (1-tz_{i}z_{i+1})(1-tz_{i}z_{i+2})...(1-tz_{i}z_{n}).$$

Put

$$z = \zeta_i = (\underbrace{x^{i-1}, x^{i-2}, \dots, x}_{i-1}, \underbrace{t^{n-i}a_1, t^{n-i-1}a_1, \dots, a_1}_{n-i+1}).$$
(36)

Then we have

$$\begin{bmatrix} z_1 z_2 \dots z_{i-1} \frac{g_i(z)}{z_i^{n+1}} \end{bmatrix}_{z=\zeta_i}$$

$$= \frac{(1-a_1^2 t^{n-i}) \prod_{k=2}^4 (1-a_k a_1 t^{n-i})}{(t^{n-i}a_1)^{n+1}}$$

$$\times (x^{i-1} - t^{n-i+1}a_1) (x^{i-2} - t^{n-i+1}a_1) \dots (x - t^{n-i+1}a_1)$$

$$\times (1 - x^{i-1} t^{n-i+1}a_1) (1 - x^{i-2} t^{n-i+1}a_1) \dots (1 - x t^{n-i+1}a_1)$$

$$\times (1 - t^2) (1 - t^3) \dots (1 - t^{n-i+1})$$

$$\times (1 - t^{2(n-i)}a_1^2) (1 - t^{2(n-i)-1}a_1^2) \dots (1 - t^{n-i+1}a_1^2),$$

so that

$$\begin{split} \lim_{x \to 0} \left[z_1 z_2 \dots z_{i-1} \frac{g_i(z)}{z_i^{n+1}} \right]_{z=\zeta_i} \\ &= \frac{(1-a_1^2 t^{n-i}) \prod_{k=2}^4 (1-a_k a_1 t^{n-i})}{(t^{n-i}a_1)^{n+1}} \\ &\times (-t^{n-i+1}a_1)^{i-1} \prod_{j=1}^{n-i} (1-t^{j+1})(1-t^{n-i+j}a_1^2) \\ &= (-t)^{i-1} \frac{\prod_{k=2}^4 (1-a_k a_1 t^{n-i})}{(1-t)(t^{n-i}a_1)^{n-i+2}} \prod_{j=0}^{n-i} (1-t^{j+1})(1-t^{n-i+j}a_1^2), \end{split}$$

which completes the proof. \square

Lemma 5.4 If $i \ge k$, then

$$\lim_{x \to 0} \left[\frac{z_1}{z_k} \frac{z_2}{z_k} \cdots \frac{z_{k-1}}{z_k} \left(f_k(z) - g_k(z) \right) \right]_{z = \zeta_{i+1}} = (-1)^k (t^{k-1} - t^{2n-k-1}a_1a_2a_3a_4).$$

Proof. From (28) and (29), it follows that

$$\begin{aligned} \frac{z_1}{z_k} \frac{z_2}{z_k} \cdots \frac{z_{k-1}}{z_k} f_k(z) &= \prod_{m=1}^4 (a_m - z_k) \\ &\times (tz_1/z_k - 1)(tz_2/z_k - 1) \dots (tz_{k-1}/z_k - 1) \\ &\times (t - z_1 z_k)(t - z_2 z_k) \dots (t - z_{k-1} z_k) \\ &\times (t - z_k/z_{k+1})(t - z_k/z_{k+2}) \dots (t - z_k/z_n) \\ &\times (t - z_k z_{k+1})(t - z_k z_{k+2}) \dots (t - z_k z_n), \end{aligned}$$

$$\begin{aligned} \frac{z_1}{z_k} \frac{z_2}{z_k} \cdots \frac{z_{k-1}}{z_k} g_k(z) &= \prod_{m=1}^4 (1 - a_m z_k) \\ &\times (z_1/z_k - t)(z_2/z_k - t) \dots (z_{k-1}/z_k - t) \\ &\times (1 - tz_1 z_k)(1 - tz_2 z_k) \dots (1 - tz_{k-1} z_k) \\ &\times (1 - tz_k/z_{k+1})(1 - tz_k/z_{k+2}) \dots (1 - tz_k/z_n) \\ &\times (1 - tz_k z_{k+1})(1 - tz_k z_{k+2}) \dots (1 - tz_k z_n). \end{aligned}$$

From the above equations, if we put

$$z = \zeta_{i+1} = (\underbrace{x^i, x^{i-1}, \dots, x}_{i}, \underbrace{t^{n-i-1}a_1, t^{n-i-2}a_1, \dots, a_1}_{n-i})$$
(37)

and suppose $k \leq i,$ then we have the following:

$$\lim_{x \to 0} \left[\frac{z_1}{z_k} \frac{z_2}{z_k} \cdots \frac{z_{k-1}}{z_k} f_k(z) \right]_{z=\zeta_{i+1}} = (-1)^{k-1} t^{2n-k-1} a_1 a_2 a_3 a_4,$$

$$\lim_{x \to 0} \left[\frac{z_1}{z_k} \frac{z_2}{z_k} \cdots \frac{z_{k-1}}{z_k} g_k(z) \right]_{z=\zeta_{i+1}} = (-t)^{k-1}.$$

This completes Lemma 5.4. $\hfill\square$

Lemma 5.5 The following holds for $1 \le j \le i + 1$:

$$\lim_{x \to 0} \left[\left(\prod_{l=1}^{j-1} z_l^{n-l+2} \right) \overline{\varphi}_i(z) \right]_{z=\zeta_j} = (-1)^{j-1} c_{i,j-1} \mathcal{A}^{(n-j+1)}(t^{n-j}a_1, ..., a_1).$$
(38)

Proof. From (33), it follows that

$$\left(\prod_{l=1}^{j-1} z_l^{n-l+2}\right)\overline{\varphi}_i(z) = \sum_{k=0}^{i} c_{ik} \left(z_1 z_2 \dots z_{j-1} e_k^{(n)}(z)\right) \left(z_1^n z_2^{n-1} \dots z_{j-1}^{n-j+2} \mathcal{A}^{(n)}(z)\right)$$

Put

$$z = \zeta_j = (\underbrace{x^{j-1}, x^{j-2}, \dots, x}_{j-1}, \underbrace{t^{n-j}a_1, t^{n-j-1}a_1, \dots, a_1}_{n-j+1})$$
(39)

Since $e_k^{(n)}(\zeta_j) = 0$ if $j \le k$ by Corollary 4.3, we have

$$\left[\left(\prod_{l=1}^{j-1} z_l^{n-l+2} \right) \overline{\varphi}_i(z) \right]_{z=\zeta_j}$$

$$= \sum_{k=0}^{j-1} c_{ik} \left[\left(z_1 z_2 \dots z_{j-1} e_k^{(n)}(z) \right) \left(z_1^n z_2^{n-1} \dots z_{j-1}^{n-j+2} \mathcal{A}^{(n)}(z) \right) \right]_{z=\zeta_j}.$$
(40)

By definition (19) of $e_k^{(n)}(z)$ and the explicit expression (39) of ζ_j , we have

$$\lim_{x \to 0} \left[\left(z_1 z_2 \dots z_{j-1} e_k^{(n)}(z) \right) \right]_{z=\zeta_j} = \begin{cases} 0 & \text{if } k < j-1, \\ 1 & \text{if } k = j-1. \end{cases}$$
(41)

From Weyl's denominator formula (7) and the expression (39) of ζ_j , it follows

$$\lim_{x \to 0} \left[\left(z_1^n z_2^{n-1} \dots z_{j-1}^{n-j+2} \mathcal{A}^{(n)}(z) \right) \right]_{z=\zeta_j} = (-1)^{j-1} \mathcal{A}^{(n-j+1)}(t^{n-j}a_1, \dots, a_1).$$
(42)

Taking the limit $x \to 0$ in both sides of (40) and using (41) and (42), we obtain (38). This completes the proof. \Box

Lemma 5.6 Set
$$(\widehat{\zeta}_{j_k}) := (\zeta_{j_1}, ..., \zeta_{j,k-1}, \zeta_{j,k+1}, ..., \zeta_{j_n}) \in (\mathbf{C}^*)^{n-1}$$
 for $\zeta_j \in (\mathbf{C}^*)^n$. Then
 $e_{i-1}^{(n-1)}(\widehat{\zeta}_{j_k}) = 0$ if $1 \le k \le j < i$.

Moreover,

$$e_{i-1}^{(n-1)}(\widehat{\zeta}_{i_k}) = 0$$
 if $1 \le k < i$.

Proof. It is straightforward from (23) and Lemma 4.2.

Lemma 5.7 The coefficient c_{ij} in (33) vanishes if $0 \le j < i - 1$. In particular, $\overline{\varphi}_i(z)$ is expanded as

$$\overline{\varphi}_{i}(z) = \left(c_{ii}e_{i}^{(n)}(z) + c_{i,i-1}e_{i-1}^{(n)}(z)\right)\mathcal{A}^{(n)}(z).$$

Proof. From (38), in order to prove $c_{ij} = 0$ for $0 \le j < i - 1$, it is sufficient to show that

$$\lim_{x \to 0} \left[\left(\prod_{l=1}^{j-1} z_l^{n-l+2} \right) \overline{\varphi}_i(z) \right]_{z=\zeta_j} = 0$$
(43)

if $1 \leq j < i$.

We now suppose $1 \leq j < i$. By Lemma 5.3, if $j < k \leq n$, then $f_k(\zeta_j) = g_k(\zeta_j) = 0$. Moreover, by Lemma 5.6, if $k \leq j < i$, then $e_{i-1}^{(n-1)}(\widehat{\zeta}_{j_k}) = 0$. Since the summand of $\overline{\varphi}_i(z)$ in form (32) has the factors $f_k(z) - g_k(z)$ and $e_{i-1}^{(n-1)}(\widehat{z}_k)$, if we put $z = \zeta_j$, then $\overline{\varphi}_i(\zeta_j) = 0$. In particular, we conclude (43).

Lemma 5.8 The coefficient $c_{i,i-1}$ in (33) is evaluated as

$$c_{i,i-1} = \frac{1 - t^{n-i+1}}{(1-t)t^{n+1-2i}} \frac{\prod_{k=2}^{4} (1 - t^{n-i}a_1a_k)}{a_1}.$$
(44)

Proof. By Lemma 5.3, $f_k(\zeta_i) = g_k(\zeta_i) = 0$ if $i < k \leq n$, and $f_i(\zeta_i) = 0$. Moreover, by Lemma 5.6, $e_{i-1}^{(n-1)}(\widehat{\zeta}_{ik}) = 0$ if k < i. Since the summand of $\overline{\varphi}_i(z)$ in form (32) has the factors $f_k(z) - g_k(z)$ and $e_{i-1}^{(n-1)}(\widehat{z}_k)$, if we put $z = \zeta_i$, then

$$\overline{\varphi}_i(\zeta_i) = \left[(-1)^i \frac{g_i(z)}{z_i^{n+1}} e_{i-1}^{(n-1)}(\widehat{z}_i) \mathcal{A}^{(n-1)}(\widehat{z}_i) \right]_{z=\zeta_i}.$$
(45)

Thus we have

$$\left[\left(\prod_{l=1}^{i-1} z_l^{n-l+2} \right) \overline{\varphi}_i(z) \right]_{z=\zeta_i}$$

$$= \left(-1 \right)^i \left[\left(z_1 z_2 \dots z_{i-1} \frac{g_i(z)}{z_i^{n+1}} \right) \left(z_1 z_2 \dots z_{i-1} e_{i-1}^{(n-1)}(\widehat{z}_i) \right) \right. \\ \left. \times \left(z_1^{n-1} z_2^{n-2} \dots z_{i-1}^{n-i+1} \mathcal{A}^{(n-1)}(\widehat{z}_i) \right) \right]_{z=\zeta_i}$$

$$(46)$$

From the explicit form (36) of ζ_i and definition (19) of $e_i^{(n)}(z)$, we have

$$\lim_{x \to 0} \left[z_1 z_2 \dots z_{i-1} e_{i-1}^{(n-1)}(\widehat{z}_i) \right]_{z=\zeta_i} = 1.$$
(47)

Using (36) and Weyl's denominator formula (7), we also have

$$\lim_{x \to 0} \left[z_1^{n-1} z_2^{n-2} \dots z_{i-1}^{n-i+1} \mathcal{A}^{(n-1)}(\widehat{z}_i) \right]_{z=\zeta_i} = (-1)^{i-1} \mathcal{A}^{(n-i)}(t^{n-i-1} a_1, \dots, a_1).$$
(48)

From (46), (47) and (48), it follows that

$$\lim_{x \to 0} \left[\left(\prod_{l=1}^{i-1} z_l^{n-l+2} \right) \overline{\varphi}_i(z) \right]_{z=\zeta_i} \\
= -\lim_{x \to 0} \left[z_1 z_2 \dots z_{i-1} \frac{g_i(z)}{z_i^{n+1}} \right]_{z=\zeta_i} \mathcal{A}^{(n-i)}(t^{n-i-1}a_1, \dots, a_1).$$
(49)

Comparing (49) with (38), we have

$$c_{i,i-1} = (-1)^{i} \lim_{x \to 0} \left[z_1 z_2 \dots z_{i-1} \frac{g_i(z)}{z_i^{n+1}} \right]_{z = \zeta_i} \frac{\mathcal{A}^{(n-i)}(t^{n-i-1}a_1, \dots, a_1)}{\mathcal{A}^{(n-i+1)}(t^{n-i}a_1, \dots, a_1)}.$$
 (50)

From Weyl's denominator formula (7), it follows that

$$\frac{\mathcal{A}^{(j+1)}(z_1, z_2, \dots, z_{j+1})}{\mathcal{A}^{(j)}(z_2, \dots, z_{j+1})} = -\frac{1-z_1^2}{z_1} \prod_{k=2}^{j+1} \frac{(1-z_1/z_k)(1-z_1z_k)}{z_1}$$

so that

$$\frac{\mathcal{A}^{(n-i+1)}(t^{n-i}a_1,...,a_1)}{\mathcal{A}^{(n-i)}(t^{n-i-1}a_1,...,a_1)} = \frac{-1}{(1-t^{n-i+1})} \prod_{j=0}^{n-i} (1-t^{j+1}) \frac{(1-t^{n-i+j}a_1^2)}{t^{n-i}a_1}.$$
 (51)

From (35), (50) and (51), we obtain (44). This completes the proof.

Lemma 5.9 The coefficient c_{ii} in (33) is evaluated as

$$c_{ii} = \frac{1 - t^i}{1 - t} (1 - t^{2n - i - 1} a_1 a_2 a_3 a_4).$$

Proof. Using Lemma 5.3, $f_k(\zeta_{i+1}) = g_k(\zeta_{i+1}) = 0$ if $i+2 \le k \le n$. Since the summand of $\overline{\varphi}_i(z)$ in form (32) has the factors $f_k(z) - g_k(z)$, if we put $z = \zeta_{i+1}$, then

$$\overline{\varphi}_{i}(\zeta_{i+1}) = \left[\sum_{k=1}^{i+1} (-1)^{k+1} \frac{f_{k}(z) - g_{k}(z)}{z_{k}^{n+1}} e_{i-1}^{(n-1)}(\widehat{z}_{k}) \mathcal{A}^{(n-1)}(\widehat{z}_{k})\right]_{z=\zeta_{i+1}}$$

where k in the sum runs from 1 to i + 1. Thus, it follows that

$$\left[\left(\prod_{l=1}^{i} z_{l}^{n-l+2} \right) \overline{\varphi}_{i}(z) \right]_{z=\zeta_{i+1}} = S_{1}(\zeta_{i+1}) + S_{2}(\zeta_{i+1})$$

where $S_1(z)$ and $S_2(z)$ are functions defined by the following:

$$S_{1}(z) := \sum_{k=1}^{i} (-1)^{k+1} \frac{z_{1}}{z_{k}} \frac{z_{2}}{z_{k}} \cdots \frac{z_{k-1}}{z_{k}} \left(f_{k}(z) - g_{k}(z) \right) \times \left(z_{1} z_{2} \dots z_{k-1} z_{k+1} \dots z_{i} e_{i-1}^{(n-1)}(\widehat{z}_{k}) \right) \times \left(z_{1}^{n-1} z_{2}^{n-2} \dots z_{k-1}^{n-k+1} z_{k+1}^{n-k} \dots z_{i}^{n-i+1} \mathcal{A}^{(n-1)}(\widehat{z}_{k}) \right),$$

$$S_{2}(z) := (-1)^{i} z_{i}^{n-i+1} \left(z_{1} z_{2} \dots z_{i} \frac{f_{i+1}(z) - g_{i+1}(z)}{z_{i+1}^{n+1}} \right) \times \left(z_{1} z_{2} \dots z_{i-1} e_{i-1}^{(n-1)}(\widehat{z}_{i+1}) \right) \times \left(z_{1}^{n-1} z_{2}^{n-2} \dots z_{i-1}^{n-i+1} \mathcal{A}^{(n-1)}(\widehat{z}_{i+1}) \right).$$

Since $f_{i+1}(\zeta_{i+1}) = 0$ by Lemma 5.3, it follows that

$$\left[z_{i}^{n-i+1}\left(z_{1}z_{2}...z_{i}\frac{f_{i+1}(z)-g_{i+1}(z)}{z_{i+1}^{n+1}}\right)\right]_{z=\zeta_{i+1}} = -x^{n-i+1}\left[z_{1}z_{2}...z_{i}\frac{g_{i+1}(z)}{z_{i+1}^{n+1}}\right]_{z=\zeta_{i+1}}$$

From (35) in Lemma 5.3, the RHS of the above equation vanishes if we take the limit $x \to 0$. Since the LHS of that is a factor of $S_2(\zeta_{i+1})$, we have $\lim_{x\to 0} S_2(\zeta_{i+1}) = 0$.

If $k \leq i$, from the explicit form (37) of ζ_{i+1} and definition (19) of $e_i^{(n)}(z)$, we have

$$\lim_{x \to 0} \left[z_1 z_2 \dots z_{k-1} \, z_{k+1} \dots z_i \, e_{i-1}^{(n-1)}(\widehat{z}_k) \right]_{z=\zeta_{i+1}} = 1.$$

If $k \leq i$, we also have

$$\lim_{x \to 0} \left[z_1^{n-1} z_2^{n-2} \dots z_{k-1}^{n-k+1} z_{k+1}^{n-k} \dots z_i^{n-i+1} \mathcal{A}^{(n-1)}(\widehat{z}_k) \right]_{z=\zeta_{i+1}} = (-1)^{i-1} \mathcal{A}^{(n-i)}(t^{n-i-1}a_1, \dots, a_1)$$

by using (37) and Weyl's denominator formula (7). Thus, we have

$$\lim_{x \to 0} \left[\left(\prod_{l=1}^{i} z_{l}^{n-l+2} \right) \overline{\varphi}_{i}(z) \right]_{z=\zeta_{i+1}} = \lim_{x \to 0} S_{1}(\zeta_{i+1}) \\
= (-1)^{i-1} \mathcal{A}^{(n-i)}(t^{n-i-1}a_{1}, ..., a_{1}) \\
\times \sum_{k=1}^{i} (-1)^{k+1} \lim_{x \to 0} \left[\frac{z_{1}}{z_{k}} \frac{z_{2}}{z_{k}} \cdots \frac{z_{k-1}}{z_{k}} \left(f_{k}(z) - g_{k}(z) \right) \right]_{z=\zeta_{i+1}}.$$
(52)

Comparing (38) with (52), and using Lemma 5.4, we obtain

$$c_{ii} = -\sum_{k=1}^{i} (-1)^{k+1} \lim_{x \to 0} \left[\frac{z_1}{z_k} \frac{z_2}{z_k} \cdots \frac{z_{k-1}}{z_k} \left(f_k(z) - g_k(z) \right) \right]_{z=\zeta_{i+1}}$$

$$= \sum_{k=1}^{i} (t^{k-1} - t^{2n-k-1} a_1 a_2 a_3 a_4)$$

$$= \frac{1-t^i}{1-t} (1 - t^{2n-i-1} a_1 a_2 a_3 a_4),$$

which completes the proof. $\hfill\square$

Theorem 5.10 The following relation holds between $e_i^{(n)}(z)$ and $e_{i-1}^{(n)}(z)$:

$$\int_{0}^{\xi\infty} e_{i}^{(n)}(z)\Phi(z)\mathcal{A}^{(n)}(z)\varpi_{q} = -\frac{c_{i,i-1}}{c_{ii}}\int_{0}^{\xi\infty} e_{i-1}^{(n)}(z)\Phi(z)\mathcal{A}^{(n)}(z)\varpi_{q},$$
(53)

where the coefficient is evaluated as

$$-\frac{c_{i,i-1}}{c_{ii}} = -\frac{(1-t^{n+1-i})}{(1-t^i)t^{n+1-2i}} \frac{\prod_{k=2}^4 (1-t^{n-i}a_1a_k)}{a_1(1-t^{2n-i-1}a_1a_2a_3a_4)}.$$

Remark. In other words, by definition (13), Theorem 5.10 is nothing but Theorem 1.2.

Proof. Since $\int_0^{\xi\infty} \Phi(z) \overline{\varphi}_i(z) \, \varpi_q = 0$ by (25) in Lemma 5.1, from Lemma 5.7, it follows that

$$\int_0^{\xi\infty} \Phi(z) \Big(c_{ii} e_i^{(n)}(z) + c_{i,i-1} e_{i-1}^{(n)}(z) \Big) \mathcal{A}^{(n)}(z) \overline{\omega}_q = 0.$$

We therefore obtain (53). The evaluation of the coefficient $-c_{i,i-1}/c_{ii}$ is given by Lemma 5.8 and 5.9. The proof is now complete.

6 Product formula

The aim of this section is to deduce a product formula for the BC_n type Jackson integral as if reconstructing the product expression (2) of the beta function from q-difference equations (3) and asymptotic behavior (4). The following formula has been proved by van Diejen [26]. He has done it to calculate a certain multiple Jackson integral in two ways by using Fubini's theorem, following Gustafson's method [9]. We give here another proof of it as a consequence of Theorem 1.2.

Theorem 6.1 (van Diejen) The constant C in the expression (18) is the following:

$$C = (1-q)^n (q)_{\infty}^n \prod_{i=1}^n \frac{(qt^{-i})_{\infty}}{(qt^{-1})_{\infty}} \frac{\prod_{1 \le \mu < \nu \le 4} (qt^{-(n-i)}a_{\mu}^{-1}a_{\nu}^{-1})_{\infty}}{(qt^{-(n+i-2)}a_1^{-1}a_2^{-1}a_3^{-1}a_4^{-1})_{\infty}}.$$

Before proving Theorem 6.1, we have to establish q-difference equations and asymptotic behavior for the BC_n type Jackson integral.

6.1 *q*-difference equations

First we deduce a recurrent relation which $J(\xi)$ satisfies, using Theorem 1.2.

Corollary 6.2 Let T_{a_1} be the q-shift of parameter a_1 such that $T_{a_1}: a_1 \rightarrow qa_1$. Then

$$T_{a_1}J(\xi) = (-a_1)^{-n} \prod_{i=1}^n \frac{\prod_{k=2}^4 (1 - t^{n-i}a_1a_k)}{1 - t^{n+i-2}a_1a_2a_3a_4} J(\xi).$$

Remark. The parameters a_1 , a_2 , a_3 and a_4 can be replaced symmetrically in the above equation.

Proof. The function $T_{a_1}J(\xi)$ is written

$$T_{a_1}J(\xi) = \int_0^{\xi\infty} \frac{T_{a_1}\Phi(z)}{\Phi(z)} \Phi(z)\Delta(z)\varpi_q = \int_0^{\xi\infty} e'_n(z)\Phi(z)\Delta(z)\varpi_q$$

because the following holds for $\Phi(z)$ by Lemma 4.1:

$$\frac{T_{a_1}\Phi(z)}{\Phi(z)} = \prod_{i=1}^n \frac{(a_1 - z_i)(1 - a_1 z_i)}{a_1 z_i} = e'_n(z).$$

M. ITO

From repeated use of Theorem 1.2, we have

$$\int_0^{\xi\infty} e'_n(z)\Phi(z)\Delta(z)\varpi_q = (-a_1)^{-n} \prod_{j=1}^n \frac{\prod_{k=2}^4 (1-t^{n-j}a_1a_k)}{1-t^{n+j-2}a_1a_2a_3a_4} J(\xi).$$

This completes the proof. \Box

Let T^{N} be the shift of parameters for the special direction defined by

$$T^{N}: \begin{cases} a_{1} \to a_{1}q^{2N}, \\ a_{2} \to a_{2}q^{-N}, \\ a_{3} \to a_{3}q^{-N}, \\ a_{4} \to a_{4}q^{-N}. \end{cases}$$

Lemma 6.3 The following holds for the shift T^N :

$$J(\xi) = \prod_{i=1}^{n} \frac{(a_1 a_2^2 a_3^2 a_4^2 t^{3(n-i)})^N \prod_{2 \le \mu < \nu \le 4} (q t^{-(n-i)} a_\mu^{-1} a_\nu^{-1})_{2N}}{q^{2N(N+1)} (q t^{-(n+i-2)} a_1^{-1} a_2^{-1} a_3^{-1} a_4^{-1})_N \prod_{k=2}^{4} (t^{n-i} a_1 a_k)_N} \times T^N J(\xi).$$

Proof. Applying Corollary 6.2 to $J(\xi)$ repeatedly, we obtain the above relation between $J(\xi)$ and $T^N J(\xi)$.

6.2 Asymptotic behavior of truncated Jackson integral

Next we consider an asymptotic behavior of $J(\zeta)$.

Lemma 6.4 The asymptotic behavior of the truncated Jackson integral $T^N J(\zeta)$ at $N \to +\infty$ is the following:

$$T^{N}J(\zeta) \sim (1-q)^{n} \prod_{i=1}^{n} \frac{q^{2N(N+1)}(t^{n-i}a_{1})^{1-\alpha_{1}-\dots-\alpha_{4}-2(n-i)\tau}}{(a_{1}a_{2}^{2}a_{3}^{2}a_{4}^{2}t^{3(n-i)})^{N}} \frac{(q)_{\infty}(t)_{\infty}}{(t^{i})_{\infty}}.$$

Proof. We divide $\Phi(z)\Delta(z)$ into the following three parts:

$$\Phi(z)\Delta(z) = I_1(z)I_2(z)I_3(z)$$

where

$$I_{1}(z) = \prod_{i=1}^{n} z_{i}^{1-\alpha_{1}-\dots-\alpha_{4}-2(n-i)\tau},$$

$$I_{2}(z) = \prod_{i=1}^{n} (qa_{1}^{-1}z_{i})_{\infty} \prod_{1 \le j < k \le n} (1-z_{j}/z_{k}) \frac{(qt^{-1}z_{j}/z_{k})_{\infty}}{(tz_{j}/z_{k})_{\infty}},$$

$$I_{3}(z) = \prod_{i=1}^{n} \frac{(1-z_{i}^{2})}{(a_{1}z_{i})_{\infty}} \prod_{m=2}^{4} \frac{(qa_{m}^{-1}z_{i})_{\infty}}{(a_{m}z_{i})_{\infty}}$$

$$\times \prod_{1 \le j < k \le n} (1-z_{j}z_{k}) \frac{(qt^{-1}z_{j}z_{k})_{\infty}}{(tz_{j}z_{k})_{\infty}}.$$

38

Thus, $T^N J(\zeta)$ is expressed as

$$T^{N}J(\zeta) = (1-q)^{n} \sum_{\nu \in D} T^{N} \Big(\Phi(q^{\nu}\zeta) \Delta(q^{\nu}\zeta) \Big)$$

$$= (1-q)^{n} \sum_{\nu \in D} T^{N}I_{1}(q^{\nu}\zeta) T^{N}I_{2}(q^{\nu}\zeta) T^{N}I_{3}(q^{\nu}\zeta)$$
(54)

where

Equation (54) indicates that the summand $T^N(\Phi(q^{\nu}\zeta)\Delta(q^{\nu}\zeta))$ of $T^N J(\zeta)$ corresponding to $\nu = (0, 0, ..., 0) \in D$ gives the principal term of asymptotic behavior of $T^N J(\zeta)$ at $N \to +\infty$ because the point $(0, 0, ..., 0) \in D$ is the vertex of the cone D. Hence we have

$$T^{N}J(\zeta) \sim (1-q)^{n}T^{N}I_{1}(\zeta) T^{N}I_{2}(\zeta) T^{N}I_{3}(\zeta).$$
(55)

Moreover the asymptotic behavior of each $T^{N}I_{i}(\zeta)$ at $N \to +\infty$ is the following:

$$T^{N}I_{1}(\zeta) = \prod_{i=1}^{n} (t^{n-i}a_{1}q^{2N})^{1-\alpha_{1}-\dots-\alpha_{4}-2(n-i)\tau+N}$$

$$= \prod_{i=1}^{n} \frac{(t^{n-i}a_{1})^{1-\alpha_{1}-\dots-\alpha_{4}-2(n-i)\tau}q^{2N(N+1)}}{(a_{1}a_{2}^{2}a_{3}^{2}a_{4}^{2}t^{3(n-i)})^{N}}, \qquad (56)$$

$$T^{N}I_{2}(\zeta) = \prod_{i=1}^{n} (qt^{n-i})_{\infty} \prod_{1 \le j < k \le n} (1-t^{k-j}) \frac{(qt^{k-j-1})_{\infty}}{(t^{k-j+1})_{\infty}}$$

$$= \prod_{i=1}^{n} \frac{(q)_{\infty}(t)_{\infty}}{(t^{i})_{\infty}}, \qquad (57)$$

M. ITO

$$T^{N}I_{3}(\zeta) = \prod_{i=1}^{n} \frac{(1 - t^{2(n-i)}a_{1}^{2}q^{4N})}{(t^{n-i}a_{1}^{2}q^{4N})_{\infty}} \prod_{m=2}^{4} \frac{(t^{n-i}a_{1}a_{m}^{-1}q^{1+3N})_{\infty}}{(t^{n-i}a_{1}a_{m}q^{N})_{\infty}} \\ \times \prod_{1 \le j < k \le n} (1 - t^{2n-j-k}a_{1}^{2}q^{4N}) \frac{(t^{2n-j-k-1}a_{1}^{2}q^{1+4N})_{\infty}}{(t^{2n-j-k+1}a_{1}^{2}q^{4N})_{\infty}} \\ \sim 1 \quad (N \to +\infty).$$
(58)

Combining (55), (56), (57) and (58), we obtain Lemma 6.4.

6.3 Proof of Theorem 6.1

Theorem 6.5 The truncated Jackson integral $J(\zeta)$ is evaluated as

$$J(\zeta) = (1-q)^n (q)_{\infty}^n \times \prod_{i=1}^n \frac{(t)_{\infty}}{(t^i)_{\infty}} \frac{(t^{n-i}a_1)^{1-\alpha_1-\dots-\alpha_4-2(n-i)\tau} \prod_{2 \le \mu < \nu \le 4} (qt^{-(n-i)}a_{\mu}^{-1}a_{\nu}^{-1})_{\infty}}{(qt^{-(n+i-2)}a_1^{-1}a_2^{-1}a_3^{-1}a_4^{-1})_{\infty} \prod_{k=2}^4 (t^{n-i}a_1a_k)_{\infty}}.$$

Proof. It is straightforward from Lemma 6.3 and Lemma 6.4

As a consequence of Theorem 6.5, we deduce Theorem 6.1.

Proof of Theorem 6.1. The constant C is written $C = J(\xi)/\Theta(\xi)$ by virtue of Lemma 3.1. In particular, putting $\xi = \zeta$, from Theorem 6.5, we obtain

$$C = \frac{J(\zeta)}{\Theta(\zeta)} = (1-q)^n (q)_{\infty}^n \prod_{i=1}^n \frac{(qt^{-i})_{\infty}}{(qt^{-1})_{\infty}} \frac{\prod_{1 \le \mu < \nu \le 4} (qt^{-(n-i)}a_{\mu}^{-1}a_{\nu}^{-1})_{\infty}}{(qt^{-(n+i-2)}a_1^{-1}a_2^{-1}a_3^{-1}a_4^{-1})_{\infty}}$$

because $\Theta(\xi)$ in (17) is evaluated at $\xi = \zeta$ as

$$\Theta(\zeta) = \prod_{i=1}^{n} \frac{\theta(t)}{\theta(t^{i})} \frac{(t^{n-i}a_{1})^{1-\alpha_{1}-\cdots-\alpha_{4}-2(n-i)\tau}}{\prod_{k=2}^{4} \theta(t^{n-i}a_{1}a_{k})}.$$

The proof of Theorem 6.1 is now complete. \Box

Acknowledgments.

The author would like to thank K. Aomoto for stimulative discussions. He is very grateful to T. Ikeda, H. Mizukawa and H-F. Yamada for providing him helpful comments during a visit at Okayama University, March, 8-10, 2004.

References

- G. E. Andrews, R. Askey and R. Roy, Special functions. Encyclopedia of Mathematics and its Applications, 71. Cambridge University Press, Cambridge, 1999.
- [2] K. Aomoto, Jacobi polynomials associated with Selberg integrals. SIAM J. Math. Anal. 18 (1987), 545-549.
- [3] K. Aomoto, On product formula for Jackson integrals associated with root systems. preprint 1994.

40

q-difference shift

- [4] K. Aomoto, On elliptic product formulas for Jackson integrals associated with reduced root systems. J. Algebraic Combin. 8 (1998), 115–126.
- [5] K. Aomoto, Connection problem for difference equations associated with real hyperplane arrangements. preprint 2000.
- [6] R. Askey, Some basic hypergeometric extensions of integrals of Selberg and Andrews. SIAM J. Math. Anal. 11 (1980), 938–951.
- [7] R. J. Evans, Multidimensional q-beta integrals. SIAM J. Math. Anal. 23 (1992), 758–765.
- [8] W. Fulton and J. Harris, Representation theory. A first course. Graduate Texts in Mathematics, 129. Readings in Mathematics. Springer-Verlag, New York, 1991.
- [9] R. A. Gustafson, A generalization of Selberg's beta integral. Bull. Amer. Math. Soc. (N.S.) 22 (1990), 97–105.
- [10] L. Habsieger, q-intégrale de Selberg et Askey. SIAM J. Math. Anal. 19 (1988), 1475–1489.
- M. Ito, On a theta product formula for Jackson integrals associated with root systems of rank two. J. Math. Anal. Appl. 216 (1997), 122–163.
- [12] M. Ito, Symmetry classification for Jackson integrals associated with irreducible reduced root systems. Compositio Math. 129 (2001), 325–340.
- [13] M. Ito, A product formula for Jackson integral associated with the root system F_4 . Ramanujan J. 6 (2002), 279–293.
- [14] M. Ito, Symmetry classification for Jackson integrals associated with the root system BC_n . Compositio Math. **136** (2003), 209–216.
- [15] M. Ito, Convergence and asymptotic behavior of Jackson integrals associated with irreducible reduced root systems. J. Approx. Theory 124 (2003), 154–180.
- [16] M. Ito, Askey-Wilson type integrals associated with root systems, submitted to Ramanujan J.
- [17] M. Ito, Another proof of Gustafson's C_n -type summation formula via 'elementary' symmetric polynomials, submitted to Publ. Res. Inst. Math. Sci.
- [18] K. W. J. Kadell, A proof of Askey's conjectured q-analogue of Selberg's integral and a conjecture of Morris. SIAM J. Math. Anal. 19 (1988), 969–986.
- [19] K. W. J. Kadell, A proof of the q-Macdonald-Morris conjecture for BC_n . Mem. Amer. Math. Soc. 108 (1994), **516**.
- [20] J. Kaneko q-Selberg integrals and Macdonald polynomials. Ann. Sci. École Norm. Sup. (4) 29 (1996), 583–637.
- [21] I. G. Macdonald, Some conjectures for root systems. SIAM J. Math. Anal. 13 (1982), 988–1007.
- [22] I. G. Macdonald, Symmetric functions and Hall polynomials. Second edition. With contributions by A. Zelevinsky. Oxford Mathematical Monographs. Oxford Science Publications. The Clarendon Press, Oxford University Press, New York, 1995.
- [23] I. G. Macdonald, A formal identity for affine root systems. Lie groups and symmetric spaces, 195– 211, Amer. Math. Soc. Transl. Ser. 2, 210, Amer. Math. Soc., Providence, RI, 2003.
- [24] M. L. Mehta, Random matrices. Second edition. Academic Press, Inc., Boston, MA, 1991.
- [25] W. G. Morris, Constant term identities for finite and affine root systems: conjectures and theorem, Ph.D. Thesis, Univ. Wisconsin, Madison, Wis., 1982
- [26] J. F. van Diejen, On certain multiple Bailey, Rogers and Dougall type summation formulas. Publ. Res. Inst. Math. Sci. 33 (1997), 483–508.

M. Ito

Masahiko ITO Department of Physics and Mathematics, Aoyama Gakuin University, 5-10-1 Fuchinobe, Sagamihara-shi, Kanagawa 229-8558, Japan mito@gem.aoyama.ac.jp

42