q-difference shift for
 van Diejen's $B C_{n}$ type Jackson integral arising from 'elementary' symmetric polynomials *

Masahiko Ito

Abstract

We study a q-difference equation of a $B C_{n}$ type Jackson integral, which is a multiple q-series generalized from a q-analogue of Selberg's integral. The equation is characterized by some new symmetric polynomials defined via the symplectic Schur functions. As an application of it, we give another proof of a product formula for the $B C_{n}$ type Jackson integral, which is equivalent to the so-called q-Macdonald-Morris identity for the root system $B C_{n}$ first obtained by Gustafson and van Diejen.

1 Introduction

As it is known, the beta integral

$$
\begin{equation*}
B(\alpha, \beta):=\int_{0}^{1} z^{\alpha-1}(1-z)^{\beta-1} d z \tag{1}
\end{equation*}
$$

is written as the following product of the gamma functions $\Gamma(\alpha)$:

$$
\begin{equation*}
B(\alpha, \beta)=\frac{\Gamma(\alpha) \Gamma(\beta)}{\Gamma(\alpha+\beta)} \tag{2}
\end{equation*}
$$

Since the gamma function satisfies $\Gamma(\alpha+1)=\alpha \Gamma(\alpha)$, we easily see the following recurrence relations:

$$
\begin{equation*}
B(\alpha+1, \beta)=\frac{\alpha}{\alpha+\beta} B(\alpha, \beta), \quad B(\alpha, \beta+1)=\frac{\beta}{\alpha+\beta} B(\alpha, \beta) . \tag{3}
\end{equation*}
$$

We regard these relations as difference equations with respect to parameters. Among the solutions of (3), the beta function $B(\alpha, \beta)$ is characterized by the following asymptotic behavior:

$$
\begin{equation*}
B(\alpha+N, \beta+N) \sim 2^{-\alpha-\beta+1-2 N} \sqrt{\pi / N} \quad(N \rightarrow+\infty) \tag{4}
\end{equation*}
$$

Conversely, we can recover the formula (2) from (3) and (4). Since

$$
B(\alpha+1, \beta)=\int_{0}^{1} z \Phi(z) d z \quad \text { or } \quad B(\alpha, \beta+1)=\int_{0}^{1} \Phi(z) d z-\int_{0}^{1} z \Phi(z) d z
$$

[^0]where $\Phi(z)$ denotes the integrand $z^{\alpha-1}(1-z)^{\beta-1}$, if we want to have the recurrence relations (3) without using (2), we usually prove the following relation from the definition (1) using integration by part:
$$
\int_{0}^{1} z \Phi(z) d z=\frac{\alpha}{\alpha+\beta} \int_{0}^{1} \Phi(z) d z
$$
which provides the equation between the integral (1) and that multiplied by a monomial z to the integrand $\Phi(z)$.

Next we consider the following q-Selberg integral [4, 6, 7, 10, 18, 20] defined by using the Jackson integral which is a sum over the lattice \mathbf{Z}^{n} (For the definition of the Jackson integral, see Section 3):

$$
S_{q}(\alpha, \beta, \tau ; \xi):=\int_{0}^{\xi \infty} \Phi_{\mathcal{S}_{n}}(z) \Delta_{\mathcal{S}_{n}}(z) \varpi_{q}, \quad \varpi_{q}=\frac{d_{q} z_{1}}{z_{1}} \cdots \frac{d_{q} z_{n}}{z_{n}}
$$

where the integrand is defined by

$$
\begin{aligned}
\Phi_{\mathcal{S}_{n}}(z) & :=\prod_{i=1}^{n} z_{i}^{\alpha} \frac{\left(q z_{i}\right)_{\infty}}{\left(b z_{i}\right)_{\infty}} \prod_{1 \leq j<k \leq n} z_{k}^{2 \tau} \frac{\left(q t^{-1} z_{j} / z_{k}\right)_{\infty}}{\left(t z_{j} / z_{k}\right)_{\infty}} \\
\Delta_{\mathcal{S}_{n}}(z) & :=\prod_{1 \leq j<k \leq n}\left(z_{k}-z_{j}\right)
\end{aligned}
$$

and $q^{\alpha}=a, q^{\beta}=b, q^{\tau}=t$. Let $\eta \in\left(\mathbf{C}^{*}\right)^{n}$ be the point defined by

$$
\eta:=\left(t^{n-1}, t^{n-2}, \ldots, t, 1\right) .
$$

For the Jackson integral $S_{q}(\alpha, \beta, \tau ; \xi)$, if we put $\xi=\eta$ and take the limit $q \rightarrow 1$, then the sum $S_{q}(\alpha, \beta, \tau ; \eta)$ becomes the following so-called Selberg integral:

$$
\begin{equation*}
S(\alpha, \beta, \tau)=\int_{0 \leq z_{1} \leq \ldots \leq z_{n} \leq 1} \prod_{i=1}^{n} z_{i}^{\alpha-1}\left(1-z_{i}\right)^{\beta-1} \Delta_{\mathcal{S}_{n}}(z)^{2 \tau} d z_{1} \ldots d z_{n} \tag{5}
\end{equation*}
$$

which can be expressed as a product of gamma functions as

$$
S(\alpha, \beta, \tau)=\prod_{i=1}^{n} \frac{\Gamma(i \tau) \Gamma(\alpha+(n-i) \tau) \Gamma(\beta+(n-i) \tau)}{\Gamma(\tau) \Gamma(\alpha+\beta+(2 n-i-1) \tau)} .
$$

The Selberg integral (5) is nothing but the beta function if $n=1$. For the q-Selberg integral $S_{q}(\alpha, \beta, \tau ; \xi)$, it is also possible to express it as a product of q-gamma functions by using its q-difference equation and its asymptotic behavior. To carry it out we need the q-difference equation first. According to Aomoto [3], the following formula is known:

Proposition 1.1 Let $e_{i}(z), 0 \leq i \leq n$, be the ith elementary symmetric polynomial, i.e.,

$$
\begin{aligned}
& e_{i}(z)=\sum_{1 \leq j_{1}<\ldots<j_{i} \leq n} z_{j_{1}} z_{j_{2}} \ldots z_{j_{i}} . \text { Then } \\
& \qquad \int_{0}^{\xi \infty} e_{i}(z) \Phi_{\mathcal{S}_{n}}(z) \Delta_{\mathcal{S}_{n}}(z) \varpi_{q} \\
& \quad=t^{i-1} \frac{\left(1-t^{n-i+1}\right)\left(1-a t^{n-i}\right)}{\left(1-t^{i}\right)\left(1-a b t^{2 n-i-1}\right)} \int_{0}^{\xi \infty} e_{i-1}(z) \Phi_{\mathcal{S}_{n}}(z) \Delta_{\mathcal{S}_{n}}(z) \varpi_{q} .
\end{aligned}
$$

Since $S_{q}(\alpha+1, \beta, \tau ; \xi)=\int_{0}^{\xi \infty} z_{1} z_{2} \ldots z_{n} \Phi_{\mathcal{S}_{n}}(z) \Delta_{\mathcal{S}_{n}}(z) \varpi_{q}$, we easily have the following q difference equation by repeated use of Proposition 1.1:

$$
\begin{equation*}
S_{q}(\alpha+1, \beta, \tau ; \xi)=\prod_{i=1}^{n} \frac{t^{i-1}\left(1-a t^{n-i}\right)}{\left(1-a b t^{2 n-i-1}\right)} S_{q}(\alpha, \beta, \tau ; \xi) \tag{6}
\end{equation*}
$$

which can be found in [20] and in $[1,2]$ for the case $\xi=\eta$ and $q \rightarrow 1$. For the q-Selberg integral $S_{q}(\alpha, \beta, \tau ; \xi)$, we can construct its product expression of q-gamma functions from its q-difference equation (6) and asymptotic behavior of $S_{q}(\alpha+N, \beta, \tau ; \eta)$ at $N \rightarrow+\infty$. (For explicit form of it, see [4, 20].)

In this paper we discuss a structure of product expression of a multiple sum generalized from the q-Selberg integral. We call it the $B C_{n}$ type Jackson integral (See Section 3 for its definition). Like the q-Selberg integral case, for the $B C_{n}$ type Jackson integral there also exist symmetric polynomials $e_{i}^{\prime}(z)$ of middle degree $i, 0 \leq i \leq n$, such that they interpolate a q-difference equation with respect to the parameter shift $a_{1} \rightarrow q a_{1}$ as follows:
Theorem 1.2 There exist symmetric Laurent polynomials $e_{i}^{\prime}(z)$ of degree $i, 0 \leq i \leq n$, such that

$$
\begin{aligned}
& \int_{0}^{\xi \infty} e_{i}^{\prime}(z) \Phi_{B_{n}}(z) \Delta_{C_{n}}(z) \varpi_{q} \\
& \quad=-\frac{t^{i-1}\left(1-t^{n-i+1}\right) \prod_{k=2}^{4}\left(1-a_{k} a_{1} t^{n-i}\right)}{t^{n-i}\left(1-t^{i}\right) a_{1}\left(1-a_{1} a_{2} a_{3} a_{4} t^{2 n-i-1}\right)} \int_{0}^{\xi \infty} e_{i-1}^{\prime}(z) \Phi_{B_{n}}(z) \Delta_{C_{n}}(z) \varpi_{q}
\end{aligned}
$$

Considering an analogy to Proposition 1.1, we call the polynomials $e_{i}^{\prime}(z)$ the 'elementary' symmetric polynomials, which are different from the symplectic Schur functions $\chi_{\left(1^{i}\right)}(z)$ though the polynomials $\chi_{\left(1^{i}\right)}(z)$ are sometimes called the elementary symmetric polynomials. (See Section 2 for the definition of $\left.\chi_{\left(1^{i}\right)}(z)\right)$. Moreover, the explicit forms of them are the following (Note the number of variables in the RHS):

$$
\begin{aligned}
& e_{0}^{\prime}(z)= 1, \\
& e_{1}^{\prime}(z)= \chi_{(1)}\left(z_{1}, z_{2}, \ldots, z_{n}\right)-\chi_{(1)}\left(a_{1}, a_{1} t, \ldots, a_{1} t^{n-1}\right), \\
& e_{2}^{\prime}(z)= \chi_{\left(1^{2}\right)}\left(z_{1}, z_{2}, \ldots, z_{n}\right) \\
&-\chi_{(1)}\left(z_{1}, z_{2}, \ldots, z_{n}\right) \chi_{(1)}\left(a_{1}, a_{1} t, \ldots, a_{1} t^{n-2}\right) \\
&+\chi_{(2)}\left(a_{1}, a_{1} t, \ldots, a_{1} t^{n-2}\right), \\
& \vdots \\
& e_{i}^{\prime}(z)= \sum_{j=0}^{i}(-1)^{j} \chi_{\left(1^{i-j}\right)}(\underbrace{z_{1}, z_{2}, \ldots, z_{n}}_{n}) \chi_{(j)}(\underbrace{a_{1}, a_{1} t, \ldots, a_{1} t^{n-i}}_{n-i+1}), \\
& \vdots \\
& e_{n}^{\prime}(z)= \sum_{j=0}^{n}(-1)^{j} \chi_{\left(1^{n-j}\right)}\left(z_{1}, z_{2}, \ldots, z_{n}\right) \chi_{(j)}\left(a_{1}\right) .
\end{aligned}
$$

This paper is organized as follows. In Section 2, we first state a relation between the symplectic Schur functions $\chi_{\left(1^{i}\right)}(z)$ and $\chi_{(j)}(z)$. The relation is used in Section 4 for
proving a property of the 'elementary' symmetric function. In Section 3, we introduce the $B C_{n}$ type Jackson integral and its truncated case. In Section 4, we define the 'elementary' symmetric function for the $B C_{n}$ type Jackson integral. Section 5 is devoted to the proof of Theorem 1.2, which is a main result of this paper. In Section 6, as a corollary of Theorem 1.2, we construct a product formula for the $B C_{n}$ type Jackson integral as if we recover the product expression (2) of the beta function from q-difference equations (3) and asymptotic behavior (4). This is to be another proof of the product formula, which is equivalent to the so-called q-Macdonald-Morris identity [21, 25] for the root system $B C_{n}$ first obtained by Gustafson [9] and van Diejen [26]. (See also [16, 23] for relations between q-Macdonald-Morris identities and the Jackson integrals associated with root systems.)

Throughout this paper we use the notations $(x)_{\infty}:=\prod_{i=0}^{\infty}\left(1-q^{i} x\right)$ and $(x)_{N}:=$ $(x)_{\infty} /\left(q^{N} x\right)_{\infty}$ where $0<q<1$.

2 Symplectic Schur functions $\chi_{\lambda}(z)$

Before introducing the $B C_{n}$ type Jackson integral, we prove Proposition 2.4, which will be used technically when we state a property of the 'elementary' symmetric polynomials in Section 4. The formula in Proposition 2.4 indicates some relation among the symplectic Schur functions $\chi_{\lambda}(z)$. The relation is very similar to those between the elementary symmetric functions and the complete symmetric functions (see $[8,22]$ for instance).

2.1 Definition of the symplectic Schur functions $\chi_{\lambda}(z)$

Let $\mathcal{A}_{\left(i_{1}, i_{2}, \ldots, i_{n}\right)}(z)$ be the function of $z \in\left(\mathbf{C}^{*}\right)^{n}$ defined in the form of the following determinant:

$$
\mathcal{A}_{\left(i_{1}, i_{2}, \ldots, i_{n}\right)}(z):=\operatorname{det}\left(z_{j}^{i_{k}}-z_{j}^{-i_{k}}\right)_{1 \leq j, k \leq n}
$$

for $\left(i_{1}, i_{2}, \ldots, i_{n}\right) \in \mathbf{Z}^{n}$. For example,

$$
\begin{gathered}
\mathcal{A}_{(3,2,1)}\left(z_{1}, z_{2}, z_{3}\right)=\left|\begin{array}{ccc}
z_{1}^{3}-z_{1}^{-3} & z_{2}^{3}-z_{2}^{-3} & z_{3}^{3}-z_{3}^{-3} \\
z_{1}^{2}-z_{1}^{-2} & z_{2}^{2}-z_{2}^{-2} & z_{3}^{2}-z_{3}^{-2} \\
z_{1}-z_{1}^{-1} & z_{2}-z_{2}^{-1} & z_{3}-z_{3}^{-1}
\end{array}\right|, \\
\mathcal{A}_{(5,2)}\left(z_{1}, z_{2}\right)=\left|\begin{array}{cc}
z_{1}^{5}-z_{1}^{-5} & z_{2}^{5}-z_{2}^{-5} \\
z_{1}^{2}-z_{1}^{-2} & z_{2}^{2}-z_{2}^{-2}
\end{array}\right| \text { and so on. }
\end{gathered}
$$

Let $W_{C_{n}}$ be the Weyl group of type C_{n}, which is isomorphic to $(\mathbf{Z} / 2 \mathbf{Z})^{n} \rtimes \mathcal{S}_{n}$ where \mathcal{S}_{n} is the symmetric group of nth order. $W_{C_{n}}$ is generated by the following transformations of the coordinates $\left(z_{1}, z_{2}, \ldots, z_{n}\right) \in\left(\mathbf{C}^{*}\right)^{n}$:

$$
\begin{aligned}
& \left(z_{1}, z_{2}, \ldots, z_{n}\right) \rightarrow\left(z_{1}^{-1}, z_{2}, \ldots, z_{n}\right), \\
& \left(z_{1}, z_{2}, \ldots, z_{n}\right) \rightarrow\left(z_{\sigma(1)}, z_{\sigma(2)}, \ldots, z_{\sigma(n)}\right) \quad \sigma \in \mathcal{S}_{n} .
\end{aligned}
$$

For a function $f(z)$ of $z \in\left(\mathbf{C}^{*}\right)^{n}$, we denote by $\mathcal{A} f(z)$ the alternating sum over $W_{C_{n}}$ defined by

$$
\mathcal{A} f(z):=\sum_{w \in W_{C_{n}}}(\operatorname{sgn} w) w f(z)
$$

In particular, by definition of determinant, $\mathcal{A}_{\left(i_{1}, i_{2}, \ldots, i_{n}\right)}(z)$ is expanded as the following alternating sum of the monomial $z_{1}^{i_{1}} z_{2}^{i_{2}} \ldots z_{n}^{i_{n}}$:

$$
\mathcal{A}_{\left(i_{1}, i_{2}, \ldots, i_{n}\right)}(z)=\mathcal{A}\left(z_{1}^{i_{1}} z_{2}^{i_{2}} \ldots z_{n}^{i_{n}}\right)
$$

for $\left(i_{1}, i_{2}, \ldots, i_{n}\right) \in \mathbf{Z}^{n}$. This implies that

$$
\begin{equation*}
\mathcal{A}_{\rho}(z)=\prod_{i=1}^{n}\left(z_{i}-z_{i}^{-1}\right) \prod_{1 \leq j<k \leq n} \frac{\left(z_{k}-z_{j}\right)\left(1-z_{j} z_{k}\right)}{z_{j} z_{k}} \tag{7}
\end{equation*}
$$

where

$$
\rho:=(n, n-1, \ldots, 2,1) \in \mathbf{Z}^{n},
$$

which is the so-called Weyl denominator formula. Let P be the set of partitions defined by

$$
P:=\left\{\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right) \in \mathbf{Z}^{n} ; \lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n} \geq 0\right\} .
$$

For $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right) \in P$, we define the symplectic Schur function $\chi_{\lambda}(z)$ as follows:

$$
\chi_{\lambda}(z):=\frac{\mathcal{A}_{\lambda+\rho}(z)}{\mathcal{A}_{\rho}(z)}=\frac{\mathcal{A}_{\left(\lambda_{1}+n, \lambda_{2}+n-1, \ldots, \lambda_{n-1}+2, \lambda_{n}+1\right)}(z)}{\mathcal{A}_{(n, n-1, \ldots, 2,1)}(z)},
$$

which occurs in the Weyl character formula. For $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right) \in P$, if we denote by m_{i} the multiplicity of i in λ, i.e., $m_{i}=\#\left\{j ; \lambda_{j}=i\right\}$, it is convenient to use the notations

$$
\lambda=\left(1^{m_{1}} 2^{m_{2}} \ldots r^{m_{r}} \ldots\right) \quad \text { and } \quad \chi_{\lambda}(z)=\chi_{\left(1^{m_{1}} 2^{m_{2}} \ldots r^{\left.m_{r} \ldots\right)}\right.}(z) .
$$

For example, we use them like $\chi_{(2,1,1,0)}\left(z_{1}, z_{2}, z_{3}, z_{4}\right)=\chi_{\left(1^{2} 2\right)}\left(z_{1}, z_{2}, z_{3}, z_{4}\right)$.

2.2 A relation among $\chi_{\lambda}(z)$

For $i=0,1,2, \ldots, n$, we define the determinant $D_{i}^{(n)}(z, y)$ of a matrix of degree $n+i+1$ as follows:

$$
D_{i}^{(n)}(z, y):=\left|\begin{array}{cc}
A_{n+1, n}(z) & A_{n+1, i+1}(y) \\
A_{i, n}(z) & -A_{i, i+1}(y)
\end{array}\right|
$$

where $A_{\mu, \nu}(z)$ is the $\mu \times \nu$ matrix defined by

$$
A_{\mu, \nu}(z):=\left(\begin{array}{cccc}
z_{1}^{\mu}-z_{1}^{-\mu} & z_{2}^{\mu}-z_{2}^{-\mu} & \cdots & z_{\nu}^{\mu}-z_{\nu}^{-\mu} \\
z_{1}^{\mu-1}-z_{1}^{-(\mu-1)} & z_{2}^{\mu-1}-z_{2}^{-(\mu-1)} & \cdots & z_{\nu}^{\mu-1}-z_{\nu}^{(\mu-1)} \\
\vdots & \vdots & \ddots & \vdots \\
z_{1}^{2}-z_{1}^{-2} & z_{2}^{2}-z_{2}^{-2} & \cdots & z_{\nu}^{2}-z_{\nu}^{-2} \\
z_{1}-z_{1}^{-1} & z_{2}-z_{2}^{-1} & \cdots & z_{\nu}-z_{\nu}^{-1}
\end{array}\right) .
$$

Lemma 2.1 The determinant $D_{i}^{(n)}(z, y)$ is divided out by

$$
\begin{array}{r}
\sum_{k=i+1}^{n+1}(-1)^{k+1} \mathcal{A}_{(n+1, n, n-1, \ldots, k+1, k-1, \ldots, 2,1)}\left(z_{1}, \ldots, z_{n}\right) \\
\times \mathcal{A}_{(k, i, i-1, i-2, \ldots, 2,1)}\left(y_{1}, \ldots, y_{i+1}\right) \tag{8}
\end{array}
$$

Proof. Separating $(n+1)$ columns of $D_{i}^{(n)}(z, y)$ into two parts which are the forward part to the nth column and that backward from the $n+1$ one, we have a Laplace expansion (8) of $D_{i}^{(n)}(z, y)$ by minors of sizes n and $i+1$ up to constant.

Corollary 2.2 The following holds for $\chi_{\lambda}(z)$ and $\mathcal{A}_{\rho}(z)$:

$$
\frac{\mathcal{A}_{(n+1, n, \ldots, 1)}\left(z_{1}, z_{2}, \ldots, z_{n}, z_{n+1}\right)}{\mathcal{A}_{(n, n-1, \ldots, 1)}\left(z_{1}, \ldots, z_{n}\right) \mathcal{A}_{(1)}\left(z_{n+1}\right)}=\sum_{j=0}^{n}(-1)^{j} \chi_{\left(1^{n-j}\right)}\left(z_{1}, \ldots, z_{n}\right) \chi_{(j)}\left(z_{n+1}\right)
$$

Proof. If we put $y_{1}=z_{n+1}$ for $D_{0}^{(n)}(z, y)$, then

$$
\begin{equation*}
D_{0}^{(n)}(z, y)=\mathcal{A}_{(n+1, n, \ldots, 1)}\left(z_{1}, z_{2}, \ldots, z_{n}, z_{n+1}\right) \tag{9}
\end{equation*}
$$

On the other hand, from Lemma 2.1, we have

$$
\begin{align*}
& D_{0}^{(n)}(z, y) \tag{10}\\
& \quad=\sum_{k=1}^{n+1}(-1)^{k+1} \mathcal{A}_{(n+1, n, n-1, \ldots, k+1, k-1, \ldots, 2,1)}\left(z_{1}, \ldots, z_{n}\right) \mathcal{A}_{(k)}\left(y_{1}\right) .
\end{align*}
$$

From (9) and (10), it follows that

$$
\begin{align*}
& \mathcal{A}_{(n+1, n, \ldots, 1)}\left(z_{1}, z_{2}, \ldots, z_{n}, z_{n+1}\right) \tag{11}\\
& =\sum_{k=1}^{n+1}(-1)^{k+1} \mathcal{A}_{(n+1, n, n-1, \ldots, k+1, k-1, \ldots, 2,1)}\left(z_{1}, \ldots, z_{n}\right) \mathcal{A}_{(k)}\left(z_{n+1}\right) .
\end{align*}
$$

Dividing both sides of (11) by $\mathcal{A}_{(n, n-1, \ldots, 1)}\left(z_{1}, \ldots, z_{n}\right) \mathcal{A}_{(1)}\left(z_{n+1}\right)$, we obtain Corollary 2.2. [

Lemma 2.3 If we put $y_{j}=z_{j}$ for all $j \in\{1,2, \ldots, i+1\}$, then $D_{i}^{(n)}(z, z)=0$.
Proof. Set $y_{j}=z_{j}(1 \leq j \leq i+1)$. For the determinant

$$
D_{i}^{(n)}(z, z)=\left|\begin{array}{cc}
A_{n+1, n}(z) & A_{n+1, i+1}(z) \\
A_{i, n}(z) & -A_{i, i+1}(z)
\end{array}\right|
$$

if we subtract the j th column from the $(n+j)$ th one for $j=1,2, \ldots, i+1$, by the elementary column operations, we have

$$
\begin{aligned}
D_{i}^{(n)}(z, z) & =\left|\begin{array}{cc}
A_{n+1, n}(z) & O \\
A_{i, n}(z) & -2 A_{i, i+1}(z)
\end{array}\right| \\
& =(-2)^{i+1}\left|\begin{array}{cc}
A_{n+1, n}(z) & O \\
A_{i, n}(z) & A_{i, i+1}(z)
\end{array}\right| .
\end{aligned}
$$

Moreover, since the rank of the $i \times(i+1)$ matrix $A_{i, i+1}(z)$ is less than or equal to i, after the processes of the elementary column operations the matrix $A_{i, i+1}(z)$ can be deformed
into an $i \times(i+1)$ matrix B which has at least one column consisting of zeros only. Thus, the determinant

$$
\left|\begin{array}{cc}
A_{n+1, n}(z) & O \\
A_{i, n}(z) & A_{i, i+1}(z)
\end{array}\right|
$$

is divided out by

$$
\left|\begin{array}{cc}
A_{n+1, n}(z) & O \\
A_{i, n}(z) & B
\end{array}\right|
$$

which has the column consisting of zeros and is equal to zero. This implies $D_{i}^{(n)}(z, z)=0$, which completes the proof.

Proposition 2.4 The following holds for $i=0,1,2, \ldots, n$:

$$
\sum_{j=0}^{i}(-1)^{j} \chi_{\left(1^{i-j}\right)}\left(z_{1}, z_{2}, \ldots, z_{n}\right) \chi_{(j)}\left(z_{1}, z_{2}, \ldots, z_{n-i+1}\right)=\left\{\begin{array}{cc}
0 & (i \neq 0) \\
1 & (i=0)
\end{array}\right.
$$

Proof. From Lemma 2.3 and 2.1, it follows that

$$
\begin{align*}
\sum_{k=i+1}^{n+1}(-1)^{k+1} & \mathcal{A}_{(n+1, n, n-1, \ldots, k+1, k-1, \ldots, 2,1)}\left(z_{1}, \ldots, z_{n}\right) \\
& \times \mathcal{A}_{(k, i, i-1, i-2, \ldots, 2,1)}\left(z_{1}, \ldots, z_{i+1}\right)=0 \tag{12}
\end{align*}
$$

Divide both sides of (12) by $\mathcal{A}_{(n, n-1, \ldots, 1)}\left(z_{1}, \ldots, z_{n}\right) \mathcal{A}_{(i+1, i, \ldots, 1)}\left(z_{1}, \ldots, z_{i+1}\right)$. Exchanging i with $n-i$, we obtain Proposition 2.4.

3 Definition of $B C_{n}$ type Jackson integral

For $z=\left(z_{1}, z_{2}, \ldots, z_{n}\right) \in\left(\mathbf{C}^{*}\right)^{n}$, we set

$$
\begin{aligned}
\Phi_{B_{n}}(z):= & \prod_{i=1}^{n} \prod_{m=1}^{4} z_{i}^{1 / 2-\alpha_{m}} \frac{\left(q a_{m}^{-1} z_{i}\right)_{\infty}}{\left(a_{m} z_{i}\right)_{\infty}} \\
& \times \prod_{1 \leq j<k \leq n} z_{j}^{1-2 \tau} \frac{\left(q t^{-1} z_{j} / z_{k}\right)_{\infty}}{\left(t z_{j} / z_{k}\right)_{\infty}} \frac{\left(q t^{-1} z_{j} z_{k}\right)_{\infty}}{\left(t z_{j} z_{k}\right)_{\infty}}, \\
\Delta_{C_{n}}(z):= & \prod_{i=1}^{n} \frac{1-z_{i}^{2}}{z_{i}} \prod_{1 \leq j<k \leq n} \frac{\left(1-z_{j} / z_{k}\right)\left(1-z_{j} z_{k}\right)}{z_{j}}
\end{aligned}
$$

where $q^{\alpha_{m}}=a_{m}, q^{\tau}=t$. We abbreviate $\Phi_{B_{n}}(z)$ and $\Delta_{C_{n}}(z)$ to $\Phi(z)$ and $\Delta(z)$ respectively. Weyl's denominator formula (7) says

$$
\begin{equation*}
\Delta(z)=(-1)^{n} \mathcal{A}_{(n, n-1, \ldots, 1)}(z) . \tag{13}
\end{equation*}
$$

For an arbitrary $\xi=\left(\xi_{1}, \xi_{2}, \ldots, \xi_{n}\right) \in\left(\mathbf{C}^{*}\right)^{n}$, we define the q-shift $\xi \rightarrow q^{\nu} \xi$ by a lattice point $\nu=\left(\nu_{1}, \nu_{2} \ldots, \nu_{n}\right) \in \mathbf{Z}^{n}$, where

$$
q^{\nu} \xi:=\left(q^{\nu_{1}} \xi_{1}, q^{\nu_{2}} \xi_{2}, \ldots, q^{\nu_{n}} \xi_{n}\right) \in\left(\mathbf{C}^{*}\right)^{n} .
$$

For $\xi=\left(\xi_{1}, \xi_{2}, \ldots, \xi_{n}\right) \in\left(\mathbf{C}^{*}\right)^{n}$ and a function $h(z)$ of $z \in\left(\mathbf{C}^{*}\right)^{n}$, we define the sum over the lattice \mathbf{Z}^{n} by

$$
\begin{equation*}
\int_{0}^{\xi_{1} \infty} \cdots \int_{0}^{\xi_{n} \infty} h(z) \frac{d_{q} z_{1}}{z_{1}} \cdots \frac{d_{q} z_{n}}{z_{n}}:=(1-q)^{n} \sum_{\nu \in \mathbf{Z}^{n}} h\left(q^{\nu} \xi\right) \tag{14}
\end{equation*}
$$

which we call the Jackson integral if it converges. We abbreviate the LHS of (14) to $\int_{0}^{\xi \infty} h(z) \varpi_{q}$. We now define the Jackson integral whose integrand is $\Phi(z) \Delta(z)$ as follows:

$$
\begin{equation*}
J(\xi):=\int_{0}^{\xi \infty} \Phi(z) \Delta(z) \varpi_{q} \tag{15}
\end{equation*}
$$

which converges if

$$
\left|a_{1} a_{2} a_{3} a_{4} t^{n+i-2}\right|>q \quad \text { for } \quad i=1,2, \ldots, n
$$

and

$$
\left\{\begin{array}{lll}
t \xi_{j} / \xi_{k}, t \xi_{j} \xi_{k} \notin\left\{q^{l} ; l \in \mathbf{Z}\right\} & \text { for } & 1 \leq j<k \leq n, \\
a_{m} \xi_{i} \notin\left\{q^{l} ; l \in \mathbf{Z}\right\} & \text { for } & 1 \leq m \leq 4,1 \leq i \leq n .
\end{array}\right.
$$

We call the sum $J(\xi)$ the $B C_{n}$ type Jackson integral. The sum $J(\xi)$ is invariant under the shifts $\xi \rightarrow q^{\nu} \xi$ for $\nu \in \mathbf{Z}^{n}$.

Since $\left(q^{1+m}\right)_{\infty}=0$ if m is a negative integer, for the special point

$$
\zeta:=\left(t^{n-1} a_{1}, t^{n-2} a_{1}, \ldots, t a_{1}, a_{1}\right) \in\left(\mathbf{C}^{*}\right)^{n}
$$

it follows that

$$
\Phi\left(q^{\nu} \zeta\right)=0 \quad \text { if } \quad \nu \notin D
$$

where D forms the cone in the lattice \mathbf{Z}^{n} defined by

$$
D:=\left\{\nu \in \mathbf{Z}^{n} ; \nu_{1}-\nu_{2} \geq 0, \nu_{2}-\nu_{3} \geq 0, \ldots, \nu_{n-1}-\nu_{n} \geq 0 \text { and } \nu_{n} \geq 0\right\}
$$

This implies that $J(\zeta)$ is written as a sum over the cone D as follows:

$$
\begin{equation*}
J(\zeta)=(1-q)^{n} \sum_{\nu \in D} \Phi\left(q^{\nu} \zeta\right) \Delta\left(q^{\nu} \zeta\right) \tag{16}
\end{equation*}
$$

We call its Jackson integral summed over D truncated. We just write

$$
J(\zeta)=\int_{0}^{\zeta} \Phi(z) \Delta(z) \varpi_{q}
$$

omitting the notation ∞ in its region only if $\xi=\zeta$.
Let $\Theta(\xi)$ be the function defined by

$$
\begin{equation*}
\Theta(\xi):=\prod_{i=1}^{n} \frac{\xi_{i} \theta\left(\xi_{i}^{2}\right)}{\prod_{m=1}^{4} \xi_{i}^{\alpha_{m}} \theta\left(a_{m} \xi_{i}\right)} \prod_{1 \leq j<k \leq n} \frac{\theta\left(\xi_{j} / \xi_{k}\right) \theta\left(\xi_{j} \xi_{k}\right)}{\xi_{j}^{2 \tau} \theta\left(t \xi_{j} / \xi_{k}\right) \theta\left(t \xi_{j} \xi_{k}\right)} \tag{17}
\end{equation*}
$$

where $\theta(x):=(x)_{\infty}(q / x)_{\infty}$. We state a lemma for the subsequent section.

Lemma 3.1 The Jackson integral $J(\xi)$ is expressed as

$$
\begin{equation*}
J(\xi)=C \Theta(\xi) \tag{18}
\end{equation*}
$$

where C is a constant not depending on $\xi \in\left(\mathbf{C}^{*}\right)^{n}$
Proof. See [14].
We will discuss the constant C later in Section 6.

4 'Elementary' symmetric polynomials $e_{i}^{\prime}(z)$

For $i=0,1,2,3, \ldots, n$, we define the following symmetric polynomials in terms of $\chi_{\lambda}(z)$:

$$
\begin{equation*}
e_{i}^{\prime}(z):=\sum_{j=0}^{i}(-1)^{j} \chi_{\left(1^{i-j}\right)}(\underbrace{z_{1}, z_{2}, \ldots, z_{n}}_{n}) \chi_{(j)}(\underbrace{a_{1}, a_{1} t, \ldots, a_{1} t^{n-i}}_{n-i+1}), \tag{19}
\end{equation*}
$$

which we call the i th 'elementary' symmetric polynomials as we mentioned in Introduction. In particular,

Lemma 4.1 The product expression of the nth 'elementary' symmetric polynomial $e_{n}^{\prime}(z)$ is the following:

$$
\begin{equation*}
e_{n}^{\prime}(z)=\prod_{i=1}^{n} \frac{\left(a_{1}-z_{i}\right)\left(1-a_{1} z_{i}\right)}{a_{1} z_{i}} \tag{20}
\end{equation*}
$$

Proof. By using Weyl's denominator formula (7), we have

$$
\begin{equation*}
\prod_{i=1}^{n} \frac{\left(a_{1}-z_{i}\right)\left(1-a_{1} z_{i}\right)}{a_{1} z_{i}}=\frac{\mathcal{A}_{(n+1, n, \ldots, 1)}\left(z_{1}, z_{2}, \ldots, z_{n}, a_{1}\right)}{\mathcal{A}_{(n, n-1, \ldots, 1)}\left(z_{1}, \ldots, z_{n}\right) \mathcal{A}_{(1)}\left(a_{1}\right)} \tag{21}
\end{equation*}
$$

Taking $z_{n+1}=a_{1}$ at Corollary 2.2, we have

$$
\begin{align*}
\frac{\mathcal{A}_{(n+1, n, \ldots, 1)}\left(z_{1}, z_{2}, \ldots, z_{n}, a_{1}\right)}{\mathcal{A}_{(n, n-1, \ldots, 1)}\left(z_{1}, \ldots, z_{n}\right) \mathcal{A}_{(1)}\left(a_{1}\right)} & =\sum_{j=0}^{n}(-1)^{j} \chi_{\left(1^{n-j}\right)}\left(z_{1}, \ldots, z_{n}\right) \chi_{(j)}\left(a_{1}\right) \\
& =e_{n}^{\prime}(z) \tag{22}
\end{align*}
$$

From (21) and (22), we have (20).
Let x be a real number satisfying $x>0$. For $i=1,2,3, \ldots, n+1$, we set

$$
\begin{equation*}
\zeta_{i}=\left(\zeta_{i 1}, \zeta_{i 2}, \ldots, \zeta_{i n}\right) \in\left(\mathbf{C}^{*}\right)^{n}, \tag{23}
\end{equation*}
$$

where

$$
\zeta_{i j}:=\left\{\begin{array}{lll}
x^{i-j} & \text { if } & 1 \leq j<i \\
t^{n-j} a_{1} & \text { if } & i \leq j \leq n
\end{array}\right.
$$

The explicit expression of ζ_{i} is the following:

$$
\begin{aligned}
\zeta_{1} & =\left(t^{n-1} a_{1}, t^{n-2} a_{1}, \ldots, t a_{1}, a_{1}\right), \\
\zeta_{2} & =\left(x, t^{n-2} a_{1}, t^{n-3} a_{1}, \ldots, t a_{1}, a_{1}\right), \\
\zeta_{3} & =\left(x^{2}, x, t^{n-3} a_{1}, t^{n-4} a_{1}, \ldots, t a_{1}, a_{1}\right), \\
& \vdots \\
\zeta_{n} & =\left(x^{n-1}, \ldots, x^{2}, x, a_{1}\right), \\
\zeta_{n+1} & =\left(x^{n}, x^{n-1}, \ldots, x^{2}, x\right) .
\end{aligned}
$$

In particular, the point $\zeta_{1} \in\left(\mathbf{C}^{*}\right)^{n}$ is nothing but $\zeta \in\left(\mathbf{C}^{*}\right)^{n}$ which is defined in Section 3.

Lemma 4.2 If $1 \leq j \leq i \leq n$, then

$$
e_{i}^{\prime}\left(z_{1}, z_{2}, \ldots, z_{j-1}, a_{1} t^{n-j}, a_{1} t^{n-j-1}, \ldots, a_{1} t, a_{1}\right)=0 .
$$

Proof. Since $\chi_{\lambda}(z)$ is symmetric, by definition (19), we have

$$
\begin{aligned}
& e_{i}^{\prime}\left(z_{1}, z_{2}, \ldots, z_{j-1}, a_{1} t^{n-j}, a_{1} t^{n-j-1}, \ldots, a_{1} t, a_{1}\right) \\
& =\sum_{k=0}^{i}(-1)^{k} \chi_{\left(1^{i-k}\right)}\left(z_{1}, z_{2}, \ldots, z_{j-1}, a_{1} t^{n-j}, a_{1} t^{n-j-1}, \ldots, a_{1} t, a_{1}\right) \\
& \quad \times \chi_{(k)}\left(a_{1}, a_{1} t, \ldots, a_{1} t^{n-i}\right) \\
& =\sum_{k=0}^{i}(-1)^{k} \chi_{\left(1^{i-k}\right)}\left(a_{1}, a_{1} t, \ldots, a_{1} t^{n-i}, a_{1} t^{n-i+1}, \ldots, a_{1} t^{n-j}, z_{1}, z_{2}, \ldots, z_{j-1}\right) \\
& \quad \times \chi_{(k)}\left(a_{1}, a_{1} t, \ldots, a_{1} t^{n-i}\right)
\end{aligned}
$$

Applying Proposition 2.4, the RHS of the above equation is equal to 0 . This completes the proof.

The explicit expression of Lemma 4.2 is the following:

$$
\begin{aligned}
e_{1}^{\prime}\left(a_{1} t^{n-1}, a_{1} t^{n-2}, \ldots, a_{1} t, a_{1}\right) & =0 \\
e_{2}^{\prime}\left(z_{1}, a_{1} t^{n-2}, \ldots, a_{1} t, a_{1}\right) & =0 \\
& \vdots \\
e_{n}^{\prime}\left(z_{1}, z_{2}, \ldots, z_{n-1}, a_{1}\right) & =0 .
\end{aligned}
$$

In particular,

Corollary 4.3 If $1 \leq j \leq i \leq n$, then $e_{i}^{\prime}\left(\zeta_{j}\right)=0$.
Proof. It is straightforward from definition (23) of ζ_{i} and Lemma 4.2.

5 Main theorem

In this section, to specify the number of variables n, we simply use the notations $e_{i}^{(n)}(z)$ and $\mathcal{A}^{(n)}(z)$ instead of the 'elementary' symmetric polynomials $e_{i}^{\prime}(z)$ and Weyl's denominator $\mathcal{A}_{\rho}(z)$ respectively. The notation (n) on the right shoulder of e_{i} or \mathcal{A} indicates the number of variables of $z=\left(z_{1}, z_{2}, \ldots, z_{n}\right)$ for $e_{i}^{\prime}(z)$ or $\mathcal{A}_{\rho}(z)$.

Let $T_{z_{1}}$ be the q-shift of variable z_{1} such that $T_{z_{1}}: z_{1} \rightarrow q z_{1}$. Set

$$
\begin{equation*}
\nabla \varphi(z):=\varphi(z)-\frac{T_{z_{1}} \Phi(z)}{\Phi(z)} T_{z_{1}} \varphi(z) \tag{24}
\end{equation*}
$$

where $T_{z_{1}} \Phi(z) / \Phi(z)$ is written as follows by definition:

$$
\frac{T_{z_{1}} \Phi(z)}{\Phi(z)}=q^{n+1} \prod_{k=1}^{4} \frac{\left(1-a_{k} z_{1}\right)}{\left(a_{k}-q z_{1}\right)} \prod_{j=2}^{n} \frac{\left(1-t z_{1} / z_{j}\right)\left(1-t z_{1} z_{j}\right)}{\left(t-q z_{1} / z_{j}\right)\left(t-q z_{1} z_{j}\right)}
$$

Lemma 5.1 Let $\varphi(z)$ be an arbitrary function such that $\int_{0}^{\xi \infty} \varphi(z) \Phi(z) \varpi_{q}$ converges. The following holds for $\varphi(z)$:

$$
\int_{0}^{\xi \infty} \Phi(z) \nabla \varphi(z) \varpi_{q}=0
$$

In particular,

$$
\begin{equation*}
\int_{0}^{\xi \infty} \Phi(z) \mathcal{A} \nabla \varphi(z) \varpi_{q}=0 . \tag{25}
\end{equation*}
$$

Proof. See [17, Lemma 5.1].
Let τ_{1} and σ_{i} be the reflections of the coordinates $z=\left(z_{1}, z_{2}, \ldots, z_{n}\right)$ defined as follows:

$$
\begin{aligned}
& \tau_{1}: z_{1} \longleftrightarrow z_{1}^{-1} \\
& \sigma_{i}: z_{1} \longleftrightarrow z_{i}
\end{aligned} \text { for } i=2,3, \ldots, n .
$$

Since the Weyl group $W_{C_{n}}$ of type C_{n} is isomorphic to $(\mathbf{Z} / 2 \mathbf{Z})^{n} \rtimes \mathcal{S}_{n}$, we may write

$$
\begin{equation*}
W_{C_{n}}=\left\langle\tau_{1}, \sigma_{2}, \sigma_{3}, \ldots, \sigma_{n}\right\rangle \tag{26}
\end{equation*}
$$

which means $W_{C_{n}}$ is generated by τ_{1} and $\sigma_{i}, i=2,3, \ldots, n$.
Let $f(z)$ and $g(z)$ be the functions defined as follows:

$$
\begin{aligned}
f(z) & :=\prod_{m=1}^{4}\left(a_{m}-z_{1}\right) \prod_{j=2}^{n}\left(t-z_{1} / z_{j}\right)\left(t-z_{1} z_{j}\right) \\
g(z) & :=\prod_{m=1}^{4}\left(1-a_{m} z_{1}\right) \prod_{j=2}^{n}\left(1-t z_{1} / z_{j}\right)\left(1-t z_{1} z_{j}\right) .
\end{aligned}
$$

For $i=2,3, \ldots, n$, we set

$$
\begin{equation*}
f_{i}(z):=\sigma_{i} f(z), \quad g_{i}(z):=\sigma_{i} g(z) \tag{27}
\end{equation*}
$$

and simply $f_{1}(z):=f(z), g_{1}(z):=g(z)$. For $i=1,2, \ldots, n$, the explicit forms of $f_{i}(z)$ and $g_{i}(z)$ are the following:

$$
\begin{align*}
& f_{i}(z)=\prod_{m=1}^{4}\left(a_{m}-z_{i}\right) \prod_{j \in I_{i}}\left(t-z_{i} / z_{j}\right)\left(t-z_{i} z_{j}\right), \tag{28}\\
& g_{i}(z)=\prod_{m=1}^{4}\left(1-a_{m} z_{i}\right) \prod_{j \in I_{i}}\left(1-t z_{i} / z_{j}\right)\left(1-t z_{i} z_{j}\right), \tag{29}
\end{align*}
$$

where $I_{i}:=\{1,2, \ldots, i-1, i+1, \ldots n\}$. By definition, we have

$$
\begin{equation*}
\tau_{1}\left(\frac{f_{1}(z)}{z_{1}^{n+1}}\right)=\frac{g_{1}(z)}{z_{1}^{n+1}} . \tag{30}
\end{equation*}
$$

Let $\bar{\varphi}_{i}(z), 1 \leq i \leq n$, be the function defined by

$$
\bar{\varphi}_{i}(z):=\frac{\mathcal{A} \nabla \varphi_{i}(z)}{2}
$$

where

$$
\begin{equation*}
\varphi_{i}(z):=\frac{f(z)}{z_{1}^{n+1}} z_{2}^{n-1} z_{3}^{n-2} \ldots z_{n} e_{i-1}^{(n-1)}\left(z_{2}, z_{3}, \ldots, z_{n}\right) \tag{31}
\end{equation*}
$$

Lemma 5.2 The functions $\bar{\varphi}_{i}(z)$ are expressed as

$$
\begin{equation*}
\bar{\varphi}_{i}(z)=\sum_{k=1}^{n}(-1)^{k+1} \frac{f_{k}(z)-g_{k}(z)}{z_{k}^{n+1}} e_{i-1}^{(n-1)}\left(\widehat{z}_{k}\right) \mathcal{A}^{(n-1)}\left(\widehat{z}_{k}\right) \tag{32}
\end{equation*}
$$

where $\left(\widehat{z}_{k}\right):=\left(z_{1}, \ldots, z_{k-1}, z_{k+1}, \ldots, z_{n}\right)$. On the other hand, $\bar{\varphi}_{i}(z)$ are expanded by the functions $e_{j}^{(n)}(z) \mathcal{A}^{(n)}(z), 0 \leq j \leq i$, as follows:

$$
\begin{equation*}
\bar{\varphi}_{i}(z)=\sum_{j=0}^{i} c_{i j} e_{j}^{(n)}(z) \mathcal{A}^{(n)}(z) \tag{33}
\end{equation*}
$$

Proof. By definition (24) of ∇ and (31), we have

$$
\nabla \varphi_{i}(z)=\frac{f(z)-g(z)}{z_{1}^{n+1}} z_{2}^{n-1} z_{3}^{n-2} \ldots z_{n} e_{i-1}^{(n-1)}\left(\widehat{z}_{1}\right) .
$$

Then, from (26) and (30), it follows that

$$
\begin{align*}
\bar{\varphi}_{i}(z) & =\mathcal{A} \nabla \varphi_{i}(z) / 2 \\
= & \frac{f_{1}(z)-g_{1}(z)}{z_{1}^{n+1}} e_{i-1}^{(n-1)}\left(\widehat{z}_{1}\right) \mathcal{A}^{(n-1)}\left(\widehat{z}_{1}\right) \\
& +\sum_{k=2}^{n}\left(\operatorname{sgn} \sigma_{k}\right) \sigma_{k}\left[\frac{f_{1}(z)-g_{1}(z)}{z_{1}^{n+1}} e_{i-1}^{(n-1)}\left(\widehat{z}_{1}\right) \mathcal{A}^{(n-1)}\left(\widehat{z}_{1}\right)\right] . \tag{34}
\end{align*}
$$

Thus, we obtain the expression (32) by substituting (27) and the following for (34):

$$
\operatorname{sgn} \sigma_{k}=-1, \sigma_{k} e_{i-1}^{(n-1)}\left(\widehat{z}_{1}\right)=e_{i-1}^{(n-1)}\left(\widehat{z}_{k}\right), \sigma_{k} \mathcal{A}^{(n-1)}\left(\widehat{z}_{1}\right)=(-1)^{k} \mathcal{A}^{(n-1)}\left(\widehat{z}_{k}\right)
$$

Next, from the degrees of the monomials in the expansion of (31), we can obtain the expression (33). This completes the proof.

Lemma 5.3 The following hold for $f_{k}(z), g_{k}(z)$ and $\zeta_{j} \in\left(\mathbf{C}^{*}\right)^{n}$:

$$
\begin{array}{lll}
f_{k}\left(\zeta_{j}\right)=0 & \text { if } & j \leq k \leq n, \\
g_{k}\left(\zeta_{j}\right)=0 & \text { if } \quad j<k \leq n .
\end{array}
$$

Moreover,

$$
\begin{align*}
& \lim _{x \rightarrow 0}\left[z_{1} z_{2} \ldots z_{i-1} \frac{g_{i}(z)}{z_{i}^{n+1}}\right]_{z=\zeta_{i}} \tag{35}\\
& \quad=(-t)^{i-1} \frac{\prod_{k=2}^{4}\left(1-a_{k} a_{1} t^{n-i}\right)}{(1-t)\left(t^{n-i} a_{1}\right)^{n-i+2}} \prod_{j=0}^{n-i}\left(1-t^{j+1}\right)\left(1-t^{n-i+j} a_{1}^{2}\right) .
\end{align*}
$$

Proof. From (28), $f_{k}(z)$ has the factor $\left(t-z_{k} / z_{k+1}\right)$ if $1 \leq k \leq n-1$, and has the factor $\left(a_{1}-z_{n}\right)$ if $k=n$. When $z=\zeta_{j}$, from definition (23) of ζ_{j}, it follows that $t-z_{k} / z_{k+1}=0$ if $j \leq k \leq n-1$ and $a_{1}-z_{n}=0$ if $j \leq n$. Thus $f_{k}\left(\zeta_{j}\right)=0$ if $j \leq k \leq n$. From (29), it follows that $g_{k}(z)$ has the factor $\left(1-t z_{k} / z_{k-1}\right)$, so that $g_{k}\left(\zeta_{j}\right)=0$ if $j+1 \leq k \leq n$.

Next, we prove the latter part of Lemma 5.3. From (29), it follows that

$$
\begin{aligned}
z_{1} z_{2} \ldots z_{i-1} \frac{g_{i}(z)}{z_{i}^{n+1}}= & \frac{\prod_{k=1}^{4}\left(1-a_{k} z_{i}\right)}{z_{i}^{n+1}} \\
& \times\left(z_{1}-t z_{i}\right)\left(z_{2}-t z_{i}\right) \ldots\left(z_{i-1}-t z_{i}\right) \\
& \times\left(1-t z_{1} z_{i}\right)\left(1-t z_{2} z_{i}\right) \ldots\left(1-t z_{i-1} z_{i}\right) \\
& \times\left(1-t z_{i} / z_{i+1}\right)\left(1-t z_{i} / z_{i+2}\right) \ldots\left(1-t z_{i} / z_{n}\right) \\
& \times\left(1-t z_{i} z_{i+1}\right)\left(1-t z_{i} z_{i+2}\right) \ldots\left(1-t z_{i} z_{n}\right) .
\end{aligned}
$$

Put

$$
\begin{equation*}
z=\zeta_{i}=(\underbrace{x^{i-1}, x^{i-2}, \ldots, x}_{i-1}, \underbrace{t^{n-i} a_{1}, t^{n-i-1} a_{1}, \ldots, a_{1}}_{n-i+1}) . \tag{36}
\end{equation*}
$$

Then we have

$$
\begin{aligned}
& {\left[z_{1} z_{2} \ldots z_{i-1} \frac{g_{i}(z)}{z_{i}^{n+1}}\right]_{z=\zeta_{i}}} \\
& =\frac{\left(1-a_{1}^{2} t^{n-i}\right) \prod_{k=2}^{4}\left(1-a_{k} a_{1} t^{n-i}\right)}{\left(t^{n-i} a_{1}\right)^{n+1}} \\
& \quad \times\left(x^{i-1}-t^{n-i+1} a_{1}\right)\left(x^{i-2}-t^{n-i+1} a_{1}\right) \ldots\left(x-t^{n-i+1} a_{1}\right) \\
& \quad \times\left(1-x^{i-1} t^{n-i+1} a_{1}\right)\left(1-x^{i-2} t^{n-i+1} a_{1}\right) \ldots\left(1-x t^{n-i+1} a_{1}\right) \\
& \quad \times\left(1-t^{2}\right)\left(1-t^{3}\right) \ldots\left(1-t^{n-i+1}\right) \\
& \quad \times\left(1-t^{2(n-i)} a_{1}^{2}\right)\left(1-t^{2(n-i)-1} a_{1}^{2}\right) \ldots\left(1-t^{n-i+1} a_{1}^{2}\right),
\end{aligned}
$$

so that

$$
\begin{aligned}
\lim _{x \rightarrow 0} & {\left[z_{1} z_{2} \ldots z_{i-1} \frac{g_{i}(z)}{z_{i}^{n+1}}\right]_{z=\zeta_{i}} } \\
= & \frac{\left(1-a_{1}^{2} t^{n-i}\right) \prod_{k=2}^{4}\left(1-a_{k} a_{1} t^{n-i}\right)}{\left(t^{n-i} a_{1}\right)^{n+1}} \\
& \times\left(-t^{n-i+1} a_{1}\right)^{i-1} \prod_{j=1}^{n-i}\left(1-t^{j+1}\right)\left(1-t^{n-i+j} a_{1}^{2}\right) \\
= & (-t)^{i-1} \frac{\prod_{k=2}^{4}\left(1-a_{k} a_{1} t^{n-i}\right)}{(1-t)\left(t^{n-i} a_{1}\right)^{n-i+2}} \prod_{j=0}^{n-i}\left(1-t^{j+1}\right)\left(1-t^{n-i+j} a_{1}^{2}\right),
\end{aligned}
$$

which completes the proof. \square
Lemma 5.4 If $i \geq k$, then

$$
\lim _{x \rightarrow 0}\left[\frac{z_{1}}{z_{k}} \frac{z_{2}}{z_{k}} \cdots \frac{z_{k-1}}{z_{k}}\left(f_{k}(z)-g_{k}(z)\right)\right]_{z=\zeta_{i+1}}=(-1)^{k}\left(t^{k-1}-t^{2 n-k-1} a_{1} a_{2} a_{3} a_{4}\right) .
$$

Proof. From (28) and (29), it follows that

$$
\begin{aligned}
\frac{z_{1}}{z_{k}} \frac{z_{2}}{z_{k}} \cdots \frac{z_{k-1}}{z_{k}} f_{k}(z)= & \prod_{m=1}^{4}\left(a_{m}-z_{k}\right) \\
& \times\left(t z_{1} / z_{k}-1\right)\left(t z_{2} / z_{k}-1\right) \ldots\left(t z_{k-1} / z_{k}-1\right) \\
& \times\left(t-z_{1} z_{k}\right)\left(t-z_{2} z_{k}\right) \ldots\left(t-z_{k-1} z_{k}\right) \\
& \times\left(t-z_{k} / z_{k+1}\right)\left(t-z_{k} / z_{k+2}\right) \ldots\left(t-z_{k} / z_{n}\right) \\
& \times\left(t-z_{k} z_{k+1}\right)\left(t-z_{k} z_{k+2}\right) \ldots\left(t-z_{k} z_{n}\right), \\
\frac{z_{1}}{z_{k}} \frac{z_{2}}{z_{k}} \cdots \frac{z_{k-1}}{z_{k}} g_{k}(z)= & \prod_{m=1}^{4}\left(1-a_{m} z_{k}\right) \\
& \times\left(z_{1} / z_{k}-t\right)\left(z_{2} / z_{k}-t\right) \ldots\left(z_{k-1} / z_{k}-t\right) \\
& \times\left(1-t z_{1} z_{k}\right)\left(1-t z_{2} z_{k}\right) \ldots\left(1-t z_{k-1} z_{k}\right) \\
& \times\left(1-t z_{k} / z_{k+1}\right)\left(1-t z_{k} / z_{k+2}\right) \ldots\left(1-t z_{k} / z_{n}\right) \\
& \times\left(1-t z_{k} z_{k+1}\right)\left(1-t z_{k} z_{k+2}\right) \ldots\left(1-t z_{k} z_{n}\right) .
\end{aligned}
$$

From the above equations, if we put

$$
\begin{equation*}
z=\zeta_{i+1}=(\underbrace{x^{i}, x^{i-1}, \ldots, x}_{i}, \underbrace{t^{n-i-1} a_{1}, t^{n-i-2} a_{1}, \ldots, a_{1}}_{n-i}) \tag{37}
\end{equation*}
$$

and suppose $k \leq i$, then we have the following:

$$
\begin{aligned}
& \lim _{x \rightarrow 0}\left[\frac{z_{1}}{z_{k}} \frac{z_{2}}{z_{k}} \cdots \frac{z_{k-1}}{z_{k}} f_{k}(z)\right]_{z=\zeta_{i+1}}=(-1)^{k-1} t^{2 n-k-1} a_{1} a_{2} a_{3} a_{4}, \\
& \lim _{x \rightarrow 0}\left[\frac{z_{1}}{z_{k}} \frac{z_{2}}{z_{k}} \cdots \frac{z_{k-1}}{z_{k}} g_{k}(z)\right]_{z=\zeta_{i+1}}=(-t)^{k-1} .
\end{aligned}
$$

This completes Lemma 5.4.

Lemma 5.5 The following holds for $1 \leq j \leq i+1$:

$$
\begin{equation*}
\lim _{x \rightarrow 0}\left[\left(\prod_{l=1}^{j-1} z_{l}^{n-l+2}\right) \bar{\varphi}_{i}(z)\right]_{z=\zeta_{j}}=(-1)^{j-1} c_{i, j-1} \mathcal{A}^{(n-j+1)}\left(t^{n-j} a_{1}, \ldots, a_{1}\right) . \tag{38}
\end{equation*}
$$

Proof. From (33), it follows that

$$
\left(\prod_{l=1}^{j-1} z_{l}^{n-l+2}\right) \bar{\varphi}_{i}(z)=\sum_{k=0}^{i} c_{i k}\left(z_{1} z_{2} \ldots z_{j-1} e_{k}^{(n)}(z)\right)\left(z_{1}^{n} z_{2}^{n-1} \ldots z_{j-1}^{n-j+2} \mathcal{A}^{(n)}(z)\right)
$$

Put

$$
\begin{equation*}
z=\zeta_{j}=(\underbrace{x^{j-1}, x^{j-2}, \ldots, x}_{j-1}, \underbrace{t^{n-j} a_{1}, t^{n-j-1} a_{1}, \ldots, a_{1}}_{n-j+1}) \tag{39}
\end{equation*}
$$

Since $e_{k}^{(n)}\left(\zeta_{j}\right)=0$ if $j \leq k$ by Corollary 4.3, we have

$$
\begin{align*}
& {\left[\left(\prod_{l=1}^{j-1} z_{l}^{n-l+2}\right) \bar{\varphi}_{i}(z)\right]_{z=\zeta_{j}}} \tag{40}\\
& \quad=\sum_{k=0}^{j-1} c_{i k}\left[\left(z_{1} z_{2} \ldots z_{j-1} e_{k}^{(n)}(z)\right)\left(z_{1}^{n} z_{2}^{n-1} \ldots z_{j-1}^{n-j+2} \mathcal{A}^{(n)}(z)\right)\right]_{z=\zeta_{j}}
\end{align*}
$$

By definition (19) of $e_{k}^{(n)}(z)$ and the explicit expression (39) of ζ_{j}, we have

$$
\lim _{x \rightarrow 0}\left[\left(z_{1} z_{2} \ldots z_{j-1} e_{k}^{(n)}(z)\right)\right]_{z=\zeta_{j}}=\left\{\begin{array}{cc}
0 & \text { if } k<j-1 \tag{41}\\
1 & \text { if } k=j-1
\end{array}\right.
$$

From Weyl's denominator formula (7) and the expression (39) of ζ_{j}, it follows

$$
\begin{equation*}
\lim _{x \rightarrow 0}\left[\left(z_{1}^{n} z_{2}^{n-1} \ldots z_{j-1}^{n-j+2} \mathcal{A}^{(n)}(z)\right)\right]_{z=\zeta_{j}}=(-1)^{j-1} \mathcal{A}^{(n-j+1)}\left(t^{n-j} a_{1}, \ldots, a_{1}\right) \tag{42}
\end{equation*}
$$

Taking the limit $x \rightarrow 0$ in both sides of (40) and using (41) and (42), we obtain (38). This completes the proof. \square

Lemma 5.6 $\operatorname{Set}\left(\widehat{\zeta}_{j_{k}}\right):=\left(\zeta_{j 1}, \ldots, \zeta_{j, k-1}, \zeta_{j, k+1}, \ldots, \zeta_{j n}\right) \in\left(\mathbf{C}^{*}\right)^{n-1}$ for $\zeta_{j} \in\left(\mathbf{C}^{*}\right)^{n}$. Then

$$
e_{i-1}^{(n-1)}\left(\widehat{\zeta}_{j_{k}}\right)=0 \quad \text { if } 1 \leq k \leq j<i .
$$

Moreover,

$$
e_{i-1}^{(n-1)}\left(\widehat{\zeta}_{i k}\right)=0 \quad \text { if } 1 \leq k<i .
$$

Proof. It is straightforward from (23) and Lemma 4.2. [
Lemma 5.7 The coefficient $c_{i j}$ in (33) vanishes if $0 \leq j<i-1$. In particular, $\bar{\varphi}_{i}(z)$ is expanded as

$$
\bar{\varphi}_{i}(z)=\left(c_{i i} e_{i}^{(n)}(z)+c_{i, i-1} e_{i-1}^{(n)}(z)\right) \mathcal{A}^{(n)}(z)
$$

Proof. From (38), in order to prove $c_{i j}=0$ for $0 \leq j<i-1$, it is sufficient to show that

$$
\begin{equation*}
\lim _{x \rightarrow 0}\left[\left(\prod_{l=1}^{j-1} z_{l}^{n-l+2}\right) \bar{\varphi}_{i}(z)\right]_{z=\zeta_{j}}=0 \tag{43}
\end{equation*}
$$

if $1 \leq j<i$.
We now suppose $1 \leq j<i$. By Lemma 5.3, if $j<k \leq n$, then $f_{k}\left(\zeta_{j}\right)=g_{k}\left(\zeta_{j}\right)=0$. Moreover, by Lemma 5.6, if $k \leq j<i$, then $e_{i-1}^{(n-1)}\left(\widehat{\zeta}_{j_{k}}\right)=0$. Since the summand of $\bar{\varphi}_{i}(z)$ in form (32) has the factors $f_{k}(z)-g_{k}(z)$ and $e_{i-1}^{(n-1)}\left(\widehat{z}_{k}\right)$, if we put $z=\zeta_{j}$, then $\bar{\varphi}_{i}\left(\zeta_{j}\right)=0$. In particular, we conclude (43).

Lemma 5.8 The coefficient $c_{i, i-1}$ in (33) is evaluated as

$$
\begin{equation*}
c_{i, i-1}=\frac{1-t^{n-i+1}}{(1-t) t^{n+1-2 i}} \frac{\prod_{k=2}^{4}\left(1-t^{n-i} a_{1} a_{k}\right)}{a_{1}} . \tag{44}
\end{equation*}
$$

Proof. By Lemma 5.3, $f_{k}\left(\zeta_{i}\right)=g_{k}\left(\zeta_{i}\right)=0$ if $i<k \leq n$, and $f_{i}\left(\zeta_{i}\right)=0$. Moreover, by Lemma 5.6, $e_{i-1}^{(n-1)}\left(\widehat{\zeta}_{i k}\right)=0$ if $k<i$. Since the summand of $\bar{\varphi}_{i}(z)$ in form (32) has the factors $f_{k}(z)-g_{k}(z)$ and $e_{i-1}^{(n-1)}\left(\widehat{z}_{k}\right)$, if we put $z=\zeta_{i}$, then

$$
\begin{equation*}
\bar{\varphi}_{i}\left(\zeta_{i}\right)=\left[(-1)^{i} \frac{g_{i}(z)}{z_{i}^{n+1}} e_{i-1}^{(n-1)}\left(\widehat{z}_{i}\right) \mathcal{A}^{(n-1)}\left(\widehat{z}_{i}\right)\right]_{z=\zeta_{i}} . \tag{45}
\end{equation*}
$$

Thus we have

$$
\begin{align*}
& {\left[\left(\prod_{l=1}^{i-1} z_{l}^{n-l+2}\right) \bar{\varphi}_{i}(z)\right]_{z=\zeta_{i}}} \tag{46}\\
& \quad=(-1)^{i}\left[\left(z_{1} z_{2} \ldots z_{i-1} \frac{g_{i}(z)}{z_{i}^{n+1}}\right)\left(z_{1} z_{2} \ldots z_{i-1} e_{i-1}^{(n-1)}\left(\widehat{z}_{i}\right)\right)\right. \\
& \left.\quad \times\left(z_{1}^{n-1} z_{2}^{n-2} \ldots z_{i-1}^{n-i+1} \mathcal{A}^{(n-1)}\left(\widehat{z}_{i}\right)\right)\right]_{z=\zeta_{i}}
\end{align*}
$$

From the explicit form (36) of ζ_{i} and definition (19) of $e_{i}^{(n)}(z)$, we have

$$
\begin{equation*}
\lim _{x \rightarrow 0}\left[z_{1} z_{2} \ldots z_{i-1} e_{i-1}^{(n-1)}\left(\widehat{z}_{i}\right)\right]_{z=\zeta_{i}}=1 \tag{47}
\end{equation*}
$$

Using (36) and Weyl's denominator formula (7), we also have

$$
\begin{equation*}
\lim _{x \rightarrow 0}\left[z_{1}^{n-1} z_{2}^{n-2} \ldots z_{i-1}^{n-i+1} \mathcal{A}^{(n-1)}\left(\widehat{z}_{i}\right)\right]_{z=\zeta_{i}}=(-1)^{i-1} \mathcal{A}^{(n-i)}\left(t^{n-i-1} a_{1}, \ldots, a_{1}\right) . \tag{48}
\end{equation*}
$$

From (46), (47) and (48), it follows that

$$
\begin{align*}
& \lim _{x \rightarrow 0}\left[\left(\prod_{l=1}^{i-1} z_{l}^{n-l+2}\right) \bar{\varphi}_{i}(z)\right]_{z=\zeta_{i}} \\
& \quad=-\lim _{x \rightarrow 0}\left[z_{1} z_{2} \ldots z_{i-1} \frac{g_{i}(z)}{z_{i}^{n+1}}\right]_{z=\zeta_{i}} \mathcal{A}^{(n-i)}\left(t^{n-i-1} a_{1}, \ldots, a_{1}\right) . \tag{49}
\end{align*}
$$

Comparing (49) with (38), we have

$$
\begin{equation*}
c_{i, i-1}=(-1)^{i} \lim _{x \rightarrow 0}\left[z_{1} z_{2} \ldots z_{i-1} \frac{g_{i}(z)}{z_{i}^{n+1}}\right]_{z=\zeta_{i}} \frac{\mathcal{A}^{(n-i)}\left(t^{n-i-1} a_{1}, \ldots, a_{1}\right)}{\mathcal{A}^{(n-i+1)}\left(t^{n-i} a_{1}, \ldots, a_{1}\right)} . \tag{50}
\end{equation*}
$$

From Weyl's denominator formula (7), it follows that

$$
\frac{\mathcal{A}^{(j+1)}\left(z_{1}, z_{2}, \ldots, z_{j+1}\right)}{\mathcal{A}^{(j)}\left(z_{2}, \ldots, z_{j+1}\right)}=-\frac{1-z_{1}^{2}}{z_{1}} \prod_{k=2}^{j+1} \frac{\left(1-z_{1} / z_{k}\right)\left(1-z_{1} z_{k}\right)}{z_{1}}
$$

so that

$$
\begin{equation*}
\frac{\mathcal{A}^{(n-i+1)}\left(t^{n-i} a_{1}, \ldots, a_{1}\right)}{\mathcal{A}^{(n-i)}\left(t^{n-i-1} a_{1}, \ldots, a_{1}\right)}=\frac{-1}{\left(1-t^{n-i+1}\right)} \prod_{j=0}^{n-i}\left(1-t^{j+1}\right) \frac{\left(1-t^{n-i+j} a_{1}^{2}\right)}{t^{n-i} a_{1}} . \tag{51}
\end{equation*}
$$

From (35), (50) and (51), we obtain (44). This completes the proof.
Lemma 5.9 The coefficient $c_{i i}$ in (33) is evaluated as

$$
c_{i i}=\frac{1-t^{i}}{1-t}\left(1-t^{2 n-i-1} a_{1} a_{2} a_{3} a_{4}\right) .
$$

Proof. Using Lemma 5.3, $f_{k}\left(\zeta_{i+1}\right)=g_{k}\left(\zeta_{i+1}\right)=0$ if $i+2 \leq k \leq n$. Since the summand of $\bar{\varphi}_{i}(z)$ in form (32) has the factors $f_{k}(z)-g_{k}(z)$, if we put $z=\zeta_{i+1}$, then

$$
\bar{\varphi}_{i}\left(\zeta_{i+1}\right)=\left[\sum_{k=1}^{i+1}(-1)^{k+1} \frac{f_{k}(z)-g_{k}(z)}{z_{k}^{n+1}} e_{i-1}^{(n-1)}\left(\widehat{z}_{k}\right) \mathcal{A}^{(n-1)}\left(\widehat{z}_{k}\right)\right]_{z=\zeta_{i+1}}
$$

where k in the sum runs from 1 to $i+1$. Thus, it follows that

$$
\left[\left(\prod_{l=1}^{i} z_{l}^{n-l+2}\right) \bar{\varphi}_{i}(z)\right]_{z=\zeta_{i+1}}=S_{1}\left(\zeta_{i+1}\right)+S_{2}\left(\zeta_{i+1}\right)
$$

where $S_{1}(z)$ and $S_{2}(z)$ are functions defined by the following:

$$
\begin{aligned}
& S_{1}(z):=\sum_{k=1}^{i}(-1)^{k+1} \frac{z_{1}}{z_{k}} \frac{z_{2}}{z_{k}} \cdots \frac{z_{k-1}}{z_{k}}\left(f_{k}(z)-g_{k}(z)\right) \\
& \times\left(z_{1} z_{2} \ldots z_{k-1} z_{k+1} \ldots z_{i} e_{i-1}^{(n-1)}\left(\widehat{z}_{k}\right)\right) \\
& \times\left(z_{1}^{n-1} z_{2}^{n-2} \ldots z_{k-1}^{n-k+1} z_{k+1}^{n-k} \ldots z_{i}^{n-i+1} \mathcal{A}^{(n-1)}\left(\widehat{z}_{k}\right)\right), \\
& S_{2}(z):=\quad(-1)^{i} z_{i}^{n-i+1}\left(z_{1} z_{2} \ldots z_{i} \frac{f_{i+1}(z)-g_{i+1}(z)}{z_{i+1}^{n+1}}\right) \\
& \times\left(z_{1} z_{2} \ldots z_{i-1} e_{i-1}^{(n-1)}\left(\widehat{z}_{i+1}\right)\right) \\
& \times\left(z_{1}^{n-1} z_{2}^{n-2} \ldots z_{i-1}^{n-i+1} \mathcal{A}^{(n-1)}\left(\widehat{z}_{i+1}\right)\right)
\end{aligned}
$$

Since $f_{i+1}\left(\zeta_{i+1}\right)=0$ by Lemma 5.3, it follows that

$$
\left[z_{i}^{n-i+1}\left(z_{1} z_{2} \ldots z_{i} \frac{f_{i+1}(z)-g_{i+1}(z)}{z_{i+1}^{n+1}}\right)\right]_{z=\zeta_{i+1}}=-x^{n-i+1}\left[z_{1} z_{2} \ldots z_{i} \frac{g_{i+1}(z)}{z_{i+1}^{n+1}}\right]_{z=\zeta_{i+1}} .
$$

From (35) in Lemma 5.3, the RHS of the above equation vanishes if we take the limit $x \rightarrow 0$. Since the LHS of that is a factor of $S_{2}\left(\zeta_{i+1}\right)$, we have $\lim _{x \rightarrow 0} S_{2}\left(\zeta_{i+1}\right)=0$.

If $k \leq i$, from the explicit form (37) of ζ_{i+1} and definition (19) of $e_{i}^{(n)}(z)$, we have

$$
\lim _{x \rightarrow 0}\left[z_{1} z_{2} \ldots z_{k-1} z_{k+1} \ldots z_{i} e_{i-1}^{(n-1)}\left(\widehat{z}_{k}\right)\right]_{z=\zeta_{i+1}}=1
$$

If $k \leq i$, we also have

$$
\begin{aligned}
& \lim _{x \rightarrow 0}\left[z_{1}^{n-1} z_{2}^{n-2} \ldots z_{k-1}^{n-k+1} z_{k+1}^{n-k} \ldots z_{i}^{n-i+1} \mathcal{A}^{(n-1)}\left(\widehat{z}_{k}\right)\right]_{z=\zeta_{i+1}} \\
& =(-1)^{i-1} \mathcal{A}^{(n-i)}\left(t^{n-i-1} a_{1}, \ldots, a_{1}\right)
\end{aligned}
$$

by using (37) and Weyl's denominator formula (7). Thus, we have

$$
\begin{align*}
\lim _{x \rightarrow 0} & {\left[\left(\prod_{l=1}^{i} z_{l}^{n-l+2}\right) \bar{\varphi}_{i}(z)\right]_{z=\zeta_{i+1}}=\lim _{x \rightarrow 0} S_{1}\left(\zeta_{i+1}\right) } \\
= & (-1)^{i-1} \mathcal{A}^{(n-i)}\left(t^{n-i-1} a_{1}, \ldots, a_{1}\right) \\
& \times \sum_{k=1}^{i}(-1)^{k+1} \lim _{x \rightarrow 0}\left[\frac{z_{1}}{z_{k}} \frac{z_{2}}{z_{k}} \cdots \frac{z_{k-1}}{z_{k}}\left(f_{k}(z)-g_{k}(z)\right)\right]_{z=\zeta_{i+1}} . \tag{52}
\end{align*}
$$

Comparing (38) with (52), and using Lemma 5.4, we obtain

$$
\begin{aligned}
c_{i i} & =-\sum_{k=1}^{i}(-1)^{k+1} \lim _{x \rightarrow 0}\left[\frac{z_{1}}{z_{k}} \frac{z_{2}}{z_{k}} \cdots \frac{z_{k-1}}{z_{k}}\left(f_{k}(z)-g_{k}(z)\right)\right]_{z=\zeta_{i+1}} \\
& =\sum_{k=1}^{i}\left(t^{k-1}-t^{2 n-k-1} a_{1} a_{2} a_{3} a_{4}\right) \\
& =\frac{1-t^{i}}{1-t}\left(1-t^{2 n-i-1} a_{1} a_{2} a_{3} a_{4}\right),
\end{aligned}
$$

which completes the proof. \square
Theorem 5.10 The following relation holds between $e_{i}^{(n)}(z)$ and $e_{i-1}^{(n)}(z)$:

$$
\begin{equation*}
\int_{0}^{\xi \infty} e_{i}^{(n)}(z) \Phi(z) \mathcal{A}^{(n)}(z) \varpi_{q}=-\frac{c_{i, i-1}}{c_{i i}} \int_{0}^{\xi \infty} e_{i-1}^{(n)}(z) \Phi(z) \mathcal{A}^{(n)}(z) \varpi_{q}, \tag{53}
\end{equation*}
$$

where the coefficient is evaluated as

$$
-\frac{c_{i, i-1}}{c_{i i}}=-\frac{\left(1-t^{n+1-i}\right)}{\left(1-t^{i}\right) t^{n+1-2 i}} \frac{\prod_{k=2}^{4}\left(1-t^{n-i} a_{1} a_{k}\right)}{a_{1}\left(1-t^{2 n-i-1} a_{1} a_{2} a_{3} a_{4}\right)} .
$$

Remark. In other words, by definition (13), Theorem 5.10 is nothing but Theorem 1.2. Proof. Since $\int_{0}^{\xi \infty} \Phi(z) \bar{\varphi}_{i}(z) \varpi_{q}=0$ by (25) in Lemma 5.1, from Lemma 5.7, it follows that

$$
\int_{0}^{\xi \infty} \Phi(z)\left(c_{i i} e_{i}^{(n)}(z)+c_{i, i-1} e_{i-1}^{(n)}(z)\right) \mathcal{A}^{(n)}(z) \varpi_{q}=0
$$

We therefore obtain (53). The evaluation of the coefficient $-c_{i, i-1} / c_{i i}$ is given by Lemma 5.8 and 5.9. The proof is now complete.

6 Product formula

The aim of this section is to deduce a product formula for the $B C_{n}$ type Jackson integral as if reconstructing the product expression (2) of the beta function from q-difference equations (3) and asymptotic behavior (4). The following formula has been proved by van Diejen [26]. He has done it to calculate a certain multiple Jackson integral in two ways by using Fubini's theorem, following Gustafson's method [9]. We give here another proof of it as a consequence of Theorem 1.2.

Theorem 6.1 (van Diejen) The constant C in the expression (18) is the following:

$$
C=(1-q)^{n}(q)_{\infty}^{n} \prod_{i=1}^{n} \frac{\left(q t^{-i}\right)_{\infty}}{\left(q t^{-1}\right)_{\infty}} \frac{\prod_{1 \leq \mu<\nu \leq 4}\left(q t^{-(n-i)} a_{\mu}^{-1} a_{\nu}^{-1}\right)_{\infty}}{\left(q t^{-(n+i-2)} a_{1}^{-1} a_{2}^{-1} a_{3}^{-1} a_{4}^{-1}\right)_{\infty}} .
$$

Before proving Theorem 6.1, we have to establish q-difference equations and asymptotic behavior for the $B C_{n}$ type Jackson integral.

$6.1 \quad q$-difference equations

First we deduce a recurrent relation which $J(\xi)$ satisfies, using Theorem 1.2.
Corollary 6.2 Let $T_{a_{1}}$ be the q-shift of parameter a_{1} such that $T_{a_{1}}: a_{1} \rightarrow q a_{1}$. Then

$$
T_{a_{1}} J(\xi)=\left(-a_{1}\right)^{-n} \prod_{i=1}^{n} \frac{\prod_{k=2}^{4}\left(1-t^{n-i} a_{1} a_{k}\right)}{1-t^{n+i-2} a_{1} a_{2} a_{3} a_{4}} J(\xi)
$$

Remark. The parameters a_{1}, a_{2}, a_{3} and a_{4} can be replaced symmetrically in the above equation.
Proof. The function $T_{a_{1}} J(\xi)$ is written

$$
T_{a_{1}} J(\xi)=\int_{0}^{\xi \infty} \frac{T_{a_{1}} \Phi(z)}{\Phi(z)} \Phi(z) \Delta(z) \varpi_{q}=\int_{0}^{\xi \infty} e_{n}^{\prime}(z) \Phi(z) \Delta(z) \varpi_{q}
$$

because the following holds for $\Phi(z)$ by Lemma 4.1:

$$
\frac{T_{a_{1}} \Phi(z)}{\Phi(z)}=\prod_{i=1}^{n} \frac{\left(a_{1}-z_{i}\right)\left(1-a_{1} z_{i}\right)}{a_{1} z_{i}}=e_{n}^{\prime}(z)
$$

From repeated use of Theorem 1.2, we have

$$
\int_{0}^{\xi \infty} e_{n}^{\prime}(z) \Phi(z) \Delta(z) \varpi_{q}=\left(-a_{1}\right)^{-n} \prod_{j=1}^{n} \frac{\prod_{k=2}^{4}\left(1-t^{n-j} a_{1} a_{k}\right)}{1-t^{n+j-2} a_{1} a_{2} a_{3} a_{4}} J(\xi) .
$$

This completes the proof.
Let T^{N} be the shift of parameters for the special direction defined by

$$
T^{N}: \begin{cases}a_{1} & \rightarrow a_{1} q^{2 N}, \\ a_{2} & \rightarrow a_{2} q^{-N}, \\ a_{3} & \rightarrow a_{3} q^{-N}, \\ a_{4} & \rightarrow a_{4} q^{-N} .\end{cases}
$$

Lemma 6.3 The following holds for the shift T^{N} :

$$
\begin{aligned}
J(\xi)= & \prod_{i=1}^{n} \frac{\left(a_{1} a_{2}^{2} a_{3}^{2} a_{4}^{2} t^{3(n-i)}\right)^{N} \prod_{2 \leq \mu<\nu \leq 4}\left(q t^{-(n-i)} a_{\mu}^{-1} a_{\nu}^{-1}\right)_{2 N}}{q^{2 N(N+1)}\left(q t^{-(n+i-2)} a_{1}^{-1} a_{2}^{-1} a_{3}^{-1} a_{4}^{-1}\right)_{N} \prod_{k=2}^{4}\left(t^{n-i} a_{1} a_{k}\right)_{N}} \\
& \times T^{N} J(\xi) .
\end{aligned}
$$

Proof. Applying Corollary 6.2 to $J(\xi)$ repeatedly, we obtain the above relation between $J(\xi)$ and $T^{N} J(\xi)$.

6.2 Asymptotic behavior of truncated Jackson integral

Next we consider an asymptotic behavior of $J(\zeta)$.
Lemma 6.4 The asymptotic behavior of the truncated Jackson integral $T^{N} J(\zeta)$ at $N \rightarrow$ $+\infty$ is the following:

$$
T^{N} J(\zeta) \sim(1-q)^{n} \prod_{i=1}^{n} \frac{q^{2 N(N+1)}\left(t^{n-i} a_{1}\right)^{1-\alpha_{1}-\cdots-\alpha_{4}-2(n-i) \tau}}{\left(a_{1} a_{2}^{2} a_{3}^{2} a_{4}^{2} t^{3(n-i)}\right)^{N}} \frac{(q)_{\infty}(t)_{\infty}}{\left(t^{i}\right)_{\infty}} .
$$

Proof. We divide $\Phi(z) \Delta(z)$ into the following three parts:

$$
\Phi(z) \Delta(z)=I_{1}(z) I_{2}(z) I_{3}(z)
$$

where

$$
\begin{aligned}
I_{1}(z)= & \prod_{i=1}^{n} z_{i}^{1-\alpha_{1}-\cdots-\alpha_{4}-2(n-i) \tau} \\
I_{2}(z)= & \prod_{i=1}^{n}\left(q a_{1}^{-1} z_{i}\right)_{\infty} \prod_{1 \leq j<k \leq n}\left(1-z_{j} / z_{k}\right) \frac{\left(q t^{-1} z_{j} / z_{k}\right)_{\infty}}{\left(t z_{j} / z_{k}\right)_{\infty}}, \\
I_{3}(z)= & \prod_{i=1}^{n} \frac{\left(1-z_{i}^{2}\right)}{\left(a_{1} z_{i}\right)_{\infty}} \prod_{m=2}^{4} \frac{\left(q a_{m}^{-1} z_{i}\right)_{\infty}}{\left(a_{m} z_{i}\right)_{\infty}} \\
& \times \prod_{1 \leq j<k \leq n}\left(1-z_{j} z_{k}\right) \frac{\left(q t^{-1} z_{j} z_{k}\right)_{\infty}}{\left(t z_{j} z_{k}\right)_{\infty}}
\end{aligned}
$$

Thus, $T^{N} J(\zeta)$ is expressed as

$$
\begin{align*}
T^{N} J(\zeta) & =(1-q)^{n} \sum_{\nu \in D} T^{N}\left(\Phi\left(q^{\nu} \zeta\right) \Delta\left(q^{\nu} \zeta\right)\right) \tag{54}\\
& =(1-q)^{n} \sum_{\nu \in D} T^{N} I_{1}\left(q^{\nu} \zeta\right) T^{N} I_{2}\left(q^{\nu} \zeta\right) T^{N} I_{3}\left(q^{\nu} \zeta\right)
\end{align*}
$$

where

$$
\begin{aligned}
T^{N} I_{1}\left(q^{\nu} \zeta\right)= & \prod_{i=1}^{n}\left(t^{n-i} a_{1} q^{\nu_{i}+2 N}\right)^{1-\alpha_{1}-\cdots-\alpha_{4}-2(n-i) \tau+N}, \\
T^{N} I_{2}\left(q^{\nu} \zeta\right)= & \prod_{i=1}^{n}\left(q t^{n-i} q^{\nu_{i}}\right)_{\infty} \\
& \times \prod_{1 \leq j<k \leq n}\left(1-t^{k-j} q^{\nu_{j}-\nu_{k}}\right) \frac{\left(t^{k-j-1} q^{\nu_{j}-\nu_{k}+1}\right)_{\infty}}{\left(t^{k-j+1} q^{\nu_{j}-\nu_{k}}\right)_{\infty}}, \\
T^{N} I_{3}\left(q^{\nu} \zeta\right)= & \prod_{i=1}^{n} \frac{\left(1-t^{2(n-i)} a_{2}^{2} q^{\nu_{i}+4 N}\right)}{\left(t^{n-i} a_{1}^{2} q^{\nu_{i}+4 N}\right)_{\infty}} \prod_{m=2}^{4} \frac{\left(t^{n-i} a_{1} a_{m}^{-1} q^{1+\nu_{i}+3 N}\right)_{\infty}}{\left(t^{n-i} a_{1} a_{m} q^{\nu_{i}+N}\right)_{\infty}} \\
& \times\left[\prod_{1 \leq j<k \leq n}\left(1-t^{2 n-j-k} a_{1}^{2} q^{\nu_{j}+\nu_{k}+4 N}\right)\right. \\
& \left.\times \frac{\left(t^{2 n-j-k-1} a_{1}^{2} q^{1+\nu_{j}+\nu_{k}+4 N}\right)_{\infty}}{\left(t^{2 n-j-k+1} a_{1}^{2} q^{\nu_{j}+\nu_{k}+4 N}\right)_{\infty}}\right] .
\end{aligned}
$$

Equation (54) indicates that the summand $T^{N}\left(\Phi\left(q^{\nu} \zeta\right) \Delta\left(q^{\nu} \zeta\right)\right)$ of $T^{N} J(\zeta)$ corresponding to $\nu=(0,0, \ldots, 0) \in D$ gives the principal term of asymptotic behavior of $T^{N} J(\zeta)$ at $N \rightarrow+\infty$ because the point $(0,0, \ldots, 0) \in D$ is the vertex of the cone D. Hence we have

$$
\begin{equation*}
T^{N} J(\zeta) \sim(1-q)^{n} T^{N} I_{1}(\zeta) T^{N} I_{2}(\zeta) T^{N} I_{3}(\zeta) \tag{55}
\end{equation*}
$$

Moreover the asymptotic behavior of each $T^{N} I_{i}(\zeta)$ at $N \rightarrow+\infty$ is the following:

$$
\begin{align*}
T^{N} I_{1}(\zeta) & =\prod_{i=1}^{n}\left(t^{n-i} a_{1} q^{2 N}\right)^{1-\alpha_{1}-\cdots-\alpha_{4}-2(n-i) \tau+N} \\
& =\prod_{i=1}^{n} \frac{\left(t^{n-i} a_{1}\right)^{1-\alpha_{1}-\cdots-\alpha_{4}-2(n-i) \tau} q^{2 N(N+1)}}{\left(a_{1} a_{2}^{2} a_{3}^{2} a_{4}^{2} t^{3(n-i)}\right)^{N}}, \tag{56}\\
T^{N} I_{2}(\zeta) & =\prod_{i=1}^{n}\left(q t^{n-i}\right)_{\infty} \prod_{1 \leq j<k \leq n}\left(1-t^{k-j}\right) \frac{\left(q t^{k-j-1}\right)_{\infty}}{\left(t^{k-j+1}\right)_{\infty}} \\
& =\prod_{i=1}^{n} \frac{(q)_{\infty}(t)_{\infty}}{\left(t^{i}\right)_{\infty}}, \tag{57}
\end{align*}
$$

$$
\begin{align*}
T^{N} I_{3}(\zeta)= & \prod_{i=1}^{n} \frac{\left(1-t^{2(n-i)} a_{1}^{2} q^{4 N}\right)}{\left(t^{n-i} a_{1}^{2} q^{4 N}\right)_{\infty}} \prod_{m=2}^{4} \frac{\left(t^{n-i} a_{1} a_{m}^{-1} q^{1+3 N}\right)_{\infty}}{\left(t^{n-i} a_{1} a_{m} q^{N}\right)_{\infty}} \\
& \times \prod_{1 \leq j<k \leq n}\left(1-t^{2 n-j-k} a_{1}^{2} q^{4 N}\right) \frac{\left(t^{2 n-j-k-1} a_{1}^{2} q^{1+4 N}\right)_{\infty}}{\left(t^{2 n-j-k+1} a_{1}^{2} q^{4 N}\right)_{\infty}} \\
\sim & 1(N \rightarrow+\infty) . \tag{58}
\end{align*}
$$

Combining (55), (56), (57) and (58), we obtain Lemma 6.4.

6.3 Proof of Theorem 6.1

Theorem 6.5 The truncated Jackson integral $J(\zeta)$ is evaluated as

$$
\begin{aligned}
& J(\zeta)=(1-q)^{n}(q)_{\infty}^{n} \\
& \quad \times \prod_{i=1}^{n} \frac{(t)_{\infty}}{\left(t^{i}\right)_{\infty}} \frac{\left(t^{n-i} a_{1}\right)^{1-\alpha_{1}-\cdots-\alpha_{4}-2(n-i) \tau} \prod_{2 \leq \mu<\nu \leq 4}\left(q t^{-(n-i)} a_{\mu}^{-1} a_{\nu}^{-1}\right)_{\infty}}{\left(q t^{-(n+i-2)} a_{1}^{-1} a_{2}^{-1} a_{3}^{-1} a_{4}^{-1}\right)_{\infty} \prod_{k=2}^{4}\left(t^{n-i} a_{1} a_{k}\right)_{\infty}} .
\end{aligned}
$$

Proof. It is straightforward from Lemma 6.3 and Lemma 6.4 —
As a consequence of Theorem 6.5, we deduce Theorem 6.1.
Proof of Theorem 6.1. The constant C is written $C=J(\xi) / \Theta(\xi)$ by virtue of Lemma 3.1. In particular, putting $\xi=\zeta$, from Theorem 6.5, we obtain

$$
C=\frac{J(\zeta)}{\Theta(\zeta)}=(1-q)^{n}(q)_{\infty}^{n} \prod_{i=1}^{n} \frac{\left(q t^{-i}\right)_{\infty}}{\left(q t^{-1}\right)_{\infty}} \frac{\prod_{1 \leq \mu<\nu \leq 4}\left(q t^{-(n-i)} a_{\mu}^{-1} a_{\nu}^{-1}\right)_{\infty}}{\left(q t^{-(n+i-2)} a_{1}^{-1} a_{2}^{-1} a_{3}^{-1} a_{4}^{-1}\right)_{\infty}},
$$

because $\Theta(\xi)$ in (17) is evaluated at $\xi=\zeta$ as

$$
\Theta(\zeta)=\prod_{i=1}^{n} \frac{\theta(t)}{\theta\left(t^{i}\right)} \frac{\left(t^{n-i} a_{1}\right)^{1-\alpha_{1}-\cdots-\alpha_{4}-2(n-i) \tau}}{\prod_{k=2}^{4} \theta\left(t^{n-i} a_{1} a_{k}\right)} .
$$

The proof of Theorem 6.1 is now complete.

Acknowledgments.

The author would like to thank K. Aomoto for stimulative discussions. He is very grateful to T. Ikeda, H. Mizukawa and H-F. Yamada for providing him helpful comments during a visit at Okayama University, March, 8-10, 2004.

References

[1] G. E. Andrews, R. Askey and R. Roy, Special functions. Encyclopedia of Mathematics and its Applications, 71. Cambridge University Press, Cambridge, 1999.
[2] K. Aomoto, Jacobi polynomials associated with Selberg integrals. SIAM J. Math. Anal. 18 (1987), 545-549.
[3] K. Aomoto, On product formula for Jackson integrals associated with root systems. preprint 1994.
[4] K. Aomoto, On elliptic product formulas for Jackson integrals associated with reduced root systems. J. Algebraic Combin. 8 (1998), 115-126.
[5] K. Aomoto, Connection problem for difference equations associated with real hyperplane arrangements. preprint 2000.
[6] R. Askey, Some basic hypergeometric extensions of integrals of Selberg and Andrews. SIAM J. Math. Anal. 11 (1980), 938-951.
[7] R. J. Evans, Multidimensional q-beta integrals. SIAM J. Math. Anal. 23 (1992), 758-765.
[8] W. Fulton and J. Harris, Representation theory. A first course. Graduate Texts in Mathematics, 129. Readings in Mathematics. Springer-Verlag, New York, 1991.
[9] R. A. Gustafson, A generalization of Selberg's beta integral. Bull. Amer. Math. Soc. (N.S.) 22 (1990), 97-105.
[10] L. Habsieger, q-intégrale de Selberg et Askey. SIAM J. Math. Anal. 19 (1988), 1475-1489.
[11] M. Ito, On a theta product formula for Jackson integrals associated with root systems of rank two. J. Math. Anal. Appl. 216 (1997), 122-163.
[12] M. Ito, Symmetry classification for Jackson integrals associated with irreducible reduced root systems. Compositio Math. 129 (2001), 325-340.
[13] M. Ito, A product formula for Jackson integral associated with the root system F_{4}. Ramanujan J. 6 (2002), 279-293.
[14] M. Ito, Symmetry classification for Jackson integrals associated with the root system $B C_{n}$. Compositio Math. 136 (2003), 209-216.
[15] M. Ito, Convergence and asymptotic behavior of Jackson integrals associated with irreducible reduced root systems. J. Approx. Theory 124 (2003), 154-180.
[16] M. Ito, Askey-Wilson type integrals associated with root systems, submitted to Ramanujan J.
[17] M. Ito, Another proof of Gustafson's C_{n}-type summation formula via 'elementary' symmetric polynomials, submitted to Publ. Res. Inst. Math. Sci.
[18] K. W. J. Kadell, A proof of Askey's conjectured q-analogue of Selberg's integral and a conjecture of Morris. SIAM J. Math. Anal. 19 (1988), 969-986.
[19] K. W. J. Kadell, A proof of the q-Macdonald-Morris conjecture for $B C_{n}$. Mem. Amer. Math. Soc. 108 (1994), 516.
[20] J. Kaneko q-Selberg integrals and Macdonald polynomials. Ann. Sci. École Norm. Sup. (4) 29 (1996), 583-637.
[21] I. G. Macdonald, Some conjectures for root systems. SIAM J. Math. Anal. 13 (1982), 988-1007.
[22] I. G. Macdonald, Symmetric functions and Hall polynomials. Second edition. With contributions by A. Zelevinsky. Oxford Mathematical Monographs. Oxford Science Publications. The Clarendon Press, Oxford University Press, New York, 1995.
[23] I. G. Macdonald, A formal identity for affine root systems. Lie groups and symmetric spaces, 195211, Amer. Math. Soc. Transl. Ser. 2, 210, Amer. Math. Soc., Providence, RI, 2003.
[24] M. L. Mehta, Random matrices. Second edition. Academic Press, Inc., Boston, MA, 1991.
[25] W. G. Morris, Constant term identities for finite and affine root systems: conjectures and theorem, Ph.D. Thesis, Univ. Wisconsin, Madison, Wis., 1982
[26] J. F. van Diejen, On certain multiple Bailey, Rogers and Dougall type summation formulas. Publ. Res. Inst. Math. Sci. 33 (1997), 483-508.

Masahiko ITO
Department of Physics and Mathematics, Aoyama Gakuin University, 5-10-1 Fuchinobe, Sagamihara-shi, Kanagawa 229-8558, Japan mito@gem.aoyama.ac.jp

[^0]: *This work was supported in part by Grant-in-Aid for Scientific Research (C) no. 15540045 of the Ministry of Education, Culture, Sports, Science and Technology, Japan.

