ELLIPTIC INTEGRABLE SYSTEMS

g-difference shift for
van Diejen’s B(C),, type Jackson integral
arising from ‘elementary’ symmetric polynomials *

Masahiko ITO

Abstract

We study a g¢-difference equation of a BC, type Jackson integral, which is a
multiple g-series generalized from a g-analogue of Selberg’s integral. The equation is
characterized by some new symmetric polynomials defined via the symplectic Schur
functions. As an application of it, we give another proof of a product formula for the
BC, type Jackson integral, which is equivalent to the so-called g-Macdonald-Morris
identity for the root system BC), first obtained by Gustafson and van Diejen.

1 Introduction

As it is known, the beta integral

1
B(a, ) ::/ 22711 — 2)P (1)
0
is written as the following product of the gamma functions I'(«):

(o) I(B)

Pl Favs)

(2)

Since the gamma function satisfies I'(a + 1) = al'(«), we easily see the following recur-
rence relations:

a B N
_'_ﬁB(aaﬂ)? B(a7ﬁ+1)_a+ﬂB( >ﬁ) (3)

We regard these relations as difference equations with respect to parameters. Among the
solutions of (3), the beta function B(cq, ) is characterized by the following asymptotic
behavior:

Bla+1,0) =~

B(a+ N,3+ N) ~ 270 FAH=2N /N (N — +00). (4)

Conversely, we can recover the formula (2) from (3) and (4). Since

Bla+1,8) = /01 2®(z)dz or B(a,f+1) = /01 O(2)dz — /01 2®(z2)dz,
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where ®(z) denotes the integrand z* !(1 — 2)#~!, if we want to have the recurrence
relations (3) without using (2), we usually prove the following relation from the definition
(1) using integration by part:

1
/OZ(I)( dz = Oz—i—ﬁ

which provides the equation between the integral (1) and that multiplied by a monomial
z to the integrand ®(z).

Next we consider the following g-Selberg integral [4, 6, 7, 10, 18, 20] defined by using
the Jackson integral which is a sum over the lattice Z" (For the definition of the Jackson
integral, see Section 3):

dgz1 dgzp

13e)
Syla, B,73€) 3:/0 s, (2)As, (2)wy, w, =

Z1 Zn
where the integrand is defined by
n
(gt 2/ 21) 00

s, (2) = H z P K

i=1 ® 1<j<k<n (2)/2k) o
As, (2) = H (2k — ;)

1<j<k<n

and ¢® = a,¢® = b,q" =t. Let n € (C*)" be the point defined by
ni= ("),

For the Jackson integral S, (o, 8, 7;&), if we put £ =7 and take the limit ¢ — 1, then the
sum S, (a, 5, 7;m) becomes the following so-called Selberg integral:

S(a, B, 7) = / Hza Y1 = 2)% ' As, (2)27dz...dz, (5)
0<m <<zl

which can be expressed as a product of gamma functions as

TG o+ (n—0)7) (B + (n—i)T

St =11 ( r)(r()r(a(+ﬁ+)<;n(—z—(1)7)) :

i=1
The Selberg integral (5) is nothing but the beta function if n = 1. For the ¢-Selberg
integral S,(a, B, 7;&), it is also possible to express it as a product of ¢g-gamma functions

by using its ¢-difference equation and its asymptotic behavior. To carry it out we need
the g-difference equation first. According to Aomoto [3], the following formula is known:

Proposition 1.1 Let e;(z), 0 < i < n, be the ith elementary symmetric polynomial, i.e.,
ei(z) = Z Zj1 Zjy--%j;- Then

1§j1<...<ji§?

/0 OC(;Z»(Z)CIDSH (2)As, (2)w

_gn—itly (] _ ggni)  [E®
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oo

Since Sy(a + 1,3,7;¢) = / 2129...2n s, (2)As, (2)w,, we easily have the following ¢-

0
difference equation by repeated use of Proposition 1.1:

n

Sila+1,876=]]

=1

(1 —at"™)
(1 — abt?n—i-1)

Sq(Oé,ﬁ,T;f)7 (6>

which can be found in [20] and in [1, 2] for the case £ =7 and ¢ — 1. For the ¢-Selberg
integral S, (o, 3, 7; &), we can construct its product expression of g-gamma functions from
its g-difference equation (6) and asymptotic behavior of S,(a + N, 3, 7;1) at N — +o0.
(For explicit form of it, see [4, 20].)

In this paper we discuss a structure of product expression of a multiple sum generalized
from the g-Selberg integral. We call it the BC,, type Jackson integral (See Section 3 for its
definition). Like the g-Selberg integral case, for the BC,, type Jackson integral there also
exist symmetric polynomials e}(z) of middle degree 7, 0 < ¢ < n, such that they interpolate
a g-difference equation with respect to the parameter shift a; — qa; as follows:

Theorem 1.2 There exist symmetric Laurent polynomials €;(z) of degree i, 0 < i < n,
such that

£oo
/o €;(2)®p, (2)Ac, (),

tifl(l o tn7i+1) Hizz(l . akaﬁn*i)

Eoo
- / ¢\ ()85, (2)Ac, (2)@y.

B tn—i(l — t’)al(l — a1a2a3a4t2"—i—1)

Considering an analogy to Proposition 1.1, we call the polynomials €(z) the ‘elementary’
symmetric polynomials, which are different from the symplectic Schur functions x(1:)(2)
though the polynomials x:)(2) are sometimes called the elementary symmetric polyno-
mials. (See Section 2 for the definition of x(1:(2)). Moreover, the explicit forms of them
are the following (Note the number of variables in the RHS):

66<Z) = 1,
€(z) = xw(z1,22 .0 20) — x)(a1, art, ..., art" ),
6,2(2) = X(12)(21722a“'72n)

—x (215 22, -, Zn) X (1) (@1, 1, ., at"?)

+ X(2) (al, alt, ceny alt"*2),

i

e(z) = — 1) xqi-iy (21, 22y ooy Z0)X () (@1, art, ..., agt™Y),
i(2) jzo( ) xi-9) (21, 22 )X (a1, a1 1t")

~
n n—i+1

n

e(2) = Z(_1>jX(1"*j)(Zla 29, -y Zn) X () (@1)-

J=0

This paper is organized as follows. In Section 2, we first state a relation between
the symplectic Schur functions x(:(2) and x(;)(z). The relation is used in Section 4 for
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proving a property of the ‘elementary’ symmetric function. In Section 3, we introduce the
BC,, type Jackson integral and its truncated case. In Section 4, we define the ‘elementary’
symmetric function for the BC,, type Jackson integral. Section 5 is devoted to the proof
of Theorem 1.2, which is a main result of this paper. In Section 6, as a corollary of
Theorem 1.2, we construct a product formula for the BC), type Jackson integral as if we
recover the product expression (2) of the beta function from g¢-difference equations (3)
and asymptotic behavior (4). This is to be another proof of the product formula, which is
equivalent to the so-called ¢g-Macdonald-Morris identity [21, 25] for the root system BC,,
first obtained by Gustafson [9] and van Diejen [26]. (See also [16, 23] for relations between
g-Macdonald-Morris identities and the Jackson integrals associated with root systems.)

Throughout this paper we use the notations (z)s = [[i=,(1 — ¢'z) and (z)y =
(7) o0/ (V)00 Where 0 < ¢ < 1.

2 Symplectic Schur functions xx(2)

Before introducing the BC,, type Jackson integral, we prove Proposition 2.4, which will be
used technically when we state a property of the ‘elementary’ symmetric polynomials in
Section 4. The formula in Proposition 2.4 indicates some relation among the symplectic
Schur functions x,(z). The relation is very similar to those between the elementary
symmetric functions and the complete symmetric functions (see [8, 22] for instance).

2.1 Definition of the symplectic Schur functions x(2)

Let A(i, is,..in)(2) be the function of 2z € (C*)" defined in the form of the following
determinant: ' '
¢4u1¢%“qu(Z) = det(zék"’zfﬂk)lgmkgn

for (i1,1i,...,1,) € Z™. For example,

3 -3 3 -3 .3 -3
21—2’12 22—2’22 23_232
.2 - 2 — 2 —

A(3,2,1)(Z1, Zo,23) =| 2] — 21 25— 2y 2 — 23

zl—zfl 22—251 zg—zgl

5 -5 5 -5
2] — 2 25— 2
! ! 2 2, | and so on.

A 21, 20) = L
,2)(21, 22) 2t 2

Let Wg, be the Weyl group of type ), which 1is isomorphic to
(Z/2Z)" x S,, where S, is the symmetric group of nth order. W, is generated by the
following transformations of the coordinates (z1, 22, ..., z,) € (C*)™

(21,22, o 2n) — (271, 2250y 20),
(217227"-7Zn) - (Za(l)7za(2)7‘--7za(n)) S
For a function f(z) of z € (C*)", we denote by Af(z) the alternating sum over W,
defined by
Af(z) = Z (sgnw)wf(z).

we ch
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In particular, by definition of determinant, A i,,..:,)(2) is expanded as the following
alternating sum of the monomial 2{'232... 2%

Al ig,oim) (2) = A(21 22 ... 200)

for (i1,1d,...,1,) € Z™. This implies that

n

Ap(Z) _ H(Zz _ Zz‘_l) H (Zk - ZJ)(l — ijk> (7>

2
i=1 1<j<k<n i<k

where
p:=mn-—1,...,21)eZ",

which is the so-called Weyl denominator formula. Let P be the set of partitions defined
by
P:={(M, g, .., M) €EZ" 5 My > X > - > A\, > 0}

For A = (A1, A, ..., \) € P, we define the symplectic Schur function xx(z) as follows:

_ A(?)  Adimaint e r2a040) (2)

xa(z) A (z) Amn-t,.21)(2) ’

which occurs in the Weyl character formula. For A = (Ay, Ao, ..., \,) € P, if we denote by
m; the multiplicity of ¢ in A, i.e., m; = #{j; \; = i}, it is convenient to use the notations

For example, we use them like x(2,1,1,0)(21, 22, 23, 24) = X(122)(21, 22, 23, 24)-

2.2 A relation among x\(z)

For i =0,1,2,...,n, we define the determinant Dz(n)(z, y) of a matrix of degree n +i + 1
as follows: A () A W)
D 2y) = | e z n+1i+1\Y
i (29) Ain(2)  —Aiina(y)

where A, ,(2) is the y X v matrix defined by

ok Tk ... B
2] z(l : 2 2(2 : z z(y |
p=1  —(p—1 p=1  —(u—1 pu—1_ —(p—1
Zl - Z]. 22 - 22 A Zl/ - ZV
Au(z) = : . :
2 -2 2 -2 2 -2
21_7511 22_7521 2y T Ry
Z1— 21 Z2 — Zy 2, — 2,1

Lemma 2.1 The determinant Dl(")(z, y) is divided out by

n+1

Z (_1)kJr1A(n+1,n,n—1,.l.,k+l,k—1,...,2,1) (21, o0 Zn)
h—it1

X Ak,ii—1,i—-2,..21) (Y1 s Yig1)- (8)
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Proof. Separating (n+1) columns of Dg")(z, y) into two parts which are the forward part
to the nth column and that backward from the n + 1 one, we have a Laplace expansion
(8) of Dgn)(z, y) by minors of sizes n and i + 1 up to constant. []

Corollary 2.2 The following holds for x\(z) and A,(z):

n

A(n—i—ln 1)(z1,22,...,zn,zn+1) .
= :E =1 x1n-1) (215 s Z0) X () (Zna1)-
At oo o) A ) 2 X0 (020 ()

=0
Proof. If we put y; = 2,41 for D(()n)(z, y), then

D(()n)(zu y) = A(n+1,n ..... 1)(21, Ry veey Rmy Zn+1)- (9)
On the other hand, from Lemma 2.1, we have

D (2,y) (10)
n+1

= Z(—l)kHA(nH,n,nq ..... k1 k—1,.,2,1) (215 -0y 2n) Ay (11).

k=1

From (9) and (10), it follows that

A(n—i—l,n ..... 1)(217227 "'7Zn72n+1> (1]'>
n+1
= Z(_l)k+1“4(n+1,n,n—l ..... k+1,k—1,..., 2,1)(217 ,Zn)A(k)(Zn+1).
k=1

Dividing both sides of (11) by Agn-1,..1)(21, s 2n)Aq)(2n41), we obtain Corollary 2.2.
a

Lemma 2.3 If we put y; = z; for all j € {1,2,...,i + 1}, then Dl(")(z, z) =0.

Proof. Set y; = z; (1 <j <i+1). For the determinant

(n) _ An+1,n(z) An+1,i+1(z)
D; (Z,Z) = ‘ Az’,n<2) _Ai,i+1(2> )

if we subtract the jth column from the (n+7)th one for j = 1,2, ...,i+1, by the elementary
column operations, we have

P = | M 0

Ai,n(z) _2Ai,i+1<z>

— (_2)z‘+1

An-i—l,n(z) O
Ai,n(z) Ai,iJrl (Z) .

Moreover, since the rank of the ¢ x (i 4+ 1) matrix A;;41(z) is less than or equal to i, after
the processes of the elementary column operations the matrix A;;+1(z) can be deformed
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into an ¢ X (i + 1) matrix B which has at least one column consisting of zeros only. Thus,
the determinant
' An+1,n(z) O ’

Ain(2)  Aiia(2)
is divided out by

9

An+1,n<z) O
Ai,n(z) B

which has the column consisting of zeros and is equal to zero. This implies Dgn)(z, z) =0,
which completes the proof. [

Proposition 2.4 The following holds for i =0,1,2,....n

7

: 0 (¢#0),
Z(_l)]X(li_j)(Zla 22y veey Zn)X(J)(Zla Ry veey Zn—i-‘rl) = ( f )
— 1 (i=0).
]:
Proof. From Lemma 2.3 and 2.1, it follows that
n+1
Z( D Attt kb L= 1,02,0) (215 s Zn)
k=i+1
XA ii-1,-2,..21) (215 s Zig1) = 0. (12)

Divide both sides of (12) by Aqn-1,.1)(21, o, 20) A1, 1) (215 -y Ziz1).  Exchanging ¢
with n — 4, we obtain Proposition 2.4. [

3 Definition of BC),, type Jackson integral

For z = (21, 29, ..., 2n) € (C*)", we set

n 4
1/2—am qa Zz)oo
@s,(:) = [ITL2" 02
i=1 m=1 m=1joeo

" H Zlfzf(qt 25/ 2k )0 (a1 252k)

1<j<k<n ’ (tzj/zm)oo  (t2i21k) 0o

Ao(z) = [ & 11 (1~ 2/z) (1 = zjz)

Zj

. Zi .
=1 1<j<k<n

where ¢*™ = a,,,q” =t. We abbreviate &5, (z) and A¢, (z) to (2) and A(z) respectively.
Weyl’s denominator formula (7) says

A(z) = (=1)"Amn-1,..1)(2). (13)

For an arbitrary & = (&1,&,...,&) € (C*)", we define the g-shift £ — ¢”¢ by a lattice
point v = (vy, vy...,v,) € Z", where

qyé- = <q1/1€17 qy2§27 B3] qyngn) S (C*)n
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For £ = (&1,&,...,&,) € (C*)™ and a function h(z) of z € (C*)", we define the sum over

the lattice Z" by
§100 rénoo dgz1 dgz
h(z ‘I_l =(1- h( 14
RO 0" Y hlae), (14

veZn

which we call the Jackson integral if it converges. We abbreviate the LHS of (14) to
&oo
/ h(z) w,. We now define the Jackson integral whose integrand is ®(z)A(z) as follows:
0

[3e)
J(&) :2/0 O(2)A(2)wy, (15)

which converges if
layagasast™ 2| >q for i=1,2,..,n

and

/& t&& € {d'; ey for 1<j<k<n,
amé& € {q"; 1 € Z} for 1<m<4,1<i<n.

We call the sum J(&) the BC,, type Jackson integral. The sum J(§) is invariant under the
shifts & — ¢¥¢ for v € Z™ .
Since (¢'7™)s = 0 if m is a negative integer, for the special point

C = (t”_lal,t”_2a1, ...,tal,al) S (C*)n,

it follows that
O(¢"¢)=0 if vgD

where D forms the cone in the lattice Z™ defined by
D={wveZ ;vy—v>0,vs—v3>0,...0,1 — v, > 0and v, > 0}.

This implies that J(¢) is written as a sum over the cone D as follows:
J(O) =1 =" ) ¢"OAG) (16)
veD

We call its Jackson integral summed over D truncated. We just write

¢
J(0) = / B(2)A(2)m,

omitting the notation oo in its region only if £ = (.
Let ©(§) be the function defined by

n

& 0 (&/€0)0(£;6)
0(¢) = 17
© HHm 1fam9<am@ Hw (t6;/)0(t6;6k) (17)

where 6(z) := ()00 (q/7) 0. We state a lemma for the subsequent section.
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Lemma 3.1 The Jackson integral J(§) is expressed as

J(§) = CO(E) (18)
where C'is a constant not depending on & € (C*)"
Proof. See [14]. [

We will discuss the constant C' later in Section 6.

¢ ’ . . ’
4 ‘Elementary’ symmetric polynomials e(z)
Fori=0,1,2,3,...,n, we define the following symmetric polynomials in terms of x,(2):

e(z) = Z(—l)jX(li—j)(Z'17 29y ey Zn) X(j)(gl, art,...,art" "), (19)

J

J=0 n n—i+1

which we call the ith ‘elementary’ symmetric polynomials as we mentioned in Introduction.
In particular,

Lemma 4.1 The product expression of the nth ‘elementary’ symmetric polynomial e!,(z)
1s the following:

ez =11 @ -1 - am) (20)

ﬁ (Cll - Zz)(]- - alzi> . A(n+1,n ..... 1)(217227 e Zn,a1)

— 21
pai a12; A(n,n—l ..... 1)(21, ey Zn)A(n(Ch) ( )
Taking z,.1 = a; at Corollary 2.2, we have
A(n+1n ..... 1)(217'227"'72”7@1) =
= Y xan— (215 s 20) X () (@
Amn-1,..1)(21, s 2n) Ay (1) ; (1n—3)(21 )X (ar)
= e, (2). (22)
From (21) and (22), we have (20). [0
Let z be a real number satisfying x > 0. For : =1,2,3,....n 4+ 1, we set
G = (Gi1, G2, - - -5 Gin) € (CT)", (23)

where o
v it 1<j5<q,
Cij = n—j . . .
t"Ja; if i<j<n.
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The explicit expression of (; is the following:

G o= (" la, t" Pay, .., tay, ap),
G o= (z,t" 2ay, t" Pay, ..., tay, ay),
(3 = (x2,x,t"_3a1,t"_4a1, . tay,ay),
<n = (In_la"wxz;x?al)v
Cop1 = (2™ 21 . 2% ).

In particular, the point (; € (C*)™ is nothing but ¢ € (C*)"™ which is defined in Section 3.
Lemma 4.2 If1 < j <1 <n, then

el(21, 22y ooy 2j1, ant™ 7 ant™ T L agt ap) = 0.
Proof. Since x,(z) is symmetric, by definition (19), we have

/ n—j n—j—1
e;j(21, 22, oy Zj—1, ant" 7 agt" VT L agt, aq)
i
E k —J —j—1
= (—1) X(p‘—k)(Zl,ZQ,...,Zj_l,(lltn J,alt” J 7...,a,1t,a1)
k=0
i
X X(k)(al, alt, ey a1t Z)
i
E : k n—i n—i+1 n—j
= (—1) X(li—k)(al,alt,...,alt ,Cth ,...,alt j,Zl,ZQ,...7Zj_1)
k=0
n—i
X Xy (a1, a1t ..., a1t" "),

Applying Proposition 2.4, the RHS of the above equation is equal to 0. This completes
the proof. [
The explicit expression of Lemma 4.2 is the following:

/ n—1 n—2
er(at"  at" L agt,ay) = 0,
/ n—2
es(z1,a1t" %, . ait,a) = 0,
/
Gn(Zl,Zz,...,anl,al) = 0

In particular,
Corollary 4.3 If1 < j <i <n, then €;((;) = 0.

Proof. It is straightforward from definition (23) of (; and Lemma 4.2. []
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5 Main theorem

In this section, to specify the number of variables n, we simply use the notations e§”) (z) and
A™(2) instead of the ‘elementary’ symmetric polynomials €}(z) and Weyl’s denominator
A,(2) respectively. The notation (n) on the right shoulder of e; or A indicates the number
of variables of z = (21, 22, ..., 2,) for €;(2) or A,(2).

Let T, be the ¢-shift of variable z; such that T}, : 21 — qz;. Set

T, ®(2)
o(2)

Vp(z) = p(z) - T p(2), (24)

where T, ®(2)/®(z) is written as follows by definition:

4 n
Tzlq) _ n+1 H 1 — akzl) H (1 — tZl/Zj)(l — tZl,Zj)
Pl ak — 4z

a() Lt gm /o) (0~ a212))

j=

13e)

Lemma 5.1 Let ¢(2) be an arbitrary function such that/ ©(z) (2) w, converges. The
0
following holds for ¢(z):

[3e)
/0 ®(2) Vo(z) w, = 0.

In particular,
oo
/ P(z) AVp(z) w, = 0. (25)
0

Proof. See [17, Lemma 5.1]. ]
Let 71 and o; be the reflections of the coordinates z = (z1, 29, ..., 2, ) defined as follows:

T Iz 21_1,
o; 2z «— 2z for =23 ..,n.
Since the Weyl group W, of type C,, is isomorphic to (Z/2Z)" x S,,, we may write
We, = (11,092,038, ..., 0n), (26)

which means W¢, is generated by 7, and o;, 1 = 2,3,...,n
Let f(z) and g(z) be the functions defined as follows:

~
~~
0
S~—
I
3
[ E -
A
I
e
=
H~
I
N
A
~
&V
H~
|
N
A
Q2
\_/

4 n
g(z) = H 1 —apz) H 1 —tz/2)(1 =tz 25).
m=1 =2

For:=2,3,...,n, we set

fi(z) =0if(2), gi(2) = 0ig(2) (27)
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and simply f1(2) := f(2), ¢1(2) := g(2). For i = 1,2,...,n, the explicit forms of f;(z) and
gi(z) are the following:

-

filz) = (@m — 2) H(t — 2/ 2)(t — %), (28)
gi(z) = J](1—amz) H<1 —tz/2)(1 — tzz), (29)

where I; :={1,2,...,1 — 1,i+ 1,..n}. By definition, we have

Let ,(2), 1 <i <n, be the function defined by

Pi(z) == T()
where i)
z . e
wi(z) = el AR 2, 65_11)(@,23,...,%). (31)
1

Lemma 5.2 The functions §,(z) are expressed as

— - Je(2) = gr(2) (1), n—1) /1~
7i2) = Y (-1 BELZ 0 00 5 g0z (32
k=1 k
where (Z) 1= (21, oy Zk—1y Zkt1s s 2n)-  On the other hand, @,(z) are expanded by the

functions eg-" (2)A™(z), 0 < j <14, as follows:

)

Gil2) = cyel (2) A (2). (33)

=0
Proof. By definition (24) of V and (31), we have

V@z(z) = TZQ 123 2 . Zn €§_11) (Zl).
1

Then, from (26) and (30), it follows that

?i(z) = AVpi(z)/2
fl(z) - 91(2) e(n—l)(/le)A(n—l)(gl)

—1
ZILJrl 7

+ 3 Gsmmoy) o LELZAE 00z 400z (34)
k=2 1
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31

Thus, we obtain the expression (32) by substituting (27) and the following for (34):

sgnoy = —1, opel 1V (31) = eV (B, oA (3) =

(—1)"ATD(Z).

Next, from the degrees of the monomials in the expansion of (31), we can obtain the

expression (33). This completes the proof. []
gr(z) and ¢; € (C

if  J<k<n,
if  j<k<n.

Lemma 5.3 The following hold for fi(z),

fe(G) = 0
9 () = 0

Moreover,

. 9i(2)
Iim |z129...2; 15—~
z=0 { v Zn+1]22<i

7

i—1 Hi:z( — aga t"” Z .
(1= )F )=

- ()

Proof. From (28
(ay — z,) if k =n. When z =

(1=t (1 -

*)n:

£ *a?).

), fr(2) has the factor (t — zk/zkH) if 1 <k <mn—1, and has the factor
(j, from definition (23) of (;, it follows that ¢ — 2 /241 =0

if j <k<n-—1and ay — 2, =0if j <n. Thus fx({;) =0if j <k < n. From (29), it
follows that gi(z) has the factor (1 — tzj/2x_1), so that gx(¢;) =0if j+1 <k <n.
Next, we prove the latter part of Lemma 5.3. From (29), it follows that

zle...zi,l% Hi:l(i; ax )
2! 2!
X (21 —tz) (22 —tz;) ... (zi21 — t2;)
X(1—tz12i)(1 —tzoz) ... (1 —tz12)
X(1—tzi/zi01) (1 —tz;/zin0) ... (L —t2;/2,)
X(1—tzizig1) (1 —tzizim2) o (1 —t2i2,).
Put
z=( = (2" 2" . T, f”’ial,t”’i’lal, s (11/). (36)
i1 n—i+1
Then we have
{zlz2...zi_1gin(fl>}
Zi =g
=) [T - )
(t—iqy )"t
(27t — ")) (272 =t ay) (o — T ay)
X (1 — 2" e ) (1 — 22" ay) . (1 — at" " ay)
x(1—t2)(1 =) ... (1=t
x (1 — 202y (1 — 20712y (1 — " Ha?),



32 M. ITO

so that

lim |:21Z2.‘.Z7;_1

x—0

n+1
Z

gi(z)}
z=(;

(1 - a3t" ) [Thy (1 — apant™)
(tnfial)nJrl

% (_tn—i—i-lal)z‘—l H(l _ tj+1>(1 _ tn—z‘+ja%)
j=1

4 _i\ n—1
_ i—1 Hk:Q(l — aga t"™") i1 n—itj 2
= T S ey [0 —ea -,

7=0
which completes the proof. [
Lemma 5.4 Ifi > k, then

2 22 Zp-1 (fk(z) B gk(z)ﬂ = (=D)F(F ! — 210, a0a5a4).

r—0 Lzg 2y 2 z2=(it1

Proof. From (28) and (29), it follows that

4
zZ1 22 Zk—1
z_kgz_kfk(z) = nl;[1(am_2k)
X(tz1)zg — 1) (tza/zp — 1) ... (tzg_1 /2 — 1)
X(t — z121)(t — z02k) .. (t — 2p—128)
X(t — zi/zp41)(t — 26/ 2k22) - - - (t — 2/ 20)
X (t — zrzps1)(t — zk2ka2) - - - (E — 2K20),
4
21 22 Zk—1
o Z_kgk<z) = H(l — amZ)

m=1

X(z1/zk — t)(20)/2k — t) ... (2p—1/2k — 1)

X (1 — tzlzk)(l — tZQZk) Ce (1 — tzk_lzk)
X(1—tzg/zpe1)(1 — tz/2k02) - (1 —tzx/2,)
X (1 —tzpzpsr) (1 — tzkzraa) - .- (1 — tzp2n).

From the above equations, if we put

z2="C(iy1 = (g:i,mi’l, ...,az,é””"lal, " 2ay, . ap) (37)

and suppose k < 7, then we have the following:

AN Zlo—
hm |:_1_2 . e Efk<z):| = (—1)k_1t2n_k_1a]_a/2a3a47
z—0 Lz 2 2k z=Cit1
. 21 29 Rk—1 k—1
z—0 Lzg 2 <k 9¢(2) 2=Ci+1 =)

This completes Lemma 5.4. [
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Lemma 5.5 The following holds for 1 < j <i+ 1:

j—1
lim [(Hzf’l”)@(z)} = ) e AT T, ) (38)
1=1 #=5

z—0

Proof. From (33), it follows that

(Hzn z+2> _ Zcik <2122---Zj—1 e}in)(z)> <z?z§ 1_..25?_*1342 A(n)(z))
k=0

z=( = (27 27 ...,x,é”‘ﬂal,t”_]_lal, ey a;) (39)

.

-~

~—
j—1 n—j+1

Since ek, (C]) = 0 if j < k by Corollary 4.3, we have

(TT=)a] "

Z:Cj

-1

= Cik |:<Z]_22...Zj_]_ e,g")(z)) (z?zg_l...zf:fﬁ A(”)(z)>]

0

=

2=(j

b
Il

By definition (19) of e,(gn)(z) and the explicit expression (39) of (;, we have

. n 0 if k<yj—1,
bim [(lez“‘zj‘leé)(z)ﬂz_c. :{ 1 if k=j—1. (41)

J

From Weyl’s denominator formula (7) and the expression (39) of (j, it follows

liné [(Z?Z;L 1._.Zn:1j+2A(n)(Z))} = (=17 LA D (ig, L ay). (42)

J —C.
J

Taking the limit x — 0 in both sides of (40) and using (41) and (42), we obtain (38).
This completes the proof. [

Lemma 5.6 Set (@k) = (le, . Cj,k—h(:j,k—&-l’ ...,Cjn) S (C*)n_l for Cj € (C*)n Then
G =0 i 1<k<j<i

Moreover,
"G =0 if 1<k <.
Proof. It is straightforward from (23) and Lemma 4.2. []

Lemma 5.7 The coefficient c;; in (33) vanishes if 0 < j <i— 1. In particular, §;(2) is
expanded as

7i(2) = (cuel™ (2) + coamae™) () ) A(2).
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Proof. From (38), in order to prove ¢;; = 0 for 0 < j < i —1, it is sufficient to show that

Jj—1

hm[( ”l+2> l } =0 43
m H 21 (43)
if1<j<i

We now suppose 1 < j < i. By Lemma 5.3, if j < k < n, then f,((;) = gx((;) = 0.

Moreover, by Lemma 5.6, if k£ < j < ¢, then egﬁzl)(@k) = 0. Since the summand of 3,(z)

in form (32) has the factors fx(z) — gr(2) and egﬁl)@c), if we put z = (;, then ,((;) =0
In particular, we conclude (43). 0

Lemma 5.8 The coefficient ¢; ;1 in (33) is evaluated as

L= T, — " ayay)
Cii—1 — - .
i—1 (1 _ t)tn+1—2z aq

(44)

Proof. By Lemma 5.3, fx(G) = gx(G) = 0if i < k < n, and f;(¢;) = 0. Moreover, by
Lemma 5.6, €/"7" () = O if £ < 4. Since the summand of $;(z) in form (32) has the
factors fi(z) — gr(z) and el 1 )( k), if we put z = (;, then

76 = [y & ErarE)] ()
Thus we have
[( :lj zl”—l+2>@(z)] e (46)

. Z z n— A~
= (—1)1 |:(2122...Z7;1%) (2122...27;,161(,_11) (Zz))

X(Z’f lzg 2' n— z+1An 1) (Zz)>:|
z=Ci

From the explicit form (36) of ; and definition (19) of egn)(z), we have
glcig(l) [2122 2 161( Il)(z,)L:Ci = 1. (47)
Using (36) and Weyl’s denominator formula (7), we also have
915135{ nol,n-2 n-itl g(n- 1><21>L:<i = (—1)LACD (i ay). (48)
From (46), (47) and (48), it follows that

i—1
: n—Il+2\—
(T )]

= —lim |:2122...Zi_1 %} A(n—z) (t"_i_lal, ciey al). (49)
< z=Ci

z—0 .
i



g-difference shift 35

Comparing (49) with (38), we have

. i gl(Z) A(n—z) (t”_i_lal, ceey (11)
¢iim = (1) lim [2122‘“2“1 2t } o A= =iy ) (50)
From Weyl’s denominator formula (7), it follows that
AT (21, 20, 0, 21) 12 ﬁ (1 —21/2)(1 — z121)
A(J) (ZQ, ey Zj+1) 21 Pl Z1 ’
so that
n—i+1) (4n—i n—i n—i+
Al . >(t} ai,...,a1) H tJ“ (1—t Jal). (51)
A("_Z)(t”—z—lal, ...,CL1> — " H'l -- - ’al

From (35), (50) and (51), we obtain (44). This completes the proof. [J
Lemma 5.9 The coefficient c;; in (33) is evaluated as

1—t
1—1¢

Ci; — (1 — t2"*ifla1a2a3a4).

Proof. Using Lemma 5.3, fx((iv1) = gx(Gy1) = 0if i +2 < k < n. Since the summand
of §,(2) in form (32) has the factors fi(z) — gr(2), if we put z = (11, then
i+1
_ fe(2) = 9k(2) (n n—
£Gen) = | o= D o0 5 005
k=1 %k 2=Cit1
where k in the sum runs from 1 to i + 1. Thus, it follows that

[(H I l+2>%( )} = S1(Gi+1) + 52(Gi1)

=1 #=Git1

where S1(z) and Ss(z) are functions defined by the following:
S0 = SRR LI ()
() = S EE () -0
X (2122...Zk_1 Zhg1-Zi eﬁ}”(?@)

n1n2 n—k+1 _n—k n—i+1l q(n—1)
><<21 S I R Al (Zk))’

52 = () (m.nl1E ln;lgMz))

(n—1) 2
X (212’2...2’2'_1 €1 (Zi-I—l)

X(Z? 1Z£L 2‘ n— H—lA(n 1)(Z+1)>




36 M. ITO

Since fi11(¢;+1) = 0 by Lemma 5.3, it follows that

{ZinHl(ZlZQ Sin(2) — 9i+1(2))}

n+1

n+1
Zit1 z=Cit1

Zit1
From (35) in Lemma 5.3, the RHS of the above equation vanishes if we take the limit
x — 0. Since the LHS of that is a factor of S3((;11), we have lim S5(¢;11) =0

i gi+1(Z
= — gt [zlzg...ziH—U )
z cH—l

If k& <, from the explicit form (37) of (;;; and definition (19) of e(")(z), we have

. —1) /~
lim [2122...zk_1 Zht1-2i ez(fl )(zk)} = 1.
z—0 2=Ci+1
If £ <4, we also have

: n1n2 n—k+1 _n—k n—i+1 g(n—1)
lli% [21 R Rl Pkl Al (Zk)}

2=Ci+1
= (=) AT ay, s an)
by using (37) and Weyl’s denominator formula (7). Thus, we have
: Po 1+2 S T )
tiy |([T=)m] | = i $1(Ge
_ (_ )i—lA(n—i)(tn—i—lah ”7a1)
D[22 3 () )]
X z z 92
Z x~>0 2k 2k 2L fk( ) gk( ) 2=Ci+1 ( )

Comparing (38) with (52), and using Lemma 5.4, we obtain

2k

ci = —é(—l)k*l lim [ 2 ()~ au(2) |

2=Cit1
7

k=1
11—t ;
1_¢ (1 — t2n*z*1a1a2a3a4),

which completes the proof. [

Theorem 5.10 The following relation holds between (™ (2) and ™, (z):

b0 Cii—1 $oo n
| 040 @), = - [ () A )

Cij

where the coefficient is evaluated as

Cii1 _ (1 _ tn+1—i)

Hi:z(l - tnfialak:)
Cii (1 — 1)t +1-20 gy (1 — 2"~ layagazay)
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Remark. In other words, by definition (13), Theorem 5.10 is nothing but Theorem 1.2.

oo

Proof. Since / ®(2) P;(2) w, = 0 by (25) in Lemma 5.1, from Lemma 5.7, it follows
0
that

[0 () + e 2) A ) =

We therefore obtain (53). The evaluation of the coefficient —c¢; ;1 /¢y is given by Lemma
5.8 and 5.9. The proof is now complete. []

6 Product formula

The aim of this section is to deduce a product formula for the BC,, type Jackson integral
as if reconstructing the product expression (2) of the beta function from g-difference
equations (3) and asymptotic behavior (4). The following formula has been proved by
van Diejen [26]. He has done it to calculate a certain multiple Jackson integral in two
ways by using Fubini’s theorem, following Gustafson’s method [9]. We give here another
proof of it as a consequence of Theorem 1.2.

Theorem 6.1 (van Diejen) The constant C' in the expression (18) is the following:

C=(1—¢qr" H H1<,u<l/<4(qt (- Z)a a 1)
) (qt=(+=2)ay a21a31a41)oo

Before proving Theorem 6.1, we have to establish ¢-difference equations and asymptotic

behavior for the BC), type Jackson integral.

6.1 g-difference equations
First we deduce a recurrent relation which J(§) satisfies, using Theorem 1.2.

Corollary 6.2 Let T,, be the q-shift of parameter ay such that T,,: a; — qa;. Then

TaIJ( H Hk 2 alak)J

1-— t”“ 2a1a2a3a4

Remark. The parameters aq, as, az and ay can be replaced symmetrically in the above
equation.

Proof. The function T,,J(£) is written

§oo 5 £oo
TalJ(g):/O %@(Z)A(z)wq:/o e (2)®(2)A(z)w,

because the following holds for ®(z) by Lemma 4.1:
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From repeated use of Theorem 1.2, we have

goo — " Jaa
/O ¢ (2)B(2)A (), HHk o1 = ")

1 — ¢nti- 2&1@2&3&4

This completes the proof. [J
Let T be the shift of parameters for the special direction defined by

ar — aq*N,
N . ) G2 CLQQ:Z7
as — asq ",
ay — a4q_N.

Lemma 6.3 The following holds for the shift T":

J(€) = ﬁ (ala%agazt?’(" NN H2§u<u§4(qt_(n_i)aﬁla;l)mv
xTNJ(€).

Proof. Applying Corollary 6.2 to J(§) repeatedly, we obtain the above relation between
J(&) and TNJ (). O

6.2 Asymptotic behavior of truncated Jackson integral
Next we consider an asymptotic behavior of J(().

Lemma 6.4 The asymptotic behavior of the truncated Jackson integral TNJ(C) at N —
+o00 s the following:

TNI(C) ~ (1= )" ﬁ VOV (i) man— a2 (g) ().
i=1 (a1a3a3agtd )N (.

Proof. We divide ®(2)A(z) into the following three parts:
O(2)A(2) = L(2)12(2)I5(2)

where
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Thus, TVJ(C) is expressed as

™) = (1= > (@@ QAW 0) (54)

veD

= (1-q)"Y_ TL(¢"¢) T I(q"¢) TVI5(q"¢)

veD

where

n

TN]1 (qu) = H(tniialqyri»ZN)170[17"'7&472(”*1')T+N’
i=1

TNIQ(qVC) — H(qtn*lqyz)oo
i=1

( k‘—j—lquj—l/k-‘rl)

k—j vi—v o
X H (1= #7¢%) (th=itlgri—vi)
1<j<k<n >

n 4 _
(1 t2(n i) 2 1/H—4N tn 7 1 1+1/2+3N)OO

aa,, q
TN_[ v —
3(q C) i tn za ql/1+4N ]l tn zalamqui-i-N)oo

t2n7jfk I/j+l/k+4N>

1
2
[ aq
1<j<k<n
(tZ’n—j—k—la%q1+uj+uk+4N)oo

(t2n—j—k+1 CL% quj +v +4N)Oo

Equation (54) indicates that the summand 7% (CD(q”C YA(q"¢C )) of TNJ(¢) corresponding

to v = (0,0,...,0) € D gives the principal term of asymptotic behavior of TVJ(() at
N — 400 because the point (0,0, ...,0) € D is the vertex of the cone D. Hence we have

TVI(C) ~ (1 — )" TV (C) TVI(C) TV (). (55)

Moreover the asymptotic behavior of each T™VI;(¢) at N — +o0 is the following:

TN(¢) = H(tn_ialqm\[)1_0‘1_"'—a4—2(n—i)r+N
i=1
n (t”fial)17a17-..7a472(n7i)7q2N(N+1)
: ' 56
1‘11 (ara3a3ait3=0)N 5 (56)
n . ' tk*jfloo
TNfz(C) = H(Qt”*l)oo H (1—tk3)%
=1 1<j<k<n (t )oo
n Ootoo
_ [ 0s0s .

(o

-
Il
—
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TN[3 n 2 4N ﬁ tn iaia 1q1+3N)Oo
pale tn za q4N g tn lalamq )
In—j—k—1,2, 1+4N
_ 2n—j—k 2 AN (t arq )oo
><1<j1:£<n(1 : “g) (t2n—i—k+la2qiN)
~ 1 (N — +o00). (58)

Combining (55), (56), (57) and (58), we obtain Lemma 6.4. []

6.3 Proof of Theorem 6.1

Theorem 6.5 The truncated Jackson integral J(() is evaluated as

J(C) =1 =9)"(9)%

y H (t (tlay)tmonmrmea=2An=ir H2§p<u§4(qt7(nii)a;1a;l)oo
() (gt~ a7 ay g aq oo [Tha (PP 0101) oo

=1

Proof. It is straightforward from Lemma 6.3 and Lemma 6.4 []
As a consequence of Theorem 6.5, we deduce Theorem 6.1.

Proof of Theorem 6.1. The constant C' is written C' = J(£)/O(§) by virtue of Lemma
3.1. In particular, putting £ = (, from Theorem 6.5, we obtain

C — & ]_ - Zo ﬁ H1<p,<y<4(qt (n— Z)a/_la_l)

0(¢) (gt~ 2aitay az ag )

I

because ©(&) in (17) is evaluated at £ = ( as

B n 0(t) (tn_ial)1_0‘1_"'_044—2(n—z')7
o(¢) = g (%) Hizz O(tr—iaiay) .

The proof of Theorem 6.1 is now complete. [
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