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Abstract. We study recurrence relations and biorthogonality properties for polynomi-
als and rational functions in the problem of the Padé interpolation in the usual scheme
and in the scheme with prescribed poles and zeros. The main result is deriving explicit
orthogonality and biorthogonality relations for polynomials and rational functions in
both schemes. We show that the simplest linear restrictions in the Padé table (so-called,
diagonal, anti-diagonal and vertical strings) lead to different explicit types of biorthogo-
nality relations. Finally, we apply our general theory to a concrete example of the Padé
interpolation with prescribed poles and zeros on the elliptic grid. This leads to two types
of biorthogonality for elliptic hypergeometric functions 12E11. The first type arises from
the Kronecker (anti-diagonal) string and coincides with previously known elliptic BRF.
The second type arises from the vertical string. It generates a biorthogonality relation
in an infinite set of orthogonality points. This biorthogonality relation is assumed to be
new.
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1. Introduction

The Cauchy-Jacobi interpolation problem (CJIP) for the sequence Yj of (nonzero) com-
plex numbers can be formulated as follows [2], [28]. Given two nonnegative integers n,m,
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choose a system of (distinct) points xj, j = 0, 1, . . . , n + m on the complex plane. We are
seeking polynomials Qm(x; n), Pn(x; m) of degrees m and n correspondingly such that

Yj =
Qm(xj; n)

Pn(xj; m)
, j = 0, 1, . . . n + m (1.0.1)

(in our notation we stress, e.g. that polynomial Qm(x; n), being degree m in x, depends
on n as a parameter).

It can happens that solution of the CJIP doesn’t exist. In this case it is reasonable to
consider a modified CJIP:

YjPn(xj; m) − Qm(xj; n) = 0, j = 0, 1, . . . , n + m, (1.0.2)

where polynomials Pn(x; m), Qm(x; n) can be now unrestricted. The problem (1.0.2) al-
ways has a nontrivial solution. In exceptional case, if the system (1.0.1) has no solutions,
some zeroes of polynomials Pn(z; m) and Qm(z; n) coincide with interpolated points xs.
Such points, in this case, are called unattainable [28].

The CJIP is called normal if polynomials Qm(x; n), Pn(x; m) exist for all values of
m,n = 0, 1, . . . and polynomials Qm(x; n), Pn(x; m) have no common zeroes. This means,
in particulary, that polynomials Qm(x; n), Pn(x; m) have no roots, coinciding with inter-
polation points, i.e.

Qm(xj; n) 6= 0, Pn(xj; m) 6= 0, j = 0, 1, . . . n + m (1.0.3)

In a special case when there exists an analytic function f(z) of complex variable such that
f(xj) = Yj the corresponding CJIP is called multipoint Padé approximation problem [2].

There is a modification of CJIP with prescribed poles and zeros [39]. Let ai and bi be
two given sequences. We will assume that ai 6= aj, bi 6= bj if i 6= j and moreover ai 6= bj for
all i, j. For all n = 0, 1, . . . introduce n-th degree polynomials An(x) = (x−a1) . . . (x−an)
and Bn(x) = (x − b1) . . . (x − bn) (of course it is assumed that A0 = B0 = 1). Then we
are seeking again polynomials Qm(x; n), Pn(x; m) such that

Yj =
An(x)

Bm(x)

Qm(xj; n)

Pn(xj; m)
, j = 0, 1, . . . n + m. (1.0.4)

Note that in this case we extract explicitly the part An(x) with prescribed zeros a1, a2, . . . , n
and the part Bm(x) with prescribed poles b1, b2, . . . , bm. Equivalently, conditions (1.0.4)
can be rewritten in the form

Yj =
Vm(xj; n)

Un(xj; m)
, j = 0, 1, . . . n + m, (1.0.5)

where

Vm(x) = Qm(x; n)/Bm(x), Un(x) = Pn(x; m)/An(x) (1.0.6)

are rational functions with prescribed poles. Thus, the scheme with prescribed poles and
zeros is obtained from the ordinary CJIP by replacing polynomials Qm(x; n), Pn(x; m)
with rational functions Vm(x; n), Un(x; m).

Recall that the standard Padé approximation [2] problem consists in finding polynomials
Qm(x; n), Pn(x; m) such that for given function f(x) (which is assumed to be analytical
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near x = 0) we have the condition

f(x) − Qm(x; n)

Pn(x; m)
= O(xn+m+1). (1.0.7)

It is clear that the ordinary Padé problem can be obtained by the limiting process xj → 0
for all j. In this respect, CJIP can be considered as a generalization of the ordinary Padé
problem.

It is well known [2] that diagonal strings in the usual Padé table, (i.e. n − m = N
with fixed N) correspond to orthogonal polynomials Sn(x) = γnx

n Pn(1/x; n − N) =
xn + O(xn−1), n = 0, 1, . . . with some constants γn. This means that there exists a linear
functional σ defined on the space of polynomials such that

〈σ, Sn(x)Sm(x)〉 = hnδnm (1.0.8)

with some normalization constants hn. Under some natural restrictions we have hn 6= 0.
In this (general) case the scheme is nondegenerated. Equivalently, polynomials Sn(x)
satisfy three-term recurrence relation

Sn+1(x) + bnSn(x) + unSn−1(x) = xSn(x) (1.0.9)

which together with initial conditions S0 = 1, S1 = x − b0 completely determines (for
un 6= 0) the linear functional σ [8].

Thus general orthogonal polynomials can be interpreted as denominator polynomials
in diagonal Padé approximations. Note that historically orthogonal polynomials first
appeared in works by Chebyshev and Stieltjes just in this way [2].

Rational functions can form orthogonal systems as well as polynomials [6]. However, in
contrast to the case of polynomials, the rational functions admits biorthogonality property.
Many special examples of biorthogonal rational functions (BRF) were constructed [45],
[31]. In these examples a remarkable duality property was observed: BRF satisfy both
3-term recurrence relation and second-order difference equation on some grid with respect
to argument. Moreover, in all these examples the orthogonality grid xs coincides with
the grid for the Askey-Wilson polynomials (i.e. ”quadratic”, or ”q-quadratic” grid using
terminology of [30]).

In [49] it was established that theory of BRF is equivalent to generalized eigenvalue
problem (GEVP) for two arbitrary tri-diagonal matrices J1, J2 with the eigenvalue z:

J1
~R = zJ2

~R, (1.0.10)

where ~R = {R0(z), R1(z), . . . } is a vector constructed from BRF Rn(z). In [35], [36] a
new explicit family of BRF was constructed. These BRF appeared to be biorthogonal on
so-called elliptic grid. Corresponding BRF are closely related with the so-called elliptic
6j-symbols expressed in terms of modular hypergeometric functions introduced by Frenkel
and Turaev [15]. These BRF satisfy dual property and today it is assumed that they are
the most general BRF with such property.

The main goal of this paper is to analyze how orthogonality and biorthogonality rela-
tions arise from different strings of the Padé interpolation table. Our main result is that
theory of BRF naturally arises from the Padé interpolation table. This can be considered
as a generalization of the well known results concerning relations between the ordinary
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orthogonal polynomials and the Padé approximation table. Some preliminary and special
results were published earlier in our papers [37, 38, 50, 51, 52].

2. The ordinary Padé interpolation table. Strings and orthogonality

In this section we consider the ordinary Padé interpolation scheme. We will assume
that the the interpolation scheme is normal.

In what follows we will use basic important relations for the Padé interpolants. The
first one is so-called generalized orthogonality property. In order to get it we rewrite
(1.0.1) in the form

YsPn(xs; m) = Qm(xs; n) (2.0.1)

This form is equivalent to (1.0.1) in case of nondegenerate Padé interpolation problem
(i.e. none of interpolated points xs coincide with zeroes of Pn(z; m) or Qm(z; N)).

Introduce the so-called divided-difference operator [17], [29] [z0, z1, . . . , zN ] which is
defined on a finite set of N + 1 points {z0, z1, . . . , zN} by the formula

[z0, z1, . . . , zN ]f(z) =
N∑

k=0

f(zk)

Ω′
N+1(zk)

, (2.0.2)

where

ΩN(z) = (z − z0)(z − z1) . . . (z − zN) (2.0.3)

There is an equivalent (Hermite) form of this operator which sometimes is much more
convenient for analysis:

[z0, z1, . . . , zN ] = (2πi)−1

∫

Γ

f(ζ)dζ

ΩN+1(ζ)
, (2.0.4)

where the contour Γ in complex plane is chosen such that points z0, z1, . . . , zN lie inside
the contour whereas all singularities of the function f(z) lie outside the contour. The
divided-difference operator has many properties similar to those for the ordinary derivative
operator. In particular,

[z0, z1, . . . , zN ]f(z) ≡ 0 (2.0.5)

if f(z) is any polynomial of degree < N . For every polynomial f(z) = rNzN + O(zN−1)
of degree N with leading coefficient rN we have also

[z0, z1, . . . , zN ]f(z) = rN (2.0.6)

Apply property (2.0.2) to (2.0.1) to get

[x0, x1, . . . , xn+m]{qj(z)f(z)Pn(z; m)} = 0, j = 0, 1, . . . , n − 1 (2.0.7)

where qj(z) is any polynomial of degree j and and we assume that the function f(z) exists
such that f(xs) = Ys. Relation can be rewritten in the Hermite form

∫

Γ

qj(ζ)f(ζ)Pn(ζ; m)dζ

ωm+n+1(ζ)
= 0, j = 0, 1, . . . , n − 1, (2.0.8)

where ωn(x) is defined in (2.0.3) with zi = xi.
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In general case, if the function f(z) doesn’t exists, this relation can be presented in the
form

m+n∑

s=0

Ysqj(xs)Pn(xs; m)

ω′
m+n+1(xs)

= 0, j = 0, 1, . . . , n − 1 (2.0.9)

The property (2.0.9) is a generalized orthogonality property of the Padé interpolants
[28]. In what follows we will use this property to derive orthogonality and biorthogonality
properties for polynomials and rational functions.

We will use also the fundamental Frobenius-type relations for the Padé interpolants
[3]. We will assume that denominator polynomials Pn(z; m) are monic Pn(z; m) = zn +
O(zn−1), whereas numerator polynomials Qm(z; n) have the leading term αnm: Qm(z; n) =
αnmzm + O(zm−1). As the scheme is assumed to be normal, we have necessarily αnm 6= 0.
Then the Frobenius-type relations for denominator polynomials Pn(z; m) are [3]

Pn+1(z; m) − (z − xn+m+1)Pn(z; m) +
αnm

αn,m+1

Pn(z; m + 1) = 0

Pn+1(z; m) − Pn+1(z; m + 1) +
αn+1,m+1

αn,m+1

Pn(z; m + 1) = 0 (2.0.10)

Similar relations can be written for numerator polynomials:

Qm(z; n + 1) − (z − xn+m+1)Qm(z; n) +
αnm

αn,m+1

Qm+1(z; n) = 0

Qm(z; n + 1) − Qm+1(z; n + 1) +
αn+1,m+1

αn,m+1

Qm+1(z; n) = 0 (2.0.11)

These relations are compatible if condition

αn+1,m

αnm

+
αnm

αn,m+1

− αn,m−1

αnm

− αnm

αn−1,m

+ xn+m+1 − xn+m = 0 (2.0.12)

is fulfilled [3].
In what follows we will consider some one-dimensional strings in the two-dimensional

table m,n. These strings will appear by imposing simple linear relations φ(m, n) = 0
upon variables m,n. Any such string will generate corresponding one-dimensional set
of polynomials, say {Pn(z; m), φ(m,n) = 0}. As we will see, such one-dimensional sets
possess remarkable orthogonality or biorthogonality properties. Note that recurrence
relations for different kinds of strings in the Padé interpolation problem were considered
e.g. in [19].

Finally, we give a simplest explicit example of the Padé interpolation table for the
exponential function on the uniform grid [20], [50]. This example will be used in next
subsections to illustrate all obtained formulas.

Assume that the interpolated grid coincides with nonnegative integers xs = s = 0, 1, . . . .
For interpolated sequence Ys we take simple exponential grid Ys = qs. Clearly, this is
equivalent to interpolation of the exponential function f(z) = exp(ωz) with q = exp(ω).
The parameter q is an arbitrary nonzero complex number with the only restriction qN 6= 1
for N = 0, 1, . . . .
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Explicit solutions for the numerator and denominator polynomials are [50]

Qm(z; n) = (−1)n(1 − 1/q)−n (1 + m)n 2F1

(
−m,−z

−m − n
; 1 − q

)
,

Pn(z; m) = (−1)n(1 − 1/q)−n (1 + m)n 2F1

(
−n,−z

−m − n
; 1 − 1/q

)
(2.0.13)

Polynomials Pn(z; m) are monic and the leading term of the polynomials Qm(z; n) is

αnm = (−1)mqn(1 − q)m−n (1 + m)n

(1 + n)m

(2.0.14)

It is easily verified that relation (2.0.12) holds identically for coefficients (2.0.14). The
Frobenius-type relations (2.0.10) and (2.0.11) can be verified using standard transforma-
tion formulas for the Gauss hypergeometric function [13].

2.1. The Kronecker strings and the ordinary orthogonal polynomials. By the
Kronecker string we mean an antidiagonal n + m = N in the Padé table with fixed N .
The term is justified by the Kronecker method in numerical interpolation [2], where just
antidiagonals of the Padé interpolation tables are exploited. Clearly, for every N > 0 we
have exactly N + 1 different denominator polynomials P0(z; N), P1(z; N − 1), . . . PN(z; 0)
(and the same number of numerator polynomials QN−n(z; n)).

It is convenient to denote Sn(z; N) = Pn(z; N−n), n = 0, 1, . . . , N and αn,N−n = αn(N)
From Frobenius-type relations (2.0.10) we have

Sn(z; N + 1) = Sn(z; N) +
αn(N + 1)

αn−1(N)
Sn−1(z; N),

(z − xN)Sn(z; N − 1) = Sn+1(z; N) +
αn(N − 1)

αn(N)
Sn(z; N) (2.1.1)

From these relations we immediately derive three-term recurrence relation for polynomial
Sn(z; N) with fixed N :

Sn+1(z; N)+ bn(N)Sn(z; N)+un(N)Sn−1(z; N) = zSn(z; N), n = 0, 1, . . . , N −1 (2.1.2)

where

bn(N) =
αn+1(N + 1)

αn(N)
+

αn(N)

αn(N + 1)
+ xN+1, un =

αn(N)

αn−1(N)
(2.1.3)

We see that polynomials Sn(z; N) satisfy standard recurrence relation (1.0.9) defining
orthogonal polynomials. These polynomials are nondegenerate because un 6= 0, n =
1, 2, . . . , N − 1. From generalized orthogonality relation (2.0.9) we derive that these poly-
nomials satisfy discrete orthogonality relation on the interpolation grid xs:

N∑

s=0

ws(N)Sn(xs; N)Sn′(xs; N) = hn(N)δnn′ , (2.1.4)

where the weights are

ws(N) =
Ys

ω′
N+1(xs)

. (2.1.5)
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The normalization constants

hn(N) = u1(N)u2(N) . . . un(N) 6= 0

are nonzero due to nondegeneracy of the Padé interpolation problem.
The fact that anti-diagonal string of the Padé interpolation table gives rise to finite-

orthogonal polynomials was noticed earlier [12] (see also [11]). It is important to note
that relations (2.1.1) coincide with the so-called Geronimus and Christoffel transforms
for orthogonal polynomials [48], [34]. On the other hand, condition (2.0.12) in this case
is equivalent to so-called shifted qd-algorithm. Recall, that the shifted qd-algorithm is a
powerful computational tool in linear algebra [14] which generalizes famous qd-algorithm
by Rutishauser.

Our next result will be identification of numerator polynomials QN−n(z; n) in the Kro-
necker string with so-called ”dual” orthogonal polynomials introduced in [4], [5]. Let
Sn(z), n = 0, 1, . . . , N be a finite system of nondegenerate orthogonal polynomials satis-
fying recurrence relation (1.0.9) for n = 0, 1, . . . , N −1. The ”dual” polynomials are finite
OP S̃n(z), n = 0, 1, . . . , N satisfying three-term recurrence relation

S̃n+1(x) + bN−nS̃n(x) + uN+1−nS̃n−1(x) = xS̃n(x), n = 0, 1, . . . N − 1 (2.1.6)

and the initial conditions
S̃0(x) = 1, S̃1(x) = x − bN (2.1.7)

i.e. the Jacobi matrix J̃ for polynomials S̃n(z) is obtained from Jacobi matrix J for OP
Sn(z) by reflection from its main antidiagonal. This means, in particular, that transfor-
mation Sn(z) → S̃n(z) is an involution, i.e. the dual polynomials with respect to S̃n(z)
coincide with initial polynomials Sn(z).

Assume that ws be discrete weights for polynomials Sn(z) on a set of (distinct) orthog-
onality points xs:

N∑

s=0

wsSn(xs)Sn′(xs) = hnδnn′ , (2.1.8)

Analogously let w̃s be discrete weights for polynomials S̃n(z) on a set ys:

N∑

s=0

w̃sS̃n(ys)S̃n′(ys) = h̃nδnn′ , (2.1.9)

Normalization factors are hn = u1u2 . . . un and h̃n = uNuN−1 . . . uN+1−n.
Note that orthogonality points xs and ys are zeroes of the polynomial SN+1(z) and

S̃N+1(z):

SN+1(z) = (z − x0)(z − x1) . . . (z − xN), S̃N+1(z) = (z − y0)(z − y1) . . . (z − yN) (2.1.10)

In [4], [5] it was shown that
(i) the orthogonality points for polynomials Sn(z) and S̃n(z) coincide, i.e. ys = xs, s =

0, 1, . . . , N ;
(ii) the weights are related as

wsw
∗
s =

hN

(S ′
N+1(xs))2

, s = 0, 1, . . . N. (2.1.11)
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In fact, properties (i)and (ii) characterize dual polynomials S̃n(z).
In [42] these properties were explained by a simple observation that the ”dual” polyno-

mials S̃n(z) coincide with N + 1 − n-associated polynomials Sn(z): S̃n(z) = S
(N+1−n)
n (z).

Theorem 1. For the Kronecker string m + n = N the numerator polynomials QN−n(z; n)
coincide with ”dual” polynomials with respect to denominator polynomials Sn(z; N) =
Pn(z; N − n). More exactly, denote Tn(z; N) = Qn(z; N − n)/αN−n,n. Then Tn(z; N) =

S̃n(z; N), or, equivalently, Tn(z; N) are monic orthogonal polynomials satisfying recur-
rence relation

Tn+1(x; N) + bN−n(N)Tn(x; N) + uN+1−n(N)Tn−1(x; N) = xTn(x; N), n = 0, 1, . . . N − 1
(2.1.12)

and the initial conditions

T0(x) = 1, T1(x) = x − bN(N), (2.1.13)

where bn(N), un(N) are recurrence coefficients defined by (2.1.3).

Proof. The simplest way to prove this theorem is to notice that the sequence 1/Ys

is interpolated sequence for the the same grid xs and with exchanged numerator and
denominator polynomials. Hence, for the Kronecker string, the polynomials Qn(z; N −
n)/αN−n,n are monic orthogonal polynomials with the weights (see (2.1.5)):

w̃s(N) =
1/Ys

ω′
N+1(xs)

. (2.1.14)

Note that ωN+1(x) = SN+1(x) = S̃N+1(x). This leads to formula (2.1.11) which charac-
terizes ”dual” polynomials.

We thus see that the ”dual” orthogonal polynomials S̃n(z) have a very natural inter-
pretation as the numerator polynomials in the Kronecker string of the Padé table.

Moreover, there is an important ”inverse” theorem allowing to reconstruct the whole
Padé interpolation table starting from given set of finite orthogonal polynomials Sn(x; N).

Let Sn(x; N) be a set of finite orthogonal polynomials with the properties:
(i) for every N > 0 polynomials Sn(x; N) are orthogonal on a finite set of distinct points

xs, s = 0, 1, . . . , N :
N∑

s=0

ws(N)Sn(xs; N)Sn′(xs; N) = hn(N)δnn′ , (2.1.15)

(ii) the discrete weights ws(N +1) are related with ws(N) by the Geronimus transform
[48], i.e.

ws(N + 1) =
ws(N)

xs − xN+1

, s = 0, 1, . . . , N (2.1.16)

and wN+1(N + 1) = AN+1 with arbitrary nonzero AN+1. In more details, this means that
transition N → N +1 consists in division of all weights ws(N) at points x0, x1, . . . , xN by
multipliers (xs − xN+1) and moreover by adding of a new arbitrary weight AN+1 at the
point xN+1. It is clear from (2.1.16) that we can express ws(N) by the explicit formula

ws(N) =
Ys

ω′
N+1(xs)

, (2.1.17)
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where ωN+1(x) =
∏N

k=0(x−xk) = SN+1(x) and Ys = As

(xs−x0)(xs−x1)...(xs−xs−1)
. Let S̃n(x; N)

be the monic ”dual” polynomials corresponding to Sn(x; N) defined by (2.1.6). There is
an identity [42]

hnS̃N−1(x; N) = S̃N(x; N)Sn(x; N) − S̃N+1(x; N)S
(1)
n−1(x; N) (2.1.18)

where S
(1)
n−1(x; N) are associated polynomials. Putting x = xs and resembling that xs are

zeroes of S̃N+1(x) we get

hnS̃N−n(xs; N) = S̃N(xs; N)Sn(xs) (2.1.19)

On the other hand, from general theory it follows [42]

ws(N) =
S̃N(xs)

S ′
N+1(xs)

(2.1.20)

and thus we have an important relation [4]

hnS̃N−n(xs) = ws(N)S ′
N+1(xs)Sn(xs), s = 0, 1, . . . N (2.1.21)

Substituting expression ws(N) from (2.1.17) we get finally

Ys =
TN−n(xs; N)

Sn(xs; N)
, s = 0, 1, . . . , N, (2.1.22)

where QN−n(x; N) = hnS̃N−n(x; N).
We thus see that starting from a sequence of finite orthogonal polynomials Sn(x; N) and

their duals S̃n(x; N) we can construct a whole Padé interpolation table for the interpolated
sequence Ys on the interpolated grid xs. Sequence Ys in general is an arbitrary, but we
should exclude (exceptional) cases when the Padé scheme becomes non-normal, i.e. when
some of interpolated points xs coincide with zeroes of Sn(x; N) or S̃n(x; N).

Using this approach, one can construct explicit Padé interpolation tables starting from
known systems of finite orthogonal polynomials [53], [38].

We present here only the simplest example connected with interpolation (2.0.13) of the
exponential function. From (2.1.5) we immediately find the discrete weights

ws =

(
N

s

)
ps(1 − p)N−s, (2.1.23)

where p = q/(q − 1). The weights (2.1.23) describe the usual binomial distribution and
hence corresponding polynomials Sn(z) = Pn(z; N − n) are the Krawtchouk polynomials
[22]:

Sn(z) = κn2F1

(
−n,−z

−N
; 1/p

)
, (2.1.24)

where κn = pn(−N)n is a normalization factor in order for polynomials Sn(z) to be monic.
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2.2. The Kronecker algorithm revisited. The Kronecker algorithm [2] consists in
reconstructing of all entries QN−n(z; n), Pn(z; N − n), n = 0, 1, . . . , N of the Kronecker
string in the Padé interpolation table. In this section we consider the Kronecker algorithm
from the point of view of orthogonal polynomials and their ”duals”.

Assume that all interpolation values are nonzero: Ys 6= 0. Fix the positive integer
N > 0 and define the monic polynomial

SN+1(z) ≡ PN+1(z;−1) ≡ (z − x0)(z − x1) . . . (z − xN) (2.2.1)

Next, we should determine the polynomial SN(z) ≡ PN(z; 0). In order to do this, we
notice that by definition of the Padé interpolation we have:

Q0(xs; N)

PN(xs; 0)
=

αN0

PN(xs; 0)
= Ys, s = 0, 1, . . . , N (2.2.2)

because Q0(z; N) = αN0 ≡ const. Hence, the (non-monic!) polynomial PN(z; 0)/αN0

coincides with the ordinary Lagrange interpolation polynomial which interpolates the
given sequence Y0, Y1, . . . , YN on the given grid x0, x1, . . . , xN . We thus have by the
Lagrange formula

PN(z; 0)

αN0

=
N∑

s=0

SN+1(z)

Ys(z − xs)S ′
N+1(xs)

(2.2.3)

The value αN0 is determined directly from (2.2.3) by examining of leading term of
the Lagrange interpolation polynomial PN(z; 0)/αN0. Thus we obtain the first entry
Q0(z; N −n) = αN0 and PN(z; 0) of the Kronecker string. The only non-trivial procedure
is determining of other entries PN−n(z; n) and Qn(z; N − n) for n = 1, 2, . . . , N . This
can be done using so-called backward algorithm for orthogonal polynomials (see, e.g.
[24]). This algorithm works as follows. Let SN+1(z) and SN(z) be two given polynomials
of degrees N + 1 and N . We assume that these polynomials belong to a family of finite
monic orthogonal polynomials S0(z), S1(z), . . . , SN , SN+1(z). This means that there exists
a 3-term recurrence relation

Sn+1(z) + bnSn(z) + unSn−1(z) = zSn(z) (2.2.4)

with initial conditions S−1 = 0, S0 = 1. But in our case we have different initial conditions:
polynomials SN+1(z) and SN(z) are given and all polynomials Sn, 0 ≤ n < N should be
restored together with the recurrence coefficients un, bn.

In principle, there are several ways to reconstruct polynomials Sn(z) and recurrence
coefficients un, bn. We describe here the simplest one which is equivalent to the Kronecker
algorithm.

We can present every polynomial Sn(z) as

Sn(z) = zn + ξnz
n−1 + ηnzn−2 + O(zn−3) (2.2.5)

with some coefficients ξn, ηn. Then from recurrence relation (2.2.4) we find expression for
the recurrence coefficients bn, un in terms of the expansion coefficients ξn, ηn:

bn = ξn − ξn+1, un = ηn − ηn+1 − bnξn (2.2.6)

Start from the relation

SN+1(z) + bNSN(z) + uNSN−1(z) = zSN(z), (2.2.7)
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where the polynomial SN−1(z) and the coefficients uN , bN are unknown. As polynomi-
als SN(z), SN+1(z) are known, we know their expansion coefficients ξN , ξN+1, ηN , ηN+1.
Hence, by (2.2.6), we can reconstruct recurrence coefficients bN , uN . Then we reconstruct
polynomial SN−1(z) by

SN−1(z) =
(z − bN)SN(z) − SN+1(z)

uN

(2.2.8)

It is seen from (2.2.8) that our procedure leads to the unique polynomial SN−1(z) iff
uN 6= 0. And if this condition is fulfilled, then SN−1 = zN−1 + O(zN−2) is indeed a monic
polynomial of degree N − 1. This procedure can be repeated for n = N − 1, N − 2, . . . , 1.
And at each step we reconstruct recurrence coefficients uN−n, bN−n and monic polynomial
SN−n(z). If un 6= 0 at each step, then the scheme is nondegenerated, i.e. all poly-
nomials SN−1(z), SN−2(z), . . . , S0(z) ≡ 1 are uniquely reconstructed from the given two
polynomials SN+1(z), SN(z). Thus the denominator polynomials PN−n(z; n) ≡ SN−n(z)
are reconstructed uniquely step-by-step for n = N, N − 1, . . . . What about numerator
polynomials Qn(z; N − n)? We know, that, up to a constant factor αn,N−n, this polyno-
mials coincide with the ”dual” OP Tn(z) with respect to Sn(z). From (2.1.12) we can
rewrite recurrence relation for polynomials Qn(z; N − n) in the form

uN−nQn+1(z; N−n−1)+bN−nQn(z; N−n)+Qn−1(z; N−n+1) = zQn(z; N−n) (2.2.9)

with initial conditions

Q−1(z; N + 1) = 0, Q0(z; N) = αN0 (2.2.10)

Thus numerator polynomials Qn(z; N − n) can be determined simultaneously with de-
nominator polynomials if the process is normal. Indeed, for the first step we have
uNQ1(z; N−1) = (z−bN)Q0(z; N) = (z−bN)αN0. We thus can find Q1(z; N−1) because
coefficients uN , bN were determined already at the first step. If the scheme is nondegen-
erate (i.e. uN 6= 0)) then Q1(z; N − 1) is a first degree polynomial in z. This process
can be continued: at the n-th step we reconstruct uniquely polynomial Qn+1(z; N − n)
from recurrence relation (2.2.9) using already determined coefficients bN−n, uN−n. Again
we should assume un 6= 0 for all n = 1, 2, . . . , N . Thus, if the process is nondegener-
ate, the backward algorithm for orthogonal polynomials leads uniquely to polynomials
Qn(z; N − n) and PN−n(z, n) from the Kronecker string.

The Kronecker process will be nondegenerated, e.g. in the case if the sequence xs is
real and monotonic, say xs+1 > xs for all s and sequence Ys is real and sign-changed:
YsYs+1 < 0 for all s. Indeed, in this case the weights ws are all positive or negative as is
easily sen from (2.1.5). But this means that un 6= 0 [8] and hence the Kronecker process
is nondegenerated.

Note, however, that for many practically important cases we usually have monotonic
sequence Ys = f(xs), because it is naturally to assume that the function f(z) is sufficiently
monotonic on an interval containing many interpolation points xs. Then we have Ys+1Ys >
0 for corresponding points of grid. This may, in principle, lead to a situation when the
Kronecker algorithm is degenerated. But such a situation is exclusive.

Nondegeneracy of the Kronecker algorithm doesn’t guarantee that unattainable points
xs are absent. This means that sometimes the roots of orthogonal polynomials Sn(z) =
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Pn(z; N−n) can coincide with one or more grid point xs. We illustrate such possibility by
an elementary example. Consider the sequence Ys = (−1)s, s = 0, 1, . . . while the inter-
polation grid xs is an arbitrary (all points xs are distinct). Then for diagonal interpolants
(i.e. m = n) we have two interpolation conditions [27]:

Pn(x2s; n) = Qn(x2s; n), s = 0, 1, . . . , n and

−Pn(x2s+1; n) = Qn(x2s+1; n), s = 0, 1, . . . , n − 1 (2.2.11)

From the first of these relation we see that polynomials Pn(z; n) and Qn(z; n) should
coincide, then from the second relation we find

Pn(z; n) = Qn(z; n) = (z − x1)(z − x3) . . . (z − x2n−1) (2.2.12)

Thus diagonal Padé interpolants in this case have all odd interpolation points x1, x3, . . . , x2n−1

as unattainable.
Consider concrete example (2.1.24) connected with the Krawtchouk polynomials. For

the positively definite case (i.e. ws > 0, s = 0, . . . , N) it is necessary and sufficient that
0 < p < 1. This means that −∞ < q < 0. Thus for positively definite case we have
YsYs+1 = qsqs+1 < 0 as expected. Hence we can expect (exclusive) cases when some
points xs become unattainable. This is equivalent to the case when one or several zeroes
of the Krawtchouk polynomials are integer. The problem of finding of all integer zeroes
of the Krawtchouk polynomials is one of the interesting and important problem which is
connected with many branches in modern mathematics (see, e.g. [23]). We thus have

Theorem 2. The problem of existence of integer zeros of the Krawtchouk polynomials is
equivalent to the problem of existence of unattainable points in Padé interpolation for
the exponential function on uniform grid.

Using this observation we can immediately conclude that for Ys = (−1)s the points
x(n+m)/2 are unattainable for all odd numbers n and m. Indeed, in this case we have so-
called symmetric Krawtchouk polynomials p = 1/2 [23]. But for symmetric Krawtchouk
polynomials there are ”trivial” zeros x = N/2 when n is odd and N is even [23].

2.3. Horizontal and vertical strings. Consider now the case when either m = const
(vertical string) or n = const (horizontal string). These cases are closely related with the
Newton-Lagrange interpolation problem. Indeed, consider, e.g. the horizontal string n =
0. Then we have the problem: find polynomials Qm(z; 0) such that Ys = Qm(xs; 0), s =
0, 1, . . . , m). Thus Qm(z; 0) is the Newton-Lagrange interpolation polynomial for sequence
Ys [17]. Analogously, if m = 0 then Pn(z; 0)/αn0 is the Newton-Lagrange interpolation
polynomial for sequence 1/Ys (recall that αnm is leading coefficient of Qm(z; n) and we can
put Q0(z; n) = αn0). For m = const 6= 0 we have Padé interpolation problem with fixed
degree m of numerator, analogously for n = const we have fixed degree n of denominator.

In what follows we consider only the vertical strings m = const (for the horizontal
string all results are similar due to obvious replacement Ys → 1/Ys when m ↔ n).

Consider the rational functions

Rn(z; m) =
Pn(z; m + 1)

ωn+m+2(z)
(2.3.1)
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where ωN+1(z) = (z − x0)(z − x1) . . . (z − xN) is the characteristic polynomial of interpo-
lation points. We have

Theorem 3. For fixed m the polynomials Pn(z; m) and rational functions Rn(z; m) form
a biorthogonal system:

N∑

s=0

YsPn(xs; m) Res(Rk(z; m)) |z=xs = αn,m+1 δnk, (2.3.2)

where N is any positive integer such that N ≥ k + m + 1 or, equivalently,

1

2πi

∫

Γ

f(ζ)Pn(ζ; m)Rk(ζ; m)dζ = αn,m+1δnk, n, k = 0, 1, . . . , (2.3.3)

where the poles x0, x1, . . . xk+m+1 of the rational function Rk(z; m) lie inside the contour
Γ.

Proof. For n > k and n < k the statement of the theorem follows easily from basic
orthogonality relation (2.0.8). The only nontrivial part is calculation of the integral for
k = n. In this case we have

1

2πi

∫

Γ

f(ζ)Pn(ζ; m)Pn(ζ; m + 1)

(ζ − x0)(ζ − x1) . . . (ζ − xn+m+1)
dζ =

n+m+1∑

s=0

Pn(xs; m)Pn(xs; m + 1)Ys

ω′
n+m+2(xs)

=
n+m+1∑

s=0

Pn(xs; m)Qm+1(xs; n)

ω′
n+m+2(xs)

where in the last equation we used the main interpolation property (1.0.1). The last
expression can be presented in the form (see (2.0.2))

n+m+1∑

s=0

Pn(xs; m)Qm+1(xs; n)

ω′
n+m+2(xs)

= [x0, . . . xn+m+1]{Pn(x; m)Qm+1(x; n)} (2.3.4)

i.e. we have divided difference of order n + m + 1 from polynomial of degree n + m + 1.
From (2.0.6) we immediately have that this expression is equal to leading coefficient of
the polynomial and thus

n+m+1∑

s=0

Pn(xs; m)Qm+1(xs; n)

ω′
n+m+2(xs)

= αn,m+1

and the theorem is proven.
Note that in [51] we obtained the special case of this theorem for m = 0. In this case

Pn(z; 0)/αn0 are the Newton-Lagrange interpolants for the sequence 1/Ys. Biorthogonal
partners for these polynomials are rational functions Rn(z; 0) = Pn(z; 1)/ωn+2(z). Thus,
in order to construct biorthogonal partners for the Newton-Lagrange interpolants we need
to know the ”next vertical” (i.e. m = 1) polynomials Pn(z; 1). In [51] these polynomials
were explicitly expressed in terms of Pn(z; 0) using Frobenius-type relations (2.0.10).
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Now we derive three-term recurrence relation for polynomials Pn(z; m) for fixed m.
Excluding Pn(z; m + 1) from (2.0.10) we arrive at the recurrence relation

Pn+1(z; m) +

(
−z + xn+m+1 +

αnm

αn,m+1

− αnm

αn−1,m

)
Pn(z; m) +

αnm

αn−1,m

(z − xn+m)Pn−1(z; m) = 0 (2.3.5)

Recurrence relation (2.3.5) belongs to the class of so-called RI recurrence relations intro-
duced by Ismail and Masson [21]. These relations determine monic polynomials P (z) of
RI type and in general form they can be written as [21]

Pn+1(z) + (ξn − z)Pn(z) + ηn(z − νn)Pn−1(z) = 0, n = 1, 2, . . . (2.3.6)

with initial conditions

P0 = 1, P1(z) = z − ξ0

Thus recurrence relation of RI type have 3 arbitrary parameters ξn, ηn, νn.
Comparing (2.3.5) with (2.3.6) we have

ξn = xn+m+1 +
αnm

αn,m+1

− αnm

αn−1,m

,

ηn =
αnm

αn−1,m

, νn = xn+m (2.3.7)

We see that polynomials of RI type appear naturally as denominators of the vertical
strings (m = const) in the Padé interpolation. In the simplest case of pure Newton-
Lagrange interpolation (i.e. m = 0) corresponding recurrence relation was derived in
[51].

We illustrate results of this subsection by the simplest example of the exponential
function (2.0.13). In this case Ys = qs and biorthogonal partners Rn(z are rational
functions (2.3.1):

Rn(z; m) =
Pn(z; m + 1)

z(z − 1) . . . (z − n − m − 1)
(2.3.8)

Using standard transformation formulas for the Gauss hypergeometric function [13] we
can rewrite (2.3.8) in the form

Rn(z; m) = 2F1

(
−n,m + 2

2 + m − z
;

1

1 − q

)
(2.3.9)

In [51] we obtain a special case m = 0 of formula (2.3.9) corresponding to the Lagrange-
Newton interpolation of the exponential function.

We see that for fixed m the polynomials Pn(z; m) (2.0.13) and rational functions (2.3.9)
form a biorthogonal system.

3. Diagonal strings and biorthogonal rational functions

In previous sections we showed that for Kronecker string the denominator polynomials
Pn(z; m) are finite orthogonal polynomials; for the vertical string (m = const) they coin-
cide with so-called polynomials of RI type. In this section we show that for diagonal string
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the denominator polynomials are of RII type (in terminology of [21]). These polynomials
allow one to construct a pair of biorthogonal rational functions.

Assume that m = n + M , where M is a fixed positive or negative integer. Every M
defines a straight line parallel to the main diagonal m = n. We say that such straight line
corresponds to diagonal string of the Padé interpolants.

Consider denominator polynomials Gn(z; M) ≡ Pn(z; n+M). We should derive 3-term
recurrence relation for polynomials Gn(z; j) for fixed j.

For this goal we use Frobenius-type relations (2.0.10). It is convenient to introduce
notation

Gn(z; M) = Pn(z, n + M), Fn(z; M) = Pn(z, n + M + 1) (3.0.1)

Then from (2.0.10) we get relations between polynomials Fn(z; M) and Gn(z; M):

Gn+1(z; M) − (z − x2n+M+1)Gn(z; M) +
αn,n+M − αn+1,n+M+1

αn,n+M+1

Fn(z; M) = 0

Fn(z; M) +
αn,n+M+1 − αn−1,n+M

αn−1,n+M

Gn(z; M) −

αn,n+M+1

αn−1,n+M

(z − x2n+M)Fn−1(z; M) = 0 (3.0.2)

Excluding Fn(z; M) from the first relation (3.0.2) and substituting to the second relation,
we obtain 3-term recurrence relation for polynomials Gn(z; M):

Gn+1(z; M) + ηn(M)(z − x2n+M)(z − x2n+M−1)Gn−1(z; M) +

(ξn(M)z + x2n+M+1 + ηn(M)x2n+M + ζn(M))Gn(z; M) = 0, (3.0.3)

where

ηn(M) =
αn+1,n+M+1 − αn,n+M

αn,n+M − αn−1,n+M−1

, ξn(M) =
αn−1,n+M−1 − αn+1,n+M+1

αn,n+M − αn−1,n+M−1

ζn(M) =
(αn,n+M − αn+1,n+M+1)(αn−1,n+M − αn,n+M+1)

αn−1,n+Mαn,n+M+1

(3.0.4)

Note that ξn(M) + ηn(M) = −1 as follows from comparing terms zn+1 in (3.0.3).
Recurrence relation (3.0.3) belongs to the class of so-called RII 3-term relations [21].

As shown in [49] (see also [37], [36]) this relation is equivalent to GEVP (1.0.10) defining
a pair of biorthogonal rational functions (BRF).

3.1. Explicit biorthogonality relation on the scheme with shifted grid. In our
case this pair of BRF can be constructed directly. For this goal we first rearrange inter-
polation points xs in the following order. In what follows we will assume for simplicity
that M > 0. Let ys be the same grid xs but with another numeration:

yi = xi, if i = 0, 1, . . . ,M,

y−i = xM+2i−1, yM+i = xM+2i, i = 1, 2, . . . , n (3.1.1)

Thus for any n = 0, 1, 2, . . . the grid y−n, y−n+1, . . . , y0, y1, . . . , yn+M coincide with the
grid x0, x1, . . . x2n+M . Hence we can rewrite orthogonality property (2.0.8) in the form

∫

Γ

f(ζ)Gn(ζ; M)qj(z)dζ

(ζ − y−n)(ζ − y−n+1) . . . (ζ − yn+M)
= 0, j = 0, 1, . . . , n − 1 (3.1.2)
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or, equivalently
n+M∑

s=−n

YsGn(ys; M)qj(ys)

H ′
n(ys)

, j = 0, 1, . . . , n − 1, (3.1.3)

where Hn(z; M) = (z − y−n) . . . (z − yn+M).
This scheme can be further generalized if one admits to start with s = −n + j with

arbitrary integer parameter j. In this case we have the following Padé interpolation
problem

Ys =
Qm(ys; n, j)

Pn(ys; n, j)
, s = −n + j,−n + j + 1, . . . , m + j (3.1.4)

If j = 0 we return to the scheme (3.1.1). For fixed j the Frobenius-type relations remain
valid with the only difference that the coefficients αnm(j) will depend on j:

Pn+1(z; m + 1, j) + µnm(j)Pn(z; m + 1, j) − (z − ym+1+j)Pn(z; m, j) = 0 (3.1.5)

Pn+1(z; m+1, j)+(νnm(j)−1)Pn+1(z; m, j)−νnm(j)(z−y−n−1+j)Pn(z; m, j) = 0 (3.1.6)

where

µnm(j) =
αnm(j) − αn+1,m+1(j)

αn,m+1(j)
,

νnm(j) =
αn+1,m+1(j)

αnm(j)

There are also relations with different j:

Pn(z; m+1, j)+σnm(j)(z−y−n+j)Pn(z; m, j+1) = σnm(j)(z−ym+j+1)Pn(z; m, j) (3.1.7)

and

Pn+1(z; m+1, j)+κnm(j)(z−ym+j+1)Pn(z; m, j) = (1+κnm(j))(z−y−n+j)Pn(z; m, j +1)
(3.1.8)

where

σnm(j) =
αn,m+1(j)

αnm(j) − αnm(j + 1)

and

κnm(j) =
αn+1,m+1(j) − αnm(j + 1)

αnm(j + 1) − αnm(j)

Introduce the following rational functions:

Rn(z; M, j) =
Pn(z; M, j)

Ω−n+j,−1+j(z)
, Tn; (zM, j) =

Pn(z; M, j + 1)

ΩM+2+j,n+M+j+1(z)
(3.1.9)

where now
Ωp1,p2(z) ≡ (z − yp1)(z − yp1+1) . . . (z − yp2) (3.1.10)
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where p1, p2 are arbitrary integers such that p1 < p2. Clearly, deg(Ωp1,p2(z)) = p2−p1 +1.
By definition, these rational functions are of type [n/n] (in case of normal Padé scheme

zeroes of polynomials Pn(z; M, j) do not coincide with zeroes of denominators in (3.1.9)).
Orthogonality property (2.0.9) now can be rewritten as

S =

m+j∑

s=−n+j

YsPn(ys; m, j)qk(ys)

Ω′
−n+j,m+j(ys)

= 0, k = 0, 1, . . . , n − 1 (3.1.11)

where qk(z) is an arbitrary polynomial of degree k.

Theorem 4. The functions Rn(z; M, j), Tn(z; M, j) are biorthogonal with respect to the
following scalar product

1

2πi

∫

Γ

f(ζ)Rn(ζ; M, j)Tk(ζ; M, j)

Ωj,M+j+1(ζ)
= hn(M, j)δnk (3.1.12)

or, equivalently,

k+M+j+1∑

s=−n+j

YsRes

{
Rn(z; M, j)Tk(z; M, j)

Ωj,M+j+1(z)

} ∣∣∣∣∣
z=ys

= hn(M, j)δnk (3.1.13)

where normalization coefficient is

hn(M, j) =
αn,n+M+1(j)αn−1,n+M(j)

αn−1,n+M(j) − αn,n+M+1(j)
(3.1.14)

Proof. Denote by I the integral in lhs of (3.1.12). When n 6= k it is easily obtained that
I = 0 from orthogonality relation (3.1.11). So, we need only to check relation (3.1.12) for
n = k. From relation (3.1.6) we can express the first polynomial in (3.1.12) as

Pn(z; m, j) =
Pn(z; m + 1) − νn−1,m(j)(z − y−n+j)Pn−1(z; m, j)

1 − νn−1,m(j)
. (3.1.15)

Substituting (3.1.15) into (3.1.12) we can express the integral in (3.1.12) as I = I1 + I2,
where

I1 =
1

2πi
(1 − νn−1,m(j))−1

∫

Γ

f(z)Pn(z, n + M + 1, j)Pn(z, n + M, j + 1)

Ω−n+j,n+M+j+1(z)
(3.1.16)

and

I2 =
1

2πi

νn−1,m(j)

1 + νn−1,m(j)

∫

Γ

f(z)Pn−1(z, n + M, j)Pn(z, n + M, j + 1)

Ω−n+j+1,m+j+1(z)
(3.1.17)

In I1 we can replace f(z)Pn(z; n + M + 1, j) with Qn+M+1(z; n, j) using interpolation
property (3.1.4). Then I1 becomes

I1 = (1 − νn−1,m(j))−1[−n + j, n + M + j + 1]{Pn(z; n + M, j + 1)Qn+M+1(z; n, j)} =

αn,n+M+1(j)αn−1,n+M(j)

αn−1,n+M(j) − αn,n+M+1(j)
(3.1.18)

(in the last equality we exploited formula (2.0.6)).
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The second integral I2 = 0. Indeed, we can replace f(z)Pn(z; n + M, j + 1) with
Qn+M(z; n, j + 1). Then we have

I2 = [−n + j + 1, n + M + j + 1]{Pn−1(z; n + M, j + 1)Qn+M(z; n, j)} = 0

because the order of divided difference operator is 2n + M , which is greater than degree
2n + M − 1 of the polynomial Pn(z; n + M, j + 1)Qn+M+1(z; n, j).

Thus we have finally I = I1 = hn(M, j), where hn(M, j) is given by (3.1.14).
We introduced the new grid yi by rearranging points xs. But it is possible to consider

the grid ys independently of the grid xs. In this case all results concerning biorthogonal
rational functions Rn(z; M) and Tn(z; M) remain valid.

We illustrate this using our example of the interpolation of the exponential function.
Take the polynomials Pn(z; m), Qm(z; n) in (2.0.13) and change the argument z → z+n:

Qm(z; n) = (−1)n(1 − 1/q)−n (1 + m)n 2F1

(
−m,−z − n

−m − n
; 1 − q

)
,

(3.1.19)

Pn(z; m) = (−1)n(1 − 1/q)−n (1 + m)n 2F1

(
−n,−z − n

−m − n
; 1 − 1/q

)

Clearly, these polynomials again satisfy the interpolation property

Qm(ys; n)

Pn(ys; m)
= exp(ωys) = qs, (3.1.20)

where ys = s = −n,−n + 1, . . . , m.
In what follows we will assume that m = n + M > n. By (3.1.9) we can construct a

pair of corresponding rational functions:

Rn(z; M) =
(−1)n(1 − 1/q)−n (1 + n + M)n

(z + 1)n
2F1

(
−n,−z − n

−2n − M
; 1 − 1/q

)
,

Tn(z; M) =
(−1)n(1 − 1/q)−n (2 + n + M)n

(z − n − M − 1)n
2F1

(
−n,−z − n

−2n − M − 1
; 1 − 1/q

)

For more general explicit examples of BRF connected with diagonal strings in the Padé
interpolation table as well as for their algebraic treatment see [54].

4. Reduction to a special case of orthogonal rational functions

So far, we considered the case when all points xs of the interpolated grid are distinct
xn 6= xm if n 6= m. Equivalently, this means yn 6= ym in the scheme with modified grid
ys. In this case for diagonal strings m = n + M with fixed M we obtained biorthogonal
rational functions Rn(z; M, j), Tn(z; M, j) on the shifted grid y−n+j, y−n+j+1, . . . yn+M+j+1.
Note that denominators of rational functions Rn(z; M, j), Tn(z; M, j) are distinct as is seen
from expression (3.1.9) . Hence for the scheme with distinct interpolated points ys we
obtain non-coinciding rational functions: Rn(z; M, j) 6= Tn(z; M, j). Nevertheless, it is
possible to obtain coinciding rational functions:

Rn(z; M, j) = σn Tn(z; M, j), n = 0, 1, . . . (4.0.1)
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by some degenerating procedure. Here σn is a nonzero constant (we will not distinguish
rational functions which differ by a common constant factor). If condition (4.0.1) holds,
we then deal with the special case of orthogonal rational functions [6]. In what follows
we restrict ourselves with the case j = 0. The case of arbitrary j can be considered in
a similar manner. Consider, when condition (4.0.1) holds. First of all, denominators of
the functions Rn(z; M), Tn(z; M) should coincide for all n = 1, 2, 3 . . . . (For simplicity,
we will not indicate the variable j = 0 in notation). From (3.1.9) we see that this is
equivalent to the condition

y−n = yM+n+1, n = 1, 2, . . . . (4.0.2)

Next, numerators of the rational functions Rn(z; M), Tn(z; M) should coincide up to a
common constant factor. From (3.1.9) we conclude that this is equivalent to the con-
dition that the shifted grid y−n+1, y−n+2, . . . yn+M+1 should coincide with initial grid
y−n, y−n+1, . . . yn+M for all n = 1, 2, . . . . This is possible iff y−n = yn+M+1, i.e. under
the same conditions (4.0.2) as for coinciding of denominators. Thus condition (4.0.2) is
necessary and sufficient in order for rational functions Rn(z; M), Tn(z; M) to coincide up
to a common constant factor (4.0.1).

But in this case we obtain a set of orthogonal rational functions Rn(z; M). Indeed,
biorthogonality property (3.1.12) is transformed to

1

2πi

∫

Γ

f(ζ)Rn(ζ; M)Rk(ζ; M)

(ζ − y0)(ζ − y1) . . . (ζ − yM+1)
= hn(M)δnk (4.0.3)

Some remarks should be done concerning Padé interpolating scheme corresponding to
the degenerating case (4.0.2). It is seen that in this case for any n the interpolated grid
consists of M + 3 simple (i.e. pairwise distinct) points y0, y1, . . . , yM+1, yn+M+1 and n− 1
double points yM+2, yM+3, . . . , yM+n. This means that in n − 1 double points we should
interpolate not only values of the function f(z) but its derivative f ′(z) as well. I.e. the
interpolated scheme now can be presented as

f(xs) =
Qn+M(xs; M)

Pn(xs; M)
(4.0.4)

for s = 0, 1, . . . ,M + n + 1 (as in the usual Padé interpolation scheme) and in addition

f ′(xs) =
d

dz

Qn+M(z; M)

Pn(z; M)

∣∣∣∣∣
z=xs

(4.0.5)

for double nodes s = M + 2,M + 3, . . . , M + n of the interpolation grid.
The orthogonal rational functions Rn(z; M) are constructed now from the denominator

polynomials Pn(z; M) of the osculatory interpolation scheme by the formula

Rn(z; m) =
Pn(z; M)

(z − yM+2)(z − yM+4) . . . (z − yM+n+1)
(4.0.6)

The Padé interpolation schemes with double (and multiple, in general) interpolation
nodes is called Hermite-Padé interpolation scheme, or, sometimes, rational osculatory
interpolation problem. For theory of this problem see e.g. [9], [47].
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We thus showed that the theory of rational orthogonal functions developed in [6] can be
considered as a special, degenerated case of general diagonal Padé interpolation scheme
when some pairs of interpolated nodes merge and become double points. For such double
points we should apply osculatory rational interpolation problem. In general case for non-
coinciding interpolation nodes we obtain only non-coinciding (i.e. biorthogonal) pairs of
rational functions Rn(z; M), Tn(z; M).

5. Scheme with prescribed poles and zeroes

In this section we derive fundamental properties of the Padé interpolation with pre-
scribed poles and zeroes (PPZ scheme for shorten notation).

In what follows we will assume that the Padé scheme (1.0.4) is normal, i.e. all zeroes
of polynomials Pn(z; m) do not coincide with zeroes of polynomial Qm(z; n) and with
prescribed zeroes ai. Analogously, we assume that zeroes of Qm(z; n) do not coincide
with prescribed poles bi. We will assume also that sets of prescribed zeroes and poles
do not overlap. Moreover it is assumed that Ys 6= 0. Clearly, polynomials Pn(z; m) and
Qm(z; n) have degrees n and m correspondingly. As for the case of the ordinary Padé
interpolation scheme [28] we have

Theorem 5. If the Padé interpolation scheme (1.0.4) is normal, then polynomials Pn(z; m)
and Qm(z; n) are unique up to a common factor.

The proof of this theorem is almost the same as for the ordinary case [28] and we omit
it.

The normal PPZ-scheme has an important property of invariance under linear rational
substitutions:

Proposition 1. Assume that the PPZ scheme (1.0.4) is normal. Perform the Möbius
transformation xs → x̃s = (α1xs + α2)/(α3xs + α4) with some constants αi such that
α1α4 6= α2α3 Replace zeros and poles an, bn by similar expressions (with the same coeffi-
cients αi) and replace Pn(x; m) → P̃n(x; m) = (α3x + α4)

nPn(x̃; m) (and similar replace-
ments for Qm(x; n), An(x), Bn(x)). Then we obtain a new normal PPZ-scheme (1.0.4)
with the same interpolated sequence Ys and with modified grid xs → x̃s and interpolants
Pn(x; m) → P̃n(x; m), . . . .

The proof of this proposition is almost obvious and we omit it (see e.g. our paper [49]
concerning general case of BRF). Nevertheless, this property is useful because sometimes
it is possible to reduce the grid xs to as simple form as possible using an appropriate
Möbius transform.

As for the ordinary case, we have generalized orthogonality property for the denomina-
tor polynomials:

[x0, x1, . . . , xn+m]

{
qj(z)f(z)Bm(z)Pn(z; m)

An(z)

}
= 0, j = 0, 1, . . . , n − 1 (5.0.1)
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where qj(z) is any polynomial of degree j. Formula (5.0.1) is a trivial consequence of the
scheme (1.0.4). If function f(z) doesn’t exist, one can rewrite (5.0.1) in equivalent form

m+n∑

s=0

Ysqj(xs)Pn(xs; m)Bm(xs)

An(xs)ω′
m+n+1(xs)

= 0, j = 0, 1, . . . , n − 1 (5.0.2)

In contrast to the ordinary Padé interpolation scheme, we will not fix condition that
polynomials Pn(z; m) are monic. The reason is that sometimes it is more convenient not
to fix the leading coefficients of polynomials Pn(z; m), Qm(z; n).

Now we present the Frobenius-type relations for the Padé interpolants:

κnmPn+1(z; m) − (z − xn+m+1)Pn(z; m) − ρnm(z − bm+1)Pn(z; m + 1) = 0,

µnmPn+1(z; m) − Pn+1(z; m + 1) − νnm(z − an+1)Pn(z; m + 1) = 0 (5.0.3)

with some nonzero coefficients κnm, ρnm, µnm, νnm.
Similar relations can be written for numerator polynomials:

κnmQm(z; n + 1)(z − an+1) − (z − xn+m+1)Qm(z; n) − ρnmQm+1(z; n) = 0,

µnm(z − bm+1)Qm(z; n + 1) − Qm+1(z; n + 1) − νnmQm+1(z; n) = 0 (5.0.4)

Sometimes, it is convenient to rewrite these relations in an equivalent form using ra-
tional functions Un(z; m) = Pn(z; m)/An(z) and Vm(z; n) = Qm(z; n)/Bm(z) instead of
polynomials Pn(z; m), Qm(z; n):

κnm(z − an+1)Un+1(z; m) − (z − xn+m+1)Un(z; m) −
ρnm(z − bm+1)Un(z; m + 1) = 0,

µnmUn+1(z; m) − Un+1(z; m + 1) − νnmUn(z; m + 1) = 0 (5.0.5)

and

κnm(z − an+1)Vm(z; n + 1) − (z − xn+m+1)Vm(z; n) −
ρnm(z − bm+1)Vm+1(z; n) = 0,

µnmVm(z; n + 1) − Vm+1(z; n + 1) − νnmVm+1(z; n) = 0 (5.0.6)

Relations (5.0.3) and (5.0.4) are exact analogues of corresponding relations (2.0.10) and
(2.0.11). As far as we know, these relations were not appeared in literature yet. The proof
of these relations is almost the same as for the ordinary case [3]. We provide, e.g. proof
of the first of relations (5.0.5).

Consider expressions

U∗
n(z; m) =

κnm(z − an+1)Un+1(z; m) − (z − xm+n+1)Un(z; m)

z − bm+1

=

κnmPn+1(z; m) − (z − xm+n+1)Pn(z; m)

An(z)(z − bm+1)
(5.0.7)

and
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V ∗
m+1(z; n) =

κnm(z − an+1)Vm(z; n + 1) − (z − xm+n+1)Vm(z; n)

z − bm+1

=

Q∗
m+1(z; n)

Bm+1(z)
, (5.0.8)

where Q∗
m+1(z; n) is a polynomial of degree ≤ m + 1.

Choose

κnm =
(bm+1 − xn+m+1)Pn(bm+1; m)

Pn+1(bm+1; m)

Such κnm does exist because roots of Pn(z; m) do not coincide with bi. Moreover, κnm 6= 0
because interpolation points xi do not coincide with prescribed poles and zeroes. Then
the pole z = bm+1 in (5.0.7) disappears and we have

U∗
n(z; m) =

P ∗
n(z; m + 1)

An(z)
,

where P ∗
n(z; m + 1) is a polynomial of degree ≤ n.

Now from (1.0.4) we have

Ys =
V ∗

m+1(xs; n)

U∗
n(xs; m + 1)

=
Q∗

m+1(xs; n)An(xs)

Bm+1(xs)P ∗
n(xs; m + 1)

, , s = 0, 1, . . . , n + m + 1 (5.0.9)

From uniqueness of the Padé interpolation scheme we see that

U∗
n(z; m + 1) = ρnmUn(z; m + 1), V ∗

m+1(z; n) = ρnmVm+1(z; n)

with some nonzero coefficients ρnm. This leads to the first relations in (5.0.3) and (5.0.4).
Second relations are derived analogously.

In what follows we need two statements concerning polynomials denominator Pn(z; m).

Lemma 1. For the normal scheme of the PI with prescribed poles and zeroes the roots
of polynomials Pn(z; m) and Pn+1(z; m) do not coincide. Similarly, roots of polynomials
Pn(z; m) and Pn+1(z; m − 1) do not coincide

For the proof, let us assume that there exists z0 such that Pn(z0; m) = Pn+1(z0; m) =
0, i.e. z0 is a common root. Then from Frobenius-type relations (as all coefficients
κnm, ρnm, µnm, νnm are nonzero) it is seen that also Pn−1(z0; m) = 0. Repeating this
procedure we arrive at P0(z0; m) = 0 which is impossible because for the normal scheme
we should P0(z; m) = const 6= 0. Quite analogously we can prove the statement for roots
of polynomials Pn(z; m) and Pn+1(z; m − 1).

Lemma 2. Assume that for fixed m one has relation

F1(z; n,m)Pn(z; m) + F2(z; n,m)Pn+1(z; m) ≡ 0 (5.0.10)

where F1,2(z; n, m) are polynomials in z of fixed degrees (i.e. not depending on n,m).
Then necessarily F1(z; n,m) ≡ F2(z; n,m) ≡ 0.
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Proof. Assume that polynomials F1(z; n, m), F2(z; n,m) do not vanish identically. Then
F1(z; n,m)/F2(z; n,m) = Pn+1(z; m)/Pn(z; m). But the lhs of this relation is a rational
function of fixed degree, whereas the degree of rhs increases infinitely with n. (Indeed, by
Lemma 1 we know that roots of polynomials Pn+1(z; m) and Pn(z; m) do not coincide).
This is impossible, hence both polynomials F1(z), F2(z) should vanish identically.

Using these statements it is easily to prove that for the normal scheme all the Frobenius
coefficients µnm, νnm, κnm, ρnm are nonzero. Indeed, assume that, say, µnm = 0 for some
n,m. Then from (5.0.3) it follows that either polynomials Pn+1(x; m + 1), Pn(x; m + 1)
have a common zero, or the polynomial Pn+1(x; m + 1) has a zero coinciding with the
prescribed zero an+1. Both possibilities are forbidden by our assumptions of normality.

The Lemma 2 allows one to obtain a compatibility conditions for 4 parameters κnm,
ρnm, µnm, νnm. To do this, we obtain 3-term recurrence relations for polynomials Pn(z; m)
with fixed parameter m. There are two possibilities:

(i) first, express Pn(z; m + 1) in terms of Pn(z; m) from the first relation (5.0.3) and
substitute it to the second relation. We get

Pn+1(z; m) − µn−1,mρnm

κnm

(z − bm+1)Pn(z; m) −

z − xn+m+1

κnm

Pn(z; m) +
ρnmκn−1,mνn−1,m

ρn−1,mκnm

(z − an)Pn(z; m) −

ρnmνn−1,m

ρn−1,mκnm

(z − xn+m)(z − an)Pn−1(z; m) = 0 (5.0.11)

(ii) one can express Pn(z; m) in terms of Pn(z; m + 1) from the second relation (5.0.3),
then substitute it to the first relation and then to shift m → m − 1. We get:

Pn+1(z; m) − µn,m−1ρn,m−1

κn,m−1

(z − bm)Pn(z; m) −

(z − xn+m)
µn,m−1

µn−1,m−1κn,m−1

Pn(z; m) + νn,m−1(z − an+1)Pn(z; m) −

µn,m−1νn−1,m−1

µn−1,m−1κn,m−1

(z − xn+m)(z − an)Pn−1(z; m) = 0 (5.0.12)

Subtracting then (5.0.11) and (5.0.12) we obtain relation of the type

F1(z; n,m)Pn(z; m) + F2(z; n,m)Pn−1(z; m) = 0, (5.0.13)

where F1(z; n,m) is a polynomial of the first degree in z and F2(z; n,m) is a polynomial
of the second degree in z. By Lemma 2 we have F1(z; n,m) ≡ F2(z; n,m) = 0 which leads
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to 3 conditions:
ρnmνn−1,m

κnmµn,m−1

=
ρn−1,mνn−1,m−1

κn,m−1µn−1,m−1

; (5.0.14)

1 + κnmνn,m−1 + ρnmµn−1,m

κnmµn,m−1

=

1 + κn−1,mνn−1,m−1 + ρn,m−1µn−1,m−1

κn,m−1µn−1,m−1

; (5.0.15)

xn+m+1 + κnmνn,m−1an+1 + ρnmµn−1,mbm+1

κnmµn,m−1

=

xn+m + κn−1,mνn−1,m−1an + ρn,m−1µn−1,m−1bm

κn,m−1µn−1,m−1

(5.0.16)

Of course, coefficients κnm, . . . , µnm are not independent. They can be further specified
under some normalization conditions for polynomials Pn(z; m), Qm(z; n). For example, if
Pn(z; m) = zn +O(zn−1) are chosen to be monic and Qm(z; n) = αnmzm + O(zm−1 (as for
the case of the ordinary Padé interpolation) we have

κnm =
αnm − αn,m+1

αn+1,m − αn,m+1

, ρnm = κnm − 1,

µnm =
αn+1,m+1 − αn,m+1

αn+1,m − αn,m+1

, νnm = µnm − 1, (5.0.17)

Then it is easily verified that conditions (5.0.14) and (5.0.15) hold identically, and the
only remaining condition is (5.0.16) which is rewritten as

(−αn−1,m + αn−1,m+1)(−αn+1,m−1 + αnm)

(αnm − αn−1,m+1)(αnm − αn−1,m)
an +

αn+1,m−1 − αn+1,m

αnm − αn+1,m

an+1 +

αn,m−1 − αn+1,m−1

αnm − αn,m−1

bm +
(αn,m+1 − αn−1,m+1)(αn,m − αn+1,m−1)

(αnm − αn−1,m+1)(αnm − αn,m+1)
bm+1 +

(αn,m − αn+1,m−1)(αn−1,m − αn,m−1)

(αnm − αn−1,m)(αnm − αn,m−1)
xm+n +

(αn,m − αn+1,m−1)(αn+1,m − αn,m+1)

(αnm − αn,m+1)(αnm − αn+1,m)
xm+n+1 (5.0.18)

Relations similar to (5.0.14) – (5.0.16) appeared in [35] as some compatibility conditions
for a set of two linear Darboux transformations for polynomials of RII-type. Careful
analysis of these nonlinear equations lead to some explicit solution in terms of elliptic
functions (see details in [35]). In the present approach these relations arise naturally as
compatibility condition for the Frobenius-type relations for PPZ-scheme.

In applications, however, we will use another representation of the functions Un(z; m),
Vm(z; n). Indeed, these functions are rational ones with prescribed poles {a1, . . . , an}
and {b1, . . . , bm} correspondingly. Hence, one can decompose these functions in terms of
elementary rational functions with prescribed poles

φk(z) =
ωk(z)

Ak(z)
, χk(z) =

ωk(z)

Bk(z)
, (5.0.19)
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where, recall, ωk(z) = (z − x0) . . . (z − xk−1). The function φk(z) has prescribed poles
a1, . . . , ak whereas the function χk(z) has prescribed poles b1, . . . , bk.

We have

Un(z; m) =
n∑

s=0

Es(n,m)φs(z), Vm(z; n) =
m∑

s=0

Ds(n,m)χs(z) (5.0.20)

with some coefficients Es(n,m), Ds(n,m) not depending on z. Decomposition (5.0.20) is
especially convenient when rational functions Un(z; m), Vm(z; n) are presented in terms of
hypergeometric functions (or their basic and elliptic analogues) as we will see below.

Note that from our conditions of normality and nondegeneracy it follows that En(n,m) 6=
0, Dm(m,n) 6= 0. Indeed, if, say, En(n,m) = 0 then the rational function Un(z; m) will
be a ratio of two polynomials of degree n−1. But this means that at least one root of the
polynomial Pn(z; m) coincides with an which is forbidden by our conditions. Moreover, it
is obvious, that the expansion coefficients Es(n,m), Ds(n,m) are defined uniquely for the
given rational functions Un(z; m), Vm(z; n).

Substituting (5.0.20) to Frobenius-type relations (5.0.5) and (5.0.6) and equating coef-
ficients in front of terms with highest poles we arrive at the relations

µnm =
En+1(n + 1,m + 1)

En+1(n + 1,m)
, νnm = −Dm+1(n + 1, m + 1)

Dm+1(n,m + 1)
(5.0.21)

which allow to express the Frobenius coefficients µnm, νnm in terms of the expansion
coefficients. Note that from (5.0.21) it follows again that coefficients µnm, νnm are well-
defined and nonzero, as we already proved.

The second pair of relations

κnm(an − xn)En+1(n + 1,m) + κnm(an − an+1)En(n + 1,m) −
(an − xn+m+1)En(n,m) − ρnm(an − bm+1)En(n,m + 1) = 0,

(5.0.22)

κnm(bm − an+1)Dm(n + 1,m) − (bm − xn+m+1)Dm(n,m) −
ρnm(bm − xm)Dm+1(n,m + 1) − ρnm(bm − bm+1)Dm(n,m + 1) = 0

allows one to express the second pair of the Frobenius coefficients κnm, ρnm in terms of
expansion coefficients.

6. Shifted PPZ scheme

In this section we consider a generalization of the PPZ scheme with two arbitrary shifts
j1, j2, where j1, j2 are two arbitrary positive integers. Fix these integers and consider the
interpolation problem

Ys =
(xs − a1)(xs − a2) . . . (xs − an−j1)

(xs − b1)(xs − b2) . . . (xs − bm−j2)

Q
(j1,j2)
m (xs; n)

P
(j1,j2)
n (xs; m)

, s = 0, 1, . . . , n+m, n ≥ j1,m ≥ j2

(6.0.1)
We see that the scheme (6.0.1) differs from the scheme (1.0.4) only by the numbers of
prescribed poles and zeros taken into account: the number of prescribed zeros is n − j1,
the number of prescribed poles is m − j2.
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Note that our shifted PPZ scheme is not defined for n < j1 and m < j2. We can define
shifted PPZ scheme for these values of n,m by different possible ways. In what follows
we will deal only with case j1 = j2 = 1. In this case it is natural to introduce two new
parameters a0, b0 and then (1, 1)-shifted PPZ-scheme can be presented in the form

f̃(xs) =
(xs − a0) . . . (xs − an−1)

(xs − b0) . . . (xs − am−1)

Q
(1,1)
m (xs; n)

P
(1,1)
n (xs; m)

, s = 0, 1, . . . , n + m, (6.0.2)

where f̃(z) = (z − a0)f(z)/(z − b0).

Then for new interpolated function f̃(z) we obtain the same (non-shifted) interpolated
PPZ-scheme but with ”shifted” zeros and poles: an → an−1, bm → bm−1. Thus all formulas
including the Frobenius-type relations (5.0.3), (5.0.4) are still valid for the shifted PPZ-
scheme (but of course, with modified coefficients κnm, . . . νnm).

In many explicit cases of PPZ-scheme (see below) the shifted (1, 1)-scheme differs from
unshifted (0, 0)-scheme only by a shift of one or more parameters of the interpolated func-
tion f(z) (or, equivalently, the sequence Ys). This means some ”self-similarity” property
of the PPZ-scheme. Only for schemes with such property it is possible to construct ex-
plicit examples in terms of known special functions (say, hypergeometric ones), as we will
see below.

The ordinary PPZ scheme corresponds to the case j1 = j2 = 0. Of course, the values
j1, j2 may be negative as well. Then no restrictions for n,m are imposed.

For adjacent polynomials P
(j1,j2)
n (z; m) and P

(j3,j4)
n (z; m) with |j3 − j1| ≤ 1, |j4 − j2| ≤ 1

there are algebraic relations similar to the Frobenius-type relations. We will not write
down them here.

7. Simple explicit example of the PPZ scheme

In this section we construct a simple concrete example of the PPZ scheme. This example
is connected with a ratio of two gamma-functions.

Choose the interpolated function

f(z) = κ
Γ(α − β − z)

Γ(α − z)
(7.0.1)

where κ is an arbitrary non-zero constant. We choose for convenience

κ =
Γ(α)

Γ(α − β)
(7.0.2)

In what follows we will assume that both α and β do not take integer values, and
moreover, the difference α − β is not integer as well. This means in particular, that
function f(z) is not rational in z. Moreover, all zeros and poles of the function f(z) are
not integer and don’t overlap .

Function f(z) has zeros and poles at

an = α + n − 1, bn = α − β + n − 1, n = 1, 2, . . . . (7.0.3)

So it is natural to choose PPZ scheme for the function f(z) with explicit prescribed zeros
an and poles bn.

Choose xs = s = 0, 1, 2, . . . (uniform grid).
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Then obviously

Ys = f(xs) =
(1 − α)s

(1 − α + β)s

, An(x) = (−1)n(α−x)n, Bn(x) = (−1)n(α−β −x)n (7.0.4)

where (x)n = x(x + 1) . . . (x + n − 1) is shifted factorial (Pochhammer symbol).
Then we have

Qm(x; n) = (−1)m(α − β)m 3F2

(
−m,−x,−β − m

−n − m, 1 − m − α + β
; 1

)

Pn(x; m) = (−1)n(α)n 3F2

(
−n,−x,−β − n

−n − m, 1 − n − α
; 1

)
(7.0.5)

Equivalently, we have rational functions

Vm(x; n) = Qm(x; n)/Bm(x) = 3F2

(
−m,−x,−β − n

−n − m,α − β − x
; 1

)

Un(x; m) = Pn(x; m)/An(x) = 3F2

(
−n,−x, β − m

−n − m,α − x
; 1

)
(7.0.6)

Now it is directly verified that the main interpolation property (1.0.5) holds (it is
sufficient to use standard transformation formulas for hypergeometric function 3F2(1)).

The PPZ scheme holds for all m,n = 0, 1, 2, . . . .
The Frobenius-type relations (5.0.3), (5.0.4) follow from contiguous relations for hyper-

geometric function 3F2(1). We obtain

κnm = ρnm =
m + n + 1

β + n − m

µnm =
(m + 1)(β − m − 1)

(m + n + 2)(β + n − m)
,

νnm = − (n + 1)(β + n + 1)

(m + n + 2)(β + n − m)

Compatibility conditions (5.0.14) - (5.0.16), or, equivalently, (5.0.21), (5.0.22) are easily
verified to hold.

The shifted PPZ scheme with j2 = j1 = j in our case is equivalent to initial scheme
with α → α − j.

Indeed, consider the usual PPZ-scheme for our case:

Ys ≡
(1 − α)s

(1 − α + β)s

=
(α − s)n

(α − β − s)n

Qm(s; n)

Pn(s; m)
, s = 0, 1, . . . , n + m (7.0.7)

For the (1, 1) shifted PPZ-scheme we have

Ys ≡
(1 − α)s

(1 − α + β)s

=
(α − s)n−1

(α − β − s)m−1

Q
(1,1)
m (s; n)

P
(1,1)
n (s; m)

, s = 0, 1, . . . , n + m (7.0.8)
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After elementary transformations expression (7.0.8) can be rewritten in the form

(2 − α)s

(2 − α + β)s

= κ
(α − 1 − s)n

(α − 1 − β − s)m

Q
(1,1)
m (s; n)

P
(1,1)
n (s; m)

, s = 0, 1, . . . , n + m (7.0.9)

where κ = (1−α+β)/(1−α). We thus see that (7.0.9) coincides with usual PPZ-scheme
(7.0.7) with

P (1,1)
n (z; m) = Pn(z; m)|α→α−1, Q(1,1)

m (z; n) = κQm(z; n)|α→α−1

i.e. we should take polynomials from ordinary PPZ-scheme and just shift the parameter
α. By induction, it can be easily proven that for (j, j) shifted PPZ-scheme we obtain the
same polynomials Qm(z; n), Pn(z; m) with α → α − j.

This remarkable observation allows one to construct biorthogonal functions which have
both the same structure in terms of hypergeometric functions. Of course, such phenome-
non can occurs only for exceptional cases of interpolated sequences Ys, an, bn, xs.

8. Strings and biorthogonality in the scheme with prescribed poles and
zeros

8.1. Vertical string. Consider the case of vertical string m = const in the PPZ scheme.
We already found 3-term recurrence relations for these polynomials (5.0.11), or, equiva-
lently, (5.0.12). From structure of these relations it follows that for fixed m polynomials
Pn(z; m) in the PPZ scheme belong to the polynomials of RII-type in terms of [21]. As
was shown in [49] this means that corresponding rational functions Un(z; m) should sat-
isfy a biorthogonality property with respect to another set U∗

n(z; m) of rational functions.
In this section we show that the biorthogonal partners U∗

n(z; m) belong to some modified
PPZ scheme.

Indeed, introduce the shifted j1 = j2 = 1 PPZ scheme for the same function f(z):

f(xs) =
(xs − a1) . . . (xs − an−1)

((xs − b1) . . . (xs − bm−1))

Q
(1,1)
m (xs; n)

P
(1,1)
n (xs; m)

, s = 0, 1, . . . , n + m, n, m ≥ 1 (8.1.1)

Define rational functions

U∗
n(z; m) =

P
(1,1)
n (z; m + 1)

(z − xm+2)(z − xm+3) . . . (z − xn+m+1)
(8.1.2)

We then have

Theorem 6. Rational functions Un(z; m) and U∗
n(z; m) are biorthogonal:

1

2πi

∫

Γ

w(ζ; m)Un(ζ; m)U∗
j (ζ; m)dζ = hn(m) δnj, (8.1.3)

where the weight function is

w(z) =
f(z)Bm(z)

(z − x0)(z − x1) . . . (z − xm+1)
(8.1.4)

and the contour Γ should contain all interpolation points x0, x1, . . . , xn+m+1 inside and
not contain prescribed zeros ai, i = 1, 2, . . . , n. The normalization coefficient hn(m) will
be calculated below.
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Proof. Assume first that j < n. Then we have

Inj ≡
∫

Γ

w(ζ; m)Un(ζ; m)U∗
j (ζ; m)dζ =

∫

Γ

f(ζ; m)Bm(ζ)Pn(ζ; m)P
(1,1)
j (ζ; m + 1)

An(ζ)(z − x0) . . . (z − xj+m+1)
dζ

Multiply numerator and denominator of the last expression by a polynomial qn−j−1(ζ) =
(ζ − xj+m+2) . . . (ζ − xn+m) of degree n − j − 1. Then we have

Inj =

∫

Γ

f(ζ; m)Bm(ζ)qn−j−1(ζ)Pn(ζ; m)P
(1,1)
j (ζ; m + 1)

An(ζ)(z − x0) . . . (z − xn+m)
dζ

In the last expression we can change the contour Γ extending it to encircle additional
points xj+m+2, xj+m+3, . . . xn+m. Such modification of the contour is admissible because
it leads to adding of zero terms coming from zero residues from these added points. But
now the last expression is zero Inj = 0, j < n due to main orthogonality property (5.0.1).

Assume that j > n. Then

Inj =

∫

Γ

f(ζ; m)Bm(ζ)Pn(ζ; m)P
(1,1)
j (ζ; m + 1)

An(ζ)(z − x0) . . . (z − xj+m+1)
dζ =

∫

Γ

f(ζ; m)Bm(ζ)Pn(ζ; m)P
(1,1)
j (ζ; m + 1)πj−n−1(ζ)

Aj−1(ζ)(z − x0) . . . (z − xj+m+1)
dζ

(we multiplied numerator and denominator by the polynomial πj−n−1(ζ) = (ζ−an+1) . . . (ζ−
aj−1)). Again the orthogonality property (5.0.1) yields Inj = 0 for j > n.

The remaining problem is calculation of the normalization coefficient hn(m). From
(8.1.3) it follows that

hn(m) =
1

2πi

∫

Γ

f(ζ; m)Bm(ζ)Un(ζ; m)P
(1,1)
j (ζ; m + 1)

(z − x0) . . . (z − xj+m+1)
dζ. (8.1.5)

Now we use the expansion (5.0.20) for Un(z; m). Substituting this expansion to (8.1.5)
and using orthogonality property, we arrive at the expression

hn = En(n,m)
1

2πi

∫

Γ

f(ζ; m)Bm(ζ)ωn(ζ; m)P
(1,1)
j (ζ; m + 1)

An(ζ)(ζ − x0) . . . (ζ − xj+m+1)
dζ. (8.1.6)

From the PPZ-scheme (1.0.4) we can replace under the integral the expression f(z)Bm(z)P
(1,1)
n (z; m+

1)/An−1(z) with Q
(1,1)
m+1(z; n), hence, after simplification

hn(m) =
En(n,m)

2πi

∫

Γ

Q
(1,1)
m+1(ζ; n)

(ζ − an)(ζ − xn) . . . (ζ − xn+m+1)
dζ (8.1.7)

Using Frobenius-type relation (5.0.4) we can replace in the integral:

Q
(1,1)
m+1(z; n)

z − an

=
κ̃nm

ρ̃nm

Q(1,1)
m (z; n + 1) − (z − xn+m+1)Q

(1,1)
m (z; n)

ρ̃nm(z − an)

where by κ̃nm, ρ̃nm we denote for simplicity the Frobenius coefficients for polynomials

Q
(1,1)
m (z; n).
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Thus

hn(m) =
En(n,m)κ̃nm

2πiρ̃nm

∫

Γ

Q
(1,1)
m (ζ; n + 1)

(ζ − xn) . . . (ζ − xn+m+1)
dζ −

En(n,m)

2πiρ̃nm

∫

Γ

Q
(1,1)
m (ζ; n)

(ζ − an)(ζ − xn) . . . (ζ − xn+m)
dζ (8.1.8)

The first integral in (8.1.8) is zero because it is reduced to divided difference derivative of

order m + 1 from the m-th degree polynomial Q
(1,1)
m (z; n). The second integral in (8.1.8)

has the same structure as the integral (8.1.7) but with m → m − 1. This process can be
repeated and we arrive after m + 1 steps at the expression

hn(m) = (−1)m+1 En(n,m)

2πiρ̃nmρ̃n,m−1 . . . ρ̃n0

∫

Γ

Q
(1,1)
0 (ζ; n)

(ζ − an)(ζ − xn)
dζ (8.1.9)

The last integral is calculated elementary: Q
(1,1)
0 (z; n) = D̃0(n, 0) is a constant and

1

2πi

∫

Γ

1

(ζ − an)(ζ − xn)
dζ

is a complex integral with contour Γ encircling the point z = xn but avoiding the point
z = an. Hence, by the Cauchy theorem, we have

hn(m) = (−1)m+1 En(n,m)D̃0(n, 0)

ρ̃nmρ̃n,m−1 . . . ρ̃n0(xn − an)
(8.1.10)

Note that hn(m) is well-defined and nonzero because all quantities in (8.1.9) are nonzero
due to normality of the PPZ-scheme. Thus, the normalization constant hn(m) can be
expressed in terms of expansion and Frobenius coefficients.

The expression for the normalization coefficient hn(m) can be presented in an equivalent
form. Indeed, from the first Frobenius-type relation in the pair (5.0.4) we have (for normal
PPZ-scheme)

ρ̃nm = (an − xn+m+1)
Q

(1,1)
m (an; n)

Q
(1,1)
m+1(an; n)

and hence

ρ̃nmρ̃n,m−1 . . . ρ̃n0 =
Q

(1,1)
0 (an; n)

Q
(1,1)
m+1(an; n)

(an − xn+1)(an − xn+2) . . . (an − xn+m+1)

Substituting this to (8.1.10) we get

hn(m) = (−1)m En(n; m)Q
(1,1)
m+1(an; n)

(an − xn)(an − xn+1) . . . (an − xn+m+1)
(8.1.11)

Note that the biorthogonality property can be rewritten in equivalent form as
∞∑

s=0

YsBm(xs) Res

(
Un(z)U∗

j (z)

(z − x0)(z − x1) . . . (z − xm+1)

) ∣∣∣∣
z=xs

= hn δnj (8.1.12)

The summation in (8.1.12) is really restricted by a finite number of terms, because
Res(...)|z=xs = 0 if s > j+m+1. Nevertheless, biorthogonality relation (8.1.12) generates
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an infinite system of functions Un(z), U∗
n(z), n = 0, 1, . . . in case if the PPZ scheme exists

for all n,m = 0, 1, . . . .
Consider a simple explicit example of the biorthogonal functions for a vertical string.

We choose solutions (7.0.5) for PPZ scheme for f(x) a ratio of two gamma-functions
(7.0.1). The rational functions Un(z; m) for fixed m are already known (7.0.6). We need
only to construct their biorthogonal partners U∗

n(x; m) using recipe (8.1.2). Polynomials

P
(1,1)
n (x; m + 1) are obtained from Pn(x; m + 1) by shifting the parameter α → α − 1:

P (1,1)
n (x; m + 1) = (−1)n(α − 1)n 3F2

(
−n,−x,−β − n

−n − m − 1, 2 − n − α
; 1

)
(8.1.13)

Thus for corresponding rational functions we have

U∗
n(x; m) =

(α − 1)n

(m + 2 − x)n
3F2

(
−n,−x,−β − n

−n − m − 1, 2 − n − α
; 1

)
=

(α − 1)n

(m + 2)n
3F2

(
−n,−x, 2 + β − α

2 + m − x, 2 − n − α
; 1

)
(8.1.14)

In this case we have an infinite system of rational functions satisfying biorthogonality
property (8.1.12) with xs = s = 0, 1, 2, . . . . The normalization constant hn in this case
can be easily calculated using formula (8.1.10):

hn(m) = − (β − m)n(−β − n)m+1

(α − β − 1)(m + 1)n(n + 1)m+1

(8.1.15)

8.2. The Kronecker string. In this section we consider the Kronecker (i.e. anti-
diagonal) string for the PPZ scheme.

Fix N = n+m and denote P (z; N−n) = Kn(z; N) and µ(N) = µn,N−n and so on. Then
from Frobenius-type relations (5.0.3) we get 3-term recurrence relation for polynomials
Kn(z; N):

κ(N)
n µ(N−1)

n Kn+1(z; N) − κ(N)
n ν(N−1)

n (z − an+1)Kn(z; N) −
(z − xN+1)Kn(z; N) − ρ(N)

n (z − bN−n+1)µ
(N−1)
n−1 Kn(z; N) −

ρ(N)
n ν

(N−1)
n−1 (z − an)(z − bN−n+1)Kn−1(z; N) = 0 (8.2.1)

We recognize again the recurrence relation of RII type for polynomials Kn(z; N) with
fixed N . Hence we can expect that there are pairs of corresponding biorthogonal rational
functions.

Indeed, define a pair of rational functions of type [n/n]:

Tn(z; N) =
Kn(z; N)

(z − a1)(z − a2) . . . (z − an)

T ∗
n(z; N) =

P
(1,1)
n (z; N − n)

(z − bN−n)(z − bN−n+1) . . . .(z − bN−1)
(8.2.2)

where P
(1,1)
n (z; m) denotes denominator polynomials in the shifted PPZ scheme (6.0.1)

We have
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Theorem 7. Rational functions Tn(z; N), T ∗
n(z; N) are biorthogonal with respect to scalar

product ∫

Γ

f(ζ)BN−1(ζ)

ωN+1(ζ)
Tn(ζ; N)T ∗

k (ζ; N)dζ = hn(N)δnk (8.2.3)

where ωn+1(z) = (z − x0) . . . (z − xn) and hn are some normalization constants. The
contour Γ should contain all interpolation points x0, x1, . . . xN inside but not the points
ai, bi. Equivalently, we have finite biorthogonality relation

N∑

s=0

wsTn(xs; N)T ∗
k (xs; N) = hnδnk, (8.2.4)

with discrete weights

ws =
YsBN−1(xs)

ω′
N+1(xs)

(8.2.5)

Expression for the normalization coefficient is

hn(N) = (−1)N−n En(n; N − n)Q
(1,1)
0 (0; n)

(xn − an)ρ̃n,N−n−1ρ̃n,N−n−2 . . . ρ̃n0

(8.2.6)

The proof of this proposition is almost the same as for vertical string of the PPZ scheme,
i.e. we should consider separately case k < n and k > n and apply orthogonality property
(5.0.1). Expression (8.2.6) for hn(N) is obtained if one considers the case k = n by the
same procedure as for the case of vertical string.

Just as in the case of the Kronecker string for the ordinary Padé interpolation problem,
one can prove the ”inverse” statement:

Theorem 8. Assume that there exists three finite sequences of pairwise non-coinciding
points x0, xi, ai, bi, i = 1 . . . , N and a system of rational functions

Tn(x) =
Kn(x)

(x − a1)(x − a2) . . . (x − an)
, T ∗

n(x) =
K∗

n(x)

(x − bN−1)(x − bN−2) . . . (x − bN−n)

where Kn(x), K∗
n(x) are polynomials of n-th degree having no common zeros and no zeros

coinciding with xi, ai, bi. Let Tn(x), T ∗
n(x) be biorthogonal (8.2.4) with respect to some

nonzero discrete weights ws.
Then there exists a finite nonzero sequence Ys and a finite set of polynomials Qn(x), n =

0, 1, . . . , N such that anti-diagonal Padé interpolation property

Ys =
An(xs)

BN−n(xs)

QN−n(xs)

Kn(xs)
, s = 0, 1, . . . , N (8.2.7)

holds.

The proof of this proposition is similar to that for the ordinary Padé interpolation case
(see section 2.1) and we omit it.

Thus any pair of rational functions with finite orthogonality property (8.2.4) (and with
conditions of nondegeneracy) corresponds to some Kronecker string in the PPZ scheme.
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Consider an explicit example connected with PPZ scheme for ratio of to gamma-
functions. As we already seen, the shifted PPZ-scheme for j1 = j2 = 1 is equivalent
to initial scheme with α → α − 1. Hence we have

P (1,1)
n (x; m) = (−1)n(α − 1)n 3F2

(
−n,−x,−β − n

−n − m, 2 − n − α
; 1

)

From (8.2.2), using transformation formulas for hypergeometric function 3F2(1) we easily
obtain expression for biorthogonal partners

T ∗
n(x; N) = 3F2

(
−n, x − N, β + n − N

−N, x + β + 2 − N − α
; 1

)
(8.2.8)

The discrete weight function (8.2.5) in this case is

ws = −(α − β)N−1

N !

(1 − α)s(−N)s

s!(2 + β − α − N)s

(8.2.9)

i.e. ws coincides with the finite hypergeometric distribution. For the normalization con-
stant we get from (8.2.6)

hn(N) =
(β − N)(−β)N(1 + β)nn!

(1 + β − α)N !(−N)n(β − N + 2n)(β − N)n

8.3. Biorthogonal rational functions on elliptic grid and PPZ scheme. In this
section we show how BRF on elliptic grid introduced in [35], [36], [37] are related with
PPZ scheme of the Padé interpolation.

We need expression for elliptic hypergeometric functions [15], [36], [16] (in what follows
we adopt notation of [33])

r+1Er =
∞∑

n=0

[u1]n[u1 + 2n]

[n]![u1]

r−4∏

m=1

[u3+m]n
[u1 + 1 − u3+m]n

(8.3.1)

where
∑r−4

m=1 u3+m = u1(r − 5)/2 + (r − 7)/2. The elliptic shifted factorials are defined as
follows

[u]n ≡ [u][u + 1] . . . [u + n − 1], [n]! = [1]n.

and [u] ≡ θ1(πhu)/θ1(πh), where θ1(u) is the standard theta function (see, e.g. [44]) and
h is an arbitrary (”quantum”) parameter.

Introduce the interpolated sequence

Ys =
[1 + α − β]s[1 − ε + β]s[δ − α]s[ε + δ]s
[1 + α]s[1 − ε]s[β + δ − α]s[ε + δ − β]s

, (8.3.2)

where α, β, ε, δ are arbitrary parameters. Then we have solution of the Padé interpolation
problem (1.0.6) where both rational functions Vm(x; n), Un(x; m) are expressed as elliptic
hypergeometric functions 12E11 with the parameters:

u1 = α − β, u4 = −m, u5 = −β − n, u6 = α − β + 1 + m + n, u7 = ε + α − β,

u8 = 1 + α − ε − δ, u9 = −t, u10 = δ + t

for the numerator functions Vm(x(t); n) and

u1 = α, u4 = −n, u5 = β − m,u6 = α + 1 + m + n, u7 = ε + α − β,
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u8 = 1 + α − ε − δ, u9 = −t, u10 = δ + t

for the denominator functions Un(x(t),m).
The argument x(t) is parameterized as

x(t) =
[t + t0 − ξ][t + t0 + ξ]

[t + t0 − η][t + t0 + η]
, (8.3.3)

where ξ, η are arbitrary parameters (ξ 6= η) and 2t0 = δ. The interpolation grid xs is

xs = x(s), s = 0, 1, . . . , N (8.3.4)

The prescribed zeros are aj = x(−α − j) and prescribed poles are bj = x(β − α − j).
The interpolation property (1.0.6) in our case can be easily verified with the help of the

Bailey-type transformation for the elliptic hypergeometric functions [15], [16].
Note that expression (8.3.3) defines x(t) as an arbitrary elliptic function of second order

with prescribed periods 2ω, 2ω′ and with two poles in the fundamental parallelogram [44].
Thus the zeros an and poles bn are also elliptic functions of the second order in the
argument n.

The parameters ξ, η do not enter to the hypergeometric parameters ui of the rational
functions Un(x(t); m), Vm(x(t); n) and play the role of free (gauge) parameters. Freedom
in choice of the parameters ξ, η can be explained as follows. As we already saw, the
Möbius transform of the grid xs → (αxs +β)/(γxs +δ) leads to similar PPZ-scheme (with
appropriately changed interpolants Pn(x; m), Qm(x; n), see Proposition 1). It is easily
verified that the Möbius transform of the elliptic grid x(t) (8.3.3) is equivalent (up to a
non-essential common factor) to changing of parameters ξ, η. Thus freedom in the choice
of the gauge parameters ξ, η means freedom in choice of the Möbius transform of the
elliptic grid x(t). In particular, by an appropriate choice of ξ, η it is always possible to
reduce the grid xs to one of standard forms: either the Weierstrass function x(t) = ℘(qt),
or elliptic sin function: x(t) = sn(qt; k) with some parameters q, k.

The obtained rational functions Un(x(t); m), Vm(x(t); n) satisfy the Frobenius-type re-
lations (5.0.5) and (5.0.6) with the coefficients

κnm = − [m + n + 1][ε + δ + n][n + 1 + β − ε]

[β + n − m][α + n + 1][α − β + ε + m + n + 1]
×

[α − β + n + 2m + 2][α + δ/2 + n + 1 + η][α + δ/2 + n + 1 − η]

[δ − α + ε − n − m − 2][n + m + 1 + δ/2 + η][n + m + 1 + δ/2 − η]

ρnm =
[m + n + 1][ε − m − 1][ε + δ − β + m]

[β + n − m][α + n + 1][α − β + ε + m + n + 1]
×

[α + 2n + m + 2][β − α + δ/2 − m − 1 + η][β − α + δ/2 − m − 1 − η]

[δ − α + ε − n − m − 2][n + m + 1 + δ/2 + η][n + m + 1 + δ/2 − η]

µnm =
[m + 1][1 + α − β + m][β − m − 1][α + m + 2n + 3]

[m + n + 2][α − β + m + n + 2][β − m + n][α + m + n + 2]

νnm = − [n + 1][α + n + 1][β + n + 1][α − β + n + 2m + 3]

[m + n + 2][α − β + m + n + 2][β − m + n][α + m + n + 2]
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These coefficients can be easily found from the system of relations (5.0.22), (5.0.21). On
the other hand, the Frobenius-type relations (5.0.5) and (5.0.6) in this case are equivalent
to contiguous relations for the elliptic hypergeometric functions 12E11 found in [36].

As we have solution for PPZ scheme with arbitrary m,n, we can construct biorthogonal
rational functions for the vertical and Kronecker strings.

First, we should consider the shifted PPZ scheme (6.0.1) for j1 = j2 = 1 because the

polynomials P
(1,1)
n (z; m) are building blocks for construction the biorthogonal partners in

both schemes with vertical and Kronecker strings (see formulas (8.1.2) and (8.2.2)). It
is easily seen that the shifted scheme with j1 = j2 = 1 is equivalent to the non-shifted
scheme with α → α − 1. More exactly, this means

Ys → Ys|α→α−1, P (1,1)
n (z; m) = Pn(z; m)|α→α−1, Q(1,1)

m (z; n) = c Qm(z; n)|α→α−1 (8.3.5)

where c is a constant which is inessential (this means merely, that we multiply Ys by this
constant).

Consider first the case of the Kronecker string. Fix N = m + n and for biorthogonal
partners Tn(x; N), T ∗

n(x; N) we have from (8.2.2) that Tn(x) coincides with Un(x(t); N−n)
and it is elliptic hypergeometric function 12E11 with the parameters

u1 = α, u4 = −n, u5 = β − N + n, u6 = α + 1 + N,

(8.3.6)

u7 = ε + α − β, u8 = 1 + α − ε − δ, u9 = −t, u10 = δ + t

For dual biorthogonal partners we have

T ∗
n(x; N) =

{
An(x)

(x − bN−1) . . . (x − bN−n+1)
Pn(x; N − n)

} ∣∣∣∣
α→α−1

(8.3.7)

Using the elliptic analogue of the Bailey transformation [15], one can simplify expression
(8.3.7) reducing it to the function 12E11 with the parameters

u1 = β − α − N + δ, 4 = −n, u5 = β − α + δ + 1, u6 = δ − α + ε − N

(8.3.8)

u7 = β − α − ε − N + 1, u8 = β − N + n, u9 = −t, u10 = δ + t

For the corresponding discrete weight function ws in the biorthogonality relation (8.2.4)
we obtain after simple calculations

ws = Ys
BN−1(xs)

ΩN+1(xs)
= κN [2s + δ]

[−N ]s[δ]s[α − β + N ]s
[s]![α + 1]s[1 − ε]s[ε + δ − β]s

×

[1 + β − ε]s[δ − α]s[ε + δ]s
[δ + N + 1]s[1 + β + δ − α − N ]s

(8.3.9)

where κN is a coefficient which doesn’t depend on s. Expression (8.3.9) coincides with
that for the weight function of the ”elliptic” BRF obtained in [36]

We obtain that for the Kronecker string corresponding BRF Tn(x; N), T ∗
n(x; N) coincide

with those found in our previous papers [35], [36], [37]. Here we see that these BRF are
easily derived from the PPZ scheme using explicit formulas (8.2.2).
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Consider the case of the vertical string m = const. The rational functions Un(x; m)
coincide with denominator rational functions in PPZ scheme on elliptic grid, hence they
are 12E11 elliptic hypergeometric functions with the parameters

u1 = α, u4 = −n, u5 = β − m,u6 = α + 1 + m + n, u7 = ε + α − β,

u8 = 1 + α − ε − δ, u9 = −t, u10 = δ + t.

For biorthogonal partners U∗
n(x; m) we have formula (8.1.2). Again, after the Bailey-type

transformation we reduce this expression (up to an inessential factor which doesn’t depend
on x) to the elliptic hypergeometric function 12E11 with the parameters

u1 = δ + m + 1, u4 = −n, u5 = δ + β − α + 1, u6 = δ − β + ε + m − 1, u7 = m + 2 − ε,

u8 = 1 + α + m + n, u9 = −t, u10 = δ + t

For the vertical string we obtain a new system of BRF on elliptic grids. These BRF
form an infinite system (n = 0, 1, . . . ) in contrast to the case of the Kronecker string. It
is interesting to note that in this case the set of interpolating points xs, s = 0, 1, . . . may
form a dense set on a finite real interval.

Indeed, the grid xs given by expression (8.3.3), is an arbitrary elliptic function of the
second degree. Using an appropriate Möbius transformation xs → (α1xs+α2)/(α3xs+α4)
we can reduce xs to some simple standard form, e.g. for the elliptic sine function

xs = sn(q(s − s0); k) (8.3.10)

with some parameters q, s0, k. Assume that these parameters are real and 0 < k < 1
(standard choice for k) and moreover j1q 6= 4K(k)j2, where 4K(k) is a real period
of the elliptic function sn(x; k) [44] and j1, j2 are some integers. We then obtain that
the grid xs for all s = 0, 1, . . . is a set of real numbers dense on the interval [−1, 1]. In
biorthogonality relation (8.1.12) summation is made over all interpolated points x0, x1, . . . .
We thus see that in the case of the vertical string the corresponding elliptic BRF have
unusual property: they are biorthogonal on the dense set of points on an interval. In
theory of orthogonal polynomials such measures are very interesting from both physical
and mathematical point of view (see, e.g. [40], [25], [41]). We mention also an interesting
paper by Magnus [26] where a simple explicit example of such polynomials orthogonal on
a dense set of points was constructed.

Finally, note that the interpolated sequence Ys defined by (8.3.2) has a remarkable
property: if one changes the parameters

α → α − β, β → −β, ε → ε − δ, δ → δ (8.3.11)

then Ys → 1/Ys, i.e. such transformation leads to to exchange of rational functions
Un(z; m) → Vn(z; m) Vm(z; n) → Um(z; n). Note that transformation (8.3.11) is an
involution, i.e. square of this transformation preserves the parameters α, β, ε, δ unchanged,
as expected. Thus, both Un(z; m) and Vn(z; m) functions can equally be exploited to
construct pairs of corresponding BRF. This is also can be seen comparing hypergeometric
parameters ui corresponding to functions Un(z; m) and Vn(z; m). These parameters are
connected by transformation (8.3.11).
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9. The case of finite orthogonal rational functions

Finally, consider the case when T ∗
n(x; N) = Tn(x; N) for some fixed N , i.e. when

biorthogonal rational functions from the Kronecker string become orthogonal. Comparing
expressions (8.2.2) we see that denominators of the functions Tn(x; N) and T ∗

n(x; N)
coincide iff condition

bk = aN−k, k = 1, 2, . . . N − 1 (9.0.1)

holds. But condition (9.0.1) for the fixed N means that in the Kronecker string the PPZ
scheme is fully degenerated: An(x) = BN−n(x). Hence the PPZ scheme becomes the
ordinary Padé interpolation scheme:

Ys =
QN−n(xs; n)

Pn(xs; N − n)
, s, n = 0, 1, . . . , N (9.0.2)

But then the shifted scheme (6.0.1) with j1 = j2 and with m = N − n will coincide with
(9.0.2). We thus have simple

Theorem 9. Biorthogonal rational functions T ∗
n(x; N), Tn(x; N) in the Kronecker string

of the PPZ scheme with fixed N = 1, 2, . . . become orthogonal if and only if condition
(9.0.1) holds.

Now we can rewrite biorthogonality condition (8.2.4) as

N∑

s=0

wsTn(xs; N)Tk(xs; N) = hnδnk, (9.0.3)

with discrete weights

ws =
(xs − a1)Ys

ω′
N+1(xs)

, (9.0.4)

where we used property BN−1(x) = A1(x) = (x − a1) which holds for the case of pure
orthogonality.

Remark. Coincidence of zeros and poles (9.0.1) for one fixed Kronecker string doesn’t
mean such coincidence for other Kronecker string (i.e. with other value of N).

In particular, for the case of 3F2 BRF we see from (7.0.3) that condition (9.0.1) is
impossible for any N . Thus in this case there are no purely orthogonal functions.

For the case of elliptic BRF, nevertheless, there is a special case of pure orthogonality.
Indeed, condition (9.0.1) implies

x(−α − n) = x(β − α − N + n), n = 1, 2, . . . , N − 1 (9.0.5)

where x(t) is an elliptic function of the second order given by formula (8.3.3). Using
well known Riemann identity for theta functions [44] one can transform the difference
x(t) − x(r) for arbitrary t and r as

x(t) − x(r) =
[t − r][t + r + 2t0][ξ − η][ξ + η]

[t + t0 + ξ][t + t0 − ξ][t + t0 + η][t + t0 − η]
(9.0.6)

Thus equation x(t) = x(r) has solutions of two types:
(i) t − r = 2m1ω1 + 2m2ω2;
(ii) t + r + 2t0 = 2m1ω1 + 2m2ω2
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where 2ω1,2 are two minimal independent periods of the elliptic function x(t) and m1,m2

are arbitrary integers.
In our case t = −α − n, r = β − α − N + n. We see that condition (i) is impossible,

while condition (ii) is possible if (we are restricted with the simplest choice m1 = m2 = 0)

β − 2α + δ = N (9.0.7)

Thus under condition (9.0.7) the elliptic BRF Tn(x; N), T ∗
n(x; N) should be orthogonal:

Tn(x; N) = T ∗
n(x; N). Indeed, this can be easily verified comparing hypergeometric pa-

rameters (8.3.7) and (8.3.8) under condition (9.0.7). Note that condition (9.0.7) can be
valid only for the only fixed (i.e. for the only N) Kronecker string.

10. Conclusions

To our opinion the following results obtained in the present paper are assumed to be
new:

(i) new relations between the Kronecker algorithm for rational interpolation, the finite
orthogonal polynomials and their duals;

(ii) relations between horizontal and diagonal strings in the ordinary Padé interpolation
table and corresponding systems of BRF;

(iii) explicit formulas for biorthogonality relations (3.1.12), (2.3.2);
(iv) appearance of rational orthogonal functions (in spirit of [6]) as a degenerated case

of diagonal strings in the ordinary Padé interpolation scheme.
(v) Frobenius-type relations (5.0.3), (5.0.4) for the scheme with prescribed poles and

zeros;
(vi) appearance of BRF in the PPZ scheme for vertical and Kronecker strings and

corresponding explicit formulas for biorthogonality.
We have showed that biorthogonal rational functions appear from the Padé interpola-

tion scheme as naturally as orthogonal polynomials from the Padé approximation scheme.
In contrast to the case of orthogonal polynomials, the Padé interpolation scheme leads
to non-coinciding, biorthogonal rational functions. Purely orthogonal rational functions
appear only as a special degenerated case of the Padé interpolation scheme when some
pairs of interpolated nodes xs merge leading to double points. It is interesting to note
that history of theory of biorthogonal functions and their relation to approximation and
interpolation schemes goes back to works of armenian mathematicians (see, e.g. review by
Djrbashian [10]). Biorthogonality was also considered, but without connections to Padé
interpolation scheme.

Theory of rational orthogonal functions was intensively developed by international group
of mathematicians during last 20 years, see monograph [6] and recent survey [7]. In
this direction many general results concerning different types of orthogonality measures,
asymptotic properties, behavior of roots etc were obtained. However, concrete examples
of such orthogonal functions connected with special functions and (or) with problems of
modern mathematical physics were not considered.

On the other hand, many concrete examples of biorthogonal rational functions connected
with generalized hypergeometric functions were constructed by experts in special functions
and orthogonal polynomials (see, e.g. [18], [21], [31], [45] and reference therein). In



Padé biorthogonality 361

particular, some explicit systems of BRF connected with hypergeometric function 9F8

(or basic hypergeometric function 10Φ9) were constructed. In [21] it was an attempt to
understand theory of BRF starting from three-term recurrence relations of special type (RI

and RII types of recurrence relations) and their connection with new types of continued
fractions. In [49] the general theory of BRF was shown to be equivalent to generalized
spectral problem for two arbitrary Jacobi matrices. This observation lead to a construction
of new examples of BRF on elliptic grids in [35], [36], [37]. On the other hand, these elliptic
BRF are related with important objects in modern mathematical physics - so-called elliptic
6j-symbols. Namely, Frenkel and Turaev [15] were able to express these objects in terms
of new special functions - modular hypergeometric functions. Recently, Rosengren [32]
showed how elliptic BRF are connected with elliptic 6j-symbols. He also proposed an
elegant algebraic interpretation of the elliptic BRF connected with the Sklyanin algebra.

We hope that the present paper can be considered as a bridge between approaches
of authors dealing with orthogonal functions [6] and those dealing with special systems
of BRF. Now we see that Padé interpolation problem is a natural source of these ob-
jects. Starting from simple examples of interpolation functions f(x) and corresponding
interpolation grids xs one can obtain all known explicit systems of OP and BRF [53].
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interpolation, SIDE-6 Proceedings, to appear.

A.S. Zhedanov
Donetsk Institute for Physics and Technology,
Donetsk 83114, Ukraine


